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Abstract 

The goal of this research project in Nondestructive Evaluation (NDE) is to improve the 

safety and reliability of bridges through the exploration of three innovative technologies: (1) 

ultrasonic measurement of in-situ stress levels in gusset plates, (2) evaluation of ultrasonic 

testing (UT) and phased array testing, and (3) development of vehicle-mounted infrared 

thermography for bridge condition assessment. The first task investigated a methodology for 

nondestructive assessment of total stress levels in gusset plates to support safety analysis. This 

methodology utilizes the acoustoelastic effect to evaluate total stress levels by assessing the 

acoustic birefringence in the plate. The report describes exploratory testing to evaluate the utility 

of the approach as a potential tool for the field evaluation of gusset plate adequacy. The second 

task sought to identify the limitations associated with UT technologies and compare the results to 

the more recently developed phased array ultrasonic technologies. Various tests were developed 

to illustrate the limitations of both technologies. Tests are currently being performed using UT, 

and will be performed using phased array at a later date. In the third task, a flexible, portable 

platform for infrared thermography that enables the technology to be vehicle-mounted for 

scanning bridge decks, bridge soffits, and tunnels at normal or close to normal traffic speeds was 

developed, although it has not yet been field tested. 
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Chapter 1 Introduction 

The goal of this research project in Nondestructive Evaluation (NDE) is to improve the 

safety and reliability of bridges. Three innovative technologies are the focus of the research 

described in this report: 

1) Ultrasonic Measurement of In-Situ Stress Levels in Gusset Plates  

Measure the actual in-situ stress levels in the gusset plates to ensure structural 

safety (chapter 2) 

2) Development of Phase Array Ultrasonic Testing (UT) for Steel Fabrication  

Improve the quality control process for steel fabrication to improve the reliability, 

safety, and quality of welded constructions (chapter 3) 

3) Vehicle-Mounted Infrared Thermography for Bridge Condition Assessment  

Develop a flexible, portable platform for infrared thermography that enables the 

technology to be vehicle-mounted for scanning bridge decks, bridge soffits, and 

tunnels at close to normal traffic speeds (chapter 4) 

 

This experimental research explored that application of these technologies for practical 

applications for bridge condition assessment. The results of this research will enhance the safety 

of the transportation infrastructure by providing better tools for the safety condition assessment 

of bridges during fabrication, inspection, and repair. The research will also enhance the state of 

good repair by developing technologies for detecting deterioration in its embryonic stages, when 

maintenance and preservation strategies can be implemented to ensure the state of good repair. 

The benefit is better, safer, and longer-lasting steel and concrete bridges and related structures.  
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Chapter 2 Ultrasonic Biaxial Stress Measurement for Evaluating the Adequacy of Gusset Plates 

2.1 Introduction 

2.1.1 Goals and Objectives 

The overall goal of this research task is to improve the safety of highway bridges by 

identifying over-stressed steel gusset plates. The objectives of this research task are to:  

 assess the effect of texture direction on ultrasonic shear wave velocities, 

 evaluate the accuracy and precision of ultrasonic stress measurements for a biaxial stress 

condition, and 

 develop an ultrasonic stress measurement methodology for determining total stress in steel 

gusset plates in-situ. 

2.1.2 Motivation 

The need for improved condition assessment technology became evident when the I-35W 

bridge in Minneapolis, Minnesota, collapsed. The accident occurred during the afternoon rush 

hour on August 1, 2007, resulting in the deaths of 13 people [1]. Figure 2.1 is a photograph of 

the collapse site. 

 

 
Figure 2.1 Collapsed I-35W bridge section [1] 
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An investigation of the collapse by the National Transportation Safety Board (NTSB) 

indicated the cause of the collapse was the failure of an overloaded steel gusset plate connecting 

key members of the structure. The gusset plate, shown in figure 2.2, was not of adequate 

thickness to carry the applied loads given its configuration, though it had performed adequately 

since the construction of the bridge in 1967. 

Factors that may have contributed to the failure of the gusset plate include additional 

dead load applied to the structure over time due to rehabilitation activities, as well as 

construction loading due to ongoing operations [1]. 

 

 

Figure 2.2 Photograph from 2003 of the failed gusset plate [1] 

 

2.1.3 Discussion 

Since the time of the collapse, State Departments of Transportation and other bridge 

owners have struggled to determine if existing gusset plates are adequate to carry applied loading 

and ensure bridge safety. To assess the adequacy of a given plate to carry required loads, the 
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actual forces acting on the plate are needed to compare to the calculated capacity of the plate. 

The complex nature of force distributions in large truss bridges results in significant uncertainty 

in the level of stress carried by individual bridge members and, consequently, the required 

stresses in the gusset plates connecting the members. Figure 2.3 demonstrates the complexity of 

the stress field experienced by a gusset plate. Currently, no methodologies exist that can measure 

total stress (i.e., the combination of stresses resulting from dead load, live load, residual effects, 

etc.) throughout the entire thickness of the material. For example, strain gages can only measure 

surface strains and cannot account for the inherent strain present before the installation of the 

gage. 

 

 

Figure 2.3 Finite element model of the failed gusset plate demonstrating the complex stress field 

experienced by a gusset plate [1] 

 

In this research, an ultrasonic stress measurement methodology is being developed to 

evaluate the actual stress level in a gusset plate. The approach uses ultrasonic birefringence as a 

means of assessing the stresses carried in the plate. The ultrasonic birefringence approach is a 

nondestructive technique based on the acoustoelastic effect (i.e., the variations in ultrasonic wave 
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velocity as a result of strain). Measurements from the ultrasonic birefringence approach can 

determine the total combined stresses resulting from dead load, live load, and residual stresses. 

The developed methodology could have a significant impact on the current standards for 

evaluating bridge capacities and enable more reliable assessments to ensure bridge safety 

nationwide. 

2.2 Background and Theory 

2.2.1 Measurement Using Ultrasonic Waves 

Ultrasonic testing (UT) is a NDE method that uses mechanical waves at ultrasonic 

frequencies to detect or measure certain characteristics of structural components. UT is often 

used as a bulk measurement technique in which mechanical waves propagate through the 

thickness of the material, making characterization of the entire material possible. For the UT 

measurement of stress in a gusset plate, shear horizontal (SH) waves are used. 

Ultrasonic waves propagate at a certain velocity depending on the elastic properties of a 

material (i.e., modulus of elasticity, elastic constants, density, and Poisson’s ratio). However, the 

elastic constants for a given material are a function of the strain in the material; therefore, when a 

material is strained (or stressed), the velocity of an ultrasonic wave is altered. 

2.2.2 Acoustoelastic Effect 

The acoustoelastic effect expresses variations in the elastic properties of the material 

resulting from applied strains through the effect on the velocity of an acoustic wave. The change 

in velocity of an acoustic wave is very small (less than 1% of the velocity in the unstressed 

material), but the effect is large enough to be accurately measured. When a shear wave 

propagates through an isotropic, homogeneous medium, it propagates at a single velocity 

regardless of the polarization direction of the wave. However, when a material is anisotropic, or 
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when stress is introduced, the velocity of the shear waves will become dependent on the 

polarization orientation of the wave.   

2.2.3 Acoustic Birefringence 

Another way to utilize this effect is to analyze differences in the velocity of orthogonally 

polarized shear waves – an effect known as acoustic birefringence. Acoustic birefringence 

measurements can be obtained by the measurement of velocities of the two separate shear waves, 

one propagating in the “fast” direction and the other propagating in the “slow” direction. These 

orientations are known as the pure-mode polarization directions. The normalized acoustic 

birefringence, B, can be determined from the equation 

 

 𝐵 =
𝑉𝑓−𝑉𝑠

𝑉𝑎𝑣𝑔
   (2.1) 

where Vf is the velocity of the fast wave, Vs is the velocity of the slow wave, and Vavg is the 

average velocity [2].   

 

It is important to note that such a measurement is independent of thickness because each 

wave propagates over the same distance, with the difference between those measurements being 

transit time. As such, the material thickness, or travel path of the waves, is eliminated from the 

determination of the birefringence. 

2.2.3.1 Natural Birefringence 

Anisotropy in steel can result from a texture effect caused by rolling processes during 

fabrication, such that there is a “natural” birefringence effect in the plate when stresses are 

nominally zero. In the absence of stress, the pure-mode polarization directions will be coincident 

with the rolling and transverse directions of the plate due to the rolling process. This process 
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gives a texture to the material by elongating all of the grains in a preferred orientation. The 

rolling, or texture, direction is easily determined in a texture test where the wave polarization 

direction is rotated at incremental angles, totaling 360°. Wave velocity measurements are 

recorded at each angle. The results of three such tests are shown in figure 2.4, where the rolling 

direction is indicated by maximum wave velocities at polarization angles of 90° and 270°. 

Velocity measurements were recorded at 20° increments. 

 

 

Figure 2.4 Results of a texture test on a hot-rolled steel specimen [3] 

 

2.2.3.2 Pure-Mode Polarization Directions 

The presence of shear stress, σxy, in the direction of rolling will cause a rotation of the 

pure-mode polarization directions through the angle ϕ [2]. This phenomenon is illustrated in 

figure 2.5, where the X0 and Y0 axes represent the rolling and transverse directions, and the X 

and Y axes represent the pure-mode polarization directions. Figure 2.6 demonstrates the phase 

shift of the texture test curves due to the presence of shear stress in the rolling direction.  
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Figure 2.5 Rotation of the pure-mode polarization directions with respect to the rolling and 

transverse directions due to the presence of shear stress [4] 

 

 

Figure 2.6 Effect of shear stress on the results of a 360° wave velocity test 
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2.2.4 Stress-Birefringence Relationship 

The relationship between birefringence and stress is expressed by the equation  

 

 𝐵 =  {[𝐵0 + 𝑘(𝜎𝑦𝑦 − 𝜎𝑥𝑥)]
2

+ (2𝑘𝜎𝑥𝑦)
2

}
1

2⁄

  (2.2) 

where B0 is the natural birefringence of the material in the unstressed state, k is the stress-

acoustic constant (k = 6.34 (10-8) psi-1 for A-36 steel), and σxx, σyy, and σxy are the in-plane 

stresses in reference to a coordinate system aligned with the steel rolling and transverse 

directions [2]. 

 

The phase shift of the pure-mode polarization directions, ϕ, caused by the presence of 

shear stress, σxy, is given by  

 

 tan 2𝜙 =
2𝑘𝜎𝑥𝑦

𝐵0+𝑘(𝜎𝑦𝑦−𝜎𝑥𝑥)
   (2.3) 

 

Combining equations 2.2 and 2.3 and using trigonometric identities yields 

 

 𝜎𝑥𝑦 =
𝐵 sin 2𝜙

2𝑘
   (2.4) 

  𝜎𝑦𝑦 − 𝜎𝑥𝑥 =
𝐵 cos 2𝜙−𝐵0

𝑘
   (2.5) 

 

which will serve as the model used for experimental testing during this research. 
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2.3 Experimental Testing 

This section will discuss the experimental setup and methods that will be applied to 

demonstrate the effect of texture on shear wave velocity measurements and to determine the 

accuracy and precision of measured stresses using equation 2.4 and equation 2.5 as a model.  

2.3.1 Experimental Setup 

The experimental setup is divided into four parts: steel specimens, applied loading, 

ultrasonic instrumentation and measurement, and strain measurement. Biaxial loading will be 

applied to two unique steel plate specimens. The stress state of the steel will be measured using 

UT and subsequently compared to strain gage stress measurements. 

2.3.1.1 Steel Specimens 

Two 12”x4”x0.25” A-36 steel specimens were fabricated for testing, as shown in figure 

2.7. Each specimen has a unique texture direction specifically designed for the loading 

configuration in this experiment: one with the texture direction coincident with the major 

principal stress axis (normal texture direction) and one with the texture direction diagonal to the 

major principal stress axis (diagonal texture direction). As such, the normally textured plate will 

not have shear stress in the plane of texture, while the diagonally textured plate will have shear 

stress in the plane of texture. This allows for the effect of shear stress in the texture plane to be 

demonstrated as described in section 2.2.3.2 of this report. Holes were drilled at both ends of 

each specimen for pin and clevis connections. The plates were specifically designed (i.e., the 

distance between pinholes) to diminish the stress concentration due to the holes and to achieve a 

uniform stress field at the center of the plate where UT measurements will be taken. 
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Figure 2.7 Steel plate specimen with a normal texture direction (A) and a diagonal texture 

direction (B) 

 

2.3.1.2 Applied Loading 

The steel specimens are to be tested under a biaxial loading condition to simulate the 

loading experienced by a bridge gusset plate. A tensile force will be applied in the vertical 

direction using pin and clevis connections fixed to the loading machine shown in figure 2.8. A 

load-control program has been designed using LabView software in which the desired static load 

and ramp time are input to achieve the preferred loading condition. 
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Figure 2.8 Loading machine with pin and clevis fixtures 

 

For lateral loading, a steel load frame has been designed and built to apply compressive 

force to the plate. The load frame, shown in figure 2.9, consists of two steel bearing plates 

connected by four stainless steel shafts with threaded ends. Nuts and washers are attached to the 

ends of each shaft; the amount of compressive force is controlled by torqueing each nut. To 

prevent bending of the plate, an equal amount of tensile force must be present in each shaft. 

Strain gages have been installed on each shaft to monitor the strains and ensure the forces 

applied to each shaft are approximately equal. 
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Figure 2.9 Lateral loading frame, as seen from the front (A), side  

(B), and rear (C), fastened to a steel plate specimen 

 

2.3.1.3 Ultrasonic Instrumentation and Measurement 

Figure 2.10 shows three essential pieces of hardware used for UT: a high-speed digital 

oscilloscope, a high-powered pulser-receiver unit, and an electromagnetic acoustic transducer 

(EMAT). The pulser-receiver to be used for testing is the Powerbox H made by Innerspec 

Technologies, which can provide up to 8 kW of power. Pulses generated by the pulser-receiver 

are sent to the EMAT, which creates shear waves that propagate through the material thickness 

and reflect off the back surface. Echoes are then sensed by the EMAT, and the response is 

returned to the pulser-receiver. The waveform is subsequently displayed on the oscilloscope and 

can be saved to the hard drive. The saved signals can then be exported to specially designed 

timing software for analysis. For this research, 360° wave velocity tests will be performed under 

various levels of loading, with measurements being taken at 22.5° increments. 
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Figure 2.10 Ultrasonic instrumentation consisting of a digital oscilloscope (A), a high-powered 

pulser-receiver unit (B), and an EMAT sensor (C) 

 

2.3.1.4 Strain Measurement 

Resistance-type strain gages will be used in this research to determine the stress state of a 

specimen under biaxial loading. These measurements will serve as a basis for comparison to the 

UT stress measurements in order to comment on the accuracy of the stress-birefringence model. 

The circuit board shown in figure 2.11 has been assembled to allow for multiple strain gage 

measurements simultaneously. As shown in figure 2.7, two gages are mounted on each 

specimen, one oriented vertically and one oriented horizontally, to measure strain in the principal 

directions. Using elastic properties of steel, the strains will be converted into stresses, and stress 

transformations can then be applied to determine the state of stress for any orientation. The 

orientation of interest for this experiment will be the pure-mode polarization directions, as 

determined from UT. 
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Figure 2.11 Circuit board for the simultaneous operation of multiple strain gages 

 

2.3.2 Data Reduction 

After the ultrasonic signals are acquired, they must be processed in order to determine the 

shear wave velocity. The series of velocity measurements must then be reduced into a simplified 

and usable form to obtain the desired parameters (i.e., the magnitude and location of the pure-

mode polarization velocities). 

2.3.2.1 Velocity Measurements 

Signals stored within the oscilloscope will be post-processed using specially designed 

software that enables sub-interval timing of the digital signal. Figure 2.12 is a screenshot of the 

graphical user interface of the software. The program, like the oscilloscope, displays the voltage 

on the vertical axis and time on the horizontal axis. A time range for the start and end gate, 

typically the first and third echoes, are selected from the waveform so that the time-of-flight (or 

velocity) of the signal can be determined. Once the signal crosses the user-defined voltage 

threshold, the gates are set and the time-of-flight is measured. The software then calculates the 
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wave velocity based on the user-defined travel distance. This process will be repeated for each 

saved waveform. 

 

 

Figure 2.12 Graphical user interface of the specially designed timing software 

 

2.3.2.2 Birefringence and Phase Shift Measurements 

Once the velocities are measured, a plot of wave velocity versus polarization angle can be 

produced for each level of loading. Using a program designed in MATLAB, a sine regression 

curve with a fixed 180° period is fit to the data. One such plot is shown in figure 2.13. A fixed 

period is necessary in order to accurately measure the phase shift, ϕ, between curves in a stressed 

state versus an unstressed state. Using equation 2.1, the birefringence parameter, B, is determined 

from the normalized difference between the maximum and minimum of the regression curve 

(i.e., the fast wave velocity, Vf, and the slow wave velocity, Vs). These parameters can then be 

used to determine the stress state based on equation 2.4 and equation 2.5. 
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Figure 2.13 Sine regression plot produced by the MATLAB sine regression program 

 

2.3.3 Anticipated Outcomes 

The experimental design and setup has been completed. No significant data can be 

reported at this time. The Powerbox H pulser-receiver unit has been ordered, and testing will 

commence upon arrival of the unit. 

The objectives of the experimental testing include the demonstration of the phase shift of 

the pure-mode polarization directions due to the presence of shear stress and a comparison of the 

ultrasonic stress measurements with strain gage measurements. Statistical analysis of the results 

will be performed to quantify the accuracy and precision of the UT measurements. Upon 

completion of this research, all major principles of ultrasonic stress measurement will be 

demonstrated and an understanding of the accuracy of the stress-birefringence model will be 

established. Future work will include field implementation of the technology. 
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Chapter 3 Evaluating Ultrasonic Testing and Phased Array Testing 

3.1 Goals and Objectives 

3.1.1 Introduction 

NDE technologies, such as ultrasonic testing (UT), are required quality control tools used 

in the manufacturing process of welded steel bridge components [5]. These technologies are also 

used for in-service evaluation of the components to identify defects within the welded region. 

These defects include fatigue cracks that may have developed from traffic loads and various 

types of flaws within steel welds, such as lack of fusion, heat affected zone cracks, and slag 

inclusion. UT relies on trained technicians implementing the procedures and interpreting the 

results to identify and characterize defects. As a result, variations can occur between inspector 

conclusions [6-8]. 

3.1.2 Goals and Objectives 

The goal of the test procedures is to improve the safety and reliability of steel structures. 

The objective of the testing is to improve the results of the American Welding Society (AWS) 

UT procedure by identifying the limitations of the UT procedure, identify the limitations of 

phased array UT, and suggest updates to the AWS UT procedure. 

3.1.3 Scope 

The test requirements for inspecting steel welds in bridges are outlined in the AWS 

Bridge Welding Code [5]. Due to the variability of the inspectors using the AWS UT procedure, 

it is necessary to evaluate the reliability of UT.  

This research will develop phased array technologies to improve the safety and quality of 

welded constructions. The research will explore the relationship between the capabilities of the 

UT and phased array UT technologies and requirements for flaw detection and characterization.  
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Under this task, test specimens with embedded flaws will be assessed using both 

traditional ultrasonic technologies, and the recently developed phased array technology. These 

specimens have been fabricated with embedded flaws typically encountered during the 

fabrication and welding process. The reliability of the two approaches will be evaluated and 

compared, and procedures for utilizing the new technology to improve the reliability of steel 

bridges will be developed.   

3.2 Background 

3.2.1 UT Procedure 

UT is a volumetric NDE that enables subsurface inspection of steel welds. UT consists of 

sending high-frequency acoustic waves into the volume of the steel weld. Any reflected wave is 

the product of a discontinuity within the weld. These discontinuities include cracks, porosity, 

slag inclusions, and rough edges of the steel. The UT D1.5 code is used for UT inspection of 

bridges. The UT section of the code was developed in the late 1960s and remains mainly 

unchanged. The code encompasses inspection procedure, equipment calibration, and defect 

acceptance criteria.  

UT consists of launching a high-frequency acoustic wave into the welded region of a 

steel component, and interpreting received signals (reflections) to assess if there are flaws in the 

weld, such as porosity, lack of fusion, or cracking. UT is a volumetric NDE technology that 

enables the detection and characterization of subsurface features, such as flaws along the weld 

fusion line, subsurface cracks, etc. For bridges, UT is typically conducted in accordance with the 

AWS code section D1.5 [5]. This code was first developed in 1969, and remains largely 

unchanged [9]. The specification identifies items such as required training, equipment, 
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calibration of instruments, and assessment of indications. Figure 3.1 shows an ultrasonic 

transducer being used to detect a defect in a steel weld. 

 

 

Figure 3.1 Photograph of an ultrasonic transducer detecting a defect in a steel weld 

 

The AWS D1.5 uses UT to characterize subsurface defects in steel welds by assessing the 

reflected amplitude and length of defects. The AWS UT procedure uses an identification rating 

by adjusting the measured defect amplitude in respect to a reference amplitude and an 

attenuation factor. The reference amplitude is the measured amplitude from a calibration block 

with a 1/16” diameter hole. The attenuation factor accounts for the amount of wave energy that 

dissipates as the acoustic wave travels into the steel. The relative amplitude of the indication is 

measured in dB and can be calculated as follows:  

 

dB rating = 20log(A1/A0)                                                        (3.1) 

where A0 is the initial amplitude, and A1 is the amplitude of the signal being assessed.  
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Once the identification rating of a defect is determined, the amplitude and length of the 

defect is compared to the acceptance criteria listed in the AWS code. Defects are classified into 

categories of A, B, C, or D. Indications identified in Class A are always rejectable, regardless of 

length, while indications identified in Class B and C are only rejectable if the length of the 

indication exceeds certain values; Class D indications are acceptable, regardless of length. To 

determine the length of the indication, the edges are identified where the measured amplitude 

drops 50% (-6 dB change). The length and indication rating are then compared with the 

acceptance criteria specified in the AWS code. The amplitude ratings differ by only 5 dB 

between a Class A indication and a Class D indication for plates at least 1.5 in. thick under 

tensile stress; for plates less than 1.5 in. thick, the amplitude ratings differ by only 3 dB. [6] 

3.2.2 UT Reliability Literature Search 

The effectiveness of UT relies on the diligence of the technicians. For example, Gruber 

and Light tested the reliability of inspectors using the AWS D1.1 Code to assess welded moment 

frame joints. Twelve mockup specimens containing a total of 17 flaws were inspected by an 

operator using the AWS D1.1 procedure. Results were assessed to determine the number of 

known flaws not detected by the inspectors, or “missed indications,” as well as indications 

reported where no flaw exists, or “false alarms.” In the testing, there were 17 defects; results 

showed 4 missed indications and 13 false alarms [7].  

Shaw performed an evaluation of reliability on UT in which 15 UT technicians inspected 

12 welds with embedded defects. In total, there were 222 tests on known flaws, with 56 missed 

indications, 166 detections, and 32 false alarms [8]. 

Another study evaluated 14 known flaws assessed by 3 different inspectors, and rated 

according to the AWS procedure for acceptable or reject able indications. Eight of the flaws were 
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rejected by all inspectors (58%), and there was disagreement on the accept/reject decision for 

five of the flaws (35%) [6]. Additionally, the amplitude rating measured during the testing varied 

on average 6.5 dB, indicating high variability in a key parameter used to classify a given 

indication as rejectable or acceptable. 

3.2.3 Sherman-Minton Performance Test 

A performance test was conducted during the inspection of the Sherman-Minton Bridge 

as a means of ensuring the inspectors were capable of providing consistent results when 

identifying and characterizing cracks in steel welds. The operators were instructed to follow 

procedures generally based on the AWS D1.5 code in their inspections and inspect test 

specimens containing known defects. The maximum reflected amplitude, the flaw length and the 

flaw location were recorded and analyzed. The results were then compared using a reliability 

rating system developed in prior UT research [10].  

The results of the performance test revealed inconsistencies in the reported amplitudes 

and flaw length measurements. Error as a percentage of flaw length was greatest (110%) for the 

short flaw, and least for the longest flaw (15%). It was concluded from these results that the UT 

procedure generally overestimated the length of small flaws, and its accuracy increased as the 

flaw length increased. Results from the UT testing also revealed that “repeat” calls, where an 

indication is reported more than once, occurred several times during the testing.  

3.3 Equipment 

3.3.1 Test Setups 

Initially, the Instek GDS-2104 100 MHz 4 Ch Visual Persistence Digital Storage 

Oscilloscope was used to gather waveform data. The oscilloscope was capable of saving 

waveforms to a .csv file for later analysis, but the data acquisition was slower than what was 
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required. In order to gather information more quickly, an encoder was required to associate each 

waveform with a location. This capability was particularly important in the length-amplitude, 

transducer orientation, defect orientation and defect sizing tests. The USB-UT350 pulser-receiver 

was ordered to replace the Instek GDS-2104 for this research. In order to incorporate encoder 

readings, the USB-UT350 pulser-receiver was obtained.  

3.3.2 Transducer 

The research used a contact shear wave piezoelectric transducer to pulse and receive 

acoustic shear waves at a frequency of 2.25 MHz. The probes include 0.625” x 0.625” 

transducers attached to the AWS 70°, 60°, and 45° acrylic wedges.  

3.3.3 Encoder 

The research used a S1 encoder during the ultrasonic measurements to associate the UT 

waveforms to locations along the movement path. A contact wheel was secured to the encoder 

axel to associate a rotation to a distance. The encoder sent a signal to the USB-UT350 each time 

the encoder axel rotates. The USB-UT350 received both the encoder location and ultrasonic 

waveform signals simultaneously. These signals were saved to a spreadsheet file for analysis. 

3.3.4 USB-UT350 

The AWS angle-beam ultrasonic transducer and S1 encoder were connected to the USB-

UT350 pulser-receiver. The USB-UT350 was connected to a laptop where the UT waveform was 

displayed on an oscilloscope, and the encoder data was also displayed. A LabView program was 

developed to receive the waveforms from the USB-UT350 and translate the waveform data to a 

spreadsheet format for later analysis. 

3.4 Experiment 
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3.4.1 Test Procedures 

Because the AWS relies on the pulse-echo technique for UT, these tests are used to 

determine what factors impact the reflected amplitude. The tests include: length-amplitude 

measurement, size-amplitude measurement, transducer wedge angle-amplitude measurement, 

transducer orientation-amplitude measurement, defect orientation-amplitude measurement, 

surface roughness-amplitude measurement, attenuation measurements, and defect sizing using 

AWS procedure. Four steel specimens used for testing included fabricated test plates with 

implanted flaws. Three plates had transition welds and one plate was a standard butt weld. Other 

steel specimens used for each test were customized to fit each test’s requirement. 

3.4.1.1 Length-Amplitude Measurement 

The purpose of the length-amplitude test is to identify the accuracy of the current AWS 

UT flaw length measurement procedure. 

In order to characterize the length of a defect in steel welds, the UT associates a 50% 

drop in max UT amplitude as a threshold at which a defect edge exists. The results from the 

Sherman-Minton Bridge performance evaluation found that when the defect length is smaller 

than the size of the transducer, the length determined by the technician is much longer than the 

actual defect length [10]. When the transducer scans a defect smaller than the transducer, the 

entire defect will be encompassed in the transducer scan, as seen in figure 3.2. The defect is 

completely encompassed in the scan, resulting in an extension of length at which maximum 

amplitude is attained. This research looks to determine the defect lengths at which AWS wedge 

transducers are overestimated. 
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Figure 3.2 Drawing of the acoustic wave when measuring defects smaller than the transducer 

  

 The specimen used in the length-amplitude test is made of A36 steel, 1” thick 12”x12” 

with eight different EDM cuts of varying lengths, as seen in figure 3.3. Four slots were cut 

through the steel at different lengths. Three grooves were made in the steel to resemble fatigue 

cracks. One 1/16” diameter hole was made through the plate. The defect lengths were designed 

so that some defect sizes were smaller and some defect sizes were larger than the transducer.  

An encoder will be used to track the waveforms as the transducer moves parallel to the 

defect. As the defect is being scanned, the transducer creates waveforms that are being associated 

with the location of the encoder. When the scan is finished, the data points are written to a 

spreadsheet for evaluation. The encoder allows the waveforms to be mapped back to the 

transducer position and the defect location. A visual representation of the waveform along with 

the defect location make is used in the evaluation flaw measurement procedure. 

3.4.1.2 Size-Amplitude Measurement 

The purpose of the defect size-amplitude test is to relate the size of known defects to the 

reflected amplitude. 
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As explained earlier, the UT procedure incorporates a reference amplitude that is used in 

the evaluation of steel welds. The AWS UT acceptance criteria are based on the reference 

amplitude measured from the 1/16” hole in the calibration blocks. The measured defect 

amplitude is compared to the amplitudes listed in the AWS acceptance criteria to determine the 

severity of the defect. The defect size test looks to quantify the relationship between defect size 

and the reflected amplitude and compare the results to the current AWS UT code. 
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Figure 3.3 Length-Amplitude specimen design drawings 

 

 

 

Figure 3.4 Side-drilled hole specimen 

 

The defect size-amplitude test incorporates a ¾” thick, 8”x8”, plate of A36 steel with 

four side drilled holes of ¼”, 1/8”, 1/16”, 1/32” diameters as seen in figure 3.4. Due to the 

limitations of the machinery, each side-drilled hole was drilled ½” into the plate. The 1/32” hole 

was chosen because it is near the wavelength at which UT can detect defects (half the 

wavelength of a 2.25 MHz transducer). The other defects have diameters comparable to the 

1/32” hole. The holes are evaluated using an AWS 70° angle beam transducer oriented 

perpendicular to the defect for maximum reflected amplitude. 

3.4.1.3 Transducer Wedge Angle-Amplitude Measurement 

The purpose of the transducer angle test is to relate the impact of the angle of the wedge 

UT transducer to the reflected amplitude. 

The AWS UT code requires that up to three different transducer angles are used in the 

evaluation of steel welds. The code separates every weld into three different zones: the top 
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quarter, the middle half, and the bottom quarter. 70° angle transducers are used for thin plates, 

because the beam path, as well as beam spread, can cover the entire volume of the weld. 

However, thicker welds require deeper angles into the weld to evaluate the top and bottom 

portion of the weld. The AWS UT procedure adjusts acceptance criteria based on the angle of the 

transducer. The transducer angle test looks to characterize the impact of transducer angle to the 

reflected amplitude and evaluate the accuracy of the AWS acceptance criteria. 

The SDH1 will be examined using the three AWS angle beam transducers. The 70°, 60°, 

and 45° angle beam transducers will be oriented perpendicularly to the side drilled holes for 

maximum amplitudes. These amplitudes should follow the same pattern that is assumed in the 

AWS UT acceptance criteria. 

3.4.1.4 Transducer Orientation-Amplitude Measurement 

The purpose of the transducer orientation test is to determine the change in reflected 

amplitude based on transducer orientation relative to a known defect. 

The acceptance criteria in the AWS code require that the maximum reflected amplitude 

be determined. The AWS allows the ultrasonic transducer to be turned 10° in order to identify 

defects. As the transducer is turned, the ultrasonic wave reflects off the defect, but the wave 

reflects a reduced amplitude based on the acoustic wave’s beam spread and the angle between 

defect and transducer. This research looks to quantify the effect of transducer orientation by 

turning an AWS 70° wedge transducer to various horizontal angles while evaluating known 

defects. 

The four side drilled holes in the SDH is examined using the AWS 70° angle beam 

transducer. The transducer evaluates each side-drilled hole as it rotates at the same location. 
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Because of the different sizes of the side-drilled holes, it will also be possible to evaluate the 

effectiveness of the transducer at identifying small targets at large angles. 

3.4.1.5 Defect Orientation-Amplitude Measurement 

The purpose of the defect orientation test is to determine the change in reflected 

amplitude based on defect orientation relative to the transducer wave path. 

Defects within steel welds, especially cracks, may consist of several angles. The 

maximum reflected amplitude occurs when the discontinuity is oriented perpendicular to the 

transducer, which is parallel to the steel weld, but fatigue cracks are not always oriented parallel 

to the steel welds. This research looks to quantify the effect of defect orientation by rotating an 

AWS 70° wedge transducer about the face of known defects. 

The four side-drilled holes in the SDH will be examined using the AWS 70° angle beam 

transducer. The transducer will be rotated around each side-drilled hole while the transducer 

scans the face of each hole. Because of the different sizes of the side-drilled holes, it will also be 

possible to evaluate how effective the transducer is at identifying small targets at large angles. 

3.4.1.6 Surface Roughness-Amplitude Measurement 

The purpose of the surface roughness test is to relate the impact of the surface roughness 

of a discontinuity to the reflected amplitude. 

Unlike radiography, which provides a picture that exposes defects in material, the results 

from UT does not provide vivid photographic results. UT utilizes shear pulse waves traveling 

through a material. The reflecting waves from a discontinuity such as the wall of the material or 

a defect are detected on the oscilloscope as an indication represented by an increase of voltage 

amplitude. While it is possible to see the approximate orientation of the defect with radiography, 

UT does not provide the same precision. A drawback of radiography is the reliance of the defect 
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orientation. If the defect is normal to the radiograph image, no defect would be visible. Defects 

in steel have sharp edges, and are very jagged with different textures and orientations in varying 

directions. The surface roughness test specimen is designed to replicate the roughness and 

various textures comparable to cracks in steel welds. This research looks to determine the effects 

of discontinuous texture by testing the reflected amplitude of several different types of surface 

finishes. 

 

 

Figure 3.5 Surface roughness specimen 

 

The first test specimen is 2” A36 steel plate with the 2D geometry of an octagon. Each 

side has a unique surface roughness and finish pattern. The specimen’s surface finish includes: 

three sides with cross-hatched finishes of different groove distances as seen in figure 3.5, three 

sides with horizontal finishes of different groove distances, one side with two large grooves cut 

via grinder to form a horizontal and vertical defect, and the final side with the finest finish 

available. 
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The second test specimen is a steel specimen loaned to this research by Dr. Rob Connor. 

Dr. Connor was developing fatigue cracks in steel plates. The fatigue surfaces are going to be 

examined and compared to the results of the other surface finishes. 

3.4.1.7 Attenuation Measurement 

The purpose of the attenuation measurement test is to determine how much reflected 

amplitude is lost per inch of wave length. 

The ultrasonic wave loses energy, which decreases the wave amplitude, as it travels 

through the steel material. The standard AWS UT code uses an attenuation factor in the 

identification rating calculation. The AWS attenuation factor is found by subtracting 1 inch from 

the wave path distance, multiplying the remainder by 2, and rounding to the nearest dB level. 

 

 

Figure 3.6 AWS Figure S.7 – Shear Wave Distance and Sensitivity Calibration 

 

Additional UT requirements located in the Appendix S of the AWS code use a Distance 

Amplitude Curve (DAC) to account for the wave attenuation in the steel, as seen in figure 3.6. 

The DAC calibration is established by measuring three or more 1/16” diameter holes at different 

wave path lengths within the steel. Indication amplitudes are compared to the DAC rather than 

using the amplitude factor. 
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Figure 3.7 Plate with EDM flat, rectangular hole 

 

The test uses two plates with EDM cut holes of varying depths, as seen in figure 3.7. 

These plates are used to identify the reflected amplitude from the hole surfaces located within the 

plates. The amplitudes are to be compared to the current AWS Attenuation Factor. 

3.4.1.8 Defect Sizing using AWS Procedure-Amplitude Measurement 

The purpose of sizing defects in steel welds using the AWS procedure is to evaluate the 

procedure’s effectiveness based on the results and provide suggestions to improve its accuracy.  

The standard AWS procedure described in dection 3.2 of this report and the AWS Annex 

S procedure will be used to evaluate steel specimens with implanted flaws. Four fabricated test 

plates with implanted flaws of known locations and lengths are used as test specimens for defect 

sizing. Three plates have transition welds and one plate is a standard butt weld, as seen in figure 

3.8. 
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Figure 3.8 Details depicting the SMB 11 plate defect locations 

 

Similar to the length-amplitude test, an encoder will be used to track the waveforms as 

the transducer moves along the weld. As the defect is scanned, the waveforms are saved to a 

spreadsheet and associated with the location of the encoder at the time of the scan. The 

waveforms are then mapped back to the transducer location along the defect length. The visual 

representation of the waveform along with the defect length is used in the evaluation of the flaw 

measurement procedures.  

3.4.2 Future Work 

The tests described herein will be performed using both the UT technology and the 

phased array UT technology. The results from these tests will be analyzed for the purpose of 

improving the current AWS UT procedure if necessary, as well as developing a procedure for 

phased array UT.  

3.5 Conclusion 
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This chapter contains the test procedures that were designed in order to assess both 

traditional ultrasonic technologies and the phased array technologies. Each test procedure was 

designed to identify and quantify the unique limitations of the ultrasonic technologies. The test 

specimens required for all test procedures were designed and manufactured. The initial test setup 

utilizing the oscilloscope hardware was found to be unsatisfactory, so the USB-UT350 pulser-

receiver was ordered in order to provide the encoder capability required for several tests.  

Once every test procedure has been completed using the UT technology, the results will 

be analyzed and the AWS procedure will be updated if necessary. After the UT technology has 

been analyzed, the specimens will be evaluated using the phased array technology. The results 

from the phased array technology will be used to develop a phased array UT procedure. 
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Chapter 4 Vehicle-Mounted Infrared Thermography for Bridge Condition Assessment 

The goal of this research task is improve the safety of bridges and tunnels. The objective 

of the research task is to develop a flexible, portable platform for infrared thermography that 

enables the technology to be vehicle-mounted for scanning bridge decks, bridge soffits, and 

tunnels at normal or close to normal traffic speeds. The flexible platform to be developed under 

the research will mount temporarily to a maintenance vehicle, such that the technology can be 

shared among maintenance teams in a State Department of Transportation. The platform will 

also enable the technology to be used in a downward-looking configuration for scanning bridge 

decks, and an upward-looking configuration to scan bridge soffits for loose concrete at risk of 

falling into traffic lanes. This unique new technology will provide a new tool for the condition 

assessment of highway bridges and tunnels. 

The flexible platform has been developed, but has not yet been field tested. The unit is 

shown in figure 4.1. 
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Figure 4.1 Vehicle-mounted infrared unit (a) rear view, (b) side view, (c) close-up view 
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