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EXECUTIVE SUMMARY 

Under medium to heavy traffic conditions, the promptness of response after an incident is a 

direct function of the detection time. Accurate and fast incident detection is essential for 

subsequent management plans that aim to reduce incident based congestion. Highway traffic 

surveillance systems are widely used for incident management, real-time traffic management, 

traveler information, and hazard evacuation. Some of the most widely used methods are closed 

circuit television systems, driver reports processing, highway crew patrols, and automatic 

incident Detection (AID) systems.   

 Based on our literature review, most traditional automated incident detection algorithms 

use roadway-based point data. There are several disadvantages to using point data for incident 

detection. The algorithms using loop data suffer from high rates of false alarms.  

To improve incident detection data, it is reasonable to expect that using multiple data 

sources, e.g., fixed detectors (collecting point data) and probe vehicles (collecting spatial data), 

could enhance the input data reliability and completeness and hence improve the performance of 

an incident detection system. 

 Recently, a short-term congestion detection algorithm for freeway sections has been 

proposed using dynamic time warping (DTW) and support vector machine (SVM). Some studies 

show a higher detection rate than Artificial Intelligence algorithms with lower false alarm rates. 

The proposed methods are a data mining and time series classification that represent an 

interdisciplinary confluence of a set of disciplines, including statistics, machine learning, 

Artificial Intelligent, and information science. The literature review, methodology, and 

application of these two models will be presented in the following sections.  

Dallas traffic data are being used to develop the incident detection model. The Dallas 

Transportation Management Center (DalTrans) is the nerve center for urban freeway and 

highway systems in Dallas. Real time information is gathered from many sources such as 

electronic sensors in the pavement, freeway call boxes, video cameras, 911 calls, officers on 

patrol, highway crews, motorist cellular calls, and commercial traffic reporters. The information 

is sent to the DalTrans 24-hours a day, seven days a week and traffic information (speed and 

flow) are gathered every 5 minutes on a per lane basis.   

In this research two groups of experiments were performed to evaluate the two most 

robust incident detection algorithms: DTW and SVM. Evaluation of the DTW and SVM 
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algorithms revealed that both can successfully classify traffic conditions into two categories – 

incident, non-incident – during peak hours. As algorithm speed is a concern for real-time 

incident detection, both model predictions proved to be fast. Models were trained on a network 

based on freeway segments in Dallas, TX. Comparing these two methods, application of DTW in 

the field of transportation is quit new. The concept of DTW is simpler than SVM. In regards to 

the time, available data, and nature of DTW we did not have enough data to totally validate our 

DTW model however, that work is continuing.  The advantage of using SVM is that it does not 

require a large dataset to train and validate the model. On the other hand, the accuracy of SVM is 

highly depend on the kernel function and the choice of parameters which requires solution of an 

optimization problem (in this research grid search has been applied to find C and Υ). The work 

completed and described here indicates that a more accurate comparison of these two methods 

could be developed through generation of simulation data after using real world data for model 

calibration.      
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INTRODUCTION 

Under medium to heavy traffic conditions, the promptness of response after an incident is a 

direct function of the detection time. Accurate and fast incident detection is essential for 

subsequent management plans that aim to reduce incident based congestion. Highway traffic 

surveillance systems are widely used for incident management, real-time traffic management, 

traveler information, and hazard evacuation. Some of the most widely used methods are closed 

circuit television systems, driver reports processing, highway crew patrols, and automatic 

incident Detection (AID) systems.  

 Generally incident detection includes two sequential components: collecting traffic data, 

and analyzing the collected data. For many locations a large investment has been made in 

detection hardware so there is no option of choosing type of detector hardware. In this case, the 

best analysis model may be determined by product of the detection system, that is, the available 

data. If one has the option of choosing detector hardware as well as analysis or detection 

algorithm(s) a great deal more flexibility may evolve into a potentially more robust system.  

 Based on our literature review, most traditional automated incident detection algorithms 

use roadway-based point data. There are several disadvantages to using point data for incident 

detection among these is the fact that the algorithms using point inductance loop detector data 

suffer from high rates of false alarms.  

To improve incident detection data, it is reasonable to expect that using multiple data 

sources, e.g., fixed detectors (collecting point data) and probe vehicles (collecting spatial data), 

could enhance the input data reliability and completeness and hence improve the performance of 

an incident detection system. 

 In terms of incident detection algorithm, most studies have focused on machine learning 

methods applied to single point detector data due to the uncertainty of incident patterns. The 

machine learning or artificial intelligence algorithms are a set of procedures that apply inexact 

reasoning and uncertainty in complex decision-making as well as data analysis processes where 

all decisions are made by machine.  

 Recently, a short-term congestion detection algorithm for freeway sections has been 

proposed using dynamic time warping (DTW) and support vector machine (SVM). Some studies 

show a higher detection rate than Artificial Intelligence algorithms with a lower false alarm rate. 

These two proposed methods  are a data mining and time series classification that represent the 
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confluence of a set of disciplines, including statistics, machine learning, Artificial Intelligent, and 

information science. The Literature review, methodology, and application of these two models 

will be presented in the following sections.  
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REVIEW OF CURRENT INCIDENT DETECTION 

Incident detection algorithmsare typically categorized into five major groups depending on the 

type of operations data analysis they employ.  

 Comparative algorithms 

 Statistical algorithms 

 Time-series and filtering based algorithms 

 Traffic theory based algorithms 

 Advanced algorithms. 

The most challenging part of real-time incident detection is recognition of traffic pattern 

changes when incidents happen during stop-and-go conditions.  Unfortunately “stop and go” 

conditions tend to develop on most urban freeways on most week days during both morning and 

evening rush hours.  The Institute of Physics (2005) research shows that even small fluctuations 

in car-road density cause a chain reaction that can lead to a jam. It is practically impossible to 

obtain coherent predictions from a macroscopic traffic flow model due to occurrence of the huge 

number of small transient shockwaves under these conditions. Incident detection efforts are 

abandoned under such conditions.  

Among the different traffic surveillance methods, closed circuit television (CCTV) 

systems, driver reports processing, highway crew patrols, and AID systems are the most widely 

used (Parkany and Xie, 2005). However, CCTV systems and sensor networks for AID require 

extensive infrastructure support. 

Although many studies argue that driver-based incident detection systems (e.g., enhanced 

911 services) can provide quick and accurate detection with less capital, maintenance, and 

operational costs, these systems do not perform well in areas with low cell phone usage or bad 

signal (Xie and Parkany, 2002; Mussa and Upchurch, 2000 and 1999; Walters et al., 1999; 

Skabardonis, 1998; and Mussa, 1997). There is also always the risk of the phone call processing 

system becoming jammed during a severe incident. The labor intensive nature of highway crew 

patrols tends to limit their wide spread deployment. Consequently, highway traffic surveillance is 

currently limited to major highways and urban areas. 

Most traditional automated incident detection algorithms use roadway-based single point 

data. Using single point data has several disadvantages for incident detection. Most of the time 

space-mean speed is not available which decreases the accuracy of the AID algorithm. These 
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algorithms are simple in theory and practical in operation, but would usually fail to deliver high 

detection rates and low rates of false alarm. 
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EVALUATION OF CURRENT INCIDENT DETECTION ALGORITHMS 

During incident occurrence, traffic measurements change. Occupancy (or density) increases 

upstream and decreases downstream while speed and volume decrease upstream. These 

differences between up- and downstream traffic measurements have been the basis of most 

freeway AID algorithms such as the California (Tan, 2011) and the Minnesota (Tan, 2011) ones. 

The California algorithm only utilizes current time occupancy information, which may produce 

high false alarm rates (FAR) because of dynamic traffic fluctuations. To decrease the high FAR, 

the Minnesota algorithm employs a cumulative sum of differences between up and downstream 

conditions. 

  AID algorithms can be categorized as macroscopic and microscopic, however most are 

macroscopic and most use point data.  To improve incident detection data, it is reasonable to 

expect that using multiple data sources, e.g., fixed detectors (collecting point data) and probe 

vehicles (collecting spatial data), could enhance the input data reliability and completeness and 

hence improve the performance of an incident detection system. Building a microscopic model to 

mimic driving behavior would be extremely difficult, since drivers consider the current 

movement of the traffic stream ahead, not just one vehicle in front of them. To make microscopic 

modeling possible, vehicle trajectories data are required. 

 The trajectory data generated by vehicles in a vehicle-infrastructure integration (VII) 

(Ma, 2008) network have the potential to provide faster traffic condition detection and lower 

false alarm rates than existing infrastructure-based incident detection systems, such as inductive 

loop detectors, magnetometers and magnetic detectors, microwave radar, infrared, ultrasonic, 

acoustics and video image processing. Since 2003, the Federal Highway Administration 

(FHWA) has sponsored a variety of efforts that have led to the national development of the VII 

architecture and functional requirements (FHWA, 2005). Two large states, California (PATH, 

2006) and Michigan (MDOT, 2005) are also testing various methods for implementing these 

programs (ITS America, 2007). 

 As noted, most of the traditional automated incident detection algorithms use roadway-

based single point data that generally means space-mean speed is not available, which decreases 

the accuracy of the AID algorithm.  

Based on recent studies [Hi-ri-o-tappa 2011, Oh 2005] mean speed, standard deviation of 

speed, headways, and flow are the best indicators for incident prediction.. According to Hi-ri-o-
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tappa [2011] who conducted an evaluation of best indicators through a statistical comparison of 

the differences between two datasets, mean speed and standard deviation of speed are the best 

indicators followed by occupancy and traffic flow rate.  

The literature indicates that evaluations of existing incident detection algorithms  have 

traditionally been done through comparison of detection rates, false alarm rates and times to 

detection. Even though some algorithms produce detection rates of 100% (ARIMA, Bayesian 

and SSID), they may have either a high false alarm rate or a long time to detection (MARTIN, 

2001). Other algorithms that provide low false alarm rates and time to detection (less than 1 min) 

included artificial neural networks (ANN), which projected a detection rate of 89% (MARTIN, 

2001). Video image processing was found to have an incident detection rate of 90% and a false 

alarm rate of 3% (MARTIN, 2001); detection rates will improve with technological 

advancements. 

Incident detection is a pattern classification problem. Any good classifier is a potential 

tool for the incident detection problem. Most recent research has focused on: 

 Dynamic time warping algorithm (Hi-ri-o-tappa, 2012). 

 Support vector machine (Ruey Long Cheu 2003, Ma 2010, Xiao et al. (2012)) 

  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hi-ri-o-tappa,%20K..QT.&searchWithin=p_Author_Ids:38494838200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ruey%20Long%20Cheu.QT.&searchWithin=p_Author_Ids:37329566400&newsearch=true
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ALGORITHM DEVELOPMENT 

Based on our literature review presented in the previous section, the two most recent robust 

incident detections are Dynamic Time Warping (DTW) and Support Vector Machine (SVM).  

DTW Literature 

DTW algorithms were proposed around 1970 in the context of speech recognition, to account for 

differences in speaking rates between speakers and utterances. An example of this method 

application in this field is when one wants to find a low distance score between the sound signals 

corresponding to utterances “now” and “nooow” without being sensitive to the prolonged 

duration of the ‘o’ sound. Other applications have been in genetics—for gene sequencing and 

detection. DTW has also been applied for clustering and classification in the follow areas:  

 Electro-cardiogram analysis (Huang and Kinsner 2002; Syeda-Mahmood et al..    2007; 

Tuzcu and Nas 2005),  

 Clustering of gene expression profiles (Aach and Church 2001; Hermans and Tsiporkova 

2007),  

 Biometrics (Faundez-Zanuy 2007; Rath and Manmatha 2003), 

 Process monitoring (Gollmer and Posten 1996). 

The interesting fact about this algorithm is that it can warp other dimensions than time, for 

example an angle for shape recognition (Kartikeyan and Sarkar 1989; Wei et al.. 2006; Tak 

2007). Therefore, the term “time series” may even be misleading.  DTW has not been widely 

used in the transportation field yet. Chandrasekaran et al. brought the concept of DTW to the  

transportation field for the first time to track vehicular speed variation. Since then, there have 

been a few more studies investigating its use in transportation: 

 “Tracking vehicular speed variations by warping mobile phone signal strengths” 

Chandrasekaran, G.,Tam Vu, Varshavsky, A., Gruteser, M., Martin, R.P., Jie Yang, 

Yingying Chen (2011) 

 “Traffic Event Automatic Detection Based on OGS-DTW Algorithm” Zhang, N., Shi, Y., 

and Huang, W. (2012) 

 “Traffic incident detection system using series of point detectors” Hi-ri-o-tappa, K., 

Likitkhajorn, C., Poolsawat, A., Thajchayapong, S. (2012) 

Some studies show that the procedure may produce higher detection rates than Artificial 
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Intelligence algorithms with lower false alarm rates. For example, Hi-ri-o-toppa (2012) used 

upstream and downstream site changes to develop a DTW incident detection algorithm which 

achieved a 94% detection rate and a low false alarm rate. The proposed method uses data mining 

and time series classification and is the confluence of a set of disciplines, including statistics, 

machine learning, Artificial Intelligent, and information science.  

 

DTW using Dallas Data  

Data 

Dallas traffic data were used to develop the incident detection model. The Dallas Transportation 

Management Center (DalTrans) is the nerve center for urban freeway and highway systems in 

Dallas. Real time information is gathered from many sources including electronic sensors in the 

pavement, freeway call boxes, video cameras, 911 calls, enforcement officers, highway crews, 

motorist cellular calls, and commercial traffic reporters.  These information sources are provided  

to the DalTrans 24-hours a day, seven days a week. Traffic information (speed and flow) are 

gathered every 5 minutes on a per lane basis.   

To develop a real sense of how the model might work for incident detection, we  

extracted five incident cases from the Dallas incident database, as shown in Figure 1. The 

incidents occurred at different locations along US75.    

 

No. RoadName 
Road 

Direction 

CrossStreet 

Name 
DetectedTime ClearedTime AffectedLanes Type 

1 US 75 North Monticello Ave 8/10/12 17:06 8/10/12 17:34 Lane1 DisabledVehicle 

2 US 75 North McCommas Blvd 8/31/12 23:23 9/1/12 1:47 Lane1 Accident 

3 US 75 North Mockingbird Ln 9/25/12 22:36 9/25/12 23:15 Lane1, Lane2 Accident 

4 US 75 North Caruth Haven Ln 9/14/12 17:20 9/14/12 17:57 Lane1, Lane2 Accident 

5 US 75 North Walnut Hill Ln 7/5/12 7:15 7/5/12 7:25 Lane1 Debris 

 

Figure 1.  Locations, time, and impact of incidents on US 75. 
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DTW Concept  

To illustrate the DTW concept one might assume two hypothetical sequences of X and Y as 

shown in Figure 2.  In this example X could represent the observed query to be tested and Y 

might represent the reference series that we knew something about. To compare the two datasets, 

we measure and align their similarity or likeness into the closest matches by *locally* stretching 

or compressing portions of the series. As noted, the series are hypothetical sequences of X and 

Y, as shown in Figure 2, with the x axes showing the time index and the y-axes showing the 

outcome measure. The series may be different lengths, but measurements are taken at equidistant 

time points. 

 
Figure 2.  A series of hypothetical sequences of two inputs, x and y. 

 

Furthermore, an optimal warping path between X and Y is a warping path p∗ having 

minimal total cost among all possible warping paths. The total cost Cp(X,Y) of a warping path p 

between X and Y with respect to the local cost measure can be written as: 

 

The DTW distance DTW(X, Y ) between X and Y is then defined as the total cost of p∗: 

DTW(X, Y ) := cp∗ (X, Y )  

  = min{cp(X, Y ) | p is an (N,M)-warping path} 

 

The optimal warping path between X and Y is represented graphically in Figure 3 below as Time 

Series A and Time Series B.   The orange "diagonal" goes from one corner to the other of the 

possibly rectangular cost matrix, therefore having a slope of M/N, not 1, as in the slanted Band 

Window.  The computation is approximate: points having multiple correspondences are 

averaged, and points without a match are interpolated.  This average between Time Series A and 
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B is graphically represented by large red dots in Figure 3 and interpolated points without a map 

are represented by blue dots and a red directional arrow. Please note that the area is not 

normalized by path length.   

 

Figure 3.  Sequences of warping map matrix to find optimal warping path. Source: 

http://homepages.inf.ed.ac.uk/group/sli_archive/slip0809_c/s0562005/theory.html 

 

Modifications and constraints for DTW  

Additional constraints can be applied to the model to produce specific results, such as 

introducing an additional weight vector to favor the vertical, horizontal, or diagonal direction 

(wd, wh, wv) in the alignment. To constrain the slope of the admissible warping paths, we can 

modify the step size condition. To accelerate the speed with which the model can find the 

feasible solution one can put constraints on search windows. 

Methodology and results 

Based on recent studies (Hi-ri-o-tappa 2011, Oh 2005) mean speed, standard deviation of speed, 

headway, and flow are the best indicators for incident prediction. An evaluation of the best 

indicators based on the statistical difference between datasets indicated that mean speed and 

standard deviation of speed are the best indicators followed by occupancy and traffic flow rate 
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(Hi-ri-o-tappa, 2011).  

The following figure shows how the incident detection algorithm has been configured. In this 

algorithm DTW is used for pattern training and is followed by pattern classification and the 

decision algorithm. 

Figure 4.   Incident detection algorithm (Hi-ri-o-tappa, 2011). 

 

In the training process, the proposed system captures patterns associated with incidents in 

the training dataset. The patterns captured have common trends that can be described by 

categorizing each type of indicator. To illustrate that, we assumed the incident occurring at the 

location marked by the star sign marked as “incident” in Figure 5. We are expecting that Speed 

and Standard deviation of speed have the same trend which decrease upstream from the incident 

while remaining constant downstream of the incident. We do not expect to immediately see flow 

changes comparing up- and down-stream flows, however, occupancy has an increasing pattern at 

the upstream detector and a constant pattern in the downstream detector as shown in the last line 

of Figure 5.  

 

Figure 5.  Incident detection pattern (Hi-ri-o-tappa, 2011). 

 

As mentioned earlier, the Dallas database was used for this research. We started to 
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develop a base model using US-75, which is one of the most heavily used freeways in Dallas. 

Traffic data and incident data are provided from two different sources with different formats. 

Traffic data is a huge database in which for each specific detector data is recorded every 5 

minutes for each lane.  

From the incident data, five sequential locations were chosen (the same five locations as 

used in Figure 1). In all cases incidents happened northbound on lane 1 but during different times 

of day.  To have a basis for comparing incident with non-incident situations, we chose to 

characterize the non-incident situation as having no incident within 5 miles before or after the 

specific incident location.   

First we tried to find the speed pattern for each location. Then we attempt to use a 

smoothing technique to take some noise out. Figures 6 shows speed patterns for five locations 

during typical, non-incident flow and Figure 7 shows speed patterns for the same five locations 

during an incident.  The y-axis shows the speed in miles per hour and the x-axis represents time 

and shows three hours before the incident and three hours after.   

 

Figure 6.  Typical Speed profile for 5 selected locations. 
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Figure 7.  Incident Speed profile for 5 selected locations. 

 

To develop our DTW algorithm, “R” programing language was used.  First we developed a 

classic DTW model with our typical data to describe what we are expecting to see during non-

incident times. We considered two random days in which no incident occurred within  several 

miles radius of the data location.  The y-axis represents the first day speed profile data over time 

in minutes and the x-axis represents the second day (both are non-incident cases). As seen in 

Figure 8, the model then used the data to find the shortest path between the two time series, 

which is represented by the blue line.  The cost model shows the lowest cost or the best 

compatible match of the two time series.  During a non-incident case, the two time series are 

compatible, so the cost matrix shows green colors and a diagonal path. The query index scale 

refers to time where 60 represents six hours of elapsed time from time zero.  The query index 

represents three hours before the incident and three hours after with the incident occurring at 

query index 30.  Figure 9 provides better visual expression of the result of time warping.  Again, 
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the query index represents three hours before the incident and three hours after with the incident 

occurring at query index 30 and  60 represents six hours of elapsed time from time zero.  The red 

and black lines represent traffic flow on two different typical days with the same time frame.  

The models are then warped to show how data points align.  

 

Figure 8.  DTW for non-incident. 

High Cost

Low Cost
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  ------- Non-incident speed profile 

 Incident speed profile 

 Index Time, where 60 represents 6 

hours of elapsed time from 0. 

Query value Speed, in miles per hour 

Figure 9.  Graphical view of DTW output for a non-incident. 
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  Next, we developed models for the same locations during an incident.  Figures 10 shows 

the output of our DTW model using incident data. The blue line is the shortest path found by the 

model. Here, we see incident patterns like those shown in Figure 5.  Deviation from the diagonal 

trend indicates higher cost to the user. During an incident, the two time series are not well 

matched, so the cost matrix shows more orange and yellow colors, which also indicate an 

incident. 

 

 
Figure 10.  DTW cost Matrix for Incident. 

High Cost

Low Cost

Cost Matrix of an Incident at Location 1 Cost Matrix of an Incident at Location 2 

Cost Matrix of an Incident at Location 3 Cost Matrix of an Incident at Location 4 

Cost Matrix of an Incident at Location 5 
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 ------- Non-incident speed profile 

 Incident speed profile 

 Index Time, where 60 represents 6 

hours of elapsed time from 0. 

 Query value Speed, in miles per hour 

Figure 11.  Graphical view of DTW output for incident. 

  

Time warping does not necessarily show that an incident happened, but it does show 

patterns. Therefore applying a classifier is necessary. We applied a k-fold cross-validation 
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technique to obtain a reliable estimate of the classifier accuracy. Initially, the incident traffic 

dataset was used to evaluate the performance of the proposed algorithm. 

Each test set is processed by DTW algorithm. In order to compare the similarity between 

normal and incident conditions, we used predefined incident patterns to classify the current 

pattern. Because running DTW takes a lot of memory, we used a threshold obtained from cross 

validation to alert the data collection program when to start scanning for an incident. The 

threshold was calculated from the k-mean and is represented by red lines in the graphs in Figure 

12. In Figure 12, each chart has horizontal lines depicting  threshold 1 and threshold 2. The 

values are shown above each figure with number 1 followed by the speed in miles per hour and 

numeral 2 identifying the second threshold followed by speed in miles per hour. For example, at 

location 1, threshold 1 is 50.31 mph and threshold 2 is 31.35. The higher speed threshold can be 

selected as the trigger to start collecting data. When the speed decreases until it meets the second 

threshold, the trigger starts scanning and collecting a data point backwards from current speed 

toward the free flow speed. It also starts collecting forward until it meets the second threshold. 

The second threshold is a trigger to stop collecting data and start the DTW algorithm. 

 



19 

 

 

 

 

Figure 12.  Using K-means thresholds to trigger DTW to search for incidents at five locations. 

 

Using dynamic thresholds based on historical traffic data, thereby accounting for typical 

variations of traffic throughout the day, can increase the accuracy of the algorithm. Therefore, 

this approach could recognize recurrent congestion and therefore reduce the incidence of false 

alarms. In the next step we will try a dynamic threshold to modify our model using Support 

Vector Machine (SVM).  

------- Non-incident speed profile 

 Incident speed profile 

 Index Time, where 60 represents 6 

hours of elapsed time from 0. 

 Query value Speed, in miles per hour 

Location 1 Location 2 

Location 3 Location 4 

Location 5 
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SVM Literature  

The SVM algorithm first was proposed in 1993 by Cortes and Vapnik and published in 1995. 

SVM has had limited applications in the transportation field. Previous studies include use for 

travel time, traffic speed and traffic flow predictions, in the context of ITS applications (Bhavsar 

2007, Ding 2002). SVM is a powerful, robust and computationally efficient tool in solving 

various transportation classification problems. Furthermore, SVM was successfully applied to 

detect highway incidents (Chen 2003, Yuan 2003). Chowdhury et al. (2006) and Bhavsar et al. 

(2007) used SVM for travel time prediction. They found it suitable for the hierarchical 

intelligence applications due to its low memory requirements and processing requirements. Xiao 

et al. (2012) and Cai et al. (2010) modified the standard SVM classifier to improve incident 

detection results. Nevertheless in their studies they either use simulation data or an I-880 

database that is somewhat problematic since either the database is old or it suffers from 

unidentified actual incident data.   

SVM Concept 

A classification task usually involves separating data into training and testing sets, as shown in 

Figure 13. Given a training set of instance-label pairs (xi; yi); i = 1, …, l where xi is a training 

vector and yi is our output which in this case is traffic state (-1 nonincident, 1 incident). 

Figure 13.  Hyperplane through two linearly separable classes.  

 

According to Figure 13, implementing SVM simplifies training data to: 

xi .w+b  +1 for  yi =+1 

xi .w+b  -1 for  yi =-1 

These equations can be combined into: 
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And d
+
 and  d

-
 represent the shortest distance to the closest poitive and negative point 

respectively. SVM requires the solution of the following optimization problem (Boser et al. 

1992; Cortes and Vapnik, 1995): 

 

This model works well for separable data but gets more complicated when the data is not exactly 

separable, which commonly is the case of real world data. One way to make the model more 

realistic is introducing penalty (C) and error (ξ) terms. The objective of the prediction function 

can be achieved by solving the following optimization problem (Hsu et al. 2007): 

 
In Figure 14, training vectors xi’s are mapped into a higher dimensional space by the 

function φ. SVM finds a linear separating hyperplane with the maximal margin in this higher 

dimensional space. C > 0 is the penalty parameter of the error term. Furthermore, K(xi, xj) = φ 

(xi)
T
 φ (xj) is called the kernel function. The result of SVM is sensitive to the kernel function. 

 
Figure 14.  Linear separating hyperplanes for the non-separable case. Source:  

http://www.ce.rit.edu/research/projects/2004_winter/rt_objtrack/detect.htm 

 

http://www.ce.rit.edu/research/projects/2004_winter/rt_objtrack/detect.htm
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There are four basic kernel functions: linear, polynomial, radial basis function (RBF), and 

sigmoid. In general, the RBF kernel performs well in many scenarios (Vanschoenwinkel and 

Manderick 2006). Because this kernel nonlinearly maps samples into a higher dimensional space, 

it can better find patterns when the relation between class labels and attributes is nonlinear. 

Furthermore, the linear kernel is a special case of RBF (Keerthi and Lin 2003) since the linear 

kernel with a penalty parameter C has the same performance as the RBF kernel with parameters 

(C, Υ). In addition, the sigmoid kernel behaves like RBF for certain parameters (Lin and Lin 

2003).  The second reason is the number of hyperparameters influences the complexity of model 

selection and the polynomial kernel has more hyperparameters than the RBF kernel. Finally, the 

RBF kernel presents fewer numerical difficulties.   

Modifications and constraints in SVM  

Scaling before applying SVM is very important (Sarle 1997).  The main advantage of attribute 

scaling is to represent all attributes with comparable number ranges.  Another advantage is to 

avoid numerical difficulties during the calculation because kernel values usually depend on the 

inner products of feature vectors. The range [-1,1] or [0,1] is recommended. The same scaling 

method must be applied to both training and testing data. 

C and Υ are unknown parameters that must be identified for each specific problem. 

Consequently some kind of model selection (parameter search) must be done. The goal is to 

identify best fitting (C, Υ) so that the classifier can accurately predict unknown data (i.e., testing 

data). Note that it may not be useful to achieve high training accuracy. The prediction accuracy 

obtained from the “unknown” data set more precisely reflects the prediction accuracy. An 

improved version of this procedure is known as cross-validation. The cross-validation procedure 

can prevent the over fitting problem. 

SVM Case Generation and Methodology 

This section presents a case study for application of SVM for incident detection. The same 

database used for the DTW model has been used for this section.  The first step is generating the 

cases required for developing and evaluating the SVM incident detection model. The idea of 

incident detection is based on the concept that when an incident happens, the kinetics of passing 

vehicles would be affected: the speed drops upstream and increases downstream, lane changing 
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increases, and involved vehicles demonstrate large acceleration and deceleration rates.  This 

study identified the speed profile and volume over a selected time step ts (5 min for Dallas data) 

to recognize the patterns that indicate the incident occurrence. An array of five values for each 

time slice has been chosen as the input file for the model (Table 1). 

 

Table 1. SVM sample input data and result. 
Time 

Instant 
Kinetics Decision 

 Down Stream real-

time Speed 

(DSpeed) 

Up Stream real-

time Speed 

(USpeed) 

Up Stream 

typical Speed 

(UTSpeed) 

Down Stream real-

time volume 

(DVolume) 

Up Stream real-

time volume 

(UVolume) 

 

t 55 49 55 118 145 -1 

t + ts 67 14 53 112 91 +1 

 

The decision variable yi can only have values of +1 representing an incident, or -1 

representing a non-incident condition. During peak hour flow conditions, when vehicles pass the 

incident, their speed downstream of the incident will be increased significantly. In this study we 

followed classical SVM (Boser et al. 1992; Cortes and Vapnik 1995) for two-class 

classifications. To be consistent with the DTW model the time step is 5 minutes. Here we used 

244 instances with 36 incident cases.  

Table 2. Input data counts. 

 

 

The objective of training is to find the prediction function: 

       ∗       

This objective function optimizes the minimum distance between the classification hyper-

plane and any sample of training data. Considering the complexity of traffic behavior, non-

separable data must be allowed for training. As mentioned earlier scaling is important for the 

success of AI models such as ANN and SVM. (Hsu et al.. 2007; Sarle 2007) Before training, all 

the data were linearly scaled to a range of [0, 1].  

Here we used v-fold cross-validation to maximize the use of training data and search for 
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optimal parameters (C, Υ). First, data has been divided into v subsets of equal size. Sequentially 

one subset is tested using the classifier trained on the remaining (v -1) subsets. Thus, each 

instance of the whole training set is predicted once so the cross-validation accuracy is the 

percentage of data that are correctly classified. Different numbers of v-folds have been tried to 

find the sensitivity of the data to the number of folds, with 5 and 6 groups producing the best 

results. 

The optimal parameters were identified through grid searching of many combinations in the 

range of [C, γ ] = [2
-5

: 2
2
 : 2

6
, 2

-15
 : 2

2
 : 2

4
]. The experiment was performed by increasing 

parameters in exponential order, i.e. 2
n
, in the range of -5 to 5 for C and -15 to 3 for γ within 

two steps. The identified optimal parameters were then used to train the entire training set to 

generate a trained SVM algorithm.  

This study used LIBSVM (Chang and Lin 2007), an open source implementation routine 

for SVM to train and test the SVM model. The training time of the SVM model was less than 

five seconds in all the training cycles. The prediction time was quite short as well, which is a 

vital element for real-time applications. 

Results 

Different kernel functions were tried to find the best fit model. As expected, the RBF kernel 

function was the fastest and had higher accuracy. The base model includes all variables 

introduced in the previous section. Table 3 shows a summary of input variables.  

Table 3. Input variables summary. 

 

The Radial Basis Function (RBF) has been used as the SVM kernel function. The 

optimum values found for parameters using a grid search to minimize total error in the objective 

function are (C, Υ)  = (0.3125,8).   

The overall accuracy of training and validation is represented in Table 4. The results 

suggest the robustness of the model to predict incidents during peak hours.  
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Table 4.  Base model output. 

 

As the results show, the false alarm rate is pretty low (around 2%). The following table 

shows that we had only one case in which an incident happened and the model was not able to 

detect it and 3 cases in which non-incidents were falsely detected as incidents. 

 

Table 5.  Base model false detection details. 

 

In the next step different scenarios with different variables have been evaluated as shown in the 

Table 6.  
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Table 6.  Different scenarios comparison. 
Scenario Model Variable Model Accuracy False Alarm 

1 Base-

RBF 
 Down Stream real-time Speed 

 Up Stream real-time Speed 

 Up Stream typical Speed 

 Down Stream real-time volume 

 Up Stream real-time volume 

 Training : 98.36% 

 Validation: 97.95% 

 Training: 4 out of 244 

 Validation: 5 out of 244 

2 Sigmoid  Down Stream real-time Speed 

 Up Stream real-time Speed 

 Up Stream typical Speed 

 Down Stream real-time volume 

 Up Stream real-time volume 

 Training : 97.54% 

 Validation: 97.13% 

 Training: 6 out of 244 

 Validation: 7 out of 244 

3 RBF  Down Stream real-time Speed 

 Up Stream real-time Speed 

 Up Stream typical Speed 

 Training : 97.54% 

 Validation: 96.72% 

 Training: 6 out of 244 

 Validation: 8 out of 244 

4 RBF  Down Stream real-time Speed 

 Up Stream real-time Speed 

 Training : 97.13% 

 Validation: 97.13% 

 Training: 7 out of 244 

 Validation: 7out of 244 

 

 The prediction accuracy of developed models was compared. First two different kernel 

functions were compared while all other variables were kept the same. The results show that 

applying the Base-RBF kernel function is not only faster it is more accurate also. Next the 

sensitivity of the model to chosen variables was evaluated.  Interestingly we observed that using 

typical speed (non-incident speed at same location using historical data) was a robust choice. 

However the results are based upon comparing cases with the same geometry, congestion level, 

and data sources. Since all these factors could have significant impacts on the results, we might 

want to test this model on cases in which these conditions are varied.   
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CONCLUSIONS 

In this research two groups of experiments were performed to evaluate two incident detection 

algorithms: DTW and SVM. Evaluation of the DTW and SVM algorithms revealed that both can 

successfully classify traffic conditions into two categories – incident, non-incident – during peak 

hours. Since both models produce very fast responses, both are candidates for real-time incident 

detection applications. Models were trained on a network based on freeway segments in Dallas, 

TX. Comparing these two methods, application of DTW in the field of transportation is quit new 

and the concept of DTW is simpler than SVM. The advantage of using SVM is that it does not 

require a large dataset to train and validate the model. On the other hand, the accuracy of SVM is 

highly dependent on the kernel function chosen and the value(s) of  parameters which are best 

estimated through the solution of an optimization problem (in this research grid search was 

applied to find C and Υ). We recommend a more comprehensive comparison of these two using 

field data for model calibration and simulation to produce a wide range of condition specific data 

sets for model testing.  
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