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Executive Summary

The inland waterway system of the U.S. is a vital network for transporting key goods and
commodities from the point of production to manufacturers and consumers. Shipping
materials via the inland waterways is arguably the most economical and environmentally
friendly option (compared to hauling freight by trains or railways). Despite the advantages the
inland waterways enjoys over competing modes, key infrastructure — such as locks and dams,
which help to control water levels on a number of rivers and make navigation possible — is
declining. Limited funds have been allocated to make the necessary repairs to lock and dam
facilities. Over the past 10 years Inland Waterways Trust Fund resources (which historically
funded maintenance and improvement projects) has steadily declined.

Locks and dams are of particular importance, because they assist in the maintenance of
navigable depths on many of the major inland waterways (Ohio River, Upper Mississippi River,
Tennessee River). To better understand the operation of the inland waterway system, this
report examines a portion of the Ohio River (extending from Markland Locks and Dam to Lock
53). The specific focus is to determine what delays barge tows as they attempt to lock through
these critical facilities. The Ohio River is a particularly important study area. In many ways it is
representative of the conditions present throughout the inland waterways system. The
average age of the lock and dam facilities exceed 50 years along our study segment. Most of
these facilities are operating beyond their intended design life. As locks age, they increasingly
demand more scheduled and unscheduled maintenance activities. Maintenance activities often
require temporarily shuttering a lock chamber and diverting traffic through another onsite
chamber (often of smaller capacity). All of the facilities included in the research area have two
lock chambers - thus, if one goes down for maintenance all vessels are diverted through the
second chamber. In many cases this situation can produce extensive delays, which precludes
cargo from reaching the destination in a timely manner.

Recently, the aggregate number of hours that shippers and carriers lose due to delays has
escalated. Although the U.S. Army Corps of Engineers — the agency responsible for the
management and oversight of locks and dams — has worked to keep traffic flowing on the river,
tightening budgets hamper efforts. For shippers and carriers to make informed decisions about
when and where to deploy freight on the river, they require knowledge that illuminates factors
that are most significant in affecting transit times. In particular this applies to certain
conditions that are likely to create delays at lock and dam facilities.

The purpose of this report is to 1) develop a comprehensive profile of the Ohio River that
provides an overview of how it is integral to U.S. economic security 2) identify salient river
characteristics or externally-driven variables that influence the amount of water flowing
through the main channel which consequently impacts vessels’ capacity to navigate 3) use this
information (along with a 10-year data set encompassing over 600,000 observations) to
develop an Inland Waterways Operational Model (IWOM). The IWOM objective is to provide
the U.S. Army Corps of Engineers, shippers, carriers, and other interested parties with access to




a robust method that aids in the prediction of where and when conditions will arise on the river
that have the potential to significantly impact lockage times and queue times (i.e. how long a
vessel has to wait after it arrives at a facility to lock through).

After qualitatively reviewing different features of the river system that affect vessel traffic, this
report outlines two approaches to modeling inland waterway system behavior — a discrete
event simulation (DES) model which uses proprietary software, and the IWOM. Although the
DES produced robust findings that aligned with the historical data (because it relies upon
proprietary software), it does not offer an ideal platform to distribute knowledge to
stakeholders. Indeed, this is the major drawback of the DES given a critical objective of this
project is to generate usable information for key stakeholders who are involved with inland
waterway operations. Conversely, the IWOM is a preferable option given it relies on statistical
analysis — in this sense, it is more of an open-source solution. The IWOM uses linear regression
to determine key variables affecting variation in lockage time. The final model accounts for
over two-thirds of the observed variation in lockage times from 2002-2012, which is our study
period. Practically, this means that the difference between predicted values and observed
delay times is significantly less than how the delays vary around the composite average seen in
the river system (R” = 0.69).

The IWOM confirms that variations in river conditions significantly affect vessel travel times.
For example, river discharge - the direction a vessel moves up or down a river - meaningfully
influences lockage times. The freight amount a vessel carries, which is represented by the
amount of draft and newness of a vessel, influences lockage times. Larger vessels with more
draft tend to wait longer and take longer to complete their lockage. The IWOM is less
successful at predicting delay times. Because there is greater instability in this data only a
modest amount of variation is explained by the model (R* = 0.23). This, in turn, partly reflects
in spillover from one vessel to the next that is difficult for the simulation to impose and account
for therefore requiring additional logic.

Once completed, the IWOM was used to parameterize a simulation model. This provided a
graphical representation of vessels moving along the river. Users have the capability of
adjusting the effects of different variables to anticipate how the system may react, and what
changes in vessel traffic patterns emerge. This information will be of great use for stakeholders
wanting to gain a better understanding of what conditions lockage times will increase or
decrease, why delays emerge, and consequently how these impact traffic flows on the river. In
programming a simulation model, users are able to visualize and intuit what causes vessel
travel times to vary. Although the regression model accomplishes this, for many users this
would prove unwieldy and difficult to grasp beyond a conceptual, abstract level. Matching up
regression results with a visual counterpart lets users gain immediate and intimate knowledge
of river and vessel behavior — this in turn can positively affect shipper and carrier modal
choices. The report concludes with some recommendations for IWOM implementation and
thoughts on future research needs. Also discussed are the implications results from the present
study have for improving our ability to safely, securely, and swiftly move freight on the inland
waterways network.




Background

The U.S. relies on an extensive inland waterway system to transport material goods to market
and promote economic growth. The inland waterway system consists of over 25,000 miles of
navigable waterways - which includes rivers, lakes, canals, and other bodies of water. The U.S.
Army Corps actively maintains approximately 12,000 miles of these waterways. Collectively,
these comprise the Inland Marine Transportation System (IMTS).! This waterway system
directly serves 38 states and transports $415 million worth of goods across our nation each
day.? Bulk commodities and aggregate products make up the largest percentage of goods
moved on the inland waterways. For the Ohio and Mississippi Rivers, coal and agricultural
products are the most frequently transported cargo.

To operate effectively, the river systems incorporate the use of humanly made infrastructure
along their corridors. For example, on major rivers like the Ohio, locks and dams facilitate the
passage of vessels. Inland ports are key nodes on the inland waterway system. They serve as
vital intermodal transfer points that move cargo to and from different transportation modes.
This section briefly describes the inland waterway system as it relates to infrastructure
components, their operators, types and volume of cargo shipped, benefits accrued from using
waterborne transportation, and future concerns pertaining to system resiliency.

Inland Waterway Infrastructure

The U.S. is a resource-rich nation; movement of extracted resources requires networks of
reliable transportation. The inland waterway system is a critical component of the U.S.
transportation network (consisting of rivers, lakes, canals, and other water bodies that function
as major transport corridors for bulk commodities). Infrastructure such as locks and dams are
often required to fully utilize these marine highways. In addition to locks and dams, levees,
hydroelectric power, water storage reservoirs, and other facilities fall into this category.’

! Inland Marine Transportation Systems (IMTS) Capital Projects Business Model Final Report. IMTS Capital
Investment Strategy Team. 13 Apr 2010

? Statement of the American Society of Civil Engineers before the Subcommittee on Water Resources and
Environment, U.S. House of Representatives on the Economic Importance and Financial Challenges of
Recapitalizing the Nation’s Inland Waterways Transportation System. 21 Sept 2011

* Sustainable Solutions to America’s Water Resources Needs: Civil Works Strategic Plan 2011-2015. U.S.
Department of the Army, Corps of Engineers, pg. 10. Sept 2011
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The U.S. Army Corps of Engineers is the primary federal agency charged with operating,
maintaining, and constructing the inland waterway infrastructure. The U.S. Army Corps of
Engineers serves the nation in many roles, and has a multi-faceted and expansive mission set.
To this extent, the U.S. Army Corps of Engineers has six primary missions:

e Civil Works

e Military

e Environmental

e Emergency Operations

e Research and Development
e Sustainability’

The Civil Works Program operates, maintains, and constructs infrastructure comprising the
inland waterway system. The program also provides safe and navigable shipping lanes for
vessel movement. Initially, the Corps will construct a capital project on the waterway and then
hold responsibility for operation and maintenance once it is functional. The Corps maintains
the navigational channel for the waterways, which allows vessels to safety traverse without
running aground. For the purpose of this report, the focus is on the locks and navigational
channels along the Ohio River. Each of these infrastructure types serves a critical role in
supporting commercial shipments, recreational activities, and national security interests. The
Corps operates and maintains 241 locks across 195 sites.” This report examines the segment of
the Ohio River from Cincinnati, Ohio to Cairo, lllinois. The following lock and dam facilities are
contained in the study area:

e Markland Lock and Dam

e McAlpine Lock and Dam

e Cannelton Lock and Dam

e Newburgh Lock and Dam

e John T. Meyers Lock and Dam
e Smithland Lock and Dam

e 52 Lock and Dam

e 53 Lock and Dam

4 http://www.usace.army.mil/Missions.aspx. U.S. Army Corps of Engineers, Headquarters. Mission Menu. 31 Jan
2014

> Department of the Army, U.S. Army Corps of Engineers Civil Works Program Five-Year Development Plan. Fiscal
Year 2011 to Fiscal Year 2015, pg. 22.
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A lockmaster is responsible for overseeing each facility. The lockmaster continuously monitors
incoming and outgoing vessel traffic, opens and closes lock gates on the structure, and allows
vessels to pass through. More details on the inner workings of a lock system are discussed in
the “Lock and Dam Operations” section. Furthermore, the Corps performs maintenance on all
of the lock and dam facilities it manages. This includes both scheduled and unscheduled
maintenance activities. In an equally important role, the Corps is charged with maintaining the
navigational channel of the inland waterways.

The Corps is responsible for maintaining a 9-foot minimum channel depth for the Ohio River.®
This depth allows barges to operate at full capacity without running aground. The locks serve a
critical role in maintaining the 9-foot depth. Lock and dams hold back standing pools of water
at a defined hydraulic gradient. This ensures water levels will maintain the minimum depth
required for vessel navigation. More details on the nature of pools and channels are discussed
in the “Pools and Channels” section.

Commodity Movements on the Ohio River

The majority of cargo shipped in the Ohio River is coal. In total, coal accounts for over 50
percent of the commodity tonnage. This proportion has been relatively invariant from 2004-
2011. However, what this does not reflect are the absolute increases or decreases in coal
volume on a year-over-year basis. In recent years, the amount of coal (and related byproducts)
shipped on the Ohio River has dwindled. This slip in volume is attributable to the rapid growth
of natural gas as an energy source. Natural gas is a cleaner, more efficient technology than
coal. This explains why there has been increased investment in natural gas extraction.
Conversations with port operators confirmed that the significant declines in coal shipments
regarding the Ohio River will persist if natural gas expansion continues.

For a more detailed picture of why coal shipments have dropped in recent years, readers
should consult the statistics that are maintained by the United States Energy Information
Administration (EIA). This department keeps records on barge-transported commodities such
as petroleum and coal. Scrutinizing data from the EIA reveals that from 2007-2011 the price of
coal —in real terms — rose approximately 50 percent. During this time frame, overall tonnage
shipped erratically fluctuated downward. Although there is some relationship between
slumping coal movements and pricing, other factors must be considered (like the economic
recession that began in late 2007). Eventually, falling shipments may produce increases in
system capacity - or at the very least redistribute the commodity mix.

Figure A, constructed using data from the Center of Waterway Commerce Statistics, illustrates
the aggregate tonnage of major commodities moved on the Ohio River. Aside from the
dominance of coal, there are other interesting trends. The volume of non-fuel crude materials
has declined approximately 20 percent from 2004-2011. This category includes materials like

® U.S. Army Corps of Engineers, Great Lakes and Ohio River Division.
http://www.lrd.usace.army.mil/Missions/CivilWorks/Navigation/OhioRiverNavigation.aspx. 3 Feb 2014
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gravel, sand, and limestone. After coal and aggregate products, there is a steep drop-off among
other commodity groups with respect to total tonnage moved. Each of these classes accounted
for less than 20 million tons shipped annually, during the entire study period. This data clearly
shows that in addition to coal, bulk/dry commodities are the primary materials transported via
the Ohio River. Small quantities of petroleum and other chemical products are moved along
the river. However, traffic is quite small compared to the figures for coal, lignite, and non-fuel
aggregates.

Currently, a limited quantity of non-bulk commodities is moved on barges using containers.
And while inland waterways can support more containers on barge traffic than they currently
do, there are logistical and financial obstacles that will likely prevent this form of shipment from
taking root on the Ohio River. Port operators would need to make significant financial
investments to upgrade their facilities in order to support container on barge traffic. Most of
the ports along the Ohio River are very small and have limited operating capital, therefore, they
cannot afford to make the improvements necessary to handle container on barge. Second,
commodities moved in containers (e.g. electronics) are time sensitive; manufacturers want
quick delivery to generate sales. There are significant restrictions on how quickly commodities
can be dispatched via barge. As such, these materials — barring unforeseen changes in U.S.
infrastructure availability — will continue to be transported by rail and truck. This leaves barge
vessels to specialize in heavy or bulk commodities that do not require immediate delivery.

Figure A: Ohio River Commodity Traffic

Ohio River Commodity Traffic
(Both Directions)
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Source: U.S. Army Corps of Engineers, Navigation Data Center
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Coal traffic on the Ohio River dwarfs all other commodity types. Although coal traffic has
decreased slightly from a peak in 2005, coal shipments have leveled off at slightly more than
120 million tons during 2010 and 2011.

Benefits of the Inland Waterway System

The Inland Waterway System provides an efficient and robust multimodal method of
transporting high-volume bulk goods, yielding significant and tangible benefits for users and
society. These benefits directly impact system users (i.e., shippers and industry). There are
also indirect effects to society at large in the form of improved transportation networks and
reduced environmental impacts. Some of these benefits are discussed below - including those
focused on economic considerations, reduced congestion, and the environment.

The Ohio River provides economic benefits to its direct users (including shippers and industry)
along with segments of the population that benefit from proximity to the waterway system.
For example, economists from the Center for Transportation Research (University of
Tennessee) recently completed a study on the inland waterway system. They looked at the
Ohio River and estimated benefits that are conferred to potential beneficiaries. To this extent,
they assigned monetary values to each benefit realized across multiple scenarios. This included
shipper savings, economic impacts, recreation, flood damage avoidance, hydropower
generation, irrigation, water supply, property values, congestion, and safety impacts. Shipper
savings, economic impacts, and water supply benefits were particularly notable for the Ohio
River. The study defined the benefits as:

Shipper savings — “The summed differences between the costs for tonnages of
commodities shipped by barge and - had the shipper not used barge - that of the next
least costly transport mode.”

Economic impacts — “The additional value generated by the shipper savings (and
possibly, other navigational advantages such as electric utility maintenance or cooling
efficiencies) that resulted from increased production efficiencies and lower prices, as
the savings work their way through the economy.”

Water supply — “This deals with the value of water taken from the Ohio River Basin as a
water supply to the residential, commercial and industrial consumers.”

The study estimated that the Ohio River region has garnered approximately $21.45 billion per
year in monetary benefits as a result of barge shipment on the Ohio River.” A primary benefit of
the Inland Waterway System is the ability to significantly alleviate congestion on rail and
highway transportation networks. As Figure B shows, barge tows move large volumes of
commodities along the Ohio River every year. Transferring these shipments to alternative

’ Toward A Full Accounting of the Beneficiaries of Navigable Waterways, pg. i-iii. Center for Transportation
Research, University of Tennessee. January 2011
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modes of transportation would significantly increase the pressure on rail and highway
networks.

According to a study performed at the Texas Transportation Institute, a standard single barge
unit carrying dry-bulk cargo (such as coal) can move approximately 1,750 tons. A single truck
trailer or rail car, however, can only move approximately 25 tons and 110 tons, respectively.8
Furthermore, a typical barge configuration moving on the Ohio River typically consists of 15-
barge units. As such, a 15-barge unit with a carrying capacity of 26,250 tons would be
equivalent to approximately 239 rail cars or 1,050 truck trailers. Bearing this in mind, a typical
barge tow load on the Ohio River vastly exceeds similar commodity movements across rail or
tractor-trailer trucks (see Figure B).

Figure B: Equivalent Capacities across Modes

Comparison of Transportation

Modes
(26,250 ton capacity)
2000 - 1050
1000 - 15 239
0 A 1 1 1

15-Barge  Rail Cars Truck
Unit Trailers

Source: Texas Transportation Institute, Center for Ports and Waterways

Incapacitation of the inland waterway system (due to a lock and dam closure or some other
capacity-restricting event) would dramatically increase the overall demand on the highway
and/or rail network and increase congestion. For example, the Texas Transportation Institute
examined the consequences of a complete shut down of barge traffic on the Ohio River that
shifted all commodity transportation to rail operators. In this example, they projected 100
percent of the load onto nearby CSX railroad, which owns the largest number of railroads
parallel to the Ohio River and would be best positioned to handle additional loads. The study
found that “133.1 million tons of Ohio River coal traffic” would increase demand on CSX rail
lines by “an additional 1,010,250 car loadings of coal annually with 112 tons of coal in each
car.” Furthermore, they estimated that the overall rail network speeds would decrease from
19.2 mph to 12.88 mph for moving the additional loads, resulting in severe system congestion.’

& A Modal Comparison of Domestic Freight Transportation Effects on the General Public, pp. 10. Texas
Transportation Institute, Center for Ports and Waterways. December 2007

° A Modal Comparison of Domestic Freight Transportation Effects on the General Public, pp. 25-26. Texas
Transportation Institute, Center for Ports and Waterways. December 2007
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Lastly, the Inland Waterway System provides an environmentally-friendly means to transport
goods in comparison to other conventional transportation modes. Barge tows have the ability
to transport large volumes of bulk goods with minimal fuel consumption relative to other
modes. Researchers have found that a barge tow is able to carry one ton of cargo
approximately 576 miles on a single gallon of fuel. Conversely, a rail engine and tractor-trailer
truck can only move that same amount of cargo 413 miles and 155 miles, respectively, on one
gallon of fuel.’®0On a fuel-consumption basis, barge tows outperform other strategies of
transporting cargo and emit less greenhouse gases.

Infrastructure Breakdowns

Due to aging infrastructure, the Inland Waterway System lock and dam facilities continue to
experience mechanical breakdowns at an increasing rate. This situation causes delays for
shippers and places the overall system at increased risk for catastrophic failure. The average
age of the nation’s federally owned or operated 257 inland waterway locks is 60 years, which is
well past their intended 50-year design life.* Approximately 47 percent of the U.S. Army Corps
of Engineers’ maintained locks have been deemed functionally obsolete.'? As a result, many of
these lock facilities are experiencing structural fatigue and mechanical malfunctions, putting
them at risk to go out of service for extended stretches of time. In some cases, the Corps
schedules maintenance activities. When a lock unexpectedly fails (or is at risk of imminent
failure), it prompts an emergency unscheduled closure that can lead to significant and
prolonged traffic delays.

To illustrate this point, several locks on the Ohio River have recently experienced unanticipated
closures due to mechanical failures. In August 2004, the Corps identified the McAlpine lock at
risk of imminent failure and subsequently removed the lock from service for two weeks. With
no auxiliary chamber at this facility, all shipments needing to traverse the lock were halted.
Soon after, the National Waterways Council conducted a survey of businesses relying on these
shipments and estimated fiscal impacts from the closure ranged from moderate to severe.”

1% 1bid., pp. 38.

! Statement of the American Society of Civil Engineers before the Senate Committee on Environment and Public
Works on the Water Resources Development Act of 2010: Jobs and Economic Opportunities. pp. 5, 6 May 2010
12 Statement of the American Society of Civil Engineers before the Subcommittee on Water Resources and
Environment, U.S. House of Representatives on the Economic Importance and Financial Challenges of
Recapitalizing the Nation’s Inland Waterways Transportation System. pp. 3, 21 Sept 2011

 David Grier, The Declining Reliability of the U.S. Inland Waterway System, Institute for Water Resources, U.S.
Army Corps of Engineers, Alexandria, VA, 2009.
http://onlinepubs.trb.org/onlinepubs/archive/Conferences/MTS/4A%20GrierPaper.pdf
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In another case, the Markland lock suffered catastrophic failure when a miter gate collapsed in
September 2009. As a result, the Corp was forced to immediately close the lock and perform
extensive repairs. The closure led to significant delays that stretched over a five-month
period.* In response, the Corps has increased efforts to rehabilitate and maintain their locks
and dams. However, a corresponding increase in the number of mechanical malfunctions (due
to aging infrastructure and budgetary constraints) has limited the effectiveness of these efforts.
Rehabilitation and maintenance provide short-term fixes that can lengthen the service life of
many of these facilities, but neither activity solves the problem of rapidly aging infrastructure.

Essentially, these repairs provide piecemeal solutions to specific issues as they emerge - not a
holistic remedy. Consequently, the continued deterioration of the inland waterway system
contributes to unexpected lock delays and closures, which primarily affects shippers and
carriers. Table A (below) lists the number of hours lost due to lock outages along the Ohio River
from 2002 through 2012.

Table A: Total Hours of Closure by Lock Year

LOCKS CY2002 CY2003 CY2004 CY2006 CY2007 CY2008 CY2009 CY2010 CY2011 CY2012
Lock 53 1,467.3 672.0 0.0 0.0 11.2 143 2.3 0.0 0.0 55.9
Lock 52 171.4 42.8 42.8 | 1,729.7 | 1,099.9 209.5 473.7 | 1,474.2 3,834.5 1221
Smithland 754.2 3329 474.5 812.8 488.7 505.7 553.9 911.4 1,611.5 282.6
John T Myers 883.8 | 2,048.4 633.9 49.3 962.5 643.5 998.5 604.4 1,024.6 91.5
Newburgh 1,439.6 217.4 41.2 | 1,296.5 0.8 44.9 284.8 264.7 419.9 342.6
Cannelton 561.6 104.3 181.2 | 2,261.7 724.2 | 2,639.3 | 1,394.9 | 1,302.7 1,209.2 63.4
McAlpine 109.8 130.4 404.4 101.4 189.2 324.5 397.8 405.9 849.7 88.2
Markland 125.9 516.3 112.8 69.1 492.5 87.1 | 1,119.0 | 4,515.9 8,148.7 | 6,014.6
TOTAL 5,513.6 | 4,064.5 1890.8 | 6,320.5 3,969 | 4,468.8 | 5,224.9 | 9,479.2 | 17,098.1 | 7,060.9

Source: Kentucky Transportation Center”

% America's Locks & Dams: "A Ticking Time Bomb for Agriculture?", pp. 58. Texas Transportation Institute, Center
for Ports and Waterways. December 2011.

!> This table represents an aggregated analysis conducted on several data sources including: USACE, Louisville
District Public Notices and the USACE, Lock Performance Monitoring System taken from 2002-2012.
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Inland Waterway Trust Fund

The Inland Waterway System receives financing for construction and major rehabilitation
projects through a combination of the Inland Waterway Trust Fund (IWTF) and the Federal
Government’s general revenues. Congress originally created the IWTF through the Inland
Waterways Revenue Act of 1978 to raise funds for inland waterway infrastructure through a
“tax on fuel used in commercial transportation on inland waterways".16 Later, Congress
amended the IWTF through the Water Resources Development Act (WRDA) of 1986 and
established the current fuel tax rates and cost sharing measures in place today. Starting in
1995, commercial users of the federally maintained inland waterway system begin paying a
$0.20 per gallon fuel tax; it remains at that level today."” IWTF fuel tax receipts accumulate, and
the U.S. Department of the Treasury invests the aggregate balance in interest-bearing
obligations. The combination of fuel tax receipts and interest earned on investments forms the
overall IWTF balance.” Figure C displays those portions of the inland waterway system that are
subject to this tax.

Figure C: Taxable Inland Waterways

Source: Inland Waterways User Board, 2012 Annual Report19

'® Inland Marine Transportation Systems (IMTS) Capital Projects Business Model Final Report. IMTS Capital
Investment Strategy Team. pp. 6, 13 Apr 2010

'7 statement of the American Society of Civil Engineers before the Subcommittee on Water Resources and
Environment, U.S. House of Representatives on the Economic Importance and Financial Challenges of
Recapitalizing the Nation’s Inland Waterways Transportation System. pp. 3, 21 Sept 2011

¥ Inland Marine Transportation Systems (IMTS) Capital Projects Business Model Final Report. IMTS Capital
Investment Strategy Team. pp. 8, 13 Apr 2010

% Inland Waterways Users Board. 2012. 25" Annual Report. Available at:
http://www.iwr.usace.army.mil/Portals/70/docs/IWUB/annual/IWUB Annual Report 2012.pdf.
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The IWTF provides funding for half of the cost concerning new construction and major
rehabilitation projects, while the federal government general revenue pays for the remaining
half.”® The term “construction” describes all activities required for project completion from
start to finish including “planning, designing, engineering, surveying, the acquisition of all lands,
easements, and rights-of-way necessary for the project, including lands for disposal of dredged
material, and relocations necessary for the project.” Once built, the federal government’s
general revenues pay the full cost of operations and maintenance on all facilities.?!

Declining IWTF Balances

In recent years, the IWTF balances have steadily declined. As a result of this shortfall, there are
insufficient funds to pay the full costs of required infrastructure capital and rehabilitation
improvements. Since its creation in 1978, the IWTF balance has varied significantly, hitting a
peak of $413 million in 2002. Thereafter, annual expenditures began exceeding the annual
revenues collected leading to a steady and sizable drop in the total balance. Furthermore,
some IWTF projects exceeded their original budget (thereby accelerating the decline).?” As a
result, the U.S. Department of the Treasury showed an IWTF balance of $40.7 million in its
December 2013 Audit Report. This represents a ten-fold drop in the total fund balance in a
little over ten years. The IWTF balances from 1988 through 2013 are shown below (Figure D),
and provide a clear illustration of the long-term volatility and the recent downward turn.

Figure D: IWTF Balances
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2% statement of the American Society of Civil Engineers before the Subcommittee on Water Resources and
Environment, U.S. House of Representatives on the Economic Importance and Financial Challenges of
Recapitalizing the Nation’s Inland Waterways Transportation System. pp. 3, 21 Sept 2011

! Inland Marine Transportation Systems (IMTS) Capital Projects Business Model Final Report. IMTS Capital
Investment Strategy Team. pp. 7-8, 13 Apr 2010

%% Inland Waterways: Recent Proposals and Issues for Congress. Charles V. Stern, Analyst in Natural Resources
Policy, U.S. Congressional Research Service. pp. 6-7, 12 Apr 2012
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The Inland Waterways User Board (IWUB), a federal advisory board which is made up of
representatives from the commercial industry, cites an inadequate funding model for this
precipitous decline. The IWUB sees the current funding model as structurally unsound, because
it uses an incremental funding approach (projects are typically funded through annual
appropriations). These appropriations provide funds for only one year in the budget cycle,
often at insufficient levels. This piecemeal approach creates uncertainty for project
management and limits more efficient, long-term construction methods that may lead to
overall cost savings.23 The Inland Marine Transportation System Capital Investment Strategy
Team (a group consisting of the Corps and commercial users) traces the funding decline, in part,
to poor program performance within the U.S. Army Corps of Engineers. In 2010, the group
released a report (Inland Marine Transportation Systems (IMTS) Capital Projects Business
Model) that outlines present challenges and suggests proposed solutions to the IWTF budgetary
shortfall.** This report highlights Corps practices of reprogramming funds from one project to
another for the purpose of dealing with cost overruns. This leads to eventual shortfalls for
certain projects that were not matched by provided appropriations.*®

Finally, and perhaps most significantly, massive cost overruns at the still-ongoing Olmsted Lock
and Dam project have depleted the IWTF in recent years. Overruns on the project are
projected for years to come. Originally authorized in 1988, the Olmsted Lock and Dam project
was designed to replace the outdated and obsolete existing structures at Locks and Dams 52
and 53. These structures were built in 1929 and no longer accommodate current traffic
demands without excessive delays. The Olmsted Lock and Dam located near Olmsted, lllinois at
river mile 964.4 on the Ohio River, is just upstream from the confluence of the Ohio and
Mississippi Rivers.”® The project was originally budgeted for $775 million in the Water
Resources Development Act of 1988 with a scheduled completion date of 2005.27/% The Corps
currently projects project completion costs at $2.918 billion, a 276 percent increase over the
original project budget. It is expected to become operational in 2020 - 15 years beyond the
original timeline.?

2 Statement of the American Society of Civil Engineers before the Subcommittee on Water Resources and
Environment, U.S. House of Representatives on the Economic Importance and Financial Challenges of
Recapitalizing the Nation’s Inland Waterways Transportation System. pp. 3, 21 Sept 2011

** Inland Marine Transportation Systems (IMTS) Capital Projects Business Model Final Report. IMTS Capital
Investment Strategy Team. 13 Apr 2010

> |bid, pp. 16

%% Olmsted Locks & Dam, Ohio River Brochure. U.S. Army Corps of Engineers, Louisville District. Available at:
http://www.Irl.usace.army.mil/Portals/64/docs/Ops/Navigation/Olmsted/OlmstedComprehensive.pdf.

*” Olmsted Fact Sheet. U.S. Army Corps of Engineers, Louisville District. Available at:
http://www.Irl.usace.army.mil/Portals/64/docs/Ops/Navigation/Olmsted/OlmstedFactsheet10-25-13.pdf.
*% Inland Marine Transportation Systems (IMTS) Capital Projects Business Model Final Report. IMTS Capital
Investment Strategy Team. pp. 3, 13 Apr 2010

*° Olmsted Fact Sheet. U.S. Army Corps of Engineers, Louisville District. Available at:
http://www.Irl.usace.army.mil/Portals/64/docs/Ops/Navigation/Olmsted/OlmstedFactsheet10-25-13.pdf.
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The Olmsted Lock and Dam project will continue to consume a significant amount of IWTF
revenues for the foreseeable future and constrain other capital construction and major
rehabilitation projects. The FY 2014 Energy & Water Development Appropriations bill, signed
into law in January 2014, applies a new formula to the Olmstead funding. A new cost-sharing
agreement, which takes 75 percent of Olmsted funding from General Funds and 25 percent
from the IWTF, is now effective. This will relieve some of the pressure on the IWTF, allowing
the Corps to redirect financial resources to the approximately 100 projects that have been
identified elsewhere on the inland waterway system. Of these projects, 45 reside in the Ohio
River basin and will require funds for construction and/or rehabilitation in the next 20 years.30
However, while the IWTF is on more stable ground fiscally, the large number of anticipated
projects works against the IWTF obtaining funding balances last seen in the early 2000s.

River Characteristics

Stretching approximately 980 miles long, the Ohio River provides a vital commercial and
transportation service to the nation. The river is shaped by dynamic, external forces - such as
weather events and fluctuating water inputs - which can dramatically impact underlying
navigable conditions for waterborne vessel users. The Ohio River plays a large role due in part
to its sheer size and number of people impacted. The Ohio River Basin is home to over 25
million people - nearly 10 percent of the U.S. population. The river flows through six states
(including lllinois, Indiana, Kentucky, Ohio, Pennsylvania, and West Virginia). The river
originates near Pittsburgh, Pennsylvania at the confluence of the Allegheny and Monongahela
Rivers. It ends near Cairo, Illinois, where it discharges into the Mississippi River.>* As the
second largest river in the U.S., the Ohio River is a vital piece of the inland waterway system
and essential for moving bulk commodities to market.

The Ohio River (like most rivers) is non-linear, lacks uniformity in width and depth, and is
exposed to seasonal changes affecting both water currents and river stages. The river’s
complex geometry varies across space and therefore affects the ability of a vessel to navigate.
External factors, such as weather, are frequently critical in predicting river conditions and
overall navigability. As such, further examination of these variables and their potential to
impact vessel travel times is warranted. This report examines several elements and their
capacity to influence vessel travel times. The elements are listed below:

e Seasonal Variability (Monthly)
e Current (Vessel Direction of Travel and Velocity)
e Water Stage (Depth)

*% |nland Marine Transportation Systems (IMTS) Capital Projects Business Model Final Report. IMTS Capital
Investment Strategy Team. pp. 33-34, 13 Apr 2010

** Ohio River Valley Water Sanitation Commission (ORSANCO). River Facts / Conditions, 21 February 2014.
http://www.orsanco.org/factcondition
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Regarding the “Operational Model” being constructed as part of this project, these variables
will be used as inputs (independent variables). The model will estimate the magnitude of their
impact on vessel travel times as they move through the study area. Additional details on the
data type and processing of data are described further in the model chapter - although a brief
summary of these factors ensues. Seasonal changes create variability in river conditions, and
therefore months are a useful indicator to measure the impact that seasonal changes have on
vessel travel times.

For the purposes of this model, seasonal variability will be measured on a monthly basis. First,
river cargo traffic (which is heavily influenced by changes in the weather) experiences
significant fluctuations in supply and demand from month to month. Agricultural commodity
flows exemplify this pattern. The Ohio River Basin’s agricultural growing season begins during
the spring months and wraps up in the fall months with the conclusion of the harvest. As
agricultural producers harvest their goods, it increases the volume of agricultural products
moving on the river. Previous studies of commodity flows have shown that significant increases
in grain shipments occur during the summer and fall months.*” Figure E breaks down the
commodity movements by type, direction, and month at Lock and Dam 52 in the 2013 calendar
year.

Figure E: Locks and Dam No. 52 Commodity Flows (Upstream and Downstream)

Ohio River, Locks and Dam No. 52
2013 Commodity Flows (Upstream)
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Ohio River, Locks and Dam No. 52
2013 Commodity Flows (Downstream)
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Figure D indicates that the amount of agricultural commodities moving downstream spikes
dramatically in the fall months, from September through November. This coincides with the
conclusion of the harvest season and farmers shipping their product to market. The
downstream movement of agricultural commodities also greatly exceeds the volume of flows
moving upstream. This trend is largely due to the export-driven demand for agricultural goods.
In fact, the majority of agricultural commodities originating from this region proceed down the
Mississippi River to the port of New Orleans, where they are loaded onto ships bound for
international markets. Due to the perishable nature of agricultural goods, it is critical that these
products move through the inland waterway system expeditiously without experiencing
unnecessary delays at locks and dams. However, past studies have demonstrated that seasonal
volatility—particularly for the obsolete Lock and Dam 52 facility—can negatively impact travel
times and result in increased delays for getting products to market.?*

Seasonal variability effects can emerge from extreme changes in temperature. During the
winter months, prolonged stretches of below-freezing temperatures can lead to the formation
of ice jams on the river’s surface, which increases travel times for barge tows. Travel difficulties
resulting from ice accumulation typically occur in the narrower parts of the river, along
riverbeds, or in the most northerly areas of the Ohio River. Moreover, river facilities such as
locks and dams may have to deal with ice deposits along the facility’s surface water perimeter,

Bu.s. Army Corps of Engineers, Navigation Data Center. 2013 Key Lock Reports, 21 February 2014.
http://www.navigationdatacenter.us/lpms/keylock/keyl13r.html

** America's Locks & Dams: "A Ticking Time Bomb for Agriculture?", pp. 4. Texas Transportation Institute, Center
for Ports and Waterways. December 2011.
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which can further exacerbate barge delays.* Beyond hydrologic considerations, freezing
temperatures make operational activities more challenging. For example, icy conditions
frequently impact river port and barge company operations, hampering workers engaging in
outdoor activities in performance of their duties. River docks quickly accumulate surface-layer
ice, which poses a threat to workers who must walk and perform activities on these same
surfaces.®® The freezing conditions may also increase the difficulty in cleaning out barges.
Normally, high-pressure water is used to spray barge containers out between cargo loads.
However, under freezing conditions, the water can freeze on contact with the barge surface
and make it difficult to clean containers in a timely manner.”’

As a vector quantity, the direction and speed of river currents significantly influences the
movement of vessels and their corresponding travel times along the Ohio River. Vessels
moving downstream (i.e., Cincinnati to Cairo) are travelling in the direction of the prevailing
current and should incur a measurable gain in speed without a corresponding increase in fuel
usage. Conversely, vessels moving upstream are moving against the natural flow of water and
must perform more work (i.e., motor horsepower) to sufficiently overcome the current and
obtain a desired speed. This additional work appears in the form of increased fuel usage and
travel delays.

Quantifying the directional impact, the overall magnitude of the river current directly influences
vessel travel times. This quantity reflects the “speed” at which the river current is moving and
is shown as a unit of velocity (measured in feet per second). Intuitively, an increasing current
(velocity) moving in the same direction as a moving vessel will produce a corresponding
decrease in the amount of work the vessel must perform to move at a defined speed. In other
words, the vessel will gain speed at no extra energy cost. Conversely, a vessel moving in the
opposite direction of a current must exert additional energy to obtain and maintain a desired
speed. This added energy cost is proportional to the magnitude of the opposing current force.
All of this ultimately relates back to travel times. Currents can either accelerate or hinder a
fully-loaded barge tow vessel and its corresponding total travel time to the final destination.
The velocities used for the Operational Model reflect historical data obtained by the National
Weather Service - Ohio River Forecast Center. The Center models velocity values using rain
gauge observations, radar estimates, snow reports, and other meteorological observations to
generate velocity values at distinct locations along the Ohio River.*®

%> “|ce on the Ohio makes river traffic tricky”. The Herald-Dispatch, Huntington, West Virginia. 29 January 2014.
http://www.herald-dispatch.com/news/briefs/x238620720/Ice-on-the-Ohio-makes-river-traffic-tricky

% “Cold and ice create dangerous conditions for river workers.” WPSD Local 6 News, Paducah, Kentucky. 8 January
2014. http://www.wpsdlocal6.com/news/ky-state-news/Cold-and-ice-create-dangerous-conditions-for-river-
workers-239334811.html

37 «Traffic on the river is moving, but slow”. Farm and Dairy. 19 February 2014. http://www.herald-
dispatch.com/news/briefs/x238620720/Ice-on-the-Ohio-makes-river-traffic-tricky

¥ National Weather Service, Ohio River Forecast Center. The OHRFC HAS Forecaster, 24 February 2014.
http://www.erh.noaa.gov/er/ohrfc/has.html
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River Stages

Although “river stage” is often used as a shorthand way to denote water elevation, it has a
more specific meaning. When evaluating a river stage, elevation of the water surface above a
fixed datum — with the stage being set at zero - is measured (USGS). This local datum is
arbitrary, but in many cases is spotted at an elevation near the streambed. When normal and
near normal flow conditions prevail on the Ohio River, vessels can safely and easily navigate the
channel. However, climatic fluctuations that drive changes in river stage (essentially raising or
lowering the water surface) add to the complexity of predictive modeling because significant
increases or decreases in river stage can either slow vessel and cargo movement or halt it
entirely.

Extremely low or high river stages create hazardous conditions on the river. Such events,
because they are infrequent, have a low probability of occurring in a given year. However,
accounting for them is essential for producing an analytically faithful model. In the past both
the Ohio and Mississippi rivers have experienced spatially extensive swings in river stage that
led to traffic bottlenecks. For example, the historic flooding of the Mississippi and Ohio rivers in
2011 led to significant disruptions in river traffic. On the opposite end of the spectrum, the
2012 drought brought vessels on many segments of the Mississippi River to a halt; if they
pressed on they risked running aground in the shallow waters.

In spring 2011, a large proportion of the inland waterway system endured severe and near-
historic levels of flooding. National Weather Service records show that the Ohio and Mississippi
rivers last experienced flooding of comparable magnitude in 1937. After floodwaters had
receded, direct and indirect damages totaled approximately $8.5 billion.> As river stages crept
upward, carriers were negatively affected as it became increasingly difficult to navigate the
Ohio and Mississippi. The loss of navigability prompted the U.S. Coast Guard to implement a
series of measures consistent with its Waterway Action Plans. This entailed shutting down
segments of the Cumberland, Tennessee, Ohio, and Mississippi Rivers. During the flooding,
several locks and dams along the Ohio River were forced to suspend operations, including the
Smithland facility.“o/41

%9 National Oceanic and Atmospheric Administration, National Weather Service, Hydrologic Information Center.
United States Flood Loss Report — Water Year 2011, http://www.nws.noaa.gov/hic/summaries/wy2011.pdf
*0'U.s. Coast Guard, Commander Doug Simpson. May 3, 2011, http://www.bloomberg.com/news/2011-05-
03/ohio-river-sets-new-record-mississippi-waters-still-rising.html

"us. Army Corps of Engineers, Louisville District. Notice to Navigation Interests, Notice No. 2011-006. May 11,
2011, http://155.80.93.250/optm/article.asp?id=796&MyCategory=31
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High-magnitude floods produce the following conditions, which carriers must cope with:

e Reduction of bridge clearance spacing for vessels to safely clear the structure
e Strong currents restricting the ability of a tow to adequately control the vessel
¢ Increased drift in water, which can increase the probability of drift collisions

¢ Increased out draft conditions, or cross-currents, adjacent to lock and dam entrances
which could force a vessel toward the dam structure or the riverbank®*?

Due to the floods, barge companies were forced to cancel or postpone many of their runs along
high-flowing segments of the Ohio River. With their ability to move goods significantly dialed
back, many barge companies incurred appreciable financial losses. The events of 2011
demonstrated vessel traffic is highly sensitive to oscillations in river stage, as did the
catastrophic drought the ensuing year.* Although many regions suffered from unusually dry
conditions in 2012, the Mississippi River basin was particularly devastated by the drought.
Rainfall was in short supply during the months leading up to summer 2012, which yielded
precipitous river stage declines along much of the lower Mississippi River. As channel flow
declined, the river became increasingly shallow, causing a number of barges to run aground.***
As river stages declined, carriers were forced to cut back on the volume of goods moved by
barges; removing cargo reduces a vessel’s draft (submerged depth).

Tom Allegretti, President and CEO of the American Waterways Operators, commented on
problems issued by the drought. He observed that “every one-inch loss of water decreases the
carrying capacity of a single barge by 17 tons of cargo.” Most tows moving along the Upper
Mississippi or Ohio rivers push 15 barges; thus a one-foot reduction in draft will shrink a tow’s
capacity by 3,000 tons.”® Another effect of droughts is channel narrowing. As flow abates and
stage subsides, large portions of a channel that would otherwise be inundated become exposed
and dry out (as a river channel contracts, the amount of navigable waterway declines). Along
some segments of the Mississippi River, channel narrowing was severe enough that only one-
way traffic was permitted — that is, a barge headed north would have to wait until south bound

*2U.S. Coast Guard, Sector Ohio Valley Waterways Action Plan. Nov 1, 2003,
http://www.uscg.mil/d8/westernrivers/docs/Ohio Valley Annex.pdf

* Wall Street Journal, Barge Operators Struggle Along the Mississippi. Aug 25, 2013,
http://online.wsj.com/news/articles/SB10001424127887323997004578639921136985476

* AWO Letter, the American waterways operators. “AWO Members Responding to Low Water Conditions”.
Volume 69, No. 15, July 23, 2012.

* The New York Times, In Midst of a Drought, Keeping Traffic Moving on the Mississippi. Aug 19, 2012,
http://www.nytimes.com/2012/08/20/us/in-midst-of-drought-keeping-cargo-moving-on-
mississippi.htm|?pagewanted=1&nl=todaysheadlines&emc=edit th 20120820

* AWO Letter, the American waterways operators. “Nation’s Waterways Operators Concerned About Impact of
Drought Conditions, Low Water Levels”. Volume 69, No. 15, July 23, 2012.
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traffic cleared the intended passage.”’ The Ohio River has locks and dams helping to regulate
water levels, and was able to support a comparatively steady stream of traffic. However, given
that many barges traveling up the Ohio River originate from a point along the Mississippi, the
drop off in traffic on the Mississippi spilled over onto the Ohio River. Travel restrictions on one
river will likely reverberate through the entire inland waterway system. Predicting vessel
movements requires a localized understanding of river stage (i.e. on the river of interest) as
well as having a regional awareness of how conditions on adjoining rivers impact traffic flows
on the system being studied. Drought — much like the flooding — produces costly delays and
reductions in cargo transport capacity, ultimately leading to financial losses for many barge
companies.5

Under normal weather conditions, the Ohio River provides a safe and easily navigable channel
for cargo movement. But severe climatic fluctuations or meteorological events (in the form of
floods or droughts) can produce large swings in river stages. This essentially raises or lowers
water surfaces to unnavigable levels. This, in turn, creates hazardous conditions for travel
along the river — which may significantly delay or halt vessel traffic. Normally, these types of
events are infrequent and have a low probability of occurring in a given year. However, as
recent years have shown, the Ohio River can experience massive flooding and/or drought
conditions, which dramatically impedes the movement of vessels. Shippers and barge
companies increasingly need to plan for such events and create contingency plans, or will find
themselves captive to the whims of nature.

The historic flood of 2011 and the severe drought of 2012, provide clear illustrations on the
damaging effects of extreme water stages and their impact on the continuity of vessel
movement. Several locks and dams responded to the flooding by fully opening their lock and
dam gates and allowing the water to freely flow through (Figure F). In other instances,
inherently unsafe conditions forced the complete closures of lock facilities.

* NBC News, Drought sends Mississippi into ‘unchartered territory’. Aug 15, 2012,
http://usnews.nbcnews.com/ news/2012/08/15/13295072-drought-sends-mississippi-into-uncharted-
territory?lite
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Figure F: Barge Tow Vessel Moving Through the Newburgh Lock (March 2011)

. . 48
Source: Evansville Courier Press

In the cases of a closure, carriers were forced to curtail their movement along the Ohio River.
As a result, barge companies bore significant financial losses during this period.49 This flood
provided clear and overwhelming evidence of the direct impact high water stages have on
commodity movements (along with the sensitivity and vulnerability of shipping practices to
unusually elevated water levels). The Operational Model will analyze these different types of
river conditions and assess their impact on vessel travel times.

Lock & Dam Preliminary Analysis (Lock and Dam Functions)

Locks and dams are critical for maintaining the navigability of the inland waterway system,
because they provide increased resilience against adverse weather conditions. Since the
1800’s, Americans have relied on the Ohio River for transportation and commerce - particularly
concerning the movement of coal. As demand steadily increased, the impact of severe weather
events on the system grew more conspicuous and increasingly problematic. Droughts and
floods, for example, restrict vessel movement on rivers. This scenario slows down the
movement of cargo. High-magnitude flooding drives up the current speeds and raises water to
unsafe levels, preventing vessels from adhering to a normal schedule.

*8 Evansville Courier Press, Lock and dam operators keeping a close watch on the Ohio River. 7 March 2011.
https://www.courierpress.com/news/2011/mar/07/wary-watch-on-the-river/

* Wall Street Journal, Barge Operators Struggle Along the Mississippi. 25 August 2013.
http://online.wsj.com/news/articles/SB10001424127887323997004578639921136985476
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Likewise, droughts (like those seen on the Mississippi River in 2012) reduce the amount of
water in channels, shrinking the amount of navigable channels. Seeking to reduce the
unpredictability of the inland waterways, the U.S. Congress sought measures to stabilize the
inland water system in the areas where they could feasibly do so. This was done primarily
through the mitigation of drought-related impacts.50 Drought events stem from extended
periods of below-average precipitation across a watershed. For example, if the Ohio River
Watershed endures drought conditions, less water will flow into tributaries. This consequently
attenuates the amount of water flowing into the Ohio River. Constructing lock and dam
facilities on the Ohio River (and other rivers) was a strategy designed to attenuate the impacts
of extreme weather conditions. Dams mitigate the effects of droughts or floods. They
accomplish this by forming pools that maintain the minimum water levels required for river
travel. Each dam requires an accompanying lock chamber, which enables the passage of
vessels through the river system.

Lock chambers raise or lower the vessel to the water level in the pool they are about to enter.
Thus, the idea of a lock and dam system took hold as a way to optimize the inland waterway
system and help protect vessels against the dangers of drought. The first lock and dam on the
Ohio River was authorized and completed in 1885 at Davis Island, just downstream from
Pittsburgh.>* The construction of additional locks and dams would soon follow, which provided
the U.S. with the inland waterway infrastructure network that remains in use today.

Locks and dams are complementary types of infrastructure that work in conjunction to regulate
river flow and allow safe passage of vessels along the river corridor. Dams located on the Ohio
River regulate the flow of water but do not completely restrict the flow. They accomplish this
by impeding flow near the river surface while still allowing for restricted passage of water at a
defined depth closer to the river bed. Water is allowed to move through the dam using a series
of inset gates, typically tainter gates.”* The U.S. Army Corps of Engineers (hereafter, “Corps”)
controls gate operations in an effort to regulate flow through the dam. Corps officials can
monitor and adjust water levels on each side of the dam, including the incoming side
(upstream) and the outgoing side (downstream).

*® Locks and dams are not designed to mitigate the high-water stage impacts attributed to flood events. This will be
discussed in greater detail on the following page.

hus. Army Corps of Engineers, Great Lakes and Ohio River Division. History of navigation development on the
Ohio River, 14 February 2014.
http://www.lrd.usace.army.mil/Missions/CivilWorks/Navigation/OhioRiver/History.aspx

> All of the dams found within this segment of the Ohio River—with the exception of the Wicket Dams of 52 and
53—utilize tainter gates.
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Accompanying locks needs to be placed beside of each dam to allow for the passage of moving
vessels. Each lock consists of a rectangular concrete chamber with two sets of gates (an
entrance and exit) that converge at a centerline that point at a slight angle upstream. The lock
has the ability to hold fluctuating volumes of water as levels are raised and lowered. The lock
must change water levels to match the adjoining river levels - both the upstream and
downstream side - as each gate opens and closes. This enables the vessel to either enter or exit
the chamber on a consistent hydraulic gradient. Figure G shows a push boat with a barge load
exiting the Smithland Lock chamber.

Figure G: Smithland Lock Chamber

Source: USACE, Louisville District™

>* U.S. Army Corps of Engineers, Louisville District. Smithland Locks and Dam, 14 February 2014.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/SmithlandLocksandDam.aspx
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The lock and dam system is designed to suppress water. Pools maintain minimum channel
depths, and each lock and dam connects to a distinct pool. When viewed in sequence the pools
produce a staircase effect, with river elevations incrementally declining in a downstream
direction (see Figure H).

Figure H: Ohio River Staircase Diagram

Water Pools — |7

Source: USACE, Louisville District™

The pools formed by locks and dams provide safe and navigable shipping lanes for vessel
movement on the inland waterway system. The Corps is legally responsible for maintaining a
nine-foot navigable channel on inland waterways.” The pools formed by locks and dams
provide the initial channel depth required for vessel movement. However, additional
maintenance efforts are required in order to maintain those channel depths. Periodic dredging
of the pools reduces the amount of sediment that accumulates at the bottom of the channel,
and maintains channels in a navigable condition. The main source of sediment is surface water
runoff that transports sediment from upland areas in the watershed to tributaries and the main
stem. In combination, these activities provide shipping vessels with a minimum river depth
channel to safely traverse pools without running aground.

*u.s. Army Corps of Engineers, Louisville District. Ohio River Mainstem Navigation System: General Plan and
Profile, 13 February 2014. http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams.aspx
> U.s. Army Corps of Engineers, Great Lakes and Ohio River Division. History of navigation development on the
Ohio River, 17 February 2014.
http://www.lrd.usace.army.mil/Missions/CivilWorks/Navigation/OhioRiver/History.aspx
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Contrary to popular misconception, river dams are not designed for flood control (nor are they
used for that purpose). The pools of water that form behind each dam lack the storage
capacity to capture the amount of storm water runoff generated during a high-magnitude flood
event. This holds true even if the river could be completely drained before a flood event in the
anticipation of collecting floodwaters. For example, previous hydraulic studies have shown that
the volumes of water associated with major flood events significantly exceed the volumetric
capacity of a river channel. In such a flood, the empty river channel would fill up again in a
matter of hours before upstream flooding would commence - eventually inundating riverfront
property. The legal mandate (of the Corps) does not extend to protecting downstream
stakeholders. Any action to protect downstream stakeholders from flooding would merely
transfer risk and potentially increase the vulnerabilities of upstream stakeholders.*®

Lock and Dam Operations

The Corps operates, maintains, and constructs locks and dams on the inland waterway system.
The Corps performs these roles through the framework of their “Civil Works” mission, a
program area servicing the nation’s water resources infrastructure.”’ At present, the Corps
operates and maintains 241 locks across 195 sites.”® Maintenance activities consist of routine
and periodic checks/repairs, along with major rehabilitation activities. The Corps also leads all
new lock and dam construction. New locks and dams are constructed using a combination of
federal appropriations (most often from the pool of General Funds) and money from the Inland
Waterway Trust Fund. Once built, the Corps assumes complete responsibility for the
operations and maintenance regarding existing lock and dam infrastructure.

A Corps lock supervisor - or lockmaster - oversees and directs vessel traffic moving through
locks. In this role, the lockmaster continuously monitors incoming and outgoing vessel traffic,
operates the opening and closing of lock gates on the structure, and facilitates the passage of
commercial and recreational vessels through the lock chamber. The lockmaster retains
oversight authority for safety procedures in lock operations. As such, they work to ensure that
vessels follow all prescribed safety protocols as they proceed through the lock. A brief
summary of lock operation procedures from start to finish is discussed below. The following
sequence description does not capture all complex operations associated with locks and dams;
it is a simplified narrative intended as a representative version of a typical lockage scenario. As
a vessel approaches a lock and dam, the vessel operator will signal the lockmaster that the
vessel is approaching and ready to enter the lock.

*us. Army Corps of Engineers, Rock Island District. Why do we have locks and dams?, 14 February 2014.
http://www.mvr.usace.army.mil/Media/NewsStories/tabid/6636/Article/4550/why-do-we-have-locks-and-
dams.aspx

57 http://www.usace.army.mil/Missions.aspx. U.S. Army Corps of Engineers, Headquarters. Mission Menu. 31 Jan
2014

>% Department of the Army, U.S. Army Corps of Engineers Civil Works Program Five-Year Development Plan. Fiscal
Year 2011 to Fiscal Year 2015, pg. 22.

31




That signal consists of one long blast of a whistle followed immediately by a short blast, both of
which emanate from the vessel. Ideally, the operator will initiate this signal when it is one mile
from the lock. Next, the vessel approaches the lock. When there are traffic queues, the vessel
will wait as other vessels pass through the facility. In the absence of a queue (or once the
gueue has cleared), the vessel will harbor in place 400 feet from the guide wall. The vessel may
also communicate directly with the lockmaster through pre-defined Corps Maritime Band
Channels. The vessel remains in place until directed to move forward by the lockmaster.>®
Before lockage begins, the lockmaster clears the lock chamber of any existing vessels. For the
purposes of this illustration, assume that a vessel has just exited the chamber in the
downstream direction (e.g., lower hydraulic gradient) and the approaching vessel lies just
upstream from the lock. Once cleared, the lockmaster begins filling the lock chamber with
water. The lock chamber receives water through a series of pipes underneath the chamber.
This allows the flow of water into and away from the chamber.

These pipes connect the chamber to both the upstream and downstream sides of the river, and
direct flow through inset valves. The valves can be opened or closed to fill or empty the water
chamber as needed. In this case, the upstream valve is opened to allow flow into the chamber
and the downstream valve remains closed to prevent water from leaving (see Figure I).

Figure I: Lock Chamber Fills

Source: U.S. Army Corps of Engineers, Louisville District®

By using the natural flow of water, locks minimize energy usage by eliminating the need for
energy-intensive pumps. Total energy requirements consist of mechanical actions involved in
the opening and closures of the lock gates and pipe valves. This relatively straightforward and
proven technology has proven remarkably effective over the years.

>2 U.S. Army Corps of Engineers, Louisville District. “How to Pass through Locks”, 17 February 2004.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/HowToLockThrough.aspx
% U.S. Army Corps of Engineers, Louisville District. “How Locks Operate”, 13 February 2014.
http://www.Irl.usace.army.mil/Portals/64/docs/Ops/Navigation/lockthru.jpg
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Once the chamber water elevation matches that of the upstream water elevation, the chamber
is ready for use. The lockmaster opens the upstream gates leading into the chamber and
notifies the vessel operator to proceed forward. The lockmaster communicates this message
through the use of traffic light signals or air horns. A “Flashing Green” signal light or “Two Long
Blasts” of an air horn indicates it is safe to proceed forward.®! The vessel moves forward slowly,
stops in the chamber, and ties mooring line from the boat to the lock wall. This will keep the
vessel in place during the water drainage phase. Also, vessel operators continuously provide
slack to the mooring line (or “take in” for chamber fill operations) to stay in place through this
operation.

Next, the lockmaster will close the upstream gates and drain the chamber. These chambers are
drained by inverting the process used to fill them (the upstream valve is closed, the
downstream valve is opened, and water flows out of the chamber) which lowers the vessel to
the appropriate water elevation (see Figure J below).

Figure J: Lock Chamber Drains

Source: U.S. Army Corps of Engineers, Louisville District®

Once drained, the chamber water elevation matches that of the downstream reach. The
lockmaster will open the downstream gates and notify the vessel that it can exit the chamber
(Figure K). Upon exiting, the lockmaster can begin this sequence again to pass through
subsequent vessels.

®1U.S. Army Corps of Engineers, Louisville District. “How to Pass through Locks”, 17 February 2004.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/HowToLockThrough.aspx
%2 U.S. Army Corps of Engineers, Louisville District. “How Locks Operate”, 13 February 2014.
http://www.Irl.usace.army.mil/Portals/64/docs/Ops/Navigation/lockthru.jpg
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Figure K: Vessel Exist Lock Chamber

Source: U.S. Army Corps of Engineers, Louisville District

Locks on the Ohio River

The U.S. Army Corps of Engineers (Louisville, KY District) operates and maintains eight locks on
the Ohio River from mile marker 436 to 981. This stretch of the Ohio River stretches from just
upstream of Cincinnati (Ohio) to Cairo (lllinois) near the confluence of the Mississippi and Ohio
Rivers. The lock and dam facilities located in the study area include:

e Markland Lock and Dam

e McAlpine Lock and Dam

e Cannelton Lock and Dam

e Newburgh Lock and Dam

e John T. Meyers Lock and Dam
e Smithland Lock and Dam

e 52 Lock and Dam

e 53 Lock and Dam

(A brief description of each facility and defining characteristics is explained in the following
information)

Moving downstream, the first lock and dam in this segment is the Markland Locks and Dam
(located at river mile 531.5). The river mile indicates the distance downstream from Pittsburgh,
Pennsylvania. The facility has 12 tainter gates along the dam, and a 35-foot lift - which signifies
the difference in water surface elevation between the upper and lower pools. The locks include
a main chamber, which has a water surface area of 1,200 feet by 110 feet and an auxiliary
chamber of 600 feet by 110 feet. The locks began operations in 1959 and the dam was finished
in 1964.%

% U.S. Army Corps of Engineers, Louisville District. Markland Locks and Dam, 17 February 2014.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/MarklandLocksandDam.aspx
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The McAlpine Locks and Dam (located at river mile 606.8 on the northwestern end of Louisville,
KY) are equipped with 9 tainter gates and the steepest lift of dams in the group, at 37 feet.
Originally built in the 1960’s, the McAlpine auxiliary lock received a major upgrade in 2009. It
was rehabilitated to the same dimensions as the main lock chamber - 1,200 feet by 110 feet.®

The Cannelton Locks and Dam lies at river mile 720.7 near Cannelton, Indiana. This dam has 12
tainter gates and a 25-foot lift separates the pools. Similar to Markland, it contains a main
chamber of 1,200 feet by 110 feet and an auxiliary chamber sized at 600 feet by 110 feet. The
locks were finished in 1967, and the dam in 1974.%

Located near Newburgh, Indiana, (at river mile 776.1) are the Newburgh Locks and Dam. This
dam has nine tainter gates and a 16-foot lift. The main chamber is 1,200 feet by 110 feet, while
the auxiliary is 600 feet by 110 feet. The Newburgh locks commenced operations in 1969 and
the ensuing dam structure came online in 1975.%°

John T. Myers Locks and Dam are located near Uniontown, Kentucky at river mile 846.
Formerly known as the Uniontown Lock and Dam, this lock and dam was renamed to honor
former Congressman John T. Myers, who was an active supporter of inland waterway system
infrastructure. The dam contains 10 tainter gates and has a lift of 18 feet. The main chamber is
1,200 feet by 110 feet while the auxiliary is 600 feet by 110 feet. The original locks first began
operations in 1969, and the dam became operational in 1977.%

The Smithland Locks and Dam (river mile 918.5) are across the river from Smithland, Kentucky.
This facility is located on the lllinois side of the river and is accessible from nearby Brookport,
lllinois. The dam has 11 tainter gates across its span and has a lift of 22 feet. The two
chambers are equal in size (1,200 feet by 110 feet) and were the first twin locks of their size on
the Ohio River. The locks became operational in 1979, and the dam in 1980.%®

Locks and Dams 52 and 53 are located at river miles 938.9 and 962.6, respectively. Both sets of
locks are situated on the lllinois side of the river, with Lock 52 just downstream of Brookport
(Ilinois) and Lock 53 11 miles upstream from Cairo (lllinois). Both dams are unique, as they are
the last remaining wicket dams on this stretch of river. Both sets of locks are identical with a
main chamber of 1,200 feet by 110 feet and an auxiliary chamber at 600 feet by 110 feet. Locks

% U.S. Army Corps of Engineers, Louisville District. McAlpine Locks and Dam, 17 February 2014.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/McAlpineLocksandDam.aspx
u.s. Army Corps of Engineers, Louisville District. Cannelton Locks and Dam, 17 February 2014.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/CanneltonLocksandDam.aspx
*®u.s. Army Corps of Engineers, Louisville District. Newburgh Locks and Dam, 17 February 2014.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/NewburghLocksandDam.aspx
¥ u.s. Army Corps of Engineers, Louisville District. John T. Myers Locks and Dam, 17 February 2014.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/JohnTMyersLocksandDam.aspx
%8 U.S. Army Corps of Engineers, Louisville District. Smithland Locks and Dam, 17 February 2014.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/SmithlandLocksandDam.aspx
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and Dams 52 and 53 were finished in 1928 and 1929, respectively. These locks and dams will
be replaced by the Olmsted Locks and Dam.®

Table B: Locks on the Ohio River

Lock Chamber | River Mile Bank Lift Length Width
Markland Auxiliary 531.5 L 35 600 110
Markland Main 531.5 L 35 1200 110
McAlpine Auxiliary 606.8 L 37 1200 110
McAlpine Main 606.8 L 37 1200 110
Cannelton Auxiliary 720.7 R 25 600 110
Cannelton Main 720.7 R 25 1200 110
Newburgh Auxiliary 776.1 R 16 600 110
Newburgh Main 776.1 R 16 1200 110
John T. Myers | Auxiliary 846 R 18 600 110
John T. Myers Main 846 R 18 1200 110
Smithland Auxiliary 918.5 R 22 1200 110
Smithland Main 918.5 R 22 1200 110
52 Auxiliary 938.9 R 12 600 110
52 Main 938.9 R 12 1200 110
53 Auxiliary 962.6 R 12 600 110
53 Main 962.6 R 12 1200 110

Source: U.S. Army Corps of Engineers, Louisville District

Lock Modeling

Locks and dams provide a vital service to commercial waterway shippers by reducing the length
of travel delays associated with drought events. Due to their mechanical nature, they may also
create delays when malfunctions occur. As discussed earlier, locks and dams were originally
constructed on the Ohio River to stabilize water levels due to severe droughts and provide
navigable lanes throughout the year. They have been largely successful in that regard, with
over a 100-year track record promoting waterborne commodity shipments. However, locks and
dams are humanly-made structures that are subject to the inherent design limits and
maintenance issues associated with any engineering-type structure. Locks and dams have the
ability to influence waterway vessel traffic operations in a manner analogous to how highway
intersections mediate automotive traffic. Each structure serves as a transportation node on the
network facilitating the flow of traffic through its hub.

% U.S. Army Corps of Engineers, Louisville District. Locks and Dams 52 and 53, 17 February 2014.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/LocksandDams52and53.aspx
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At a lock and dam, the vessel must stop by at a defined distance (x;) from the lock entrance. At
that point, the vessel must wait on any existing traffic queues as well as vessels in the lock
chamber to clear before entering. In the same way, a car approaching a red light at a traffic
intersection must stop and wait for the traffic queue in front of it and the light to turn green
before proceeding. For both traffic lights and locks, external system factors related to the
transportation node impact the ability of a vessel operator to proceed.

Under ideal conditions, the system operates as intended and maximizes traffic throughput
given known constraints. However, oftentimes congestion forestalls traffic operations -
negatively affecting them and resulting in increased delays through locks. The Operational
Model in this study examines multiple factors that potentially impact traffic operations down
the Ohio River. This includes the characteristics of locks and dams, the Ohio River, and vessel
traffic. The dependent variable for this model, output, will consist of vessel travel times. The
Operational Model analyzes a defined set of independent variables and determines how they
shape or define the dependent variable. In this section, the independent variables related to
the characteristics of locks and dams along this Ohio River segment are discussed.

This Operational Model will focus on five predominant factors related to a lock structure, and
investigate what impact they have on vessel travel times (including delays). The five factors are
listed below:

e Chamber Size

e Age of Lock

e Hydraulic Lift

e Type of Dam

¢ Planned Outages

The chamber size of a lock facility directly impacts cargo throughput capacity. Each of the eight
locks in this study has two lock chambers (a main and auxiliary lock). Typically, the main
chamber is the primary lock used for conveying vessel traffic. The main chambers described
have surface area dimensions of 1,200 feet by 110 feet. Alternately, an auxiliary chamber is
located adjacent and parallel to the main chamber. Traditional auxiliary chambers were
constructed at half the length of the main chamber, or 600 feet by 110 feet. Some auxiliary
chambers that have been constructed in recent years, however, were designed to have
dimensions equal to the main chambers.

The chamber size is critical because it impacts the number of barges that can move through the
lock in one pass. A typical barge-tow configuration consists of 15 barge units connected to a
push tow. This configuration is able to pass through a standard main chamber lock (1,200 x
110) as one unit. There are occasions when the main chamber goes offline for scheduled
rehabilitation activities (planned outage) or due to unforeseen circumstances (unplanned
outage). At this point, vessels will have to rely on auxiliary chambers - which are often half the
size of the main chamber. In such a scenario, a barge-tow moving 15 barges would need to
break the tow configuration in half and transport the total load through the lock in two
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separate trips. This more than doubles the travel time of the vessel through the lock due to
time associated with two lock trips, the time needed to station the left-behind barge units
between trips, and the time spent reassembling the barge units back into a single configuration.
Auxiliary chambers, equal in size to the main chamber, mitigate these unnecessary travel time
delays and optimize throughput traffic if the main chamber is shuttered.

Lock age can play a significant role in determining travel times. As described previously, the
inland waterway system is deteriorating. Many locks still in use have greatly exceeded their
intended design life. Along the segment of the Ohio River this study looks at, the average age
of the locks is 55 years 0ld.” The majority of locks were designed for a 50-year life cycle. The
average age of the system is past the intended design period. As locks age, it leads to increased
maintenance and rehabilitation efforts to address deteriorating structures and mechanical
malfunctions.

The hydraulic lift of a lock determines the amount of time a vessel spends within the lock
chamber. The Ohio River experiences changes along the hydraulic gradient (i.e., slope) in a
downstream direction. At certain points, those changes are quite pronounced and sharp. This
is documented in the case of the historical “Falls of the Ohio”, a previously difficult-to-navigate
section of rapids near the McAlpine Locks and Dam.”* The locks and dams helped to stabilize
those rapid changes in hydraulic gradients by generating level pools behind each structure.
Locks located between an upstream and downstream pool (with large differences in water
elevation) require an equally large hydraulic lift to bring the vessel from one pool level to the
next. The time associated with filling and draining lock chambers to create this lift is directly
proportional to the elevation change. As such, hydraulic lifts impact travel times for vessels
travelling through lock chambers.

Although most of the locks on the Ohio River operate according to the principles outlined
above, wicket dams are an exception to this rule. First pioneered in the 1800s, wicket dams
were used to construct the original series of locks and dams on the Ohio River. A wicket dam
uses a series of in-line wickets that extends across the river and is oriented perpendicular to the
flow. Each wicket is a solid plate made of timber, which are approximately four feet wide and
20 feet long. Under high water conditions, the wickets lie parallel to the river bottom and allow
vessels to pass directly over them.

7% This calculation excludes the McAlpine Locks which received recent upgrades to its auxiliary chamber in 2009.
"1 U.S. Army Corps of Engineers, Louisville District. McAlpine Locks and Dam, 18 February 2014.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/McAlpineLocksandDam.aspx
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As water levels decrease, the wickets are raised perpendicularly to the flow to create a pool and
produce the required nine-foot navigable channel.”? Corps staff manually raises the dam as low
water conditions dictate by hooking each wicket from behind and sliding the connecting bar
into a notch (Figure L).

Figure L: Wicket Dam Configurations

Source: U.S. Army Corps of Engineers, Louisville District’

Locks and Dams 52 and 53 are the only wicket dams along the study segment. Originally
constructed in the 1920s, both facilities have vastly exceeded their design life. As a result,
these structures have suffered considerable structural deterioration, which has led to costly
and lengthy repairs. The ongoing Olmsted Locks and Dam project is scheduled to replace Locks
and Dams 52 and 53, although it will not be completed until at least 2020. ”*

Locks and dams sometimes experience outage events that can significantly delay vessel
movements. An outage event is any event causing the lock to temporarily go out of service.
Outage events may stem from routine, periodic inspections - but also more urgent and
unexpected malfunctions that demand immediate attention. For unexpected malfunctions, a
chamber is taken out of service while repairs are made. Outage events are categorized as
either “planned”, intentionally scheduled, or “unplanned” (as is the case when malfunctions
arise). This model will examine planned outages and their adverse impact on delays and travel
times for vessels requiring procession through the chamber. Although unplanned outages

2us. Army Corps of Engineers, Louisville District. Navigation Dams, 18 February 2014.
http://www.Irl.usace.army.mil/Portals/64/docs/Ops/Navigation/Olmsted/NavigationDams.pdf

73 Ibd, pg. 1

% U.S. Army Corps of Engineers, Louisville District. Olmsted facts, 18 February 2014.
http://www.Irl.usace.army.mil/Portals/64/docs/Ops/Navigation/Olmsted/OlmstedFactsheet10-25-13.pdf
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frequently cause more severe disruptions due to their unforeseen nature, data on their
frequency is not readily available. Existing data can also be unreliable.

To illustrate what happens during an outage, imagine the following scenario: the Corps staff
identifies a structural failure in a lock chamber during a routine inspection. First, the Corps will
determine corrective actions (including repairs, if needed) and release a public notice informing
shippers and vessels of a planned lock outage. Often, main lock chambers experience more
frequent outages because they are the most heavily trafficked. The auxiliary chamber will serve
as the primary chamber for vessel travel until the main chamber returns to normal operations.
Normal commercial vessel traffic volumes diverted through an auxiliary chamber will likely lead
to increased travel times and significant delays, as barge tows will have to separate into two
pieces for passing through the smaller lock chamber. This increases the amount of time it takes
for a single vessel to pass through a facility, and therefore leads to the higher incidence of
delays.

Lock and Dam Outages

As noted in the introduction, despite the inland waterways offering an efficient, cost effective,
and environmentally friendly method of transporting bulk commodities and other goods, the
U.S. lock and dam infrastructure is rapidly aging. Many of the locks and dams are currently
operating far beyond their forecasted lifespan. With aging comes the deterioration of
structures. This has led to an upward trend in outages while repair crews attempt to correct
whatever problems arise. Consequently, an accurate predictive model should account for the
probability of lock outages impacting facilities on the Ohio River. Aside from structural
deficiencies, delays can also result from extended vessel queues waiting to lock through. To
assist with model development, the research team collected data on lock outages covering
2002-2012.

This data was obtained from the annual reports issued by the Navigation and Civil Works
Decision Support Center (NDC), which maintains the Lock Performance Monitoring System
(LMPS). This data offered a composite picture of lock outages. However, they are imperfect
and do not capture every outage and the corresponding duration. For example, data is not
available for calendar year 2005, so this has been omitted from tables and graphs. Therefore, it
cannot be accounted for regarding the predictive model.

Because of the data gaps contained in the LMPS, the research team collected additional
information from the public notices issued by the Louisville District of the USACE - as well as
from trade journals and other periodical sources such as web archives. However, reporting on
lock outages was usually restricted to only the most significant events. This means that many
of the data points captured from these sources were already embedded in the LMPS data.
There are other caveats associated with the LMPS data — it does not record specific outage
events. Rather, it only preserves raw counts of annual closures and the number of hours a lock
was unavailable. Additionally, the LMPS data set does not specify the time of year when an
outage occurred, nor does it indicate which chamber was impacted.
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This absence of information is problematic because traffic patterns on the Ohio River are
seasonally inflected (an outage during the summer months would have more significant
consequences than one during the winter because the bulk of vessel traffic passes through the
system during the summer). Lacking information about which chamber is affected by an outage
presents difficulties because most facilities have main and auxiliary chambers. An outage that
afflicts an auxiliary chamber would cause less traffic disruption versus a main chamber outage.
Lastly, not having information about the timing of lock outages is problematic because it is
possible that, in some cases, two outages impacting separate facilities materialized
concurrently, which could create a snowball effect in delays throughout the river system, and
having a multiplicative effect when compared to delays due to a single outage.

Tables C and D summarize lock closure events and the aggregate number of hours each lock
was out of commission, respectively. These tables, derived principally from the LMPS data, give
readers a nice overview of 1) the extent and magnitude of outages annually, and 2) which locks
were sources of the most disruption. From a systematic and synoptic perspective, Table D
(which sums the number of hours each lock was closed) is most consequential for model
development. A complete summary of each table is beyond the scope of this report, but there
are several important trends worth noting.

Based on Table C, from 2002-2012, the Smithland and John T. Myers locks experienced the
largest number of discrete outage events. At first glance it would seem these facilities would
disproportionately impact traffic flows. However, Table D, (which displays the number of hours
each lock was closed in a given year) tells a different story. During this interval, the Markland
facility totaled over 21,000 hours of outage time. Cannelton, on aggregate, was next with
approximately 10,000 hours - during which the locks were unavailable to vessels. Spatial and
temporal trends are worth scrutinizing as well. For example, Markland clearly does not
perform well in the latter area given the upward trend in outage hours it suffered over the past
five years.
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Table C: Number of Lock Outages Per Year

LOCKS CY02 | CYO3 | CY04 | CYO6 | CYO7 | CYO8 | CY09 | CY10 | CYil | CY12 -
Lock 53 4 1 0 0 5 11 1 0 0 46 8
Lock 52 88 12 20 34 90 88 77 148 132 52 241
Smithland 276 309 450 447 389 492 408 480 546 238 4035
John T 100 192 125 96 181 141 200 288 232 107
Myers 1662
Newburgh 1 42 16 1 2 22 208 286 182 113 293
Cannelton 46 34 61 68 47 72 100 69 59 23 579
McAlpine 60 94 96 45 69 109 118 96 128 28 843
Markland 48 57 46 33 49 34 169 182 233 102 953
- 633 741 814 734 832 969 | 1281 | 1549 | 1512 709
Table D: Number of Outage Hours Per Lock (Figures Rounded to the Nearest Hour)
LOCK CY02 | CYO3 | CY0O4 | CYO6 | CYO7 | CYo8 | CY09 | CYi0 | €Y1l | CY12 -
Lock 53 1467 672 0 0 1 14 2 0 0 56 2223
Lock 52 171 43 43 | 1730 | 1100 210 474 | 1474 | 3835 122 9201
Smithland 754 333 475 813 489 506 554 911 | 1612 283 6728
JohnT
Myers 884 | 2048 634 49 963 644 999 604 | 1025 92 7940
Newburgh 1440 217 41| 1297 1 45 285 265 420 343 4352
Cannelton 562 104 181 | 2262 724 | 2639 | 1395 | 1303 | 1209 63 10443
McAlpine 110 130 404 101 189 325 398 406 850 88 3001
Markland 126 516 113 69 493 87 | 1119 | 4516 | 8149 | 6015 21202
_ 5514 | 4065 | 1891 | 6321 | 3969 | 4469 | 5225 | 9479 | 17098 | 7061

From 2002-2012, the Louisville District USACE Office issued 337 navigation notices (145 of these
were related to lock closures). Analysis of these notices revealed that most lock closures are
caused by repair work. However the occasional high river stages, flooding, or other natural
disturbances force lock outages. While the LMPS data distinguishes between planned and
unplanned outages, notices typically do not give a reason for an outage. However, the
language and/or context of the notice can indicate why an outage has occurred. For example, if
a notice references emergency repairs, it is reasonable to infer a lock has experienced an

unplanned outage.
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When repairs are scheduled, they are usually announced in several navigation notices,
sometimes up to a year in advance. Clearly, outages of this kind would qualify as planned.
Instances like these, when the distinction between planned and unplanned outages is clear-cut,
present little interpretive difficulties. However, planned maintenance work schedules are often
subject to revision. Projects can be cancelled, rescheduled, or added with little advance notice
— all of which creates data ambiguities and increases the challenge of factoring planned and
unplanned lock outages into a predictive model.

Combining LMPS data with information obtained from navigation notices and other sources,
the research team was able to determine the number of hours each lock was unavailable for
navigation for the 2002-2012 period (Figure M plots this data). Unscheduled outage hours
fluctuate yearly. However, the variability has remained relatively steady with the exception of
sporadic jumps. Exceptions to this general trend are observable in the data for Markland and
Lock 52 facilities, both of which underwent dramatic increases in total outage hours in 2008-
2009. After peaking in 2011, both facilities had outage hours plummet in 2012.

Inter-annual variability regarding unplanned lock outages is a key variable that shapes traffic
flow through the system. Unscheduled hours are especially problematic for shippers and
carriers because, without prior warning, making different shipping arrangements for goods is
logistically untenable. Once a vessel is on the river, there are limited opportunities to offload
cargo. In most cases carriers must simply wait until the problem driving the outage is resolved.

Figure M: Annual Sum of Unscheduled Outages for Ohio River Locks

Unscheduled Lock Unavailabilities, 2002- 2012
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Vessel Characteristics

Commercial vessels transport significant quantities of cargo on the Ohio River each year. These
vessels serve a vital role in meeting the demands of domestic energy markets as well as
international agricultural markets. In this role, they provide a robust and reliable means to
transport dense, high-volume commodities in an economical and environmentally friendly
manner over other available transportation models (including rail and highway). In 2013 alone,
the Ohio River’s Locks and Dam 53 structure received over 73 million tons of cargo.”® This
facility is the last lock and dam on the Ohio River before the confluence with the Mississippi
River, and it provides a useful snapshot of cargo traffic at a critical juncture. Furthermore, the
shipping vessels operating on the Ohio River contributed to the nation’s economic bottom line.
In their annual testimony to Congress in 2011, representatives from the American Society of
Civil Engineers stated that the inland waterways system moved approximately 630 million tons
of cargo annually, with an estimated value of $73 billion.”

The most commonly used commercial vessel is the towboat. It is frequently found on the Ohio
River and pushes barges loaded with commodities to their final destination. These towboats
are powerfully built, and able to push thousands of tons of cargo. More impressively, towboats
are able to haul excessively heavy loads with optimal fuel efficiency. For example, a previous
Texas Transportation Institute study compared the fuel usage rates of inland waterway
towboats with usage rates for other transportation modes. Inland waterway towboats haul, on
average, one ton of cargo approximately 576 miles on a single gallon of fuel. Railroad and
highway truck carriers can move the same ton of cargo just 413 and 155 miles, respectively,
with a single gallon of fuel.”’

Low fuel usage rates give shippers the ability to haul commodity loads at a low cost, while being
environmentally friendly. As a part of its “Civil Works” portfolio, the Corps maintains, operates,
and retains primary responsibility for managing the inland waterway system. The Corps
monitors commercial vessel traffic on the inland waterway system (typically through locks and
dams) and collects data on various segments for future use. The Corps uses this information -
along with user provided information by the shipping companies - to assist in the development
of Waterborne Transportation Lines of the United States (a series published annually.)78

> u.s. Army Corps of Engineers, Navigation Data Center. Lock Use, Performance, and Characteristics: Locks by
Waterway, Tons Locked by Commodity group, Calendar Years 1993-2013. 27 February 2014.
http://www.navigationdatacenter.us/lpms/cy2013comweb.htm

’® Statement of the American Society of Civil Engineers before the Subcommittee on Water Resources and
Environment, U.S. House of Representatives, on the Economic Importance and Financial Challenges of
Recapitalizing the Nation’s Inland Waterways Transportation System. pg. 2, 21 September 2011.

7 Texas Transportation Institute, Center for Ports and Waterways. “A Modal Comparison of Domestic Freight
Transportation Effects on the General Public”. Pg. 38, December 2007.

BU.s. Army Corps of Engineers, Navigation Data Center. Vessel Characteristics, Waterborne Transportation Lines
of the United States, Calendar Year 2011. 30 November 2012.
http://www.navigationdatacenter.us/veslchar/veslchar.htm
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The Waterborne Transportation Lines of the United States series provides a snapshot of the
operations, shipping vessels, and corresponding companies making use of the inland waterway
system. This series consists of three volumes: Volume 1 — National Summaries, Volume 2 —
Vessel Company Summary, and Volume 3 — Vessel Characteristics. The National Summaries
(Volume 1) summarize much of the data and statistics found within the other two volumes and
captures the information in graphs and tables. The Vessel Company Summary (Volume 2)
outlines the commercial vessel companies using the inland waterway system. It includes
company addresses, the types of commodities typically shippers move, waterway use locations,
and other relevant information. The final publication, Vessel Characteristics (Volume 3),
contains the Corp’s most detailed analysis. This publication offers details on individual vessels
which utilize the inland waterway system. It includes information about vessels, such as: vessel
names, identification codes, dimensions, draft, horsepower, and others data points.

Within this context, the Operational Model will examine several vessel characteristics and
determine how they affect vessel travel times. Specific factors to be examined, and discussed
in further detail below, include:

e Vessel Type

e Vessel Tonnage

e Vessel Horsepower
e Year of Vessel Model
e Number of Barges

e Draft

e Vessel Freight

Vessel Type

The tow vessel fleet consists of towboats and tugboats. Towboats include the majority of tow
vessels found on the inland waterways. These powerful boats have a flat, perpendicular
surface in the front that allows them to push the barges in front of them. As a result, towboats
are sometimes referred to as “pushboats.” Towboats also have a rectangular shape and fairly
flat hull. This design helps the towboat navigate the shallower depths of the inland waterway
and avoid potential grounding scenarios.”® In the Vessel Characteristics — Volume 3 publication,
the Corps classifies a towboat as a “self-propelled vessel” and lists the towboats along with
tugboats as the two types of vessels being actively tracked. A tugboat, on the other hand,
typically pulls a cargo load from behind. This vessel type is most frequently associated with
ocean towing activities, harbor-based activities, and open water operations. Sometimes,
however, tugboats work the inland waterways by transporting uncharacteristically large loads.

7 Reddington, Krista. Not Just Another Day at the Office: Careers in the tugboat, towboat, and barge industry. Pg.
6-7, Fall 2008.
http://www.uscg.mil/nmc/announcements/archive/proceedings/career pdfs/6 NOT JUST ANOTHER.pdf
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This topic must be taken into account for the study. Tugboats primarily operate within ocean
port harbors, where they actively assist in the movement of larger ships through tight spaces.
Tugboats may also perform seagoing operations in which they move cargo loads across open
ocean water. For both modes of operation, the tugboat connects long towlines to the larger
ship or barge in order to “tug” the sizable object to the final destination. Tugboats are designed
with a V-shaped bow, which assists with the towing process.80 During operation, tugboats
incorporate slack into their towlines to account for potential rough waters and unfavorable
weather conditions. They draw in or provide slack as conditions dictate, to maintain safe
control. Tugboats can also push their loads, typically a larger boat, instead of simply towing.
They have rubber fenders wrapped around the perimeter specifically for that effort.®!

The Corps tracks towboats and tugboats on the Ohio River and assigns each vessel a distinct
Vessel Type, Construction, and Characteristics (VTCC code). These codes let the Corps identify
the vessel types as they move through locks and dams. The Operational Model will investigate
each vessel type to determine their respective impacts on commodity travel times. Figures A
and B show a towboat and tugboat, respectively, moving barge loads through the McAlpine
Locks and Dam near Louisville, Kentucky. As the images indicate, the towboat pushes a coal-
filled hopper load through the lock while the tugboat pulls the load.

Figure N: Towboat pushing coal hoppers Figure O: Tugboat pulling barge load

Source: Figures A and B, U.S. Army Corps of Engineers, Great Lakes and Ohio River Division®

0y.s. Army Corps of Engineers, Navigation Data Center. Vessel Characteristics, Waterborne Transportation Lines
of the United States, Calendar Year 2011. pg. viii, 30 November 2012.
http://www.navigationdatacenter.us/veslchar/pdf/wtlusvl3 11.pdf

8t Reddington, Krista. Not Just Another Day at the Office: Careers in the tugboat, towboat, and barge industry. Pg.
6, Fall 2008.

http://www.uscg.mil/nmc/announcements/archive/proceedings/career pdfs/6 NOT JUST ANOTHER.pdf

8 U.S. Army Corps of Engineers, Great Lakes and Ohio River Division. Ohio River Navigation, 28 February 2014.
http://www.lrd.usace.army.mil/Missions/CivilWorks/Navigation/OhioRiver.aspx
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Vessel Tonnage

Vessel tonnage is the weight of the vessel itself, excluding the additional weight of the cargo it
hauls.

Vessel Horsepower

The engine horsepower of a shipping vessel measures the amount of power available for
transporting cargo loads. The Corps defines horsepower as the “horsepower rating when the
vessel was new or when the present engine was installed”.®® Tow vessels with higher
horsepower engines have the ability to push increasingly heavy loads without a corresponding
loss in overall engine performance. As such, it stands to reason that an engine’s performance
figures significantly in the vessel’s overall travel time. At the same time, tow vessels performing
the bulk of their operations on the Ohio River system may not require as much horsepower as
their Mississippi River or seagoing counterparts. This is because vessels travelling on the
Mississippi River or ocean frequently have much larger and heavier loads. In the case of ocean
travel, they may experience more severe weather conditions. Increased horsepower is
required to cope with both of these issues. Inland waterway vessels demonstrate a wide range
of engine horsepower ratings as shown below in the Corps National Summaries Publication
(Figure P)
Figure P: Towboat & Tugboat Fleet Horsepower

U.S. Towboat & Tugboat Fleet
Horsepower Rating, CY 2011
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Source: U.S. Army Corps of Engineers, WTLUS Volume 1 — National Summaries®

Bu.s. Army Corps of Engineers, Navigation Data Center. National Summaries, Waterborne Transportation Lines of
the United States, Calendar Year 2011. pg. iv, 30 November 2012.
http://www.navigationdatacenter.us/veslchar/pdf/wtlusvlil 11.pdf

 Ebd, pg. 12
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Year of Vessel Model

The year or vessel model refers to the year in which a vessel was built or rebuilt. The Corps
defines a rebuilt vessel as one that is modified with a “significant improvement that extends the
working life of the vessel”.® Aging vessels tend to experience an increase in required
maintenance activities, which can adversely impact performance and travel times on rivers.
Many of the vessels currently operating on the inland waterway system are indeed aging as
evidenced by the 2011 National Summaries results. The Corps found that 3,881 of the 5,458
towboats currently in operations (approximately 71 percent of the total fleet) exceeded 25
years of age.86 This far outpaced the overall fleet age averages in other sectors, including
passenger and tanker vessels.

Number of Barges

One of the most critical factors affecting a commercial vessel’s travel time is the number of
barges it pushes (or pulls). Inland waterway shippers maximize cargo loads by increasing the
number of barges used on individual hauls. Barges are added to the vessel until external
system constraints reduce the incentive to continue. System constraints on the Ohio River
include river channel widths, lock chamber widths, and weather-related impacts. Towboats on
the Ohio River typically push a maximum of 15 barges.?’” As previously discussed, this is due in
large part to the size of the existing main lock chambers on the Ohio River which allow 15
barge-tow configurations to pass in a single trip.%® Any increase to the number of barges would
require the vessel to break apart the tow prior to entering the chamber and subsequently
rebuild the tow following multiple passes through the chamber. As a result, the increased
travel times associated with oversize barge loads would offset any potential gains from upping
the cargo loads.

¥ Ebd, pg. v

®u.s. Army Corps of Engineers, Navigation Data Center. National Summaries, Waterborne Transportation Lines of
the United States, Calendar Year 2011. pg. 10, 30 November 2012.
http://www.navigationdatacenter.us/veslchar/pdf/wtlusvll 11.pdf

& DePuy, G., Drosos, D., Taylor, G, and Whyte, T. Grouping and Assignment of Barges. University of Louisville and
American Commercial Barge Line. 19 May 2002.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.2185&rep=rep1&type=pdf

A main lock chamber has a water surface area of 1,200 x 110 feet, enough to accommodate a 15-barge tow
movement.
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The Corps classifies barges into eight types and characterizes all types as not being self-

propelled. The eight types include:

e Dry Covered

e DryOpen

e Deck

e Lash / Seabee
e Other Dry

e Single Hull Tank
e Double Hull Tank
e Other Tank®

Dry barges account for the bulk of barge traffic on the Ohio River. Dry barges consist of flat
bottoms, vertical walls providing compartmentalization, and have a rectangular shape (Figure
Q).° Also known as hopper barges, they come in two forms (covered and open). Covered
barges protect cargo from the weather and open barges are used if the cargo is non-perishable.
Dry barges are commonly used to transport bulk commodities such as coal and agricultural

products.

Figure Q: Dry Barge (Open and Covered)

Source: http://www.blueheronwings.com/

¥u.s. Army Corps of Engineers, Navigation Data Center. National Summaries, Waterborne Transportation Lines of
the United States, Calendar Year 2011. pg. v, 30 November 2012.
http://www.navigationdatacenter.us/vesichar/pdf/wtlusvll 11.pdf

% Ebd, pg. viii
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Deck barges have a flat surface deck with a rectangular shape. These barges lack walls and
would not be used for commodities requiring containerization. Often, they are used to move
heavy equipment loads. Deck barges comprise the second largest barge fleet in the nation’s
inventory. The shipping industry refers to deck barges as scows, lighters, or hoys (Figure R).*

Figure R: Deck Barge

Source: http://www.blueheronwings.com/

A Lash or Seabee barge is a flat-bottomed, rectangular barge designed for uploading into larger
vessels (i.e., a “mother ship”).’” Essentially, a Lash or Seabee barge can be thought of as a type
of floating container. Oftentimes, towboats will transport these units on the inland waterway
system for an ocean carrier rendezvous. Upon reaching an ocean harbor port, the Lash or
Seabee barge is lifted onto the larger vessel and consolidated for movement abroad, reducing
the time required to transfer goods from one container to another (Figure S).

Figure S: Lash & Seabee Barge

Source: http://www.towboatjoe.com/

tu.s. Army Corps of Engineers, Navigation Data Center. National Summaries, Waterborne Transportation Lines of
the United States, Calendar Year 2011. pg. viii, 30 November 2012.
http://www.navigationdatacenter.us/veslchar/pdf/wtlusvll 11.pdf

%2 Ebd, pg. viii
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Tanker barges are used to transport liquids, which are primarily petroleum products. Tanker
barges can be either a single hull or double hull.”® The hull, or watertight body of the ship, is the
interface between the ship’s bottom, side surface areas, and body of water. Double hulls
provide increased protection for the contents (and against potential spills) by providing a
second hull layer in the ship’s interior, which is separated from the outer hull layer. Tanker
barges ship the third largest barge fleet in the nation (see Figure T).

Figure T: Tanker Barge

Source: http://www.blueheronwings.com/

Bu.s. Army Corps of Engineers, Navigation Data Center. National Summaries, Waterborne Transportation Lines of
the United States, Calendar Year 2011. pg. viii, 30 November 2012.
http://www.navigationdatacenter.us/veslchar/pdf/wtlusvll 11.pdf
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Lastly, the Corps uses separate, miscellaneous categories for all barges that fall outside of the
prescribed range in the previous categories, to include “Other Dry Barge” and “Other Tank
Barge”.”® Barges that most resemble one of the previous categories will be categorized per
Corps judgment regarding one of the two categories. In the 2011 National Summaries
publication, the Corps provides a snapshot into the volume of the different barge types across

the nation’s inland waterway system (as shown in Figure U below).

Figure U: United States Shallow Draft Barge Fleet
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Source: U.S. Army Corps of Engineers, WTLUS Volume 1 — National Summaries”
Draft

Draft indicates the depth to which the vessel and accompanying barge are submerged in the
water. Specifically, the Corps defines draft as the “submerged depth of a ship below the water
line measured vertically to the lowest part of the hull”.*® In a typical barge tow movement, the
draft would be the overall lowest point of the combined ship, encompassing the barge and
vessel. Barges are categorized either as loaded (cargo carrying) or unloaded (empty).
Correspondingly, they are classified as having a loaded draft or light draft condition,

** Ebd, pg. viii

®Uu.s. Army Corps of Engineers, Navigation Data Center. National Summaries, Waterborne Transportation Lines of
the United States, Calendar Year 2011. pg. iv, 30 November 2012.
http://www.navigationdatacenter.us/veslchar/pdf/wtlusvll 11.pdf

% U.S. Army Corps of Engineers, Engineering and Design. Hydraulic Design of Deep-Draft Navigation Projects (EM
1110-2-1613). Glossary-12, 31 May 2006.
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respectively.”’ The draft of a vessel is critical because it provides the vessel operator with water
depth parameters to which it can safely navigate.

For example, the Corps is required to maintain a minimum nine-foot navigable channel on each
of the inland waterways it is responsible for overseeing, including the Ohio River.”® Therefore, a
shipping company knows not to exceed a loaded draft of nine feet (in low water/drought
conditions) or risk running aground. The Corps tracks and lists draft conditions for each vessel
and barge unit. The variability of draft conditions impacts vessel travel times as barges become
increasingly loaded, which decreases speed. Figure V illustrates a ship’s draft (draft and
channel depth are both shown).

Figure V: Draft of Ship
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Vessel Freight

Commercial vessels transport a variety of goods on the Ohio River. The types of goods
conveyed will affect travel times. Shippers primarily transport energy and agricultural
commodities on the Ohio River, including coal and agricultural products. Many different
commodity types move along the river each day, and the different types are tracked by the
Corps. Each cargo load has distinct weight and volumetric properties, which may ultimately
impact the ability to navigate and reach a destination in a fixed time frame.

7us. Army Corps of Engineers, Navigation Data Center. Vessel Characteristics, Waterborne Transportation Lines
of the United States, Calendar Year 2011. pg. iii, 30 November 2012.
http://www.navigationdatacenter.us/veslchar/pdf/wtlusvl3 11.pdf

U.S. Army Corps of Engineers, Great Lakes and Ohio River Division. History of navigation development on the
Ohio River, 17 February 2014.
http://www.lrd.usace.army.mil/Missions/CivilWorks/Navigation/OhioRiver/History.aspx
> U.S. Army Corps of Engineers, Engineering and Design. Hydraulic Design of Deep-Draft Navigation Projects (EM
1110-2-1613). pg. 6-9, Figure 6-4, 31 May 2006.
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As such, the characteristics of commodities being transported by commercial vessels should be
investigated to understand how freight loads influence travels times. It is useful to understand
the types of freight moving on the Ohio River. The Corps presently tracks commodity
movement across nine separate categories at each of its locks and dams.

These general categories include the following:

e Coal

e Petroleum

e Chemicals

e Crude Materials

e Primary Manufactured Products
e Farm Products

e Manufactured Equipment

e Waste Materials

e Other'®

10y s, Army Corps of Engineers, Navigation Data Center. 2013 Key Lock Report. 5 March 2014.

http://www.navigationdatacenter.us/lpms/keylock/keyl13r.html
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The
Table E highlights the most

These general categories can be further subdivided into a number of sub-categories.
commodity sub-categories consist of 143 distinct categories.101
notable sub-categories for each commodity type.

Table E: Commodity Types

Commodity Sub-Category Names

Coal Coal, Coal Lignite, Coal Coke

Petroleum Crude Petroleum, Gasoline, Kerosene, Asphalt, and Lube Oil/Greases
Chemicals Agricultural Fertilizers, Hydrocarbons, Ammonia, Plastics, Pesticides,

and Explosives

Crude Materials

Lumber, Logs, Wood Chips, Sand, Gravel, Salt, Iron Ore, Copper Ore,
and Aluminum Ore

Primary Manufactured
Goods

Paper, Lime, Cement, Concrete, Glass, Pig Iron, and Fabricated Metal
Products

Food and Farm

Wheat, Corn, Soybeans, Rice, Barley & Rye, Cotton, Fruits, Nuts, Fish,

Products Coffee, and Sugar
Manufactured Machinery, Vehicles and Parts, Aircraft and Parts, Ships and Boats,
Equipment Wood Products, Textile Products, and Rubber Products

Waste Material

Waste and Scrap

Unknown

Unknown or Not Elsewhere Classified

Source: U.S. Army Corps of Engineers, Waterborne Commerce Statistics Center'”

Throughout history, coal shipments on the Ohio River have constituted the largest single
commodity transported. Despite recent downward shifts in movements, coal makes up the
majority of freight moving through the system. Crude materials and food/farm products weigh
in as the second and third largest commodities moved on average. Since 2007, the rate of
growth for Ohio River commodity flows has slowed. This trend continues unabated as
commodity flows in 2013 were less than in 2012. It remains to be seen if the inland waterway
system will offset potential future declines by increasing shipments of other commaodities, such
as natural gas. Locks and Dam No. 52 resides 11 miles upstream of Cairo, lllinois - and is located
at the confluence of the Ohio and Mississippi Rivers.'*

0y, Army Corps of Engineers, Waterborne Commerce Statistics Center. 2011 Region to Region Public Domain

Data Base by Commaodity. Pg. 3-5, 5 March 2014. http://www.navigationdatacenter.us/wcsc/pdf/pdrgcm11.pdf
102 Ebd, pg. 3-5

U.S. Army Corps of Engineers, Louisville District. Locks and Dams 52 and 53. 5 March 2014.
http://www.Irl.usace.army.mil/Missions/CivilWorks/Navigation/LocksandDams/LocksandDams52and53.aspx
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Due to its strategic location for inter-river commerce, Locks and Dam No. 52 provides a useful
representation of commodity flows entering and leaving the Ohio River. In Table F, commodity
flows across the major categories are shown for a five-year period (CY 2009 — 2013).

Table F: Commodity Tonnage at Locks and Dam No. 52 (in tons)

Commodity CY 2009 CY 2010 CY 2011 CY 2012 CY 2013
Coal, Lignite, and 30,018,629 | 34,729,577 | 37,445,479 | 38,283,723 | 27,740,089
Coal Coke

Petroleum Products 3,967,798 | 4,015,974 | 3,961,906 | 4,422,198 | 5,447,968
Chemicals 7,320,079 8,644,690 8,355,123 8,267,691 9,008,798
Crude Materials 24,160,158 | 27,568,006 | 26,974,108 | 24,516,609 | 22,339,067
Primary 2,889,806 3,114,511 3,931,837 5,263,598 6,401,122
Manufactured Goods

Food and Farm 11,131,496 | 11,517,704 | 10,018,227 | 10,089,896 | 12,434,397
Products

Manufactured 140,281 102,479 108,557 161,660 181,983
Equipment

Waste Material 12,500 14,150 8,411 35,683 28,550
Unknown 121,433 170,655 164,246 372,415 372,427
Total 79,762,180 | 89,877,746 | 90,967,894 | 91,413,473 | 83,954,401

Source: USACE, Navigation Data Center'™

104 y.s. Army Corps of Engineers, Navigation Data Center. Locks by Waterway, Tons Locked by Commodity Group,

Calendar Years 1993-2013. Locks and Dam No. 52, 5 March 2014.
http://www.navigationdatacenter.us/lpms/cy2013comweb.htm
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Discrete-Event Simulation Approach to Inland Waterway Modeling

Introduction

Discrete-event simulation (DES) modeling offers a simplified way to understand system change
over time. Although the mathematics underlying DES can be quite complex, their basic
operations are quite straightforward. Take a hypothetical, abstract simulation model. At any
point in time, the simulation model will be defined by a state S. The state consists of relevant
independent variables, which influence the value of some dependent variables. Partitioning
systems into states improves modeling efficiency.

System evolution takes place over time. This state trajectory over time S (t), “is abstracted as a
step function, whose jumps (discontinuities) are triggered by discrete events, which induce
state transactions (changes in the system state) at particular points in time” (Altiok and
Melamed, 2007:11). Events are associated with particular data structures and times. A clock
and a chronologically ordered event list control a DES, so that events are enumerated in the
event list to correspond with their scheduled order of occurrence. DES modeling is not
temporally dynamic; that is, it does not model changes to a system on a continuous basis.
Rather, DES assumes that a system changes states only after an event occurs. The advantage of
using modeling system behavior as discrete series of events is the reduced computational
burden. Once an event takes place, a state transition occurs. More simply put, an event takes
place within the context of a particular system state. After an event unfolds, it shifts a system
towards a new state (e.g. Figure x). Between events, DES modeling assumes the system state is
constant, although in reality there may be any number of activities working to alter the
condition of the system (these will appear in a DES model following the next event).

A common problem studied with DES modeling is queuing behavior. Traffic along the Ohio
River (or any river for that matter) can be studied through this lens because as vessels arrive at
a lock and dam facility there are frequently other vessels waiting to lock through. This creates a
gueue since vessels cannot pass through a lock until another has cleared the lock chamber and
water levels have been restored to the appropriate level. Queuing systems are modeled as
either open-loop or closed-loop systems. Inland waterways are an example of an open-loop
system because the rate at which vessels enter the system is independent of the current state
of the system.

At the very least, the rate at which vessels arrive into the system is not dictated by the USACE
or other agencies tasked with managing different elements of the system. However, carriers
may shift their behavior depending on known bottlenecks in the system. If significant traffic
delays occur then carriers may opt to wait until some of the vessel traffic clears, or if the
congestion persists, they may decide to ship using a different mode. A large number of
variables influence traffic patterns and queue length at lock and dam facilities (see Chapter x
for a discussion of these factors).
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Background

DES has previously been used to model traffic on the inland waterway system — specifically on
the Upper Mississippi River. 195n¢ part of the research team’s effort to develop a statistical
predictive model, the team initially pursued a discrete-event simulation approach to determine
if it alone would be sufficient to generate a reasonably accurate model of the Ohio River.
Despite their complexity, rivers function as systems — vessels move in and out, their progression
influenced by a range of variables like hydrological/climatic variability and the operation of lock
and dam facilities.

Historical data was collected from the USACE on vessel movements for the 2002-2012 time
frames (see Chapter “x” for details). The pace of vessel movements was extracted from the
data. By determining when each vessel locked through a lock and dam facility, it is possible to
track a shipment as it moves up and down the river. It is also possible to track the amount of
time it spends in each pool (a pool is the segment of river that separates lock and facilities. In
this sense, DES provided a convenient starting point because lockage events were the only data
points that could be used to 1) develop a historical understanding of vessel traffic 2)
conceptualize what factors exert the most influence over traffic patterns and therefore the
operational parameters of the Ohio River system.

The purpose of DES modeling was to inform the development of more robust statistical
predictive models; it is best to view the DES modeling executed during this project as
exploratory. Exploratory analysis is an integral component of complex modeling projects as it
gives researchers insights into the underlying data structure. This analysis enabled the research
team to formulate preliminary inferences about operations along the Ohio River, and guided
the examination of critical factors that impact system behavior.

Methods

The essence of any model is simplification. If a model contained every variable that could
potentially impact system behavior, the end result would be a reproduction of reality.
However, for most systems it is not possible to know every variable that reverberates through
their operational profile. Thus, the main goal of a model is to strike an appropriate balance
between simplicity and complexity — keeping it simple enough to preserve computational
efficiency, yet complex enough that the model provides an accurate representation of the
system.

105 A Discrete Event Simulation Model of a Congested Segment of the Upper Mississippi River Inland Navigation
System. IWR Report 04-NETS-R-01, by Donald C. Sweeney.
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DES modeling lets researchers quickly change the combinations of variables that control the
progression of events and system states. It offered a parsimonious starting point, and gave
researchers the flexibility to quickly determine which model configuration gave the most
correct results. Following methods set out by Law and Kelton (2000) DES simulation of the Ohio
River preceded in six steps:

Define study objectives

Collect and analyze data

Test and validate the conceptual model
Construct the DES model

Run trials

Validate the Simulation

ounkwnNneE

Broadly, this sequence speaks to all of the work involved in model development. However, it
has little to say about what was necessary to create a DES for the inland waterways. Table G
describes the key properties of DES models used during the design and development. The
software used to create DES model was EZStrobe, a user-friendlier version of the Stroboscope
simulation package. The research team decided to move beyond DES modeling because the
software employed was propriety — disseminating the model to public and private stakeholders
would have proven cost prohibitive.

Table G: Key Properties of Discrete Event Simulation Models

Component or Process

Purpose

System State

Collection of variables describing the system

Simulation Clock

Coding controlling simulation time

Event List

Variables or logic controlling the timing of events

Statistical Counters

Variables storing the statistical controls of the
model

Initialization Routine

Programming start the simulation at time zero

Timing Routine

Programing controlling the time of next occurring
even

Event Routine

Programing controlling the model event logic

Library Routines

Programing to capture information during the
simulation

Report Generator

Programming to develop reports from the
collected information

Main Program

Programming to control the subroutines,
programing, and model function
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Data Analysis and Model Development

A DES requires parameterization to accurately model system behavior. Below are the
parameters used to develop the DES. To produce a model that is manageable and runs quickly,
we limited the number of unique trips to a sample of 72. Various simplifying assumptions were
used — these were necessary due to the limitations inherent to the LPMS data.

e LPMS data includes the times at which a vessel arrived at a lock (when lockage began,
and when it exited into the next river pool).

e During pre-processing, data gaps were eliminated. Lockages were organized
chronologically and spatially according to individual vessels, to accelerate model
construction.

e Analyzing vessel activity enabled identification of discrete trips. For instance, if a vessel
moving downstream leaves the system (passes Lock and Dam 53), changes directions, or
spends more than 24 hours in a single pool, the working assumption is that the vessel
has concluded the trip. The next time that vessel appears, it is categorized as a new trip.

e Model based on a sample of 72 unique trips.

e The locks which they initiated or concluded were used to define 72 unique trips.
Although this sacrifices realism, using this assumption was necessary because LPMS data
does not identify what a vessel does upstream or downstream of lock and dam facilities.
Figure W shows the 72 trips and their frequency according to data from 2002 through
2011.
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Figure W: Trip Frequencies per Year by Lock and Dam, 2002-2011
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Figure W

Number of trips and trip frequency used to parameterize the simulation and calculate
basic descriptive statistics that were later used to generate probability density
functions.

Figure (x) illustrates that trips were not evenly distributed throughout the system.
Statistical analysis was used to define trips. Parsing out these trips according to
statistical distributions allows the simulation software to define a trip’s occurrence by
the probability that it occurred.

Beyond this, the only other inputs required by the model were the number of trips that
occurred in a specified time period. We derived this from data from the number of
annual trips. Parameterizing the model in this way set it up so that it would simulate
system operations for an entire year.

Model Parameters

The previous section described some of the basic parameters used during model development.
But a number of other simplifying assumptions were incorporated in the model to reduce
runtime while also maintaining accuracy. These are sketched out below:

The trip for a vessel is defined as the time between starting on the journey (entering the
system) and when the vessel arrives at the destination. After a trip concludes, a vessel
may begin a new trip or be assigned a new purpose. For this model, commercial vessels
are the main focus. This is not to imply recreational vessels are inconsequential, but
they are a non-significant factor when analyzing system behavior as a whole. The first
step in addressing issues in the USACE LPMS data was to discriminate between
commercial and recreational vessel traffic. Recreational vessels were removed from the
data set to facilitate identification of discrete commercial vessel trips. Omitting
recreational vessels, although it muted the actual complexity of the system in the final
DES, did not significantly impact model runs or results.

The DES also simplified the system by preserving a vessel’s anonymity. One drawback of
removing this from consideration is that vessel characteristics have an effect on both
their operation and the functionality of the overall system. The final operational model
did not maintain this assumption, as it would have adversely influenced the predictive
utility.

The inland waterway DES treated single trips as individual events. Similarly, each
lockage and pool passage functions as a separate lockage. Depending on trip
characteristics, the research team was able to identify the number of discrete processes
that constituted the trip, and calculate the total amount of time required from origin to
destination.
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e When a vessel arrives at a lock, it can encounter any number of scenarios. If there are
no other vessels present, it can begin locking through immediately. However, if other
vessels are present, it will enter a queue and will remain there until obtaining clearance
to lock through. Modeling system behavior is tricky because of variable traffic patterns
and potential delays at lock and dam facilities. This complicates the modeling at locks,
but can be controlled by a system of constrained resources, the number of vessels able
to lock at one time, and queues of waiting vessels (both upstream and downstream).

e Simplifying model assumptions and inputs allowed for the use of DES. The model
assumed the system consists of vessel trips. The duration of a trip hinged on an
antecedent system state and the progression of events — and the relation between
them. The research team was able to program additional constraints into the model.
For example, only one vessel is able to lock through a facility at a given time in the
model, as this preserves the realism of queuing activities. While there may be instances
where multiple vessels lock through at the same time, these are infrequent and were
not considered in the DES model.

e After the model was parameterized, the next step was to define probabilities and
functions that govern system behavior, along with determining event sequencing and
identifying state transitions.

Data Analysis & Statistics

LPMS data was analyzed at the level of individual events. Data on queuing and lockage times
for each lock and dam facility were collected. Once the data was assembled, descriptive
statistics were run to initially characterize the system. This yielded histograms that were used
to select a probability density function (PDF) that best matched the empirical data. The PDF’s
used in the model varied depending on the shape of individual histograms. Based on this
analysis, the research team concluded that three PDF’'s were useful — normal, gamma, and
exponential distributions. Figure “X” gives one example of a PDF that was derived from
information about the Newburgh lock and dam facility. A normal distribution offered the best
fit in this case.
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Figure X: Example of a Fitted Probability Density Function

After a PDF has been selected, the DES can use that distribution to randomly select the duration
of an event — in this case a lockage. This process was repeated for all defined events within the
system. As shown in Figure Y, separate PDF’s were calculated for each lock and the system of
event connected through model logic. Facility characteristics vary, however, as each has at
least one lock for upstream- and downstream-moving vessels. The DES model was run for a
number of simulation times, ranging from 320 to 400 days of activity, for an average of 364.7
days (or one year).
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Figure Y: Discrete Event Simulation Model, Illustrating Logic

Outcomes

After model validation, EZStrobe software offers the ability to complete preliminary
visualizations and generate comprehensive statistical reports. Visualization can occur through a
number of methods. The most common, however, is simply highlighting the model
components to be visually depicted (as illustrated in Figure Y) or by taking advantage of the live
reporting parameter (see Figure Z). The visualization of the live reporting parameter allows
users to watch the simulation and note where large queues develop and infer other salient
information about system operations. These can later be reported from the system as seen in
Figure AA (next page).
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Figure Z: Live Simulation from EZStrobe

Figure AA: EZStrobe Report
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Conclusion

DES modeling carries strengths and limitations. First, DES permitted a thorough exploratory
analysis of the LPMS data. The final model highlighted potential areas of concern in the system
where delays are the most likely to occur. Initial runs also revealed there were problems and
inconsistences in the LPMS data that demanded correction before a statistical model could be
produced. DES illustrated Ohio River system operations using an aggregated approach by
obtaining averages for different events, such as the length of delays vessels are exposed to
while waiting in lockage queues. The simulation gave researchers the power to manipulate
some variables, or change PDF’s to determine how they would impact system operations.

Arguably, the deficiencies of DES modeling outweigh the advantages. For example, the LPMS
data shows a clear seasonal trend in system operations (recall, traffic density increases during
warmer months). But there are other factors that influence how quickly a vessel can move
along the river. Placing additional variables into the DES would have resulted in an untenably
complex model, one that is slow to estimate the duration of events. As noted, a key objective
of the research was to develop an application that could be transferred to stakeholders.

Because EZStrobe is a proprietary modeling environment, it did not lend itself to widespread
dissemination. Developing an original statistical model from scratch was therefore the most
pragmatic option because it would be able to account for all of the critical variables (e.g. water
level, season) that affect patterns of movement. While DES is relatively flexible, a statistical
model gives users greater flexibility to independently adjust model factors. While the DES
offered an ideal platform to conduct exploratory data analysis by clarifying aggregate system
operations and providing the means to visualize traffic bottlenecks, the research team deemed
the platform insufficient for developing a final product.

The Predictive Model: Modeling Delays on the Ohio River
Introduction

The locks along the Ohio River serve as bottlenecks that slow movement of cargo. Hindrances
along a supply chain can also interfere with cargo delivery, but delays at a transport bottleneck
carry special importance. This is because the impact typically spreads beyond individual vessels
to others that queue up. For that reason, the attractiveness of waterborne transport hinges
not only on considerations unique to one cargo or business model, but also on complex
features of the river system that can determine the speed and reliability of movement. This
includes the structural reliability of locks and the nature of vessels plying their trade along the
routes.
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From a carrier’s perspective, the delay encountered at a lock stretches from when a vessel first
arrives until it exits the lock. Total delay time results from two theoretically distinct processes:
the actual duration of the lockage, and the amount of time spent in queue waiting for
permission to begin a lockage. Sources of delay that influence one process may have little
bearing on the next process, and vice versa. The models below therefore use two dependent
variables: the delay between arrival and start of lockage (i.e., queuing time), and the amount of
time that elapses between start and completion (i.e., lockage time).

As described previously, we benefited from access to LPMS delay data starting in January 2002
and ending on September 30" 2012. This data represented almost 600 thousand lockages and
therefore provided more than one million data points when counting both types of delay. The
aim of this chapter is to provide a comprehensive narrative for the multiple statistical models
that were developed during the course of this project to explain (and predict) system
operations. Using a narrative approach also provides readers with a better understanding of
how we coped with (and responded to) challenges that arose during the modeling process.
After presenting, discussing, and justifying the ways in which we parameterized our different
models, we provided the reader with an overview of the results. While our models have been
successful in accounting for the variability in lockage times, modeling the queuing delays
provided more challenges and did not yield particularly robust results. The findings of this
project clearly set in place the groundwork for future work that seeks to improve the modeling
of vessel behavior along the Ohio River - as well as other critical inland waterways that are vital
for moving cargo across the U.S.

Analysis

The statistical distributions of queuing time and lockages are not normal, as is assumed in a
classical regression model. Rather, in practice, the vast majority of delays are short. Most
vessels begin their lockage almost as soon as they arrive, and most lockages run into no special
difficulties that slow them down. Occasionally, though, either a lock or an individual vessel will
run into particular trouble. This can result in very lengthy delays. In technical terms, the
distribution is positively skewed, with a long tail stretching toward very high values. This
combined with the bounded nature of the distribution on the left-hand side — it is impossible to
wait in queue or pass through a lockage and have a negative delay — the nature of these
dependent variables might seem to argue against use of linear-normal regression and instead
require a Maximum Likelihood Model, on the order of a hazard or Operational Model.*®

1% Eor some of the key models reported in the analysis to follow, we experimented with parametric hazard models

— in particular the Weibull form, as recommended by Wu et al. (2001) — for purposes of checking the robustness of
our results. These models did change the behavior of some of our control variables, but did not undermine the
main conclusions presented here. Furthermore, to the extent the findings differed between the two modeling
techniques, the linear regressions were less likely to produce coefficient estimates that were nonsensical because
they were contrary to one-tailed hypotheses.
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We found that performing a log transformation on delay times, so as to reduce the
disproportionate impact of outliers, converted the pair of dependent variables so they closely
followed the standard normal distribution even before incorporation of systematic predictors.
Earlier, we discussed the practical problems that accompany working with LPMS data (flaws
that have been addressed through painstaking data corrections). Two additional
methodological issues emerging from the nature of these dependent variables also are worth
addressing: one is an opportunity for the advanced analysis to come, the other an almost
intractable complication. The opportunity springs from the impact of logging the dependent
variables. Queue delays and lockage delays may seem as though they bear little relation to
each other (Most obviously, the wait in queue is contingent upon what happens with other
vessels in the system — e.g. how many there are, what sorts of delays they are experiencing —
whereas the speed of lockage itself likely will be unrelated to the amount of traffic).

Certainly it is true that extreme delays in queue and extremely slow lockages are so rare that
they reveal no tendency to appear in tandem. Our two dependent variables are weakly
correlated at the 0.19 level.'”” The two procedures are so distinct that it might seem tempting
to separate predictive models for the two stages completely, as other researchers have done
(Wu et al., 2001). Yet some of the measured, and likely some of the unmeasurable, influences
on vessel speed should work on both varieties of the duration. Logging the two delays reduces
the impacts of stray and extreme values. This scenario draws more heavily on patterns among
standard lockages, for which the queue delay and the lockage delay correlate modestly with
each other. The logged versions of the queue delay and the lockage delay show a stronger
correlation of 0.35, a pattern that has little chance of appearing purely by accident. That
correlation represents a valuable opportunity, and as we move closer to a fully specified model
of Queue Delay and Lockage Delay, we are able to employ regression methods that exploit the
relationship between these two seemingly unrelated delays to gain more information about
how each one behaves. The research presented here removes limitations that appeared in
previous research, which was caused by analyzing each delay in isolation.

The essentially intractable dilemma posed by these lockage-specific delay data, stems from the
sequential nature of vessel movement through a lock chamber. Irrespective of what process
drives speed through the bottleneck, delay values necessarily spike when a vessel obstructs
traffic (blocking progress). The way that one vessel’s delay can back up a lock queue violates
assumptions of independence found in conventional regression models. However, this
interdependence bears little resemblance to the type of autocorrelation for which time-series
models have been designed.

197 Even this weak relationship achieves statistical significance in data with almost 600 thousand observations. The

relationship did not appear by accident, but so many possible explanations — both theoretically interesting and
trivial — might account for it that substantive significance is not worth exploring until we move closer to a properly
specified model.
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The frequency of vessel trips will have ebbs and flows, and the gap between one vessel’s arrival
time and another vessel’s arrival time therefore varies widely. As such, no clean relationship
can arise between one observation and the next. Nor would the spillover in delay from one
vessel to another emerge simply from a measure of when each one arrived, or how many
vessels tend to move around during any one period in the data. Usually a vessel only
significantly delays its successors when suffering an uncharacteristically long delay. Predicting
this lag in the data using a simple time-series model would produce worse results than ignoring
it entirely.

For example, suppose we hypothesize that movement upstream during high-volume currents
will slow vessel passage. Further suppose that three vessels are moving upstream toward a
given lock. The effect of any hypothesized delay on the third vessel in queue must take into
account not only the speed with which it moves upstream, but also the atypical slowness
exhibited by the second vessel in queue. That sluggishness in turn reflects not just the effect of
the water flow on the second vessel itself, but also the unexpectedly lengthy wait it endured
while the first vessel completed the lockage process. Treating the long delay experienced by
the third vessel as a primary function (of the presence of other vessels) would both exaggerate
the importance of an increase in traffic and vastly underestimate the causal importance of river
movement.

A simpler model - one that looks at how speeds change as river flow varies and eliminating as
much of the dependence as possible through thorough model specification - might err in the
opposite direction by missing some of the dependence across observations. That imperfection
would seem more desirable than the alternative, given that the eventual goal of this project is
to implement the predictive models through a computer simulation of the river system that
imposes additional bounds on vessel behavior. That is, if vessels in the simulation have
optimistic speed estimates in the presence of other vessels, they still would end up proceeding
at a slower pace once the simulation forced them to wait for the lock to clear. Thus, it makes
sense for the statistical model to focus on the overall expected delay, and to allow a portion of
the bottleneck effect to fluctuate with traffic in a simulation environment.*®

1% principle, a researcher would not be forced to choose between the two imperfect options described here.
Rather than use a simple model that assumes independence outside of the systematic causal influences (and the
atheoretical seasonal influences) that unite different observations, or apply a time-series model developed for
less-complex conditions that threatens to make matters worse, one could imagine a model that makes a vessel’s
estimated delay (a) a function of the previous vessel’s expected delay, (b) conditioned on the gap in time between
them. This sort of complex recursive time-series model is well past the scope of this report, however, and will have
to remain a goal of future research.
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Independent Variables

Queue and lockage delays are not purely random, nor are they a simple matter of discrete-
event processing through a bottleneck. Rather, we hypothesize that the observed delays on
the Ohio River depend systematically on 1) known, measurable traits of the locks and dams that
are responsible for giving the Ohio River pools their morphological structures regarding the
vessels plying those waters, and 2) the fluctuations in weather and climate, and concerning
seasonal variations in commerce and recreation. Not all of these systematic influences on
inland-waterway performance are equally susceptible to manipulation by policymakers. But
directly or indirectly, mass behavior and public policy combine to influence most of the inputs
that will appear in the predictive models below. We have already discussed most of these
features of the inland waterway system in prior sections of the report, by sketching out both
their significance and the patterns they reveal. Therefore, the following focus will be on how
they might be incorporated into the regression model.

Seasonal Patterns

Delays will correlate with the month and year in which a particular trip takes place. These
correlations reflect a number of phenomena. Some sources of seasonal patterning represent
influences that we hope to model directly. However, model residuals likely would correlate
with the date of the trip even after specifying the model as fully as possible. The obvious
reason is that we’re not directly targeting dependence across different lockages, so the
seasonal variables can catch up some of the effects of traffic fluctuations across time.

Also, the Ohio River Valley is fed by a widely dispersed set of hydrological sources, and the data
available is unable to capture the response of the river’'s pools to complex hydrological
processes cleanly. Thus, accounting for lingering seasonal variation in the form of a fixed-
effects model should improve model behavior.

We start with a baseline seasonal model that predicts logged delays solely as a function of a
series of binary (or dummy) variables: one set to capture the year of the trip, and another to
capture the calendar month of the trip. More succinctly, we are allowing for a trend in delays
that appears in a given year, and also for a trend among all delays that appeared in January
regardless of year. Because the regression includes a constant term (which anchors predictions
to a y-intercept) we must leave out one year and one month. The coefficients on the dummy
variables therefore represent deviations from the reference category. Regression Table 1
displays a pair of models using July 2006 as the baseline captured by the constant term. The
models present robust standard errors to account for any heteroscedasticity that we might
have neglected to theorize.

Both the model predicting queue delays and the model predicting lockage delays show that
these events are not constant over time. Queuing delays tended to be shorter in the early
2000’s, as indicated by the negative coefficients for 2003 and 2004. These delays have
lengthened in later years, specifically from 2010-2012. Similarly, these queuing delays
consistently stretch out as summer progresses - reaching their peak in August and September.
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These results should not be surprising given the descriptive information about delays provided
earlier in this document, but it sets up the model to present relationships adjusted for known
patterning. Note that while these patterns reach statistical significance, which is to say that
they were highly unlikely to occur by accident in the data, knowing the year and/or the month
actually does not offer much precision for predicting delays. The decline in prediction error
that comes with using estimates from the seasonal model, rather than simply always guessing
the average delay, is tiny (barely more than two percent in either case).

River Characteristics

Simply looking at the month and year - allowing for temporal fixed effects - provides little
predictive accuracy. However, we have data that allows us to model seasonal difference
directly (the amount of water present in the river at the time of a vessel’s lockage). Water flow
varies seasonally - at some points during the late winter and spring, faster and deeper currents
prevail, whereas slower and shallower conditions are more typical during the summer months.
Adding climate and weather variables when building a fully specified model at the outset makes
sense. This is because they are sources of systematic uncertainty that policymakers often
cannot address through the introduction of new regulations, while other sources of delay can
be added in at later stages.

Shifts in climatic forces may alter seasonal patterns in the long run. Control of tributaries that
feed the Ohio River allows the U.S. Army Corps of Engineers to somewhat regulate water flow.
In the short term, Corps officials and policymakers are stuck adapting to what nature provides
them. That is (technically speaking) river characteristics are for the most part causally
antecedent to human behavior on the river system and can thus be treated as exogenous
factors. We can begin with Regression Table 2, which adds a new explanatory variable. This
variable is the observed discharge river gages near lock facilities.

The information is available from the U.S. Geological Survey’s Water Resources Data.'®
Including discharge as a parameter significantly improves the prediction of Queue Delay and
Lockage Delay - in both cases shortening delays. When river discharge is higher, vessels move
faster. Two possible reasons for this fall-off in delays are listed below:

e Higher discharges improve downriver navigation. If that is the reason then the effect of
discharge should depend on which direction the vessel wishes to move — or, to put it
technically, discharge should interact with direction. For that reason, Regression Table
3 adds a dummy variable (capturing whether the vessel is moving downriver, and an
interaction between that dummy variable and discharge). Results for this idea are
mixed. When predicting Queue Delays, they tend to be somewhat shorter on

1% The Water Resources Data provide Discharge data for five relevant stations. We apply the data from USGS

03611500 (Metropolis, IL) for Lock 52 and Lock 53. We apply data from USGS 03399800 to Smithland. USGS
03381700 at Old Shawneetown applies to Newburgh and J.T. Myers. Finally, USGS 03303280, USGS 03294500, and
USGS 03277200 apply to Cannelton, McAlpine, and Markland respectively.
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downriver journeys. But the tendency of greater discharge to shorten delays applies
roughly equally irrespective of travel direction - as indicated by the small and
insignificant interaction term for direction and discharge. The same is not true when
predicting Lockage Delays. Downstream-moving lockages are faster, and the
advantages brought by greater water flow are even more pronounced when moving in
that direction. This is indicated by the negative and significant coefficient on the
interaction term.

e A second possibility is the volume of water moving through the Ohio River. This
matters because travel becomes treacherous at either high (flood) or low (drought)
water levels. The data reveals more drought-related problems than flood-related
delays. If it is true that we are mistaken in giving discharge a single coefficient because
the effect will be negative at both high and low values, then one simple way to capture
that trend in the systematic component of the regression is to allow a bend in the
effect. That is, to include a quadratic measure of discharge. Regression Table 4 shows
that the data does support this idea. The coefficients on discharge are negative, but
those on the squared measure of discharge are negative. That means that at low
(drought) discharge, an increase in the amount of discharge will shorten delays.
However, as discharges begin approaching very high flood levels, the delays start
increasing rapidly again.

Of course, the volume of water could produce effects simultaneously, both aiding downriver
travel in the abstract yet generally hindering travel when approaching either extreme.
However, when we tried combining the interactive effect with the quadratic effect, the data did
not support a robust conclusion that both phenomena were taking place at once (and
sacrificing the model’s parsimony in this fashion did not add notably to the predictive power).
Our best guess is that water volume works in one or both of the ways hypothesized. In later
models, we will keep only the quadratic bend and not the interaction.

The speed at which water moves through the river system may not seem the most direct way
to determine the impact of weather and climate on inland movements. Both floods and
droughts matter because they affect the water depth (or stage) of the river. As discussed in a
previous section, if the river falls too low then the navigation channel may not allow the
passage of vessels. Whereas if the river experiences very high discharges, a new set of
problems arise. Unfortunately, the available data concerning water depths does not meet the
same scope and quality as the discharge data.

Our original source only applied gage depth for one site (Old Shawneetown) and the data did
not cover the entire region. The River Gages data provided by USACE broaden the scope,
because they took readings from stations close to each lock and dam in the Louisville Region of
the Ohio River Valley. However, the data only started for most of the locks on July 12" 2007.
In the case of the gage near Cannelton, data only started on September 5™ 2008 and ended
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before our data ran out. This forced us to substitute data for a different gage upriver.'*°
Regression Table 5 presents models that include river stage as a predictor of delay time.

The listwise deletion (i.e. the exclusion of data records because of missing values) it forces due
to missing data wreck the models, taking out several years of data (and therefore the dummy
variables associated with those years). These models, however, certainly are suggestive: a
higher river stage strongly and significantly predicts shorter delays both in queue and later
when passing through the lock. However, the variable takes such a terrible toll on the data.
This weakens any other conclusions we might wish to draw, and it makes the most sense to
remove the river stage variable again and let discharge volume serve as the proxy for water
flow. '

Before moving on, though, we must consider two possible wrinkles in how river stage could
work. First, the effect of stage might be greater with vessels that have a deeper draft. But it
could matter less with a craft that sits higher in the water (especially recreational vessels).
Regression Table 6 includes the vessel’s draft when loaded, first adding that variable alone,
then allowing the effect to vary depending on river stage. It shows that the vessel’s draft when
loaded does indeed slow progress somewhat. When we allow the effect of draft to depend on
river stage, the negative interaction term means that draft does not delay a trip as much when
the water is high. Or to put it another way, the effect of low water is less pronounced when
vessels have less draft.

Regression Table 7 drops the measures of draft, and instead looks at the effect of wicket dams
(specifically looking at Lock 52 and Lock 53). First, we look at the impact of adding a dummy
variable for wicket dams alone and then allowing their effect to depend on river stage. Wicket
dams can be raised and lowered, so that they block river flow and force a lockage some of the
time. At other times the wicket dam allows vessels to float right over them. We would expect
travel past a wicket dam to be especially speedy when no lockage is required, but if for no other
reason than because these lock chambers are the oldest on the river. Because the auxiliary
chambers are only half as long we expect delays to be lengthier than usual when they are
required. Thus, we can add a dummy variable for the wicket dam, and also include the effect of
having that type of dam to hinge on river stage.

110 Specifically, we use Gage 4 (Markland), Gage 6 (McAlpine), Gage 10 supplemented with Gage 8 for Cannelton.
Gage 13 (Newburgh), Gage 16 (J.T. Myers), Gage 17 (Smithland), Gage 20 (Lock 52), and Gage 23 (Lock 53).

11 \f future research does not turn up a better source of data on River Stage, a valid alternative would be to impute
the State using the Old Shawneetown Gage Depth, the discharge seen at various places along the river, and
possibly other predictors.
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The first two models show that, on average, passing a wicket dam takes less time than passing
the other dams on the river. On the other hand, the second two models with negative
interaction terms suggest that the benefit actually only applies when the river stage is high.
Lockage delays are not shorter otherwise, and if anything, the queue delays are even longer at
wicket dams when river stage is low. For now, we drop the draft and wicket variables along
with river stage, but we will return to those explanatory variables soon.

Vessel Characteristics

Not all vessels are going to move with equal alacrity through river pools and locks. They also
may not be permitted to move as quickly up through a vessel queue, depending on the
prioritization system imposed at each lock and dam. The following questions, related to vessel
characteristics, address what factors play a role in creating delays:

- Is a tugboat or pushboat responsible for propelling barges?

- How old is that vessel? (a variable we hypothesize should only influence lockage
speed, not queue speed)

- How many barges is the vessel moving?

- How much horsepower is pushing the vessel and the barges? (again which we envision
influences lockage speed but not queuing)

- How much tonnage does the vessel itself represent?

- How low does the vessel sit in the water, both the draft when loaded and otherwise?

Regression Table 8 initially deals with the first three concepts: a dummy variable for both
tugboats and pushboats, a variable for number of barges being processed through the lock, and
(for the lockage delay dependent variable) the year the vessel was built. These variables strike
us as less problematic in their hypothesized effects, and for the most part our intuitions hold
up. Commercial vessels (both tugboats and even more so the pushboats) must wait longer in
gueue and take longer to complete a lockage than other vessels. Also, a vessel with more
barges typically sits longer in queue, and requires a longer period of time to lock through. The
second set of models in Regression Table 8 adds the remaining vessel traits. Rather
fortuitously, all four variables behave as hypothesized. Both types of draft independently
appear to slow progress through the queue and the lockage (as does the tonnage). Also,
greater horsepower speeds up both types.

75




Our lack of access to proprietary USACE data on cargo prevents us from taking into account
what the barges contain, or even if they contain anything. However, based on information
derived from the USACE vessel database, we added a series of dummy variables that indicated
what commodity category a vessel owner primarily deals with. This serves as an imperfect, but
best available proxy for the contents of barges. Given the imperfect nature of these proxy
measures for cargo, it is striking that even with serious measurement error the dummy
variables introduced in Regression Table 9 operate much as one would hypothesize. Tow
barges moving food-related produce have a shorter queuing time, typically moving more
quickly through the lockage process than vessels shipping aggregates and non-fuel materials.
Manufactured goods may have a slight advantage getting through the queue, but this
disappears once they initiate lockage.

Companies that move fossil fuels (such as coal and petroleum) as well as companies that trade
in other chemical products, tend to suffer the longest delays. There are several possible
explanations for this. Fossil fuels and chemical products can traverse the system slowly without
unduly harming the financial performance of shippers. Another possibility is that shippers are
more willing to move those commodities through river bottlenecks known to be slow, whereas
shippers moving time-sensitive products are more prudent in their modal and route decisions.
To separate the priorities of the industry actors from the behavior of the policymakers who
fund and maintain inland waterways, we need to scrutinize the variables directly related to
locks and dams.

Lock and Dam Characteristics

We already have packages of dummy variables to fix the estimates by year and month.
However, the data comes from only eight locks and dams. Either due to traffic or some aspect
of the lockages themselves, delays may vary systematically depending on what facility a vessel
is attempting to pass. Regression Table 10 therefore adds dummy variables for each lock, with
“J.T. Myers” serving as the reference point. Clearly the lock and dam a vessel approaches
matters greatly for queuing and delay times. The two wicket dams, Locks 52 and 53, experience
the shortest queues on average. Vessels pass these locks much more quickly than others in the
system. But we see other important differences, such as the shorter queues at McAlpine and
Smithland. The slower lockage at McAlpine appears to explain the slow movement of coal
along the Ohio River, given that the coefficient on coal drops sharply with these additions. The
peculiar finding that newer vessels waited in queue longer goes away also, suggesting that it
was a matter of where the newer vessels were moving to.

What sets Smithland and McAlpine apart, relative to Markland or some of the other slower
locks? For the entirety of this period, Smithland had two 1,200 foot lock chambers instead of
one. Later in the period, McAlpine opened up a second 1,200 foot chamber. Repairs, delays,
and backlogs do not last as long at these locks because they can transfer traffic from one
chamber to the other without instigating excessive congestion. For that reason, the same
Regression Table 11 presents a model with the size of the smaller chamber included.
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A second set of models includes a measure of each lock’s lift, which could explain some of the
differences observed here, with the effect that the dummy variable for Markland must be
excluded from the equation to avoid perfect collinearity. When accounting for these
dimensions and attributes, the theoretically meaningful influence of delays washes out the
previously unexplained advantage for Smithland and McAlpine. Queue delays were shorter due
to that second chamber, even though filling a larger chamber slows down the lockage itself.

We now return our variable for the wicket dams. That addition requires removing the dummy
variable for Lock 53. Thus, wicket represents the behavior of Lock 53 relative to J.T. Myers, and
the variable for Lock 52 in turn represents its deviation from the performance of Lock 53. One
set of models looks at the effect of wicket dams in general, but a second set allows the
performance of Lock 52, in particular, to be contingent on the discharge of the nearby part of
the river system. Regression Table 12 contains the results of this elaborate, and now almost
fully specified, model. Rather than interpreting the models in Table 12 we now consider the
possibility that contrary to findings in previous research, the queue delays and lockage delays
are correlated with one another even after taking into account all of the systematic effects in
our two models. We therefore substitute the standard regressions reported thus far with a
Seemingly Unrelated Regression Equation (or SURE) model. A Breusch-Pagan test endorses the
value of this alteration, as the correlation between the two sets of residuals had a negligible
probability of appearing by chance (if these two sets of delays were unrelated to each other).
SURE models can be interpreted in a similar fashion as the classical regression model, but the
standard errors have been improved based on the information contained in each standalone
model’s residuals.

What do these results tell us about the nature of the system’s operation? Lockage delays are
fairly predictable, due to their systematic relationship with the variables included in our model
(R* = 0.68). Vessel movements slow down when discharges are extremely low. This is reflected
in the negative coefficient on the discharge variable. Likewise, very high discharges can also
hinder traffic - as indicated by the positive coefficient on the squared discharge variable.
Lockages stretch out when the vessel is moving upriver rather than downriver. Commercial
vessels (tugboats and pushboats) take longer to lock than others. This happens especially when
they have significant tonnage, and the delay lengthens when the vessel is older or it pushes
more barges.112 Furthermore, vessels with significant drafts move slower than vessels with less
draft. This effect, however, is halved when a vessel as a substantially lower “light draft.”
Vessels lock faster through smaller chambers, presumably due to the smaller volume of water
that must be displaced to fill or empty the chamber.

The models also demonstrate facilities that are home to two larger chambers handle vessels
more slowly than their counterparts. This reveals one downside to doubling up on large
chambers, a move McAlpine undertook during the study period. Locks requiring more lift also

2 One counterintuitive result does appear: Vessels with greater horsepower tend to take longer. Any number of

logical explanations might account for this unexpected result, but for our purposes it’s sufficient to note that the
effect is not strong — the coefficient is very small.
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slow down lockage time. Wicket dams do not show a pattern of consistent behavior, with Lock
53 often moving vessels through quickly while Lock 52 more frequently serves as a bottleneck.

However, when river discharges exceed a specified threshold, vessels are able to move over the
lowered dams without having to lock through - which improves performance. Finally, the type
of cargo a vessel carries appears to help predict lockage speed. Even with all of these
explanatory variables taken into account, however, we still note that lockages are slower in late
summer and early fall than they are at other times of the year. This is presumably due to
impacts from weather and climate that our data could not capture. But even this observation
must be qualified because lockage delays vary noticeable from year to year. Some locks also
operate more slowly than others. The dummy variables capturing these fixed effects account
for some of the remaining variation missed by the rest of the model.

Delays in queue are much harder to predict (R*> = 0.2). This is not surprising: much of the
arbitrary variation in queue times comes from the presence of other vessels using the lock
chamber, a source of variation that our simulation captures. Despite its limited predictive
power, the model illustrates a few systematic patterns of interest that would apply to general
system operations. Delays lengthen when the river discharge approaches extreme values.
Downriver vessels often receive priority while commercial tugs and pushboats wait longer,
especially when they are responsible for more barges. Vessels with more draft and tonnage run
a greater risk of being asked to wait, as are vessels owned by companies that move
commodities less vulnerable to spoilage. Locations with two long lock chambers can shorten
delays, whereas locks with more lift required will prolong them. Wicket dams behave
inconsistently. Lock 53 has demonstrated better performance than Lock 52, which typically can
slow down the movement of vessels (although high river discharges positively benefits both
facilities). During the late summer and early fall, delays are quite lengthy - while they are less
problematic during other portions of the year. However, the overall trend during the study
period is that delays inch upward on the Ohio River.

While our combined model produced almost no counterintuitive results (a rarity in a statistical
model with so many variables) one exception does appear — horsepower. With all other
variables considered, vessels with more horsepower take longer to lock. We should stress that
no raw pattern to this effect appears in the data; horsepower reveals almost no simple
correlation with time of lockage. Rather, this finding emerges only after the full package of
other variables enters the model. Why would the model cause horsepower to behave
erratically? First, vessels with more horsepower tend also have substantial tonnage (Pearson’s
r =.74) and more barges (r = .58), so the meaning of the horsepower variable after controlling
for those two inputs is unclear. These vessels are more closely associated with some types of
cargo than with others. Because we lack access to USACE data on what is in the barges, the
horsepower variable could be picking up some of the unmeasured variation regarding what is
being transported.
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Lock Outages

We have delayed until the final stage of model development, the explanatory variables related
to lock outages. Lock outages, from a theoretical perspective, lack the distinctiveness of some
other variables already included in the model — especially seasonal variables such as river
discharge and the dummy variables capturing the month of the lockage. Even more
problematic is that, unlike with some of the other concepts captured by our models, it is
unclear how to parse the effects of possible causal factors related to outages. Thus, rather than
rolling variables into the model using a stepwise procedure (the way the model has proceeded
up to this point) we will need to present an array of possibilities, none of which are definitive.

A handful of explanatory variables capture, directly or indirectly, the risk of an outage
significantly impeding progress. First, coding USACE navigation notices allows us to indicate
when a full or partial outage has been scheduled intentionally. We have the option of running a
model to determine whether these outages correspond to significant delays. A second
approach would be to adjust our variable that captures the length of the smaller chamber.
Until now, that variable assumes that the larger chamber is always the same size (it does not
need to be coded). The variation between 600 feet and 1,200 feet on the smaller chamber
might make a difference. But the effects from these chamber sizes are only theoretical. If one
or more of the chambers is closed for repair (for a planned or unplanned outage) then the
largest chamber available at one dam may not be available at the same time as another.

Rather than the smaller chamber being at least 600 feet long, no second chamber might be
available at all and the length of lockage space is zero. A second option is to shift from
theoretical lockage capacity to effective lockage capacity at the time of vessel arrival. We also
identified instances in which a vessel has needed to make multiple trips to bring through all of
the barges it is moving. Typically, this elaborate procedure must take place when the larger
lock chamber has been incapacitated and a sizeable shipment must pass through a smaller
auxiliary chamber (thus providing a way to capture outages that focuses on vessels they would
impact the most). A fourth possibility would be to allow the effect of a chamber outage to
depend on the size of the smaller chamber. The outage might present less of a problem if the
functioning chamber still has the capacity to pass through a large number of barges, whereas
we might expect longer delays otherwise.

Regression Table 14 adds dummy variables to capture outages directly. Both have variables to
capture if the main and auxiliary chamber was under a partial outage, which is to say it might or
might not be closed at the specific time when a vessel arrived. What separates the two sets of
models is that the first set uses a count of how many chambers have been closed fully on that
day, whereas the second set specifically distinguishes whether the main chamber is closed as
opposed to whether the auxiliary chamber is closed. In either case, we see that queue delays
are notably longer if chambers have been closed, and that the delays are especially severe if the
main chamber has been shuttered. Intermittent closures in the secondary chamber can create
notable delays as well, probably because that often leads to recreational vessels and other
small craft jumping ahead of commercial vessels, whereas otherwise they might have slipped
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through the auxiliary chamber and not added to the queue.'™ Results are similar with regard to

lockage delays: closing a chamber significantly slows the speed of lockages, and that is
especially noticeable when the main chamber goes down. Partial closures of the auxiliary
chamber also can have a measurable effect, although less significant.

Regression Table 15 looks at these outage delays in a different way, replacing the theoretical
lock chamber sizes with the effective lock chamber sizes - as dictated by the outage variables
used in the previous model. We ask whether the effective lengths of the bigger lock and of the
smaller lock help predict delays. Why do we use the terms bigger and smaller, rather than main
and auxiliary? Because if the main lock chamber has been closed, effectively taking on a length
of zero, then the working auxiliary lock has become the biggest available chamber. This
determines the value of that variable — whereas the zero represented temporarily by the main
lock determines the size of the backup. Queue delays are notably shorter as more chamber
space becomes available, both with regard to the bigger and smaller lock. Lockage delays do
not respond, detectably, very much to the size of the smaller chamber. Most vessels, and
especially most commercial vessels, pass through the largest chamber so it makes little
difference to them whether the auxiliary chamber is closed or just short. But, the lockages are
much faster when the biggest lock chamber is a full 1200 feet.

Using effective chamber sizes to predict queue and lockage delays works as well as coding
outages bluntly, however, it seems like a superior method because it captures directly how the
outages alter the locking conditions when the vessel arrives. That approach does not account
for partial outages, however. Regression Table 16 retains the richer approach to capturing
chamber size but combines it with the dummy variables for partial outage. Having smaller
chambers still appears to slow the queue (as does partial disruption in the functioning of the
secondary chamber).

It makes sense that losing the 1200 foot chamber would slow down a queue, but why would
losing the larger chamber also slow down lockages once they have been initiated? This result
has emerged twice during our modeling procedure. However, it may not seem intuitive given
that earlier findings suggest smaller chambers may provide for quicker vessel processing. The
most likely reason is that, when the biggest chamber is not as long, then commercial vessels
pushing lots of barges may need to engage in a double lockage (decoupling the barges and
moving them through in sections in multiple trips). To test this hypothesis directly, Regression
Table 17 adds a binary variable indicating whether the vessel made two trips, thereby tying up
the lock chamber for longer than usual.

The new model fully supports this hypothesis. Vessels that require a double lockage are held
up longer in queue, and when they do receive clearance their lockage time extends longer than
vessels that do not perform double lockages. Under this model, the peculiar result that longer

13 Having the first chamber under a partial closure seems as though it speeds up the queue, which is absurd on its

face. That effect persists throughout the models being reported here, but the effect is always small, and therefore
questionable.
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chambers provide for faster lockage vanishes. Instead of longer chambers speeding up
lockages, they produce a slight slowing effect.

One last possibility remains to be tested. The effect of a chamber outage might not fall on all
vessels equally. Rather, our preliminary exploration of the LPMS data seemed to indicate that
commercial vessels moving substantial amounts of cargo (as indicated by their quantity of
barges) were the ones stuck waiting in queue for the longest time. Vessels pushing few or no
barges sailed through at a decent clip. Thus, Regression Table 18 adds an interaction term that
assesses whether the effect of an outage at the main chamber hinges on the number of barges
attached to a vessel. With queue delay, having the effective size of the bigger chamber drop
slows the queue. The process of requiring multiple lockage results in longer waiting times for
the vessels. Once we know whether a vessel would require multiple passes through the lock,
the effect of having more barges, if anything, seems to result in slightly higher prioritization. On
the other hand, during periods when the main chamber is out, the slowness arising from having
more barges more than doubles when navigating them into the auxiliary chamber.

Summary of Results

Having settled on a final model that incorporates outages, we can return to the SURE
framework and re-examine the last set of models. A Breusch-Pagan test underscores
correlation between the queue delay and the lockage delay, therefore allowing a SURE model
to incorporate from one dependent variable to improve modeling of the other. In summary,
our analysis shows:

e We can account for more than two-thirds of the variation in lockage times using our
predictive model. This means that the difference between our predicted values and the
actual delay times observed in the data is much smaller than how these delays varied
around the overall average seen in the river system (R = 0.69).

e We enjoy less success predicting delays in queue (R? = 0.23), which exhibit a lot more
instability and partly reflect spillover from one vessel to the next that we rely on the
simulation to impose.

e Contrary to some prior research, we find that queue delays and lockage delays are
correlated with one another even after adjusting predictions based on the systematic
effects captured in our model (r = 0.18, Breusch-Pagan B gives p < 0.001). We can take
this remaining correlation into account using a Seemingly Unrelated Regression Equation
(SURE) to improve standard-error estimates for the models predicting our two dependent
variables.

e River conditions clearly influence both queue delays and lockage speeds. In both
instances, extreme conditions of either drought (i.e., low river discharge) or flood (i.e.,
high river discharge) cause delays compared to typical conditions with average river
discharge.
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Current, as represented by discharge, is not the only river characteristic that assists with
the prediction of delays. River stage has clear significance as well (directly — especially at
the wicket dams — and interactively, with the draft of a vessel). Unfortunately, data for
river stage does not extend back to the earlier periods of our LPMS archive, so that was
excluded from the predictive model we developed. Our attempt to allow vessel draft to
interact with river discharge, hoping data on current could proxy for stage, did not have
the same predictive benefit and was excluded.

As expected, the direction in which a vessel travels also correlates with the level of delay.
Upriver lockages take longer, and vessels seeking to travel upriver usually are asked to
wait longer in queue, other things being equal.

Commercial vessels — the tugboats and pushboats on the river — take longer to lock
through than other vessels and wait longer in queue. The same is true of vessels with
more tonnage and those moving more barges.

We looked at the year when a vessel was built and the horsepower of its engines only
when predicting lockage time.

0 The age of the vessel works as one might predict: newer vessels lock faster.

0 The horsepower variable behaves counterintuitively. Other things being equal,
the vessels with more horsepower take longer to lock. Because we captured the
effect of vessel capacity in multiple ways correlated with horsepower, and
perhaps because horsepower is related to cargo data we lack permission to
obtain, this peculiarity should not be especially troubling.

Vessels with more draft (both loaded and light) are asked to wait longer in queue. After
receiving permission to proceed, vessels with more loaded draft lock more slowly as well.
These delays on average will be less severe, though, if the vessel loses significant draft
when light.

Locks linking river pools that are farther apart in elevation appear to cause slightly longer
lockage delays. Perhaps this makes sense given that it would correspond to how much
water must be displaced to raise or lower water levels in the lock chamber. We cannot
say anything confident about the effect of lift on queue delays. The estimate is highly
unstable, and fairly clearly depends on whether we are separating out the wicket dams.
This lack of a consistent relationship makes sense given that the relatively small variation
in lockage times that might be produced by lift will be dwarfed by other determinants of
how long a vessel ties up a lock chamber.
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We could not measure the amount or type of cargo being moved by each vessel, but for
most of them we could identify the company owning the vessel. From this data we were
able to infer the kind of shipping activity a vessel is likely engaged in.

0 The final model clearly indicates that vessels from companies moving coal,
petroleum, and other chemicals typically must wait longer in queue (while those
moving food and farm products, as well as those moving crude materials,
experienced shorter queue delays).

O Lockage times also correlate with the type of cargo a vessel owner carries.
Vessels likely to be moving fuel or chemicals tend to lock more slowly, as do
farm-related vessels. While those moving other materials (including
manufactured goods and equipment) lock more swiftly.

The locks/dams vary significantly in their queue and lock time. Smithland and McAlpine,
with their longer auxiliary chambers, have shorter queues compared to Markland,
Cannelton, and J.T. Myers. Queues at the wicket dams depend on the level of river
discharge, with their speeds especially quick when river volume is high. Under normal
conditions, Lock 52 often sees some of the worst queue and lockage delays.

Seasonal variation remains unexplained even after taking into account these other
influences. Queue delays from August through November tend to be much longer than
those experienced in January through June (with July and December roughly
corresponding to the transition points between fast and slow times. The lockage process
takes longer from August to November (and is faster from January through June). The
pattern partly represents changes in traffic, which the model cannot capture. However,
the simulation program can; as well as changes in river conditions that our data was too
limited to represent.

Lock outages are not easily incorporated into a predictive model of this kind, and the
analyst must exercise caution so as to parse out the direct and indirect relationships that
delays might exhibit with these potential sources. However, our analysis shows that:

0 Outages in both the main chamber and the auxiliary chamber will cause longer
gueues. Shippers cannot, or do not adapt to changes in lock availability enough
that the effect of an outage would fail to appear in the data.

0 We can capture the effect of these outages - not through the blunt approach of
adding variables for whether an outage has appeared, but instead through the
indirect method of measuring the effective chamber sizes available to vessels.
As the length of available chambers declines, queues become longer. Even
during periods of partial outages for the auxiliary chamber, delays could be
substantial.

O Lockages also progress more slowly during outages. This is only because the loss
of the main lock chamber can force vessels pushing a large number of barges to
decouple and take them through in multiple passes using the smaller chamber.
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Because our final model captures the effect of double lockages, the effect of
chamber size for this stage reverses (and if anything, bigger chambers take
longer).

0 Finally, outages do not slow all lockages equally. Rather, after taking into
account the delays caused by decoupling the barges, losing the main chamber
correlates with particularly slow lockage speeds for vessels moving a large
number of barges.

Simulation

Having concluded the modeling techniques, the next project objective was to simulate the final
model of the system. The employment of various visualization methods coupled with
programming produced the simulation seen in Figure AB.

Figure AB: Simulation from IWOM

The background of the simulation is the geographic representation of the river segment used in
the study. Programming then overlays this background using the selected modeling features to
illustrate trips according to their assigned origins/destinations, randomly encountered delays,
and selected speeds/lockage times.
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The simulation also allows for zooming features into specific areas of the river segment such at
the locks and dams as seen in Figure AC.

Figure AC: Zoomed Image of McAlpine Lock & Dam Simulation from IWOM

The simulation and programming also incorporate a graphical user interface. This allows the
user to manipulate functions of the model by adjusting the amount of river traffic, and the
typical length of delays, speed, and other topics. The simulation can also allow the user to
either view historical traffic data through a visual display (2002 through 2012), or to run a
modeled simulation.

The display is implemented in OpenGL with the GUI as a combination of AWT/JOGL windows
for creating OpenGL windows in Java. NiftyGui was used to create utility windows in OpenGL.
The basic structure of the program uses a few classes to abstract out the specific functionalities
of the program. A SimMain class houses the main function, and creates the main window for
the application. This window holds the NiftyGui controls and displays the controls for the user
to manipulate the display. A LockWindow class is used to create an OpenGL context and
window for each Lock. These use the data from the SimMain class to display the boats as they
gueue up and pass through the locks. A boat class stores the historical data for each boat in the
form of a List of ProcessRecords.
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The ProcessRecord class contains the data from each row of the historical data table. Finally,
the simulation and programming offer the ability to report on various aspects of the simulation
and model. The simulation and reporting functionality offer the user and applicable
stakeholders the ability to test manipulations of the river system and offer an avenue for
communication rich in detail.

Conclusion

The U.S. inland waterway system holds great promise to serve as the backbone of multiple
supply chain networks currently, and in the upcoming century. However, this promise is
subdued by the increasingly perilous conditions found within the system. Shrinking budgets
and rapidly declining balances in the Inland Waterways Trust Fund has made it increasingly
difficult for the U.S. Army Corps of Engineers to keep up with the maintenance demands posed
by infrastructure that is reaching the end of its designed lifespan.

Making recommendations about how to alleviate these problems is beyond the report scope.
Rather, the main purpose was to give readers a snapshot of the major variables controlling
traffic patterns on the Ohio River. Our study area encompassed a representative segment of
the river stretching from Cincinnati to Locks and Dams 52 and 53, which are immediately
upstream of the confluence of the Mississippi and Ohio rivers. The Ohio River remains a critical
link in the U.S. energy supply chain. This is because of the large amounts of coal that are
transported each year. While coal movements have declined slightly in recent years (due to
energy suppliers increasingly opting for natural gas to generate electricity) there is little doubt
that coal will remain a vital component of the energy portfolio for the foreseeable future.
Knowing this information and that transporting cargo on the inland waterways is the most
economic and environmentally friendly manner of moving freight, this report sought to develop
a quantitative model that described inland waterway operations. Specifically, it has attempted
to understand the critical variables that determine how quickly vessels are able to pass through
lock and dam facilities.

The resulting models (see Appendix A for all of the regression models developed to explain
variations in system behavior) focused on lockage and delay times. Lockage times encompass
the period from when a vessel begins to lock through a facility to when it exits a facility. Delay
times refer to the amount of time a vessel must wait after arriving at a facility to begin its
lockage. All of the models that were produced rely principally on linear regression to predict
the behavior of specific vessels. The most robust model generated during the research
accounts for approximately two-thirds of the variation in lockage times (R* = 0.69). Accounting
for this level of variation gives this model significant predictive utility, and potentially could be
used to help stakeholders understand how long it will take vessels to pass a lock and dam
facility under a particular constellation of conditions. This is important because it will give
shippers and carriers the knowledge they need to more effectively time freight movements that
optimize speed moving through the system.
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Although our models handled lockage times quite well, we experienced less success with
predicting delay times; the most robust model accounted for just under a quarter of total
variation (R*> = 0.23). The diminished level of predictive success associated with the delay
model is attributable to more instability. This partly reflects the spillover from one vessel to the
next that we rely on the simulation to impose. Future modeling efforts should attempt to
determine more precise explanations for why current efforts have accounted for a fraction of
the variation in delay times.

Using the regression results, along with statistical distributions of travel times based on a
sample of vessel trips, we developed an animated computer simulation that gives users the
opportunity to manipulate variables to understand how shifting conditions amongst different
factors influences travel times for vessels. This simulation, although in many ways preliminary,
establishes a platform that future modeling efforts could use as a springboard. Additionally, it
offers the benefit of visualizing traffic patterns and river conditions as opposed to relying solely
on the outputs of regression analyses — which, although useful, can sometimes be cumbersome
to interpret for those who are unfamiliar with statistics. Perhaps it is best to view the results
obtained to this point as a foundation upon which modeling work can build regarding
subsequent research projects.

There are a number of system components that remained under-explored because they were
beyond the ambition of this project. To achieve a fully calibrated (and validated) model of the
entire river system, it will be necessary to develop more accurate modeling techniques to
understand what factors affect the speed of vessel movements between lock and dam facilities
(i.e. within river pools). Our simulations, at the moment, rely heavily on statistical averages and
probability density functions that do not represent the full complexity of vessel behavior.
Future research, however, could refine these initial forays into understanding pool travel times.

Another priority of future work should be focused on synchronizing models into a single
package. This will enable simulations that are entirely underwritten by regression analyses —
but it is possible more sophisticated methods will be required to develop a complete picture of
the system’s behavior and variability. Arguably, the results obtained from this project
constitute a good starting point to pursue new avenues of research. It will be essential to
continually find innovative ways to improve our understanding of the inland waterways if they
are to remain a critical part of the country’s infrastructure in the years to come. Though there
remains great uncertainty over funding levels. This relates to the capacity of the U.S. Army
Corps of Engineers (and other agencies) to tackle large scale projects. One of the potential
benefits of refining and expanding upon the investigation undertaken is to show how essential
and viable the waterways are for efficiently transporting freight - particularly across the Eastern
and Central portions of the U.S.
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The waterways are threads that solder together domestic and international trade networks —
which is why they are critical. Future research will not only have to contend with funding issues
but also the role climatic variability will play in shaping its operation. While there is uncertainty
over this question, it is indisputable that the climate is changing and will eventually impact river
behavior. Of primary concern is how a changing climate will influence key factors (such as
discharge and river stage), which significantly impacts vessels and U.S. Army Corps of Engineers
efforts to maintain navigable channel depths. The variability seen on the Mississippi River in
2011 and 2012 could be a precursor of what is to come. Climate is an externality that will be an
integral aspect of future model development.

Indeed, without a firm understanding of how the system will behave under a wide range of
conditions, the viability of the inland waterways as a reliable mode of transportation will
remain unclear. Although statistical modeling cannot be entirely predictive or offer all of the
solutions to the challenges facing us, it does represent a powerful tool that can illuminate how
waterways react to different constraints. If this knowledge can be put to use by stakeholders to
modestly enhance the performance of the inland waterways and develop adaptive
management and operational procedures so they remain functional and resilient well into an
uncertain future, its value is inestimably large.
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APPENDICES - INLAND WATERWAY OPERATIONAL MODEL & SIMULATION ALONG THE OHIO RIVER

Monthly Trips by Lock
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Newburgh
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Smithland
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Annual number of trips at selected Ohio River lock and dam facilities

Source: LPMS
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500
2002 2003 2004 2006 2007 2008 2009 2010 2011
= Markland 2821 2542 2617 2930 2766 2889 2395 2642 2451
= McApline 2804 2699 2774 2865 2764 3011 2702 2950 3072
= Cannelton 2727 2751 2811 2843 2861 2860 2610 2891 3018
Newburgh 3360 3286 3539 3557 3618 3778 3430 3614 3631
John T. Myers| 3824 3246 3450 3577 3551 3684 3197 3467 3301
e Smithland 3991 3792 4024 4020 3827 3790 3377 3622 3539
52 5146 4725 5099 5184 5017 4879 4253 4333 4345
53 3682 3514 3668 3760 3825 3533 2936 3094 3190
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Lock 52

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

All
Commodities

90,967,894

89,877,746

79,762,180

89,660,443

88,953,035 | 96

,403,710

97,325,729

94,954,424

87,419,731

93,381,739

96,710,124

94,686,283

10 - All Coal,
Lignite, and
Coal Coke

37,445,479

34,729,577

30,018,629

34,425,270

28,837,700 | 29

,321,501

30,110,363

25,509,614

23,080,399

28,552,314

29,729,412

24,569,905

20 - All
Petroleum
and
Petroleum
Products

3,961,906

4,015,974

3,967,798

4,799,227

6,011,909 6

,393,622

7,150,309

7,270,020

6,804,931

7,386,909

9,121,167

9,309,697

30-All
Chemicals
and Related
Products

8,355,123

8,644,690

7,320,079

8,643,575

9,645,846 9

,493,289

10,077,149

10,147,081

9,852,823

9,236,785

9,242,588

10,250,922

40 - All Crude
Materials,
Inedible,
Except Fuels

26,974,108

27,568,006

24,160,158

25,736,101

27,726,606 | 32

,017,694

30,142,005

30,534,268

28,470,855

26,228,851

25,596,224

25,543,539

50 - All
Primary
Manufactured
Goods

3,931,837

3,114,511

2,889,806

5,785,534

6,659,691 | 8

,348,745

8,049,316

8,474,900

7,590,300

6,911,683

6,761,566

9,024,093

60 - All Food
and Farm
Products

10,018,227

11,517,704

11,131,496

9,893,170

9,634,901 | 10

,224,487

10,471,711

11,729,006

10,164,022

11,641,322

12,532,834

11,054,334

70 - All
Manufactured
Equipment &
Machinery

108,557

102,479

140,281

161,590

129,198

128,996

316,141

117,901

136,282

1,231,617

1,771,162

2,590,226

80 - All Waste
Material

8,411

14,150

12,500

10,000

18,800

3,100

14,400

4,600

3,250

3,143

7,300

11,300

90 - All
Unknown or
Not
Elsewhere
Classified - 90

164,246

170,655

121,433

205,976

288,384

472,276

994,335

1,167,034

1,316,869

2,189,115

1,947,871

2,332,267
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Lock 53

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

All
Commodities

81,160,173

79,628,233

67,787,247

77,823,840

78,274,085 | 8

4,969,978

85,844,718

85,459,437

81,729,614

85,614,147

86,971,493

89,153,252

10 - All Coal,
Lignite, and
Coal Coke

28,046,705

23,926,464

18,372,059

22,937,277

18,830,706 | 1

9,481,193

19,515,985

17,162,251

15,509,075

20,582,801

21,176,023

19,621,641

20 - All
Petroleum
and
Petroleum
Products

4,298,890

4,465,382

4,313,267

5,233,932

6,119,752

6,547,152

7,301,351

7,584,647

7,122,176

7,852,810

9,538,329

9,527,765

30-All
Chemicals
and Related
Products

8,505,771

8,799,838

7,509,703

8,801,003

10,044,227

9,974,177

10,374,291

10,400,246

10,204,282

9,447,323

9,418,292

10,335,773

40 - All Crude
Materials,
Inedible,
Except Fuels

25,151,415

26,119,900

21,381,576

23,955,171

25,437,147 | 2

8,644,289

27,670,032

27,498,327

27,079,372

24,183,052

23,259,005

24,096,557

50 - All
Primary
Manufactured
Goods

4,112,635

3,519,940

3,447,279

6,493,096

7,332,713

8,785,864

8,566,634

8,862,115

8,351,123

7,507,421

7,074,038

9,423,972

60 - All Food
and Farm
Products

10,828,004

12,567,563

12,581,238

10,222,016

10,358,622 | 1

1,392,394

11,334,362

12,849,671

12,043,636

12,647,448

12,767,280

11,259,612

70 - All
Manufactured
Equipment &
Machinery

102,402

95,205

147,648

168,345

132,076

116,261

288,802

91,605

128,677

1,215,194

1,755,599

2,534,110

80 - All Waste
Material

13,900

13,850

14,250

10,000

15,800

7,500

9,100

3,250

1,743

4,500

12,985

90 - All
Unknown or
Not
Elsewhere
Classified - 90

100,451

120,091

20,227

3,000

3,042

28,648

785,761

1,001,475

1,288,023

2,176,355

1,978,427

2,340,837
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Cannelton

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

All Commodities

72,305,153

67,974,378

56,792,867

58,061,097

52,641,143 | 58,886,988

58,310,461

56,888,368

54,001,876

55,840,895

56,653,105

55,786,612

10 - All Coal,
Lignite, and Coal
Coke

46,081,298

40,695,449

34,039,788

30,022,809

21,637,454 | 24,244,238

23,100,908

20,068,999

18,551,926

22,027,247

21,491,474

18,095,280

20 - All
Petroleum and
Petroleum
Products

2,937,389

2,715,937

2,912,703

3,357,843

3,871,678 4,683,741

4,195,173

4,394,660

4,358,926

3,856,876

4,630,731

4,528,642

30-All
Chemicals and
Related
Products

5,322,075

5,472,590

4,767,192

5,731,892

6,440,044 | 6,351,084

6,861,829

6,610,300

6,514,444

6,028,432

5,870,112

6,534,035

40 - All Crude
Materials,
Inedible, Except
Fuels

12,694,649

12,921,260

10,177,482

12,344,296

13,306,504 | 14,876,061

14,841,360

15,708,232

15,805,670

13,453,975

13,237,242

13,687,723

50 - All Primary
Manufactured
Goods

2,497,254

2,168,776

1,600,195

3,639,444

4,020,445 4,944,622

5,269,671

5,712,053

4,996,504

4,960,622

4,599,086

6,382,820

60 - All Food and
Farm Products

2,592,537

3,738,830

3,019,862

2,458,225

2,849,835 | 3,266,259

3,297,914

3,484,993

2,623,958

3,102,775

3,873,286

3,312,023

70 - All
Manufactured
Equipment &
Machinery

65,945

91,960

113,798

128,014

218,004

155,695

179,150

132,478

134,486

802,841

1,347,214

1,379,569

80 - All Waste
Material

1,700

4,000

6,000

2,000

7,800

7,900

5,280

8,500

1,500

90 - All
Unknown or Not
Elsewhere
Classified - 90

112,306

165,576

155,847

376,574

289,379

365,288

564,456

768,753

1,010,682

1,599,627

1,603,960

1,865,020
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JohnT.
Myers

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

All
Commodities

72,163,999

71,500,600

63,280,721

69,506,212

64,565,146

72,168,865

71,879,958

67,854,575

62,655,573

68,964,140

75,279,059

72,450,329

10 - All Coal,
Lignite, and
Coal Coke

41,287,636

39,706,206

36,235,301

36,330,808

28,649,295

32,652,260

31,493,802

26,293,332

23,660,274

30,095,140

33,658,145

28,535,982

20 - All
Petroleum
and
Petroleum
Products

3,538,373

3,229,056

3,371,138

4,093,698

4,999,939

5,380,544

4,916,009

4,832,107

5,075,984

5,421,438

6,392,251

6,342,214

30-All
Chemicals
and Related
Products

6,647,147

6,800,091

5,725,536

7,004,323

7,775,584

7,514,931

8,135,071

7,852,127

7,685,761

7,238,004

6,975,972

7,781,767

40 - All Crude
Materials,
Inedible,
Except Fuels

10,871,823

10,961,783

8,248,466

11,252,192

12,036,737

13,459,638

13,850,849

14,463,682

13,871,113

11,639,480

11,743,155

12,193,581

50 - All
Primary
Manufactured
Goods

2,737,223

2,388,456

1,887,018

3,853,418

4,283,017

5,497,963

5,789,349

6,196,100

5,379,957

5,398,756

5,150,367

7,227,426

60 - All Food
and Farm
Products

6,805,341

8,072,532

7,527,339

6,424,999

6,379,254

7,127,315

6,925,787

7,216,554

5,753,917

6,462,176

8,136,355

6,936,907

70 - All
Manufactured
Equipment &
Machinery

83,475

92,880

116,791

159,757

157,807

124,610

128,480

153,293

119,291

910,870

1,426,843

1,476,013

80 - All Waste
Material

10,200

13,450

2,000

10,800

4,600

10,500

5,530

2,743

1,500

3,000

90 - All
Unknown or
Not
Elsewhere
Classified - 90

182,781

236,146

169,132

385,017

272,713

407,004

640,611

836,880

1,103,746

1,795,533

1,794,471

1,953,439
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Markland

2011

2010

2009

2008

2007 2006

2005

2004

2003

2002

2001

2000

All
Commodities

61,400,920

57,595,083

47,323,224

53,191,406

46,062,181 | 52,696,926

53,847,422

50,049,799

45,247,538

49,624,602

55,805,813

56,056,176

10 - All Coal,
Lignite, and
Coal Coke

37,024,515

32,847,530

26,688,216

27,169,661

18,158,739 | 22,163,060

22,009,175

18,236,713

14,828,772

19,363,618

23,944,751

21,669,220

20 - All
Petroleum
and
Petroleum
Products

4,374,487

4,857,227

4,919,616

5,710,715

5,863,733 5,887,110

5,344,691

4,614,878

4,894,940

4,882,907

5,678,756

5,218,237

30-All
Chemicals
and Related
Products

4,528,156

4,570,185

3,922,253

4,964,679

5,712,329 5,498,921

5,925,309

5,611,735

5,498,305

5,226,269

5,099,133

5,617,607

40 - All Crude
Materials,
Inedible,
Except Fuels

11,127,790

10,194,193

7,900,295

9,892,707

10,035,497 | 11,564,716

12,321,075

12,621,574

12,046,918

10,603,375

10,850,390

12,236,569

50 - All
Primary
Manufactured
Goods

2,317,907

2,169,196

1,576,674

3,237,351

3,665,713 | 4,767,071

5,119,891

5,544,776

5,018,641

4,861,908

4,489,697

5,822,719

60 - All Food
and Farm
Products

1,804,779

2,706,296

2,097,080

1,768,182

2,161,365 2,406,580

2,551,217

2,735,499

1,985,120

2,306,906

2,878,140

2,523,220

70 - All
Manufactured
Equipment &
Machinery

86,645

99,065

88,988

79,010

182,022 92,780

146,530

87,585

94,320

731,890

1,268,413

1,181,789

80 - All Waste
Material

6,000

6,300 3,000

6,100

6,950

5,280

1,500

1,500

90 - All
Unknown or
Not
Elsewhere
Classified - 90

136,641

151,391

124,102

369,101

276,483 313,688

423,434

590,089

875,242

1,647,729

1,595,033

1,785,315
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McAlpine

2011

2010

2009

2008

2007 2006

2005

2004

2003

2002

2001

2000

All
Commodities

73,589,479

67,659,818

55,872,708

57,318,568

49,141,306 | 55,204,934

55,695,237

52,753,233

49,482,158

51,870,711

56,166,704

55,803,713

10 - All Coal,
Lignite, and
Coal Coke

45,726,078

39,120,222

32,183,410

28,284,320

18,127,516 | 21,566,255

20,610,934

17,439,420

16,014,634

18,817,243

21,149,154

19,099,728

20 - All
Petroleum
and
Petroleum
Products

4,596,906

4,985,072

5,055,111

5,848,155

5,981,136 6,072,265

5,666,141

4,835,880

5,207,286

5,133,182

5,922,192

5,381,801

30-All
Chemicals
and Related
Products

5,016,364

5,192,573

4,416,105

5,416,878

6,264,554 5,993,279

6,476,399

6,318,218

6,087,643

5,793,485

5,653,168

6,161,979

40 - All Crude
Materials,
Inedible,
Except Fuels

12,715,492

11,709,544

9,114,650

10,943,322

11,072,323 | 12,484,983

13,085,358

13,518,933

12,842,213

11,134,948

11,379,976

12,060,212

50 - All
Primary
Manufactured
Goods

2,711,247

2,553,286

1,847,213

3,880,434

4,313,435 | 5,363,746

5,884,115

6,365,231

5,671,219

5,735,066

5,398,152

6,673,635

60 - All Food
and Farm
Products

2,573,746

3,743,520

2,981,320

2,409,120

2,796,022 3,207,009

3,252,508

3,432,405

2,631,099

3,084,924

3,840,940

3,344,296

70 - All
Manufactured
Equipment &
Machinery

86,182

161,685

117,297

185,945

283,302 142,945

185,735

157,473

148,860

811,764

1,317,698

1,344,039

80 - All Waste
Material

1,700

8,000

6,000

2,000

7,800 1,500

3,700

13,350

5,280

9,800

1,500

1,500

90 - All
Unknown or
Not
Elsewhere
Classified - 90

161,764

185,916

151,602

348,394

295,218 372,952

530,347

672,323

873,924

1,350,299

1,503,924

1,736,523
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Newburgh

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

All
Commodities

81,828,616

78,301,824

68,289,788

71,228,447

65,132,826 | 69,

188,293

67,475,208

67,151,167

62,475,964

64,198,484

66,527,886

64,450,887

10 - All Coal,
Lignite, and
Coal Coke

52,492,342

47,643,606

42,670,730

39,262,559

30,356,089 | 30,

599,814

28,166,292

26,234,488

23,905,022

27,197,588

27,736,210

23,004,757

20 - All
Petroleum
and
Petroleum
Products

3,328,498

3,057,724

3,104,303

3,781,658

4,420,530 5,

218,778

4,713,376

4,958,672

4,585,697

4,419,809

5,072,198

5,135,204

30-All
Chemicals and
Related
Products

5,789,508

5,962,867

5,119,359

6,119,269

6,853,232 6,

694,693

7,302,650

6,946,114

6,903,433

6,433,708

6,249,203

6,940,601

40 - All Crude
Materials,
Inedible,
Except Fuels

13,009,239

13,532,534

10,647,058

13,900,920

14,734,802 | 16,

314,183

16,442,708

17,396,678

16,941,479

14,133,810

14,210,314

14,675,328

50 - All
Primary
Manufactured
Goods

2,700,712

2,282,891

1,739,120

3,807,063

4,290,174 | 5,

356,685

5,659,897

6,122,021

5,390,660

5,214,563

4,928,962

6,997,747

60 - All Food
and Farm
Products

4,284,259

5,477,691

4,672,763

3,764,917

3,966,810

4,461,781

4,396,577

4,507,655

3,536,741

4,089,655

5,131,183

4,383,596

70 - All
Manufactured
Equipment &
Machinery

117,230

142,695

153,693

197,092

187,014

125,753

136,132

162,337

129,595

885,666

1,411,425

1,413,645

80 - All Waste
Material

1,700

4,000

6,000

2,000

7,800

13,900

5,530

11,736

3,000

6,000

90 - All
Unknown or
Not Elsewhere
Classified - 90

105,128

197,816

176,762

392,969

316,375

416,606

657,576

809,302

1,077,807

1,811,949

1,785,391

1,894,009
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Smithland

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

All
Commodities

77,707,781

78,404,771

68,254,151

77,098,337

73,679,422

81,025,336

80,696,611

77,019,752

72,304,979

79,040,926

85,915,439

82,519,665

10 - All Coal,
Lignite, and
Coal Coke

43,268,558

42,203,579

37,847,213

40,797,749

33,955,011

36,298,065

35,528,701

30,941,776

28,811,268

35,994,865

40,402,297

35,548,386

20 - All
Petroleum and
Petroleum
Products

3,466,982

3,246,156

3,369,867

4,096,863

5,070,752

5,418,022

4,929,813

4,925,308

5,049,868

5,469,495

6,374,238

6,353,683

30-All
Chemicals and
Related
Products

6,765,224

6,851,607

5,781,008

7,089,262

7,796,874

7,560,695

8,186,564

7,919,916

7,773,386

7,265,930

7,131,397

7,890,327

40 - All Crude
Materials,
Inedible,
Except Fuels

13,610,137

14,299,976

10,558,173

13,547,707

14,920,740

17,797,253

17,945,636

18,220,569

17,836,233

15,104,778

14,870,869

14,547,552

50 - All Primary
Manufactured
Goods

2,737,250

2,392,300

1,936,163

3,867,022

4,375,446

5,548,702

5,804,207

6,285,272

5,422,593

5,378,132

5,120,778

7,161,030

60 - All Food
and Farm
Products

7,530,797

9,062,612

8,434,669

7,161,780

7,119,690

7,891,375

7,523,329

7,778,457

6,191,370

7,010,383

8,791,076

7,525,995

70 - All
Manufactured
Equipment &
Machinery

118,330

95,410

135,971

121,862

156,104

109,180

119,970

115,289

107,906

912,648

1,409,587

1,462,647

80 - All Waste
Material

10,200

16,950

2,000

11,800

1,600

9,000

1,500

2,330

4,236

1,500

90 - All
Unknown or
Not Elsewhere
Classified - 90

200,303

236,181

191,087

414,092

273,005

400,444

649,391

831,665

1,110,025

1,900,459

1,813,697

2,030,045
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Whole

Ohio River

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2006 2007 2008 2009 2010 2011 2012
Scheduled 186 165 201 221 109 31 43 16 169 40 19 9 47 31 25 66 46 28 101
unavailability
(#)
Scheduled 5215 9,256 10,079 11,914 7,119. 2,386. 3,251. 864.6 6,778. 5,935. 2,979. 1,595. 4,032. 2,324. 3,963. 4,479. 5,367. 6,910. 7,092.
Unavailable .46 .53 .96 .61 10 06 29 8 80 82 07 43 58 18 55 27 28 98 58
Time (Hrs)
Unscheduled 797 1,532 1,071 1,364 1,054 833 1,012 1,213 1,155 1,151 1,393 1,674 1,500 1,887 1,935 2,028 2,459 2,275 907
unavailability
(#)
Unscheduled 2,770 4,854 2,091. 6,674. 5,734. 5,699. 6,622. 6,210. 5,862. 9,559. 9,347. 14,674 11,290 13,280 13,278 9,617. 16,828 23,431 4,377.
Unavailable .30 .06 80 59 43 20 38 92 73 38 35 42 .08 .88 .20 38 .57 .23 85
Time (Hrs)
Unavailable 7,985 14,11 12,171 18,589 12,853 8,085. 9,873. 7,075. 12,641 15,495 12,326 16,269 15,322 15,605 17,241 14,096 22,195 30,342 11,470
Time (Hrs) .76 0.59 .76 .20 .53 26 67 60 .53 .20 42 .85 .67 .07 .75 .65 .85 .22 .43
unavailability 983 1,697 1,272 1,585 1,163 864 1,055 1,229 1,324 1,191 1,412 1,683 1,547 1,918 1,960 2,094 2,505 2,303 1,008
(#)
Lock 53

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2006 2007 2008 2009 2010 2011 2012
Scheduled 4
unavailability
(#)
Scheduled 4.62
Unavailable
Time (Hrs)
Unscheduled 44 23 6 4 1 5 11 1 42
unavailability
(#)
Unscheduled 76.27 39.58 5.57 1,467. 671.98 11.17 14.25 2.33 51.32
Unavailable 30
Time (Hrs)
Unavailable 0.00 0.00 0.00 0.00 0.00 0.00 76.27 39.58 5.57 1,467. 671.98 0.00 0.00 11.17 14.25 2.33 0.00 0.00 55.93
Time (Hrs) 30
unavailability 0 0 0 0 0 0 44 23 6 4 1 0 0 5 11 1 0 0 46

(#)
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Lock 52

Scheduled
unavailability
(#)

Scheduled
Unavailable
Time (Hrs)
Unscheduled
unavailability
(#)
Unscheduled
Unavailable
Time (Hrs)
Unavailable
Time (Hrs)
unavailability

(#)

Smithland

Scheduled
unavailability
(#)

Scheduled
Unavailable
Time (Hrs)
Unscheduled
unavailability
(#)
Unscheduled
Unavailable
Time (Hrs)
Unavailable
Time (Hrs)
unavailability

(#)

1993

13

16.59

16.59

1993

748.9

243

360.7

1,109
.72
247

1994

133

155.1

155.1

133

1994

425

508.8
4

508.8
4
425

1995

18

86.38

109

189.46

275.84

127

1995

88

378.02

341

266.88

644.90

429

1996

31

278.85

33

64.44

343.29

64

1996

17

167.12

293

271.67

438.79

310

1997

62

146.62

152.48

69

1997

242.81

232

657.45

900.26

235

1998

42

311.6

311.6

42

1998

185

427.3

427.3

185

1999

70

278.9

278.9

70

1999

146

125.8

125.8

146

2000

106

202.0

202.0

106

2000

221

198.8

198.8

221

2001 2002

79 88

144.68 171.37

144.68 171.37

79 88
2001 2002
2 4
7.50 8.10
204 272

213.43  746.08

220.93  754.18

206 276

2003

12

42.78

42.78

12

2003

309

332.92

332.92

309

2004

20

42.80

42.80

20

2004

450

474.45

474.45

450

2006

141.50

33

1,588.

23

1,729.
73
34

2006

447

812.75

812.75

447

2007

90

1,099.

92

1,099.
92
90

2007

389

488.65

488.65

389

2008

88

209.50

209.50

88

2008

24.75

490

480.90

505.65

492

2009

302.25

76

171.45

473.70

77

2009

408

553.85

553.85

408

2010

334.98

146

1,139.

23

1,474.
22
148

2010

480

911.40

911.40

480

2011

132

3,834.

52

3,834.

52
132

2011

546

1,611.

47

1,611.

47
546

2012

10.32

50

111.73

122.05

52

2012

35.82

232

246.78

282.60

238
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JohnT.
Myers

Scheduled
unavailability
(#)

Scheduled
Unavailable
Time (Hrs)
Unscheduled
unavailability
(#)
Unscheduled
Unavailable
Time (Hrs)
Unavailable
Time (Hrs)
unavailability

(#)

Newburgh

Scheduled
unavailability
(#)

Scheduled
Unavailable
Time (Hrs)
Unscheduled
unavailability
(#)
Unscheduled
Unavailable
Time (Hrs)
Unavailable
Time (Hrs)
unavailability

(#)

1993

78

132.5

134.9

80

1993

1.52

16

41.30

42.82

17

1994

3.67

104

140.7

144.3

106

1994

40

94.93

94.93

40

1995

314.75

135

109.62

424.37

141

1995

12.69

12.69

1996

24

439.41

241

304.16

743.57

265

1996

165.50

31

71.06

236.56

33

1997

9.70

158

436.33

446.03

165

1997

12

208.26

208.26

12

1998

111

201.2

201.2

111

1998

10.07

10.07

1999

76

56.82

56.82

76

1999

9.54

2000

89

347.7

347.7

89

2000

19.70

19.70

2001

121

733.85

733.85

121

2001

3.88

3.88

2002

100

883.77

883.77

100

2002

568.48

10

871.07

1,439.
55
11

2003

592.98

191

1,455.

40

2,048.
38
192

2003

42

217.38

217.38

42

2004

125

633.90

633.90

125

2004

16

41.18

41.18

16

2006

96

49.33

49.33

96

2006

388.23

10

908.28

1,296.
52
11

2007

400.52

179

562.00

962.52

181

2007

0.82

0.82

2008

141

643.50

643.50

141

2008

22

44.92

44.92

22

2009

0.60

198

997.90

998.50

200

2009

206

282.87

284.83

208

2010

0.55

603.85

604.40

288

2010

285

263.32

264.67

286

2011

266.83

231

757.72

1,024.
55
232

2011

180

417.98

419.87

182

2012

13

11.17

94

80.32

91.48

107

2012

10

18.72

103

323.87

342.58

113
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Cannelton

Scheduled
unavailability
(#)

Scheduled
Unavailable
Time (Hrs)
Unscheduled
unavailability
(#)
Unscheduled
Unavailable
Time (Hrs)
Unavailable
Time (Hrs)
unavailability

(#)

McAlpine

Scheduled
Unavailability
(#)

Scheduled
Unavailable
Time (Hrs)
Unscheduled
unavailability
(#)
Unscheduled
Unavailable
Time (Hrs)
Unavailable
Time (Hrs)
unavailability

(#)

1993

118

212.8

215.0

120

1993

34

29.69

74

345.0

374.7
6
108

1994

209.0

151

240.3

449.3

153

1994

3.90

151

165.2

169.1
1
155

1995

90.13

100

177.09

267.22

103

1995

0.63

71

81.37

82.00

73

1996

372.68

71

907.54

1,280.
22
79

1996

10.81

103

126.56

137.37

112

1997

7.58

84

605.96

613.54

87

1997

29

882.67

96

301.80

1,184.
47
125

1998

36

91.19

91.19

36

1998

56

77.92

77.92

56

1999

546.0

97

2,761.

21

3,307.

29
101

1999

59

478.5

478.5

59

2000

49

219.1

219.1

49

2000

3.38

64

154.6

158.0

65

2001 2002
1

5.98
50 45

131.12  555.60

131.12  561.58

50 46
2001 2002
86 60

226.02  109.82

226.02  109.82

86 60

2003

34

104.28

104.28

34

2003

94

130.42

130.42

94

2004

61

181.20

181.20

61

2004

96

404.43

404.43

96

2006

856.82

66

1,404.

85

2,261.
67
68

2006

1.00

44

100.35

101.35

45

2007

64.07

a4

660.15

724.22

47

2007

8.07

68

181.15

189.22

69

2008

72
2,639.
30

2,639.
30
72

2008

3.13

107

321.37

324.50

109

2009

134.32

98

1,260.

58

1,394.
90
100

2009

118

397.83

397.83

118

2010

68

1,298.

43

1,302.
68
69

2010

1.50

95

404.35

405.85

96

2011

59
1,209.
20

1,200.
20
59

2011

16.78

126

832.93

849.72

128

2012

22

60.50

63.40

23

2012

6.22

26

81.93

88.15

28
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Markland

Scheduled
unavailability
(#)

Scheduled
Unavailable
Time (Hrs)
Unscheduled
unavailability
(#)
Unscheduled
Unavailable
Time (Hrs)
Unavailable
Time (Hrs)
unavailability
(#)

1993

6.57

26

173.6

180.2

30

1994

37

1,266
.18

67

857.7

2,123
.95
104

1995

10

2,699.
99

21

349.07

3,049.
06
31

1996

15

941.70

36

753.21

1,694.
91
51

1997

3.00

16

838.75

841.75

17

1998

16

510.6

510.6

16

1999

27

312.7

312.7

27

2000

28

94.23

94.23

28

2001

47

115.77

115.77

47

2002

48

125.88

125.88

48

2003

57

516.28

516.28

57

2004

46

112.77

112.77

46

2006

33

69.07

69.07

33

2007

345.48

48

147.02

492.50

49

2008

34

87.12

87.12

34

2009

83.82

167

1,035.

17

1,118.

98
169

2010

22

2,183.

35

160

2,332.

57

4,515.

92
182

2011

1,941.

60

225

6,207.

13

8,148.

73
233

2012

5,382.
30

94

632.27

6,014.
57
102
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200,000,000

180,000,000 m All Commodities
160,000,000
140,000,000
120,000,000 90 - All Unknown or Not Elsewhere
100,000,000 Classified - 90

80,000,000

60,000,000 80 - All Waste Material

40,000,000

20,000,000 .

R = 70 - All Manufactured Equipment
& Machinery
m 60 - All Food and Farm Products
N m 50 - All Primary Manufactured
(5\(\ Goods
<
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Short Tons Locked in 2010 by Commodity Type

source: USACE Lock Use, Performance, and Characteristics: http://www.ndc.iwr.usace.army.mil/lpms/cy2011comweb.htm

Lock Name 10 - All Coal, 20 - All Petroleum and 30 - All Chemicals 40 - All Crude 50 - All Primary 60 - All Food and 70 - All 80 - All Waste 90 - All All
Lignite, and Petroleum Products and Related Materials, Manufactured Farm Products Manufactured Material Unknown or Commodities
Coal Coke Products Inedible, Except Goods Equipment & Not Elsewhere
Fuels Machinery Classified - 90
52 34,729,577 4,015,974 8,644,690 27,568,006 3,114,511 11,517,704 102,479 14,150 170,655 89,877,746
53 23,926,464 4,465,382 8,799,838 26,119,900 3,519,940 12,567,563 95,205 13,850 120,091 79,628,233
Belleville 33,433,222 1,809,146 1,661,566 5,299,446 1,755,775 200,020 127,109 5,600 267,719 44,559,603
Cannelton 40,695,449 2,715,937 5,472,590 12,921,260 2,168,776 3,738,830 91,960 4,000 165,576 67,974,378
Captain 35,387,908 6,872,065 3,407,778 9,531,342 2,000,917 236,787 89,550 1,500 209,708 57,737,555
Anthony
Meldahl
Dashields 11,487,117 809,350 517,485 3,138,897 332,360 13,250 25,431 22,250 18,812 16,364,952
Emsworth 11,291,727 703,800 476,877 2,443,358 329,418 13,750 17,900 23,200 25,582 15,325,612
Greenup 34,388,644 7,108,679 3,256,504 8,848,489 2,321,631 284,879 79,608 1,500 153,335 56,443,269
Hannibal 33,202,685 1,350,483 1,452,070 4,377,739 1,400,015 180,265 80,249 1,400 239,230 42,284,136
John T Myers 39,706,206 3,229,056 6,800,091 10,961,783 2,388,456 8,072,532 92,880 13,450 236,146 71,500,600
Markland 32,847,530 4,857,227 4,570,185 10,194,193 2,169,196 2,706,296 99,065 151,391 57,595,083
McAlpine 39,120,222 4,985,072 5,192,573 11,709,544 2,553,286 3,743,520 161,685 8,000 185,916 67,659,818
Montgomery 12,818,808 757,224 678,488 3,258,175 572,495 14,130 24,200 9,650 103,938 18,237,108
New 18,682,735 1,221,639 1,236,130 3,649,514 1,143,081 146,134 22,500 187,647 26,289,380
Cumberland
Newburgh 47,643,606 3,057,724 5,962,867 13,532,534 2,282,891 5,477,691 142,695 4,000 197,816 78,301,824
Pike Island 21,958,002 1,330,477 1,280,030 3,786,123 1,272,631 152,484 31,625 214,428 30,025,800
Racine 33,906,799 1,784,211 1,680,472 5,875,935 1,729,462 212,007 119,665 5,600 296,558 45,610,709
Robert C 33,886,958 2,716,557 2,556,427 8,267,828 2,288,675 253,118 84,652 344,220 50,398,435
Byrd
Smithland 42,203,579 3,246,156 6,851,607 14,299,976 2,392,300 9,062,612 95,410 16,950 236,181 78,404,771
Willow 32,138,281 1,402,248 1,252,549 4,766,194 1,655,272 190,765 128,254 5,600 240,930 41,780,093
Island
Grand Total 613,455,519 58,438,407 71,750,817 190,550,236 37,391,088 58,784,337 1,712,122 150,700 3,765,879 1,035,999,105
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Lock Name 2010 Tons locked Change downstream
Emsworth 15,325,612

Dashields 16,364,952 1,039,340
Montgomery 18,237,108 1,872,156
New Cumberland 26,289,380 8,052,272
Pike Island 30,025,800 3,736,420
Hannibal 42,284,136 12,258,336
Willow Island 41,780,093 504,043
Belleville 44,559,603 2,779,510
Racine 45,610,709 1,051,106
Robert C Byrd 50,398,435 4,787,726
Greenup 56,443,269 6,044,834
Captain Anthony Meldahl 57,737,555 1,294,286
Markland 57,595,083 142,472
McAlpine 67,659,818 10,064,735
Cannelton 67,974,378 314,560
Newburgh 78,301,824 10,327,446
John T Myers 71,500,600 6,801,224
Smithland 78,404,771 6,904,171
52 89,877,746 11,472,975
53 79,628,233 -10,249,513
Total 1,035,999,105
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Total by Chamber

Direction by Chamber

Total by Direction

Lock Name
Emsworth
Dashields
Montgomery
New Cumberland
Pike Island
Hannibal
Willow Island
Belleville
Racine
Robert C Byrd
Greenup
Captain Anthony
Meldahl
Markland
McAlpine
Cannelton
Newburgh
John T Myers
Smithland

52

53

Totals

2010 Tons locked
15,325,612
16,364,952
18,237,108
26,289,380
30,025,800
42,284,136
41,780,093
44,559,603
45,610,709
50,398,435
56,443,269
57,737,555

57,595,083
67,659,818
67,974,378
78,301,824
71,500,600
78,404,771
89,877,746
79,628,233
1,035,999,105

Main
14,486
16,059
17,764
24,701
23,965
41,330
41,230
43,377
44,810
43,490
47,602
56,521

48,905
42,463
62,953
77,285
69,289
34,371
83,576
79,088
913,265

Aux
840
306
474

1,589
6,062
954
549
1,183
801
6,908
8,841
1,216

8,690
25,196
5,021
1,017
2,211
44,034
6,302
540
122,734

Main - up
10,091
11,641
11,598
19,790
19,490
19,337
21,040
22,993
23,222
24,773
19,975
27,495

30,053
23,983
41,823
54,910
43,271
2,286
43,914
35,976
507,661

Main - down Aux - up
4,395 653
4,418 171
6,166 295
4,911 1,203
4,475 4,863

21,993 685
20,190 354
20,384 753
21,588 448
18,717 4,038
27,627 3,893
29,026 682
18,852 5,714
18,480 22,717
21,130 2,922
22,375 722
26,018 1,324
32,085 39,264
39,662 3,082
43,112 152
405,604 93,935

Aux - down
187
135
179
386

1,199
269
195
430
353

2,870

4,948
534

2,976
2,479
2,099
295
887
4,770
3,220
388
28,799

Up
10,744
11,812
11,893
20,993
24,353
20,022
21,394
23,746
23,670
28,811
23,868
28,177

35,767
46,700
44,745
55,632
44,595
41,550
46,996
36,128
601,596

Down
4,582
4,553
6,345
5,297
5,674
22,262
20,385
20,814
21,941
21,587
32,575
29,560

21,828
20,959
23,229
22,670
26,905
36,855
42,882
43,500
434,403
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Lock Chamber River/Mile Year Opened Length Width Lift
Elmsworth Main 6.2 1921 600 110 18
Elmsworth Aux 1 6.2 1921 360 56 18
Dashields Main 123 1929 600 110 10
Dashields Aux 1 13.3 1929 360 56 10
Montgomery Main 31.7 1936 600 110 18
Montgomery Aux 1 31.7 1936 360 56 18
New Cumberland Main 54.4 1959 1200 110 21
New Cumberland Aux1 54.4 1959 600 110 21
Pike Island Main 84.2 1965 1200 110 18
Pike Island Auxl 84.2 1965 600 110 18
Hannibal Main 126.4 1973 1200 110 21
Hannibal Aux1 126.4 1973 600 110 21
Willow Island Main 161.7 1972 1200 110 20
Willow Island Aux1 161.7 1972 600 110 20
Belleville Main 203.9 1969 1200 110 22
Belleville Aux1 203.9 1969 600 110 22
Racine Main 237785 1967 1200 110 22
Racine Auxl 237.5 1967 600 110 22
Robert C. Byrd Main 279.2 1993 1200 110 23
Robert C. Byrd Aux1 279.2 1993 600 110 23
Greenup Main 341 1959 1200 110 30
Greenup Auxl 341 1959 600 110 30
Captain Anthony Meldahl Main 436.2 1962 1200 110 30
Captain Anthony Meldahl Aux1 436.2 1962 600 110 30
Markland Main 531.5 1959 1200 110 35
Markland Auxl 531.5 1959 600 110 35
McAlpine Main 606.8 1961 1200 110 37
McAlpine Main 606.8 2009 1200 110 37
Cannelton Main 720.7 1971 1200 110 25
Cannelton Auxl 720.7 1971 600 110 25
Newburgh Main 776.1 1975 1200 110 16
Newburgh Aux1 776.1 1975 600 110 16
John T. Myers Main 846 1975 1200 110 18
John T. Myers Auxl 846 1975 600 110 18
Smithland Main 918.5 1980 1200 110 22
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Smithland Auxl 918.5 1980 1200 110 22

52 Main 938.9 1969 1200 110 12

52 Aux1 938.9 1928 600 110 12

53 Main 962.6 1980 1200 110 12

53 Aux1l 962.6 1929 600 110 12

Olmsted Main 964.4 2020 1200 110

Olmsted Main 964.4 2020 1200 110

Note: Olmsted Locks will replace Locks 52 and 53 once they become operational

Top 9 Ports by Tonnage

Top Ports Number of terminals Tonnage Rail Highway

Cincinnati 29 13.3mm/tons CSX, I1&0 265

Henderson 11 600,000 CSX Breathitt Pennyrile
(http://transportation.ky.gov/Riverports/Documents/Kentucky%20Water%20Transportation%20Corridors.PDF) Parkway

Jeffersonville 11 1.7mm/tons (http://www.1si.org/EXTERNAL/WCPAGES/WCNEWS/NEWSARTICLEDISPLAY.ASPX?ArticlelD=171) CSX, NS, P&L 264

Louisville 27 7.4mm/tons CSX, NS, 1&0 264

Mt. Vernon/Evansville 20 5.5mm/tons (http://www.ndc.iwr.usace.army.mil//wcsc/webpub09/Part2_Ports_tonsbycommCY2009.HTM) Evansville Western Highway 69 to 164

with connections to
CSX, NS, CN, BNSF, UP

New Albany 3 4.2mm/tons (http://www.1si.org/EXTERNAL/WCPAGES/WCNEWS/NEWSARTICLEDISPLAY.ASPX?ArticlelD=171) NS 1-64

Owensboro 11 616,000 CSX Audubon Parkway,
(http://transportation.ky.gov/Riverports/Documents/Kentucky%20Water%20Transportation%20Corridors.PDF) Natcher Parkway

Paducah 8 1mm tons P&L to CSX 1-24 loop
(http://transportation.ky.gov/Riverports/Documents/Kentucky%20Water%20Transportation%20Corridors.PDF)

Tell City 3 150m/tons HOS to NS Highway32 to 164

(http://www.indianaeconomicdigest.net/print.asp?ArticlelD=31139&SectionID=31&SubSectionI|D=62)
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Name Ohio River City
Agrico Chemical Co. Ohio River Melbourne
Aquarius Marine, Inc. - Barge Loading Ohio River Melbourne
Facility

ADM Milling Co. - Mid States Terminals  Ohio River Silver Grove
- Silver Grove Terminal Wharf

Countrymark, Inc. Ohio River Silver Grove
Lafarge North America Ohio River Silver Grove
Hilltop Basic Resources - East Cincinnati  Ohio River Cincinnati
Terminal

Cargill, Inc. - Cincinnati Terminal Wharf  Ohio River Cincinnati
Washington Marine, LLC Ohio River Cincinnati
Tucker Marine Ohio River Cincinnati
Martin Marietta Aggregates - Dravo Ohio River Cincinnati
Basic

Kinder Morgan - Queen City Terminal Ohio River Cincinnati
Liquid Transfers Terminals - Arcadian Ohio River Cincinnati
Chemical Corp.

Cincinnati Barge & Rail Terminal, LLC - Ohio River Cincinnati
Noramco Cincinnati

Hilltop Basic Resources - Cincinnati Ohio River Cincinnati
River Terminal

River Trading Co. - Cincinnati Bulk Ohio River Cincinnati
Terminal - Hatfield Terminal Docks

River Trading Co. - Port of Cincinnati Ohio River Cincinnati
Noramco Cincinnati Ohio River Cincinnati
Maxim Crane - Greater Cincinnati Ohio River Ludlow
Marine Service - Ludlow Dock

Aquaius Marine, Inc. - Ludlow Ohio River Ludlow
McGinnis, Inc. - Ludlow Facility Ohio River Ludlow
Consolidated Grain & Barge Co. - Ohio River Cincinnati
Anderson Ferry

CEMEX - Kosmos Cement Co. - Ohio River Cincinnati
Cincinnati Southside Terminal Wharf

Kinder Morgan - Cincinnati Steel Ohio River Cincinnati
Terminal

Peter Cremer North America - South Ohio River Cincinnati
Terminal

Cargill - Cincinnati Molasses Terminal Ohio River Cincinnati
Westway Terminal Co., LLC - Cincinnati Ohio River Cincinnati
Trans Montaigne - ITAPCO Ludlow Ohio River Ludlow

Wharf
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Marathon Petroleum, LLC - Ashland Oil,
Inc. - Cincinnati Terminal Wharf
Intertate Asphalt Co. - Constance Plant
Dock

Benchmark Terminals - River Road
Barge & Rail Terminal

Defense Logistics Agency - DFSP Station
Cincinnati

Buckeye - Cincinnati Dock

C.F. Industries - Cincinnati Warehouse
Wharf

Kinder Morgan - River T Liquid Terminal
Cargill, Inc. - Cincinnati River Road
Terminal Wharf

Excell Marine Corp. - Cincinnati Facility
Marathon Petroleum Co., LLC - Ashland
Oil, Inc. - Stringtown Dock

McGinnis, Inc. - Excell Marine Corp. -
Cincinnati Terminal Fleet Mooring &
Wharf

Buzzi Unicem - Lone Star Industries,
Incorporated

Hilltop Basic Resources - Constance
Terminal

McGinnis, Inc. - Hebron Facility
Consolidated Grain & Barge co. -
Marine Services - Sayler Park
Monsanto Chemical Co. - Addyston
Plastics Plant Wharf

Consolidated Grain & Barge Co. - North
Bend Facility

Chervon USA - Cincinnati Facility Dock
Koch Materials Asphalt Co.

Agrium US, Inc. - Vigoro Industries -
North Bend

Marathon Petroleum - North Bend
Terminal Wharf

Cinc. Gas & Electric Co. - Miami Fort
E.l. DuPont DeNemours & Co. - Fort Hill
Plant Dock

AEP - Indiana & Michigan Electric Corp.
- Tanner Creek Plant

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River
Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River
Ohio River
Ohio River
Ohio River
Ohio River

Ohio River

Ohio River
Ohio River

Ohio River

Cincinnati
Constance
Cincinnati
Cincinnati

Cincinnati
Cincinnati

Cincinnati
Cincinnati

Cincinnati
Stringtown

Cincinnati

Cincinnati
Hebron

Hebron
Cincinnati

Addyston

North Bend
North Bend
North Bend
North Bend

North Bend

North Bend
North Bend

Lawrenceburg
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Consolidated Grain & Barge co. -
Aurora Wharf

Northern Kentucky Aggregates -
Petersburg Dock

Martin-Marietta Aggregates -
Petersburg Gravel Dock

Belleview Sand & Gravel

Kentucky Utilities Co. - Ghent Plant
Gallatin Steel

Kinder Morgan - Arrow Terminals, LP -
North American Stainless

Adams Boat Co., Inc. - Madison Dock
Nugent Sand Co. - Milton/Carrollton
Dock

Consolidated Grain & Barge Co. -
Madison Wharf

Indiana-Kentucky Power Corp. - Clifty
Creek Station Coal Dock

Louisville Gas & Electric Co. - Trimble
Co. Plant

Nugent Sand Co. - Bethlehem Plant
Mulzer Crushed Stone Co. -
Charlestown Quarry Wharfs
American Commercial Lines - Utica &
Twelve Mile Island Fleet Moorings
American Commercial Lines - Utica &
Twelve Mile Island Fleet Moorings
McBride Towing Co., Inc. - Drydock
Mount Vernon Barge Service, Inc. -
MVBS Jeffersonville, LLC
Consolidated Barge & Grain Co. -
Jeffersonville Facility (Indiana Port
Commission)

Juniper Beach Docks, LLC

Kinder Morgan - Jeffersonville Facility
(Indiana Port Commission)

Nugent Sand Co. - Utica Dock & Sales
Yard

Eagle Steel Products, Inc. (Indiana Port
Commission)

Marine Builders, Inc. - Utica Facility
Wharf

Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River

Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Aurora
Petersburg
Petersburg
Petersburg
Ghent
Ghent
Ghent

Madison
Milton

Madison
Madison
Bedford

New Washington
Charlestown

Utica
Utica

Louisville
Jeffersonville

Jeffersonville
Louisville

Jeffersonville
Jeffersonville
Jeffersonville

Jeffersonville
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Indiana Port Commision Terminal -
Jeffersonville, Clark Maritime Centre
Wooten's River Service

Airgas Specialty Products

Buddekeww - River Road Terminal, Inc.
Kinder Morgan - Louisville Terminal
River Metal Recycling, LLC

American Commercial Lines - Lousiana
Dock Co.

American Commercial Lines - Jeffboat,
Inc. - Drydocks

Mosaic Co. - Louisville Terminal Facility
Nugent Sand Co. - Louisville Wharf

Marine Works - Marine Industries Corp.

Marathon Petroleum, LLC - Ashland Oil,
Inc. - Clarksville Terminal Wharf

US Army Corps of Engineers - Louisville
Repair Station Mooring

ITAPCO - TransMontaigne -
Kentuckiana

Duke Energy - PSI Energy - Robert
Gallagher Power Plant Dock

Marathon Petroleum, LLC - Ashland Oil,
Inc. - Louisville Refinery Upper Dock
Buckeye - BP Qil Co. - Louisville
Terminal

Carbide Industries, LLC - Louisville
Wharf

Arkema, Inc. - Altuglas International
Louisville Plant

Marathon Petroleum, LLC - Ashland Oil,
Inc. - Louisville Refinery Lower Dock
Citgo Petroleum Corp. - Kerr McGee -
Louisville Terminal

Chevron USA, Inc. - Louisville

McBrides Fleet - Five M Transportation
Co.

ITAPCO - TransMontaigne - Louisville
Borden Chemicals - Louisville Dock
Stauffer Chemical Co. (INACTIVE?)
Louisville Gas & Electric - Cane Run
Plant Dock

Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River

Ohio River

Ohio River
Ohio River

Ohio River
Ohio River
Ohio River
Ohio River

Jeffersonville
Jeffersonville
Jeffersonville
Louisville
Louisville
Louisville
Louisville
Jeffersonville
Louisville
Louisville
Clarksville
Jeffersonville
Louisville
New Albany
New Albany
Louisville
Louisville
Louisville
Louisville
Louisville

Louisville

Louisville
New Albany

Louisville
Louisville
Louisville
Louisville
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Jefferson Riverport International - Bulk
Terminal & General Cargo Docks

Sun Refining & Marketing Co. -
Thorton's Transportation - Louisville
Terminal Wharf

Marathon Petroleum, LLC - Ashland Oil,
Inc. - Louisville Asphalt Terminal Wharf
CEMEX - Kosmos Cement Co. - Stone &
Cement Docks

Arch Chemicals, Inc. - Doe Run Plant
Dock

Vulcan Materials Co.-brandenburg
Quarry

Kosmos Cement Co.-Oolite Wharf
Hilltop Basic Resources-Big Bend
Quarry, LLC-meade County Wharf
Mulzer Crushed Stone Co. - Cape Sandy
Quarrt Upper & lower Wharfs

Yager Materials Co.-Riverside Stone
Co.-Upper and Lower Docks

Kinder morgan-Southern Shores
Terminal, Inc.-Hawesville Dock

Tell City Riverport

Mulzer Crushed Stone Co.-Tell City
Dock

Big Rivers Electric Corp.-Kenneth C.
Coleman Plant Wharf

Yager Materials,Inc.-Hancock County
Read-Mix Haweville Dock

Evansville Marine Services-Tell City
Harbor

Indiana-Michigan Electric Corp.-
Rockport Plant Dock

Rockport River Terminals-Spencer
County Riverport

Mulzer Crushed Stone Co.-Rockport
Yard Dock& Wharfs

Mulzer Crushed Stone Co.-Evansville
Materials Inc.

Kinder Morgan-Owensboro Gateway
Terminal/Iceland Terminal Inc.
Evansville Marine Services-Owensboro

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Louisville

Louisville

Louisville
Kosmosdale
Brandenburg
Brandenburg

Oolite/Battletown
Battletown

Cape Sandy
Wolf Creek
Hawesville

Tell City
Tell City

Hawesville
Hawesville
Tell City
Rockport
Rockport
Rockport
Rockport
Owensboro

Owensboro
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Harbor

Yellow Banks River Terminal-Daviess
County River Sand & Gravel

Yager Materials, Inc.-Marine Industries
Yager Materials, Inc.-Yager
Dock/Owensboro River Sand

U.S. Coast Guard-Owensboro Depot
Wharf

Southern States-River Terminal
Co.Wharf

Trans Montaigne-Owensboro Terminal
LaFarge Cement Corp.-Owensboro
Terminal Wharf

Owensboro Grain Co.-Owensboro
Soybean Oil Dock

Yager Materials, Inc.-Owensboro River
Rail Terminal Wharf

Owensboro Riverport Authority
Rampstop Marine Services-Owensboro
Facility

Mulzer Crushed Stone Co.-Newburgh
Yard Wharf

Ohio Valley Marine Service, Inc.
Mulzer Crushed Stone Co.-Evansville
Wharf

Northern AG Service-Valley Terminal-
Evansville Wharf

Evansville Marine Service-Evansville
Harbor

Cargill Inc.-Evansville Wharf

Archer Daniels Midland-Terminal
Services-Evansville

Mulzer Crushed Stone Co.-Evansville
Materials, Incorporarted

Mulzer Crushed Stone Co.-West Yard
Wharf

Trans Montaigne-Home Oil Co & Gas
Co.Inc.

Peavey Co.-Henderson Wharf

Mosaic Co.-Henderson Dock
Consolidated Grain & Barge-Henderson
Dock

Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Owensboro

Owensboro
Owensboro

Owensboro
Owensboro

Owensboro
Owensboro

Owensboro
Owensboro

Owensboro
Evansville

Newburgh

Henderson
Evansville

Evansville
Evansville

Evansville
Evansville

Evansville
Evansville
Henderson
Henderson

Henderson
Henderson
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Henderson County Riverport Authority
Evansville Marine Services-Henderson
Harbor

Owensboro Grain Co., Genever River
Terminal

Countrymark, Inc.-Henderson Terminal
Wharf

Henderson Materials, Inc.Wharf
Mount Vernon Transfer Terminal, LLC-
Transfer Terminal/MAPCO Coal Dock
Mount Vernon Basrge Service, Inc.Dock
Indiana Port Commision-Port of
Indiana-Mount Vernon Dock
Consolidated Grain & Barge Co.-Mount
Vernon River Dock

Mount Vernon Marine, LLC-Barge
Service

Archer Daniels Midland Milling Co.-
Fuhrer-Ford Division, Mount Vernon
Wharf

Country Mark Inc.-Mount Vernon
Terminal Wharf

Continental Grain Co.-Mount Vernon
Grain Elevator Dock

Marathon Oil Co.-Mount Vernon Dock
Babcock & Wilcox Co.-Mount Vernon
Plant Dock

Sabic Innovative Plastics

Mount Vernon Marine, LLC-Fleeting
Service, Hovey Fleet Mooring
Consolidated Grain & Barge Co.-Union
Dock

Industrial marine Service Inc.-Old
Shawneetown Facility

Hunter Sand and Gravel

Bunge Corp.-Shawneetown Wharf
Shawneetown Harbor Service, Inc.
Dekoven Dock Inc.-Dekoven
Dock/Kanipe Coal Dock

Hunter Sand & Gravel Co.-Caseyville
Dock/Pyro Dock

Wabash marine, Inc.-Pyro Mining Co.-

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River
Ohio River

Ohio River
Ohio River
Ohio River
Ohio River
Ohio River
Ohio River

Ohio River

Ohio River

Henderson
Henderson

Henderson
Henderson

Henderson
Mount Vernon

Mount Vernon
Mount Vernon

Mount Vernon
Mount Vernon

Mount Vernon

Mount Vernon
Mount Vernon

Mount Vernon
Mount Vernon

Mount Vernon
Mount Vernon

Uniontown

Shawneetown
Shawneetown
Shawneetown
Shawneetown

Sturgis

Caseyville

Caseyville/Sturgis
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Caseyville Dock

American Minerals, Inc.-Rosiclare
Wharf

Wepfer Marine Inc.-Hickman Dock and
Fleet Mooring

Ingram materials Co.-Ledbetter Docks
Three River Boats & Barge, Inc.-
Ledbeter Facility

Hunter Sand & Gravel-Ledbeter Dock
National Maintenance & Repair of
Kentucky-Ledbeter Facility

Precision Machine, Inc.

Midwest Terminal-Paducah Dock
Kotter Ready Mix-Metropolis Dock
Mid-South Towing Co.-Metropolis Fleet
Moorings & Dock

Hunter Sand & gravel Co.-Metropolis
Dock

American Electric Power-Cook Coal
Dock

LaFarge Cement Corp.-Joppa Plant
Wharf

Consolidated Grain & Barge Co.-Mound
City Dock

ADM/Growmark CO.-Mound City
Wharf

American Commercial Lines-Louisiana
Dock Co. Cairo Fleet

Bunge Crop.-Cairo Wharf
Consolidated Grain & Barge Co.-
Waterfront Servicea Co.-Cairo Dock &
Fleet

Hunter Sand & Gravel Co.-Henderson
County Sand Co.Dock

American Commercial Lines - Jeffboat,
Inc.

Louisville Gas & Electric - Mill Creek
Station

Ohio River

Ohio River

Ohio River
Ohio River

Ohio River
Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Ohio River

Rosiclare
Hickman

Ledbeter
Ledbeter

Ledbeter
Ledbeter

Paducah
Paducah
Metropolis
Metropolis
Metropolis
Metropolis
Joppa
Mound City
Mound City
Cairo

Cairo

Cairo
Henderson

Jeffersonville

Kosmosdale
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Tons

Ohio River Commodity Traffic by Commodity by
Year (All Directions)
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Cy2011 CY2010 CY2009 CY2008 CY2007 CY2006 CY2005 CY2004
All 215,077,094 220,594,275 207,446,759 230,812,272 230,844,602 241,535,140 249,212,064 238,980,352
Commodities
Coal & Related 122,437,012 122,746,226 118,819,010 128,441,212 123,342,834 127,311,257 133,147,771 123,113,533
Petroleum & 13,273,936 14,179,767 13,772,477 16,907,547 18,695,826 18,982,949 19,168,997 16,755,314
Products
Chemicals & 9,808,359 9,767,096 7,869,679 8,588,895 10,061,778 9,597,285 9,610,350 10,130,868
Related
Non-Fuel 48,724,385 50,324,763 45,763,900 51,368,691 52,052,567 57,210,432 57,751,926 58,935,470
Crude
Materials
Primary 8,031,303 8,548,018 6,705,688 11,399,660 12,257,950 13,213,570 14,698,514 13,189,882
Manufactured
Food & Farm 12,736,974 14,902,457 14,371,111 13,851,609 14,285,176 15,141,830 14,777,025 16,740,549
Products
Equipment & 49,085 125,190 144,894 254,658 148,471 77,817 56,384 113,891
Machinery
Waste 16,040 758 0 0 0 0 1,097 845
Material
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Report Output from 19 Various Regression Models
Linear regression Number of obs = 596437
Regression Model 1A R-squared = 0.0231

Root MSE = 6.5891

| Robust

a2s_In| Coef. Std.Err. t P>|t| [95% Conf. Interval]

year2002 | -.0687229 .0384211 -1.79 0.074 -.1440271 .0065813
year2003 | -.8401787 .0382243 -21.98 0.000 -.9150971 -.7652603
year2004 | -.9166814 .0377309 -24.30 0.000 -.9906328 -.8427299
year2005 | .7394726 .0390127 18.95 0.000 .6630089 .8159364
year2007 | .6638964 .0391524 16.96 0.000 .5871589 .7406338
year2008 | .795969 .0390803 20.37 0.000 .7193729 .8725651
year2009 | -.4295522 .0395464 -10.86 0.000 -.5070619 -.3520424
year2010 | .3874251 .0398575 9.72 0.000 .3093056 .4655446
year2011 | .7045527 .0404097 17.44 0.000 .6253508 .7837545
year2012 | 1.858432 .0443093 41.94 0.000 1.771587 1.945277
January | -.8394824 .0408455 -20.55 0.000 -.9195382 -.7594266
February | -.8399421 .0412638 -20.36 0.000 -.9208179 -.7590663
March | -1.234106 .0399879 -30.86 0.000 -1.312481 -1.155731
April | -.984426 .0400901 -24.56 0.000 -1.063001 -.9058507
May | -1.080657 .0396566 -27.25 0.000 -1.158383 -1.002932

June | -.4706567 .0401907 -11.71 0.000 -.5494293 -.3918842
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August | .6023125 .0406544 14.82 0.000 .5226312 .6819939
September | .760884 .04112 18.50 0.000 .68029 .8414779
October | .6387137 .0419922 15.21 0.000 .5564103 .7210172
November | .4045619 .0426834 9.48 0.000 .3209037 .48822
December | -.6560993 .0417397 -15.72 0.000 -.7379079 -.5742908

_cons | -3.886021 .0385057 -100.92 0.000 -3.961491 -3.810551

Linear regression Number of obs = 596573
Regression Model 1B R-squared = 0.0229

Root MSE = 1.0647

| Robust

s2e_In| Coef. Std.Err. t P>|t|] [95% Conf. Interval]

+.
T

year2002 | .084912 .0058798 14.44 0.000 .0733878 .0964363

year2003 | -.0409272 .0062155 -6.58 0.000 -.0531094 -.0287451
year2004 | -.0894829 .0063508 -14.09 0.000 -.1019303 -.0770354
year2005 | .1393309 .0060535 23.02 0.000 .1274663 .1511955
year2007 | .1566054 .006162 25.41 0.000 .144528 .1686828

year2008 | .1434513 .0061227 23.43 0.000 .131451 .1554516
year2009 | .0363501 .0068784 5.28 0.000 .0228687 .0498316
year2010 | .0947879 .006786 13.97 0.000 .0814876 .1080882

year2011 | .0916331 .0069208 13.24 0.000 .0780686 .1051976
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year2012 | .3357139 .0070548 47.59 0.000 .3218868 .3495411
January | -.1102755 .0066293 -16.63 0.000 -.1232687 -.0972824
February | -.147423 .0067509 -21.84 0.000 -.1606545 -.1341915
March | -.2070223 .0066492 -31.13 0.000 -.2200546 -.19399
April | -.1962501 .006596 -29.75 0.000 -.2091781 -.1833221
May | -.2187427 .0065117 -33.59 0.000 -.2315055 -.2059799
June | -.0880008 .0063226 -13.92 0.000 -.1003929 -.0756087
August | .1424909 .0058302 24.44 0.000 .1310638 .1539179
September | .118236 .0060019 19.70 0.000 .1064724 .1299996
October | .1187921 .0063469 18.72 0.000 .1063524 .1312318
November | .0671979 .0065831 10.21 0.000 .0542952 .0801007
December | -.1034781 .0068776 -15.05 0.000 -.1169579 -.0899983

_cons | 3.356712 .00605 554.83 0.000 3.344855 3.36857

. regress a2s_In year2002-year2005 year2007-year2012 January-June August-December discharge,

robust
Linear regression Number of obs = 596437
Regression Model 2A R-squared = 0.0572

Root MSE = 6.4731

| Robust

a2s In| Coef. Std.Err. t P>|t| [95% Conf. Interval]

+
T
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year2002 | .2760823 .0378012 7.30 0.000 .2019931 .3501715
year2003 | -.1332329 .0377091 -3.53 0.000 -.2071415 -.0593244
year2004 | -.0903132 .0373428 -2.42 0.016 -.1635038 -.0171225
year2005 | 1.236027 .0385903 32.03 0.000 1.160391 1.311662
year2007 | .9272341 .0386908 23.97 0.000 .8514014 1.003067
year2008 | 1.30054 .0384243 33.85 0.000 1.225229 1.37585
year2009 | -.2833158 .0388614 -7.29 0.000 -.359483 -.2071487
year2010 | .6976989 .0392459 17.78 0.000 .6207781 .7746196
year2011 | 1.134507 .0400232 28.35 0.000 1.056062 1.212951
year2012 | 1.72906 .0435987 39.66 0.000 1.643608 1.814512
January | .8712055 .0417018 20.89 0.000 .7894713 .9529398
February | .7479251 .0417754 17.90 0.000 .6660466 .8298036
March | .9457713 .0418112 22.62 0.000 .8638227 1.02772
April | .7984232 .0411574 19.40 0.000 .7177559 .8790905
May | .5862707 .0407472 14.39 0.000 .5064075 .666134
June | .0868224 .0398668 2.18 0.029 .0086848 .16496
August | .4188535 .0404741 10.35 0.000 .3395256 .4981815
September | .7448624 .0407678 18.27 0.000 .6649588 .824766
October | .6444167 .0418746 15.39 0.000 .5623438 .7264896
November | .9513339 .0425744 22.35 0.000 .8678894 1.034778
December | .6044239 .0418743 14.43 0.000 .5223516 .6864962
discharge | -8.43e-06 4.85e-08 -173.96 0.000 -8.53e-06 -8.34e-06

_cons | -3.464657 .0380993 -90.94 0.000 -3.53933 -3.389984
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. regress s2e_In year2002-year2005 year2007-year2012 January-June August-December discharge,

robust
Linear regression Number of obs = 596573
Regression Model 2B R-squared = 0.1615

Root MSE = .98633

| Robust

s2e In| Coef. Std.Err. t P>|t] [95% Conf.Interval]

+
T

year2002 | .1972081 .0054247 36.35 0.000 .1865759 .2078403
year2003 | .1893136 .005646 33.53 0.000 .1782476 .2003796
year2004 | .179653 .0058627 30.64 0.000 .1681624 .1911437
year2005 | .3010545 .0056444 53.34 0.000 .2899916 .3121174
year2007 | .242373 .0057861 41.89 0.000 .2310324 .2537136
year2008 | .3077804 .0056352 54.62 0.000 .2967356 .3188251
year2009 | .0839751 .0063758 13.17 0.000 .0714787 .0964716
year2010 | .1958403 .0062734 31.22 0.000 .1835447 .2081359
year2011 | .2316582 .0065663 35.28 0.000 .2187884 .244528
year2012 | .29353 .006536 44.91 0.000 .2807196 .3063404
January | .4470665 .0062285 71.78 0.000 .4348588 .4592742
February | .3697311 .0062791 58.88 0.000 .3574242 .382038
March | .5029075 .0064634 77.81 0.000 .4902395 .5155755
April | .3842177 .0063912 60.12 0.000 .3716911 .3967444

May | .3240858 .0063818 50.78 0.000 .3115778 .3365939
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June | .0935239 .006011 15.56 0.000 .0817424 .1053053
August | .0827523 .00558 14.83 0.000 .0718157 .0936889
September | .1130136 .0056847 19.88 0.000 .1018718 .1241554
October | .120638 .0061258 19.69 0.000 .1086317 .1326444
November | .2452621 .0063484 38.63 0.000 .2328195 .2577048
December | .3070443 .0063946 48.02 0.000 .294511 .3195776
discharge | -2.75e-06 8.45e-09 -324.77 0.000 -2.76e-06 -2.73e-06

_cons | 3.493956 .0056988 613.10 0.000 3.482787 3.505126

Linear regression Number of obs = 596437
Regression Model 3A R-squared = 0.0573

Root MSE = 6.4726

| Robust

a2s In| Coef. Std.Err. t P>|t| [95% Conf. Interval]

+
T

year2002 | .2763218 .0377972 7.31 0.000 .2022404 .3504032
year2003 | -.1332533 .037706 -3.53 0.000 -.2071559 -.0593507
year2004 | -.0903588 .0373391 -2.42 0.016 -.1635422 -.0171755
year2005 | 1.236018 .0385872 32.03 0.000 1.160389 1.311648
year2007 | .9272508 .0386882 23.97 0.000 .8514231 1.003078

year2008 | 1.300189 .0384236 33.84 0.000 1.224879 1.375498
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year2009 | -.2833853 .0388575 -7.29 0.000 -.3595446 -.2072259
year2010 | .6976176 .0392414 17.78 0.000 .6207058 .7745295
year2011 | 1.134356 .0400179 28.35 0.000 1.055922 1.212789
year2012 | 1.729704 .0435945 39.68 0.000 1.64426 1.815148
January | .8712962 .0416976 20.90 0.000 .7895703 .9530221
February | .7484615 .0417723 17.92 0.000 .6665891 .830334
March | .9470155 .0418113 22.65 0.000 .8650667 1.028964
April | .7995031 .0411542 19.43 0.000 .7188422 .880164
May | .5871139 .0407434 14.41 0.000 .5072581 .6669696
June | .0879558 .0398624 2.21 0.027 .0098268 .1660848
August | .4193184 .0404739 10.36 0.000 .3399909 .4986459
September | .7443673 .0407655 18.26 0.000 .6644682 .8242663
October | .6445431 .0418738 15.39 0.000 .5624719 .7266143
November | .9519598 .042571 22.36 0.000 .8685221 1.035398
December | .6043885 .0418696 14.44 0.000 .5223254 .6864515
discharge | -8.50e-06 6.30e-08 -134.91 0.000 -8.62e-06 -8.37e-06
dischdir | 1.30e-07 7.87e-08 1.66 0.098 -2.39e-08 2.85e-07
dirdown | -.1827183 .0252529 -7.24 0.000 -.2322132 -.1332233

_cons | -3.372761 .0401943 -83.91 0.000 -3.45154 -3.293981

Linear regression Number of obs = 596573
Regression Table 3B R-squared = 0.1639
Root MSE = .98494
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| Robust

s2e_In| Coef. Std.Err. t P>|t| [95% Conf. Interval]

+.
T

year2002 | .1975236 .005419 36.45 0.000 .1869026 .2081447
year2003 | .1893389 .005639 33.58 0.000 .1782865 .2003912
year2004 | .1794816 .0058542 30.66 0.000 .1680075 .1909557
year2005 | .3009725 .0056374 53.39 0.000 .2899234 .3120215
year2007 | .2424877 .0057801 41.95 0.000 .2311589 .2538166
year2008 | .3077574 .0056287 54.68 0.000 .2967252 .3187895
year2009 | .0840936 .0063682 13.21 0.000 .0716121 .096575
year2010 | .195924 .0062654 31.27 0.000 .1836441 .2082039
year2011 | .2315994 .0065592 35.31 0.000 .2187435 .2444552
year2012 | .2938263 .0065291 45.00 0.000 .2810294 .3066232
January | .4467462 .0062204 71.82 0.000 .4345544 4589379
February | .3697567 .0062676 59.00 0.000 .3574725 .382041
March | .5037242 .0064525 78.07 0.000 .4910774 .5163709
April | .3847887 .0063809 60.30 0.000 .3722823 .3972951
May | .3245952 .0063709 50.95 0.000 .3121084 .3370819
June | .0941329 .0060022 15.68 0.000 .0823688 .105897
August | .0829994 .0055734 14.89 0.000 .0720756 .0939232
September | .1124714 .0056787 19.81 0.000 .1013414 .1236014
October | .1205673 .0061227 19.69 0.000 .1085669 .1325676
November | .2454892 .0063412 38.71 0.000 .2330606 .2579177

December | .3068831 .0063857 48.06 0.000 .2943672 .3193989
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discharge | -2.67e-06 1.10e-08 -243.46 0.000 -2.69e-06 -2.65e-06
dischdir | -1.51e-07 1.40e-08 -10.74 0.000 -1.78e-07 -1.23e-07
dirdown | -.0711992 .0033969 -20.96 0.000 -.077857 -.0645414

_cons | 3.529571 .0059436 593.84 0.000 3.517922 3.54122

Linear regression Number of obs = 596437
Regression Table 4A R-squared = 0.0581

Root MSE = 6.4699

| Robust

a2s_In| Coef. Std.Err. t P>|t|] [95% Conf. Interval]

year2002 | .2334819 .0378196 6.17 0.000 .1593566 .3076072
year2003 | -.0890617 .037723 -2.36 0.018 -.1629976 -.0151258
year2004 | -.0069935 .0375427 -0.19 0.852 -.0805759 .066589
year2005 | 1.214113 .0385926 31.46 0.000 1.138473 1.289754
year2007 | .9194831 .0387012 23.76 0.000 .8436299 .9953363
year2008 | 1.254224 .0384481 32.62 0.000 1.178867 1.329581
year2009 | -.2942623 .0388401 -7.58 0.000 -.3703878 -.2181369
year2010 | .6944335 .0392358 17.70 0.000 .6175326 .7713344
year2011 | 1.061091 .040092 26.47 0.000 .9825123 1.13967

year2012 | 1.678086 .0436418 38.45 0.000 1.59255 1.763623
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January | 1.010602 .0421685 23.97 0.000 .9279533 1.093251
February | .9290699 .0425211 21.85 0.000 .8457299 1.01241
March | 1.116892 .0424707 26.30 0.000 1.033651 1.200133
April | .9800539 .041991 23.34 0.000 .8977529 1.062355
May | .7210202 .0412295 17.49 0.000 .6402117 .8018287
June | .1789685 .0400946 4.46 0.000 .1003844 .2575527
August | .3673596 .0405256 9.06 0.000 .2879308 .4467884
September | .7103753 .0407591 17.43 0.000 .6304888 .7902618
October | .6392279 .0418929 15.26 0.000 .5571191 .7213366
November | 1.042765 .0427354 24.40 0.000 .9590054 1.126525
December | .7679938 .0426188 18.02 0.000 .6844623 .8515252
discharge | -.0000115 1.41e-07 -81.92 0.000 -.0000118 -.0000113
disch2 | 4.16e-12 1.55e-13 26.79 0.000 3.85e-12 4.46e-12
dirdown | -.1585536 .0167578 -9.46 0.000 -.1913984 -.1257087

_cons | -3.137239 .0405823 -77.31 0.000 -3.216779 -3.057699

Linear regression Number of obs = 596573
Regression Table 4B R-squared = 0.1676
Root MSE = .98275
| Robust

s2e In| Coef. Std.Err. t P>|t] [95% Conf.Interval]

+
T
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year2002 | .1820091 .0053966 33.73 0.000 .171432 .1925863
year2003 | .2051674 .0056126 36.55 0.000 .1941668 .216168
year2004 | .2095236 .0058501 35.82 0.000 .1980577 .2209896
year2005 | .2931722 .0056075 52.28 0.000 .2821818 .3041626
year2007 | .2396114 .005776 41.48 0.000 .2282905 .2509322
year2008 | .2910843 .0056067 51.92 0.000 .2800952 .3020733
year2009 | .0800511 .0063423 12.62 0.000 .0676205 .0924818
year2010 | .1946656 .0062414 31.19 0.000 .1824325 .2068986
year2011 | .2052654 .006539 31.39 0.000 .1924492 .2180816
year2012 | .2753853 .0065078 42.32 0.000 .2626301 .2881404
January | .4970959 .0062635 79.36 0.000 .4848195 .5093722
February | .4348723 .0063418 68.57 0.000 .4224426 .447302
March | .5647035 .006546 86.27 0.000 .5518735 .5775335
April | .44969 .0065098 69.08 0.000 .436931 .462449
May | .3727032 .0064195 58.06 0.000 .3601212 .3852852
June | .1268998 .0059969 21.16 0.000 .115146 .1386536
August | .0644028 .005528 11.65 0.000 .0535681 .0752374
September | .100456 .00564 17.81 0.000 .0894018 .1115102
October | .1187955 .0060988 19.48 0.000 .1068419 .130749
November | .2782408 .0063698 43.68 0.000 .2657561 .2907254
December | .3657321 .0064805 56.44 0.000 .3530306 .3784336
discharge | -3.86e-06 2.25e-08 -171.20 0.000 -3.90e-06 -3.81e-06
disch2 | 1.49e-12 2.71e-14 55.14 0.000 1.44e-12 1.55e-12
dirdown | -.1019191 .0025444 -40.06 0.000 -.1069059 -.0969322

_cons | 3.634083 .0059198 613.89 0.000 3.62248 3.645685
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Linear regression Number of obs = 282765
Regression Table 5A R-squared = 0.0631
Root MSE = 6.6051
| Robust

a2s_In| Coef. Std.Err. t P>|t|] [95% Conf. Interval]

year2002 | 0 (omitted)

year2003 | 0 (omitted)

year2004 | 0 (omitted)

year2005 | 0 (omitted)

year2007 | 0 (omitted)

year2008 | -.106437 .0512891 -2.08 0.038 -.2069621 -.0059118

year2009 | -1.53636 .0520075 -29.54 0.000 -1.638293 -1.434426

year2010 | -.7403352 .0519745 -14.24 0.000

year2011 | -.054921 .0530315 -1.04 0.300
year2012 | .3327431 .0579518 5.74 0.000
January | .9416078 .0625076 15.06 0.000
February | 1.391782 .0651537 21.36 0.000
March | 1.66246 .0658386 25.25 0.000

April | 1.165179 .063183 18.44 0.000 1

-.8422037 -.6384667

-.1588613 .0490193

.2191592 .4463269

.8190947 1.064121

1.264083 1.519482

1.533418 1.791502

.041342 1.289016
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May | 1.335452 .0642611 20.78 0.000 1.209502 1.461402
June | .2659032 .0590166 4.51 0.000 .1502324 .381574
August | .3996735 .0562443 7.11 0.000 .2894362 .5099108
September | .7887135 .0575276 13.71 0.000 .675961 .9014661
October | 1.099496 .0602729 18.24 0.000 .9813624 1.217629
November | 1.515181 .0616938 24.56 0.000 1.394263 1.636099
December | .903639 .0617017 14.65 0.000 .7827053 1.024573
discharge | -7.39e-06 2.23e-07 -33.11 0.000 -7.82e-06 -6.95e-06
disch2 | 3.39e-12 2.35e-13 14.42 0.000 2.93e-12 3.85e-12
dirdown | -.1540479 .0248454 -6.20 0.000 -.2027442 -.1053515
istage | -.0962272 .0017787 -54.10 0.000 -.0997134 -.092741

_cons | -.6782045 .0664123 -10.21 0.000 -.8083707 -.5480382

Linear regression Number of obs = 282901
Regression Table 5B R-squared = 0.1547

Root MSE = 1.0333

| Robust

s2e In| Coef. Std.Err. t P>|t] [95% Conf.Interval]

+.
T

year2002 | 0 (omitted)

year2003 | 0 (omitted)
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year2004 | 0 (omitted)
year2005 | 0 (omitted)
year2007 | .1738085 .0076315 22.78 0.000 .158851 .188766
year2008 | .034049 .0065564 5.19 0.000 .0211987 .0468992
year2009 | -.1720595 .0070453 -24.42 0.000 -.1858681 -.1582508
year2010 | -.0744687 .0070338 -10.59 0.000 -.0882549 -.0606826
year2011 | -.0277827 .0072014 -3.86 0.000 -.0418972 -.0136682
year2012 | 0 (omitted)
January | .4110741 .0096884 42.43 0.000 .392085 .4300632
February | .5257746 .0101435 51.83 0.000 .5058936 .5456556
March | .7274508 .0106591 68.25 0.000 .7065592 .7483424
April | .5208801 .0103064 50.54 0.000 .5006798 .5410804
May | .5554605 .0103826 53.50 0.000 .5351108 .5758101
June | .1791051 .0090461 19.80 0.000 .161375 .1968353
August | .0320466 .0080916 3.96 0.000 .0161872 .0479059
September | .0255062 .0082178 3.10 0.002 .0093996 .0416128
October | .1732451 .0090205 19.21 0.000 .1555652 .1909249
November | .2827549 .0092757 30.48 0.000 .2645748 .300935
December | .3327258 .0098037 33.94 0.000 .3135107 .3519408
discharge | -3.50e-06 3.72e-08 -94.32 0.000 -3.58e-06 -3.43e-06
disch2 | 1.32e-12 4.25e-14 31.16 0.000 1.24e-12 1.41e-12
dirdown | -.1023804 .0038849 -26.35 0.000 -.1099948 -.094766
istage | -.0087124 .000288 -30.25 0.000 -.0092769 -.0081479

_cons | 3.996837 .0086181 463.77 0.000 3.979946 4.013729
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Linear regression Number of obs = 259688
Regression Table 6A R-squared = 0.0793

Root MSE = 6.6139

| Robust

a2s_In| Coef. Std.Err. t P>|t|] [95% Conf. Interval]

+.
T

year2002 | 0 (omitted)
year2003 | 0 (omitted)
year2004 | 0 (omitted)
year2005 | 0 (omitted)

year2007 | -.0779284 .0613341 -1.27 0.204 -.1981417 .0422849
year2008 | -.3575028 .0468379 -7.63 0.000 -.4493038 -.2657019
year2009 | -1.891316 .0474682 -39.84 0.000 -1.984353 -1.79828
year2010 | -1.040908 .0476372 -21.85 0.000 -1.134276 -.9475402
year2011 | -.4016834 .048604 -8.26 0.000 -.4969459 -.3064208
year2012 | 0 (omitted)

January | .5202295 .06587 7.90 0.000 .3911262 .6493329
February | .9643296 .0683609 14.11 0.000 .830344 1.098315
March | 1.320878 .0692271 19.08 0.000 1.185195 1.456561
April | .8399218 .0669073 12.55 0.000 .7087853 .9710582

May | 1.134218 .0685682 16.54 0.000 .9998266 1.26861
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June | .0936858 .0639958 1.46 0.143 -.0317441 .2191158
August | .4034865 .0618109 6.53 0.000 .2823387 .5246343
September | .6946182 .0627519 11.07 0.000 .5716263 .8176102
October | .8371182 .0648662 12.91 0.000 .7099822 .9642542
November | 1.055825 .0653143 16.17 0.000 .9278111 1.18384
December | .4622504 .0652473 7.08 0.000 .3343675 .5901333
discharge | -8.92e-06 2.31e-07 -38.62 0.000 -9.38e-06 -8.47e-06
disch2 | 4.83e-12 2.41e-13 20.01 0.000 4.35e-12 5.30e-12
dirdown | -.1719637 .0259608 -6.62 0.000 -.2228463 -.1210812
istage | -.1020987 .001864 -54.78 0.000 -.105752 -.0984454
draftldft | .2143786 .0137612 15.58 0.000 .187407 .2413502

_cons | -1.360472 .138718 -9.81 0.000 -1.632356 -1.088589

Linear regression Number of obs = 259802
Regression Table 6B R-squared = 0.1764

Root MSE = 1.0396

| Robust

s2e In| Coef. Std.Err. t P>|t] [95% Conf.Interval]

+.
T

year2002 | 0 (omitted)

year2003 | 0 (omitted)
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year2004 | 0 (omitted)
year2005 | 0 (omitted)
year2007 | .2269873 .0079633 28.50 0.000 .2113795 .2425952
year2008 | .0505381 .0068739 7.35 0.000 .0370655 .0640107
year2009 | -.1681701 .0074007 -22.72 0.000 -.1826753 -.153665
year2010 | -.0660971 .0074287 -8.90 0.000 -.0806572 -.051537
year2011 | -.031608 .0075255 -4.20 0.000 -.0463579 -.0168581
year2012 | 0 (omitted)
January | .3505277 .0102968 34.04 0.000 .3303464 .3707091
February | .4662324 .0107314 43.45 0.000 .4451992 .4872657
March | .6794729 .0112915 60.18 0.000 .6573419 .7016039
April | .4770401 .010992 43.40 0.000 .4554961 .498584
May | .5362299 .0112021 47.87 0.000 .5142741 .5581856
June | .1584638 .0099633 15.90 0.000 .1389361 .1779915
August | .0328469 .0089909 3.65 0.000 .015225 .0504688
September | .0163283 .008991 1.82 0.069 -.0012938 .0339504
October | .1385414 .0097179 14.26 0.000 .1194946 .1575883
November | .2080486 .0098907 21.03 0.000 .1886631 .2274342
December | .2647747 .0104397 25.36 0.000 .2443132 .2852362
discharge | -3.82e-06 3.83e-08 -99.59 0.000 -3.89e-06 -3.74e-06
disch2 | 1.61e-12 4.36e-14 36.95 0.000 1.52e-12 1.69e-12
dirdown | -.1168612 .0040782 -28.65 0.000 -.1248545 -.108868
istage | -.009342 .0002964 -31.52 0.000 -.009923 -.008761
draftldft | .0147481 .0022857 6.45 0.000 .0102682 .019228

_cons | 4.010431 .022469 178.49 0.000 3.966392 4.05447

106




Linear regression Number of obs = 259688
Regression Table 6C R-squared = 0.0793

Root MSE = 6.6138

| Robust

a2s_In| Coef. Std.Err. t P>|t|] [95% Conf. Interval]

4.
T

year2002 | 0 (omitted)
year2003 | 0 (omitted)
year2004 | 0 (omitted)
year2005 | 0 (omitted)

year2007 | -.0785902 .0613327 -1.28 0.200 -.1988008 .0416203
year2008 | -.3590549 .0468395 -7.67 0.000 -.450859 -.2672509
year2009 | -1.892745 .0474683 -39.87 0.000 -1.985782 -1.799709
year2010 | -1.042174 .047637 -21.88 0.000 -1.135541 -.9488067
year2011 | -.4022331 .0486031 -8.28 0.000 -.4974939 -.3069723
year2012 | 0 (omitted)

January | .5196243 .0658694 7.89 0.000 .3905221 .6487266

February | .9636021 .0683606 14.10 0.000 .8296172 1.097587
March | 1.319938 .0692285 19.07 0.000 1.184252 1.455624

April | .8375148 .0669079 12.52 0.000 .706377 .9686525

107




May | 1.132631 .0685721 16.52 0.000 .9982316 1.267031
June | .0925364 .0639957 1.45 0.148 -.0328935 .2179663
August | .402964 .0618076 6.52 0.000 .2818226 .5241053
September | .6933731 .0627529 11.05 0.000 .5703791 .816367
October | .8362715 .0648684 12.89 0.000 .7091311 .9634119
November | 1.054798 .0653127 16.15 0.000 .9267865 1.182809
December | .4618416 .0652431 7.08 0.000 .3339668 .5897163
discharge | -8.92e-06 2.31e-07 -38.61 0.000 -9.37e-06 -8.47e-06
disch2 | 4.83e-12 2.41e-13 20.01 0.000 4.35e-12 5.30e-12
dirdown | -.1717542 .0259605 -6.62 0.000 -.2226361 -.1208723
istage | -.0620101 .0119055 -5.21 0.000 -.0853445 -.0386757
draftldft | .3137916 .0342997 9.15 0.000 .2465652 .3810181
draftstage | -.0044918 .0013205 -3.40 0.001 -.00708 -.0019036

_cons | -2.246126 .3121107 -7.20 0.000 -2.857855 -1.634398

Linear regression Number of obs = 259802
Regression Table 6D R-squared = 0.1766

Root MSE = 1.0395

| Robust

s2e In| Coef. Std.Err. t P>|t] [95% Conf. Interval]
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year2002 | 0 (omitted)

year2003 | 0 (omitted)
year2004 | 0 (omitted)
year2005 | 0 (omitted)

year2007 | .2267039 .007964 28.47 0.000 .2110948 .2423131
year2008 | .0498862 .0068738 7.26 0.000 .0364137 .0633586
year2009 | -.1687709 .0074005 -22.81 0.000 -.1832758 -.1542661
year2010 | -.0666303 .0074284 -8.97 0.000 -.0811898 -.0520708
year2011 | -.0318445 .0075251 -4.23 0.000 -.0465935 -.0170956
year2012 | 0 (omitted)
January | .3502755 .0102952 34.02 0.000 .3300971 .3704538
February | .4659299 .0107292 43.43 0.000 .444901 .4869587
March | .6790782 .0112899 60.15 0.000 .6569504 .7012061
April | .4760411 .0109892 43.32 0.000 .4545026 .4975796
May | .5355714 .0112011 47.81 0.000 .5136177 .5575252
June | .157987 .009961 15.86 0.000 .1384636 .1775103
August | .0326301 .0089895 3.63 0.000 .0150108 .0502494
September | .0158102 .0089902 1.76 0.079 -.0018104 .0334307
October | .138189 .0097167 14.22 0.000 .1191445 .1572335
November | .2076212 .0098901 20.99 0.000 .1882368 .2270056
December | .2646042 .010438 25.35 0.000 .2441459 .2850624
discharge | -3.82e-06 3.83e-08 -99.59 0.000 -3.89e-06 -3.74e-06
disch2 | 1.61e-12 4.35e-14 36.96 0.000 1.52e-12 1.69e-12

dirdown | -.1167737 .0040777 -28.64 0.000 -.1247658 -.1087816
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istage | .00727 .0020621 3.53 0.000 .0032285 .0113116
draftldft | .0559422 .0050088 11.17 0.000 .0461251 .0657592
draftstage | -.0018613 .0002294 -8.11 0.000 -.002311 -.0014117

_cons | 3.643451 .0455238 80.03 0.000 3.554225 3.732676

Linear regression Number of obs = 282765
Regression Table 7A R-squared = 0.0843

Root MSE = 6.5303

| Robust

a2s_In| Coef. Std.Err. t P>|t|] [95% Conf. Interval]

+.
T

year2002 | 0 (omitted)
year2003 | 0 (omitted)
year2004 | 0 (omitted)
year2005 | 0 (omitted)
year2007 | 0 (omitted)

year2008 | -.0312529 .052668 -0.59 0.553 -.1344807 .0719749
year2009 | -1.362558 .05308 -25.67 0.000 -1.466594 -1.258523
year2010 | -.6571475 .0530322 -12.39 0.000 -.7610892 -.5532058
year2011 | .0503427 .0538309 0.94 0.350 -.0551644 .1558498

year2012 | .6579373 .0597513 11.01 0.000 .5408264 .7750481
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January | .4437214 .0620274 7.15 0.000 .3221494 .5652933
February | .7065831 .0641421 11.02 0.000 .5808664 .8322998
March | .7505941 .0651577 11.52 0.000 .6228869 .8783013
April | .5376094 .0625639 8.59 0.000 .414986 .6602329
May | .5869089 .0635073 9.24 0.000 .4624364 .7113814
June | -.0099593 .0585377 -0.17 0.865 -.1246916 .104773
August | .4906197 .0568423 8.63 0.000 .3792104 .6020291
September | .9857999 .0584549 16.86 0.000 .8712298 1.10037
October | 1.199364 .0608604 19.71 0.000 1.08008 1.318649
November | 1.49524 .0617032 24.23 0.000 1.374304 1.616177
December | .5224951 .0607024 8.61 0.000 .4035201 .6414701
discharge | -2.75e-06 2.28e-07 -12.05 0.000 -3.20e-06 -2.30e-06
disch2 | 1.40e-12 2.27e-13 6.16 0.000 9.52e-13 1.84e-12
dirdown | -.1394261 .0245633 -5.68 0.000 -.1875695 -.0912827
istage | -.1046299 .001781 -58.75 0.000 -.1081205 -.1011393
wicket | -2.358351 .0286586 -82.29 0.000 -2.414521 -2.302181

_cons | -.3846263 .0672273 -5.72 0.000 -.5163899 -.2528627

Linear regression Number of obs = 282901
Regression Table 7B R-squared = 0.4899
Root MSE = .80276
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| Robust

s2e_In| Coef. Std.Err. t P>|t| [95% Conf. Interval]

+.
T

year2002 | 0 (omitted)
year2003 | 0 (omitted)
year2004 | 0 (omitted)
year2005 | 0 (omitted)

year2007 | -.0395131 .0076842 -5.14 0.000 -.054574 -.0244522
year2008 | -.1299946 .0055704 -23.34 0.000 -.1409125 -.1190768
year2009 | -.271414 .0056043 -48.43 0.000 -.2823983 -.2604297
year2010 | -.233292 .005599 -41.67 0.000 -.2442658 -.2223182
year2011 | -.1720659 .0057279 -30.04 0.000 -.1832923 -.1608395
year2012 | 0 (omitted)

January | .0837563 .007592 11.03 0.000 .0688762 .0986364
February | .0762437 .0073983 10.31 0.000 .0617433 .0907442
March | .129488 .0076291 16.97 0.000 .1145351 .1444409
April | .1096087 .0077075 14.22 0.000 .0945022 .1247152
May | .0648155 .0076442 8.48 0.000 .0498331 .0797978
June | -.0014602 .0071661 -0.20 0.839 -.0155056 .0125852
August | .0914033 .0075456 12.11 0.000 .076614 .1061925
September | .1543828 .0078036 19.78 0.000 .139088 .1696775
October | .2385902 .0080541 29.62 0.000 .2228044 .2543759
November | .2695488 .0079809 33.77 0.000 .2539065 .285191
December | .0827482 .0072715 11.38 0.000 .0684963 .0970002

discharge | -4.63e-07 2.94e-08 -15.76 0.000 -5.20e-07 -4.05e-07
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disch2 | 1.94e-14 3.01e-14 0.64 0.520
dirdown | -.0927507 .0030176 -30.74 0.000
istage | -.0142421 .0001964 -72.50 0.000

wicket | -1.547306 .004915 -314.81 0.000

_cons | 4.403402 .0074563 590.56 0.000

-3.97e-14 7.84e-14

-.0986651 -.0868362
-.0146271 -.013857
-1.55694 -1.537673

4.388788 4.418016

Linear regression

Number of obs = 282765

Regression Table 7C R-squared = 0.1090
Root MSE = 6.4413
| Robust
a2s_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]
year2002 | 0 (omitted)
year2003 | 0 (omitted)
year2004 | 0 (omitted)
year2005 | 0 (omitted)
year2007 | 0 (omitted)

year2008 | -.0645728 .0524621 -1.23 0.218

year2009 | -1.199063 .0546403 -21.94 0.000

year2010 | -.533783 .0532852 -10.02 0.000

year2011 | -.0078636 .0548875 -0.14 0.886

-.167397 .0382515

-1.306156 -1.091969

-.6382204 -.4293455

-.1154415 .0997144
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year2012 | .5555813 .058304 9.53 0.000 .4413071 .6698555
January | .594076 .061715 9.63 0.000 .4731162 .7150357
February | .8606476 .063909 13.47 0.000 .7353878 .9859075
March | .6774674 .0645018 10.50 0.000 .5510456 .8038891
April | .5934985 .0621326 9.55 0.000 .4717202 .7152767
May | .7517762 .0634778 11.84 0.000 .6273615 .8761909
June | .2489076 .058178 4.28 0.000 .1348803 .362935
August | .2996957 .0561317 5.34 0.000 .1896792 .4097122
September | .6986952 .0578001 12.09 0.000 .5854086 .8119818
October | .980385 .0610951 16.05 0.000 .8606403 1.10013
November | 1.375395 .0615035 22.36 0.000 1.25485 1.49594
December | .7082605 .0613858 11.54 0.000 .587946 .8285749
discharge | -7.84e-06 2.34e-07 -33.46 0.000 -8.30e-06 -7.38e-06
disch2 | 1.09e-11 3.20e-13 34.06 0.000 1.03e-11 1.15e-11
dirdown | -.1254732 .0242301 -5.18 0.000 -.1729636 -.0779828
istage | -.0346345 .0022445 -15.43 0.000 -.0390336 -.0302354
wicket | 3.362117 .1276729 26.33 0.000 3.111882 3.612353
wickstage | -.2549187 .0055247 -46.14 0.000 -.265747 -.2440904

_cons | -1.515951 .0678441 -22.34 0.000 -1.648924 -1.382979

Linear regression Number of obs = 282901
Regression Table 7D R-squared = 0.5558
Root MSE = .74911
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| Robust

s2e_In| Coef. Std.Err. t P>|t| [95% Conf. Interval]

+.
T

year2002 | 0 (omitted)
year2003 | 0 (omitted)
year2004 | 0 (omitted)
year2005 | 0 (omitted)

year2007 | -.0118258 .0069918 -1.69 0.091 -.0255295 .0018778
year2008 | -.1112345 .0050482 -22.03 0.000 -.1211289 -.1013401
year2009 | -.1997921 .0055271 -36.15 0.000 -.2106251 -.1889591
year2010 | -.1724608 .0052359 -32.94 0.000 -.182723 -.1621986
year2011 | -.1599778 .0055798 -28.67 0.000 -.170914 -.1490416
year2012 | 0 (omitted)

January | .124135 .0072218 17.19 0.000 .1099805 .1382895
February | .1176852 .0070581 16.67 0.000 .1038516 .1315188
March | .1100367 .0071725 15.34 0.000 .0959787 .1240947
April | .1246166 .0073236 17.02 0.000 .1102625 .1389706
May | .1090953 .0075062 14.53 0.000 .0943833 .1238072
June | .0679665 .006682 10.17 0.000 .0548699 .0810631
August | .0402492 .0069768 5.77 0.000 .026575 .0539235
September | .0774206 .0073184 10.58 0.000 .0630767 .0917645
October | .1798577 .0078781 22.83 0.000 .1644169 .1952986

November | .2374324 .007652 31.03 0.000 .2224347 .2524301
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December | .1326905 .0073681 18.01 0.000 .1182492 .1471317
discharge | -1.83e-06 3.23e-08 -56.66 0.000 -1.89e-06 -1.77e-06
disch2 | 2.57e-12 5.94e-14 43.34 0.000 2.46e-12 2.69e-12
dirdown | -.0889662 .0028165 -31.59 0.000 -.0944864 -.083446
istage | .0045498 .0002902 15.68 0.000 .0039811 .0051186
wicket | -.0112865 .0252866 -0.45 0.655 -.0608476 .0382746
wickstage | -.0684553 .001118 -61.23 0.000 -.0706466 -.0662639

_cons | 4.071887 .0072875 558.75 0.000 4.057604 4.086171

Linear regression Number of obs = 528778
Regression Table 8A R-squared = 0.0766

Root MSE = 6.5083

| Robust

a2s_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+
T

year2002 | .3475816 .0406964 8.54 0.000 .2678179 .4273452
year2003 | -.0676394 .0405396 -1.67 0.095 -.1470957 .0118169
year2004 | .1024994 .0403485 2.54 0.011 .0234177 .1815811
year2005 | 1.372131 .0411928 33.31 0.000 1.291394 1.452867
year2007 | 1.085773 .0413327 26.27 0.000 1.004762 1.166784

year2008 | 1.365225 .0409084 33.37 0.000 1.285046 1.445404
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year2009 | -.3560433 .0415696 -8.56 0.000

-4375184 -.2745682

year2010 | .716988 .0418872 17.12 0.000 .6348904 .7990857
year2011 | 1.008894 .0425886 23.69 0.000 .925422 1.092367
year2012 | 1.694293 .0464826 36.45 0.000 1.603188 1.785397
January | .5025883 .0456182 11.02 0.000 .4131781 .5919985
February | .3832741 .0458649 8.36 0.000 .2933804 .4731678
March | .6517268 .046013 14.16 0.000 .5615428 .7419108
April | .5511533 .0456581 12.07 0.000 .4616649 .6406417
May | .4335362 .0454675 9.54 0.000 .3444213 .5226511
June | -.0183656 .0449128 -0.41 0.683 -.1063933 .069662
August | .4113702 .0458747 8.97 0.000 .3214572 .5012832
September | .6369056 .0457175 13.93 0.000 .5473008 .7265104
October | .3429193 .04653 7.37 0.000 .251722 .4341166
November | .5358222 .046403 11.55 0.000 .4448738 .6267706
December | .2715219 .0461583 5.88 0.000 .1810531 .3619907

discharge | -.0000134 1.50e-07 -89.07 0.000

disch2 | 5.69e-12 1.65e-13 34.47 0.000 5

dirdown | -.1776913 .0179065 -9.92 0.000

tugboat | .9721237 .0987024 9.85 0.000

pushboat | 1.538517 .0916808 16.78 0.000

num_processed | .0566828 .0014935 37.95 0.0

_cons | -4.258755 .1013612 -42.02 0.000

-.0000137 -.0000131
.37e-12  6.02e-12

-.2127875 -.142595
7786702 1.165577
1.358825 1.718208
00 .0537555 .0596101

-4.45742 -4.060091
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Linear regression Number of obs = 524754
Regression Table 8B R-squared = 0.1952

Root MSE = .97888

| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .2243951 .0057038 39.34 0.000 .2132159 .2355743
year2003 | .2276755 .0059353 38.36 0.000 .2160425 .2393084
year2004 | .2342802 .0062193 37.67 0.000 .2220906 .2464698
year2005 | .3237411 .0059262 54.63 0.000 .3121259 .3353562
year2007 | .2722376 .0061182 44.50 0.000 .2602461 .2842291
year2008 | .3067118 .0059271 51.75 0.000 .2950949 .3183288
year2009 | .0726563 .0067359 10.79 0.000 .059454 .0858585
year2010 | .1841422 .0066818 27.56 0.000 .1710461 .1972383
year2011 | .1807678 .0069573 25.98 0.000 .1671316 .1944039
year2012 | .2627935 .0069434 37.85 0.000 .2491846 .2764023
January | .411951 .0067717 60.83 0.000 .3986786 .4252234
February | .3438941 .0068323 50.33 0.000 .3305031 .3572852
March | .4853233 .0070768 68.58 0.000 .4714529 .4991937
April | .3783394 .0070602 53.59 0.000 .3645016 .3921773
May | .3343196 .0070672 47.31 0.000 .3204682 .348171
June | .1029644 .0067393 15.28 0.000 .0897556 .1161732

August | .0725384 .0062075 11.69 0.000 .0603719 .0847049

118




September | .0907788 .0062672 14.48 0.000 .0784952 .1030624

October | .0758497 .0067082 11.31 0.000 .0627018 .0889975

November | .1922639 .0069012 27.86 0.000 .1787377 .2057901

December | .2820804 .0069941 40.33 0.000 .2683722 .2957887

discharge | -4.15e-06 2.38e-08 -174.75 0.000 -4.20e-06 -4.11e-06
disch2 | 1.73e-12 2.85e-14 60.55 0.000 1.67e-12 1.78e-12

-.116809 .0027013 -43.24 0.000 -.1221035 -.1115145

dirdown |

tugboat | .9118617 .1143567 7.97 0.000 .6877261 1.135997
pushboat | 1.003098 .1142303 8.78 0.000 77921 1.226985
yearbuilt | .0028233 .000104 27.14 0.000 .0026194 .0030272

num_processed | .0067533 .0002817 23.98 0.000 .0062012 .0073053

_cons | -2.84451 .2369237 -12.01 0.000 -3.308873 -2.380147

Linear regression Number of obs = 524633

Regression Table 8C R-squared = 0.0767

Root MSE = 6.5105

| Robust

a2s In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .353146 .0409137 8.63 0.000 .2729564 .4333356

year2003 | -.0627685 .0407504 -1.54 0.123 -.1426381 .017101
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year2004 | .0956651 .0404714 2.36 0.018 .0163423 .1749878
year2005 | 1.370187 .0413107 33.17 0.000 1.28922 1.451155
year2007 | 1.094662 .0414662 26.40 0.000 1.013389 1.175934
year2008 | 1.37796 .0410309 33.58 0.000 1.29754 1.458379
year2009 | -.3327759 .0417067 -7.98 0.000 -.4145196 -.2510321
year2010 | .7207479 .0420394 17.14 0.000 .6383521 .8031438
year2011 | 1.018416 .0427439 23.83 0.000 .9346395 1.102193
year2012 | 1.689674 .0468009 36.10 0.000 1.597945 1.781402
January | .4977956 .0458204 10.86 0.000 .407989 .5876021
February | .3811833 .0460837 8.27 0.000 .2908607 .4715058
March | .6532647 .0462237 14.13 0.000 .5626677 .7438616
April | .5525288 .0458853 12.04 0.000 .4625951 .6424626
May | .4329069 .0456674 9.48 0.000 .3434002 .5224136
June | -.0149474 .0451442 -0.33 0.741 -.1034285 .0735337
August | .4190783 .0461286 9.09 0.000 .3286678 .5094888
September | .6358857 .0459326 13.84 0.000 .5458592 .7259122
October | .3521388 .0467506 7.53 0.000 .260509 .4437686
November | .54603 .0466388 11.71 0.000 .4546193 .6374406
December | .2684924 .0463587 5.79 0.000 .1776308 .359354
discharge | -.0000133 1.51e-07 -88.53 0.000 -.0000136 -.000013
disch2 | 5.66e-12 1.66e-13 34.13 0.000 5.33e-12 5.98e-12
dirdown | -.1807707 .0179846 -10.05 0.000 -.21602 -.1455214
tugboat | 4.694106 .4939652 9.50 0.000 3.72595 5.662262
pushboat | 5.288235 .4917617 10.75 0.000 4.324397 6.252072

num_processed | .0442393 .0017385 25.45 0.000 .0408318 .0476468
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draftldft | .0665147 .0113132 5.88 0.000 .0443412 .0886883
draftitft | .0839937 .0088977 9.44 0.000 .0665546 .1014328
tonnage | .0005275 .0000618 8.54 0.000 .0004064 .0006485

_cons | -9.321427 .5095193 -18.29 0.000 -10.32007 -8.322786

Linear regression Number of obs = 521534
Regression Table 8D R-squared = 0.1961
Root MSE = .97884
| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .2262678 .0057054 39.66 0.000 .2150854 .2374501
year2003 | .2290851 .0059363 38.59 0.000 .2174501 .2407201
year2004 | .2336864 .0062149 37.60 0.000 .2215054 .2458674
year2005 | .3232712 .0059212 54.60 0.000 .3116658 .3348766
year2007 | .2732588 .0061135 44.70 0.000 .2612765 .2852411
year2008 | .3087737 .0059327 52.05 0.000 .2971459 .3204015
year2009 | .0711534 .0067629 10.52 0.000 .0578984 .0844085
year2010 | .1804756 .0067184 26.86 0.000 .1673077 .1936436
year2011 | .1795774 .0069977 25.66 0.000 .1658621 .1932927
year2012 | .2612747 .0069877 37.39 0.000 .2475791 .2749703

January | .4134897 .0067992 60.81 0.000 .4001634 .4268159
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February | .3438887 .0068607 50.12 0.000 .3304421 .3573354
March | .4844831 .0071013 68.22 0.000 .4705648 .4984014
April | .3782252 .0070855 53.38 0.000 .3643378 .3921126

May | .33306 .0070893 46.98 0.000 .3191651 .3469548
June | .1031746 .0067669 15.25 0.000 .0899117 .1164375
August | .0726877 .0062371 11.65 0.000 .0604631 .0849123

September | .0902051 .0062974 14.32 0.000 .0778623 .1025479
October | .0757526 .0067349 11.25 0.000 .0625524 .0889528

.1924781 .0069253 27.79 0.000 .1789048 .2060515

November |
December | .2817759 .0070201 40.14 0.000 .2680167 .2955351
discharge | -4.15e-06 2.38e-08 -174.30 0.000 -4.20e-06 -4.10e-06
disch2 | 1.73e-12 2.86e-14 60.54 0.000 1.67e-12 1.79e-12
dirdown | -.1158264 .0027092 -42.75 0.000 -.1211363 -.1105164
tugboat | 1.729984 .1282866 13.49 0.000 1.478547 1.981422
pushboat | 1.84782 .1281561 14.42 0.000 1.596638 2.099002
yearbuilt | .0028037 .000108 25.96 0.000 .0025921 .0030154
num_processed | .006994 .000323 21.65 0.000 .0063608 .0076272
draftldft | .0107845 .0017985 6.00 0.000 .0072596 .0143095
draftltft | .0114822 .0014449 7.95 0.000 .0086503 .0143142
tonnage | .0002413 .0000131 18.44 0.000 .0002156 .0002669
horsepower | -.0000267 1.45e-06 -18.40 0.000 -.0000295 -.0000238

_cons | -3.813604 .2558761 -14.90 0.000 -4.315113 -3.312094
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Linear regression Number of obs = 520330
Regression Table 9A R-squared = 0.0785

Root MSE = 6.5052

| Robust

a2s_In| Coef. Std.Err. t P>|t|] [95% Conf. Interval]

+.
T

year2002 | .3382331 .0411532 8.22 0.000 .2575742 .418892
year2003 | -.1048701 .0409613 -2.56 0.010 -.185153 -.0245871
year2004 | .0475055 .0406098 1.17 0.242 -.0320885 .1270994
year2005 | 1.356718 .0414022 32.77 0.000 1.275571 1.437865
year2007 | 1.088448 .0416272 26.15 0.000 1.00686 1.170036
year2008 | 1.361853 .0411897 33.06 0.000 1.281123 1.442584
year2009 | -.3773128 .0418677 -9.01 0.000 -.4593723 -.2952533
year2010 | .6890044 .042284 16.29 0.000 .606129 .7718797
year2011 | .9632843 .0428971 22.46 0.000 .8792074 1.047361
year2012 | 1.626554 .0470943 34.54 0.000 1.53425 1.718857
January | .4550464 .0460383 9.88 0.000 .3648127 .5452801
February | .3352777 .0462821 7.24 0.000 .2445662 .4259892
March | .6032586 .0464203 13.00 0.000 .5122763 .6942409
April | .5060007 .0460749 10.98 0.000 .4156952 .5963061
May | .3957152 .0458668 8.63 0.000 .3058177 .4856127
June | -.029682 .0453348 -0.65 0.513 -.1185368 .0591729

August | .4159915 .0463454 8.98 0.000 .3251559 .5068271
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September | .6367652 .0461841 13.79 0.000 .5462457 .7272847
October | .3519111 .0469503 7.50 0.000 .2598901 .4439321
November | .5296488 .0468197 11.31 0.000 .4378837 .6214139
December | .2357612 .0465238 5.07 0.000 .1445761 .3269463
discharge | -.0000131 1.52e-07 -86.39 0.000 -.0000134 -.0000128
disch2 | 5.50e-12 1.67e-13 33.02 0.000 5.17e-12 5.82e-12
dirdown | -.1800892 .0180452 -9.98 0.000 -.2154572 -.1447211
tugboat | 6.699091 .5149786 13.01 0.000 5.689749 7.708433
pushboat | 7.120311 .5126293 13.89 0.000 6.115574 8.125048
num_processed | .0434496 .0019071 22.78 0.000 .0397118 .0471874
draftldft | .1195268 .0116804 10.23 0.000 .0966335 .14242
draftitft | .0490546 .0093771 5.23 0.000 .0306758 .0674334
tonnage | .0010171 .0000665 15.29 0.000 .0008867 .0011475
clecc| .9110921 .0325123 28.02 0.000 .847369 .9748152
ppp | .2342696 .0248228 9.44 0.000 .1856177 .2829216
crp | .2833166 .0310812 9.12 0.000 .2223984 .3442347
cmief | -.4690916 .031047 -15.11 0.000 -.5299428 -.4082404
pmg | -.0607153 .0326259 -1.86 0.063 -.1246609 .0032304
ffp | -.6834786 .0399055 -17.13 0.000 -.7616921 -.605265
mem | -.0051786 .1197533 -0.04 0.966 -.2398913 .2295341

_cons | -11.6218 .5299659 -21.93 0.000 -12.66052 -10.58309

Linear regression Number of obs = 517229
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Regression Table 9B R-squared = 0.2032

Root MSE = .97453

| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .2257077 .0057456 39.28 0.000 .2144465 .2369688
year2003 | .2217841 .0059619 37.20 0.000 .210099 .2334693
year2004 | .2241712 .0062306 35.98 0.000 .2119594 .2363829
year2005 | .322126 .0059345 54.28 0.000 .3104946 .3337575
year2007 | .2691568 .0061294 43.91 0.000 .2571433 .2811702
year2008 | .3001492 .005951 50.44 0.000 .2884855 .3118129
year2009 | .0618997 .0067695 9.14 0.000 .0486318 .0751676
year2010 | .1774015 .0067321 26.35 0.000 .1642068 .1905961
year2011 | .1731111 .0069927 24.76 0.000 .1594057 .1868165
year2012 | .2654774 .0070097 37.87 0.000 .2517387 .2792162
January | .3981077 .0068062 58.49 0.000 .3847677 .4114476
February | .3299966 .0068717 48.02 0.000 .3165284 .3434649
March | .4670784 .0071058 65.73 0.000 .4531513 .4810055
April | .3629836 .007089 51.20 0.000 .3490894 .3768778
May | .3208502 .0070911 45.25 0.000 .3069519 .3347485
June | .0984857 .0067701 14.55 0.000 .0852165 .1117548
August | .0738599 .0062429 11.83 0.000 .061624 .0860958

September | .089556 .0063125 14.19 0.000 .0771837 .1019284
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October | .0753943 .0067375 11.19 0.000 .0621891 .0885996
November | .1869136 .0069304 26.97 0.000 .1733303 .2004969
December | .2712426 .0070248 38.61 0.000 .2574743 .2850109
discharge | -4.08e-06 2.39e-08 -171.15 0.000 -4.13e-06 -4.04e-06
disch2 | 1.69e-12 2.86e-14 59.04 0.000 1.63e-12 1.74e-12
dirdown | -.1151432 .0027082 -42.52 0.000 -.1204513 -.1098351
tugboat | 1.968151 .1290134 15.26 0.000 1.715288 2.221013
pushboat | 2.005606 .1288625 15.56 0.000 1.75304 2.258173
yearbuilt | .001988 .0001116 17.81 0.000 .0017692 .0022068
num_processed | .0039784 .0003707 10.73 0.000 .0032518 .0047049
draftldft | .0293451 .0019125 15.34 0.000 .0255966 .0330935
draftitft | .0055651 .0015193 3.66 0.000 .0025873 .008543
tonnage | .0002576 .0000135 19.04 0.000 .0002311 .0002841
horsepower | -.0000161 1.50e-06 -10.72 0.000 -.000019 -.0000131
clecc| .303236 .0044341 68.39 0.000 .2945453 .3119266
ppp | .0310074 .0041924 7.40 0.000 .0227905 .0392244
crp | .0992906 .0049601 20.02 0.000 .089569 .1090121
cmief | -.1290096 .0045956 -28.07 0.000 -.1380169 -.1200022
pmg | -.0050373 .0051242 -0.98 0.326 -.0150805 .0050059
ffp | -.1706948 .0063485 -26.89 0.000 -.1831376 -.158252
mem | -.111019 .0195065 -5.69 0.000 -.1492512 -.0727868

_cons | -2.560387 .2623502 -9.76 0.000 -3.074585 -2.046189
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Linear regression Number of obs = 520330
Regression Table 10A R-squared = 0.1567
Root MSE = 6.2229
| Robust
a2s_In| Coef. Std.Err. t P>|t|] [95% Conf. Interval]
year2002 | .2292784 .0394004 5.82 0.000 .1520549 .3065019
year2003 | -.4660449 .0387893 -12.01 0.000 -.5420708 -.3900191
year2004 | -.4188142 .0384076 -10.90 0.000 -.4940919 -.3435364

year2005 | 1.117432 .0398386 28.05 0.000
year2007 | .948509 .0401759 23.61 0.000
year2008 | 1.07546 .0397707 27.04 0.000
year2009 | -.5212921 .0396837 -13.14 0.000
year2010 | .4435448 .0400365 11.08 0.000
year2011 | .7008668 .0401825 17.44 0.000
year2012 | 1.662758 .046098 36.07 0.000

January | -.5411987 .0444222 -12.18 0.000
February | -.6581938 .044288 -14.86 0.000
March | -.6554979 .0445832 -14.70 0.000
April | -.5653277 .044022 -12.84 0.000

May | -.6071894 .043687 -13.90 0.000
-.389923 .0432414 -9.02 0.000

June |

August | .5378975 .0454218 11.84 0.000

-.6516094

-.4746748

1.039349 1.195514
.8697655 1.027253
9975111  1.15341
-.599071 -.4435132
.3650745 .5220151
.6221103 .7796232
1.572407 1.753109
-.6282649 -.4541326
-.7449969 -.5713906
-.7428795 -.5681163

-.479046

-.6928146 -.5215643

-.3051713

4488723 .6269228
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September | .6639333 .0452287 14.68 0.000 .5752865 .7525802
October | .3662921 .045357 8.08 0.000 .2773939 .4551903
November | .167401 .0449441 3.72 0.000 .0793119 .2554901
December | -.5681501 .0444155 -12.79 0.000 -.6552031 -.4810971
discharge | -6.13e-06 1.56e-07 -39.27 0.000 -6.43e-06 -5.82e-06
disch2 | 1.98e-12 1.64e-13 12.04 0.000 1.66e-12 2.30e-12
dirdown | -.1388782 .0172616 -8.05 0.000 -.1727104 -.1050461
tugboat | 4.127506 .4751575 8.69 0.000 3.196212 5.0588
pushboat | 4.614239 .4728853 9.76 0.000 3.687398 5.541079
num_processed | .0517247 .001773 29.17 0.000 .0482497 .0551998
draftldft | .087896 .0111663 7.87 0.000 .0660105 .1097815
draftltft | .0252386 .0090178 2.80 0.005 .007564 .0429131
tonnage | .0008742 .0000636 13.75 0.000 .0007495 .0009988
clecc | .1522694 .0318013 4.79 0.000 .0899399 .2145989
ppp | .2120469 .0235931 8.99 0.000 .1658052 .2582886
crp | 1369166 .029622 4.62 0.000 .0788583 .1949748
cmief | -.2574536 .0301911 -8.53 0.000 -.3166272 -.19828
pmg | -.0659391 .0313247 -2.11 0.035 -.1273346 -.0045436
ffp | -.0562804 .0384529 -1.46 0.143 -.1316469 .0190861
mem | .0338761 .1168658 0.29 0.772 -.1951772 .2629294
markland | -.0451818 .0424663 -1.06 0.287 -.1284144 .0380507
mcalpine | -.4937527 .0401444 -12.30 0.000 -.5724344 -.415071
cannelton | -.3306805 .0400164 -8.26 0.000 -.4091114 -.2522496
newburgh | -.258832 .0373375 -6.93 0.000 -.3320123 -.1856516

smithland | -3.544178 .0355704 -99.64 0.000 -3.613895 -3.474461
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lock52 | -2.600548 .0352607 -73.75 0.000 -2.669658 -2.531438
lock53 | -5.880447 .0319737 -183.91 0.000 -5.943115 -5.81778

_cons | -7.169449 .4915394 -14.59 0.000 -8.132851 -6.206048

Linear regression Number of obs = 517229
Regression Table 10B R-squared = 0.6469
Root MSE = .6487
| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .156702 .0038762 40.43 0.000 .1491047 .1642993
year2003 | .0448093 .0036014 12.44 0.000 .0377507 .0518678
year2004 | .0117664 .0036084 3.26 0.001 .0046941 .0188386
year2005 | .2085169 .0040212 51.85 0.000 .2006354 .2163983
year2007 | .2100132 .0042173 49.80 0.000 .2017474 .218279
year2008 | .1782007 .0041522 42.92 0.000 .1700624 .1863389
year2009 | .013247 .0040114 3.30 0.001 .0053848 .0211092
year2010 | .0807706 .0041444 19.49 0.000 .0726477 .0888936
year2011 | .0713358 .0041945 17.01 0.000 .0631147 .0795569
year2012 | .3109328 .0051678 60.17 0.000 .300804 .3210615

January | -.065498 .0045948 -14.25 0.000 -.0745036 -.0564924
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February | -.129801 .0044523 -29.15 0.000 -.1385275 -.1210746
March | -.1111803 .0045376 -24.50 0.000 -.1200739 -.1022868
April | -.1252895 .0045367 -27.62 0.000 -.1341812 -.1163977
May | -.1371963 .004496 -30.51 0.000 -.1460084 -.1283842
June | -.0683237 .004627 -14.77 0.000 -.0773924 -.059255
August | .1248997 .0051921 24.06 0.000 .1147233 .135076

September | .0967571 .0050589 19.13 0.000 .0868417 .1066724

October | .0784401 .0051283 15.30 0.000 .0683887 .0884914

November | .0193791 .0049836 3.89 0.000 .0096114 .0291468

December | -.096719 .0046184 -20.94 0.000 -.1057709 -.0876671

discharge | -1.06e-06 1.70e-08 -61.93 0.000 -1.09e-06 -1.02e-06
disch2 | 3.11e-13 1.98e-14 15.66 0.000 2.72e-13 3.50e-13

dirdown | -.0935346 .0018024 -51.90 0.000 -.0970672 -.090002

tugboat | .2866525 .1037758 2.76 0.006 .0832553 .4900498

pushboat | .3152659 .1036836 3.04 0.002 .1120494 .5184824

yearbuilt | -.0004757 .0000749 -6.35 0.000 -.0006224 -.000329

num_processed | .0060976 .0002235 27.28 0.000 .0056595 .0065356

draftldft | .019915 .0012772 15.59 0.000 .0174118 .0224182

draftltft | -.0110952 .0010148 -10.93 0.000 -.013084 -.0091063

tonnage | .0000449 8.88e-06 5.05 0.000 .0000275 .0000623

horsepower | 7.33e-06 1.01e-06 7.25 0.000 5.35e-06 9.32e-06
clecc| .0165209 .0030017 5.50 0.000 .0106377 .0224041
ppp | -.000469 .0027102 -0.17 0.863 -.0057809 .0048428
crp | .0088815 .0032213 2.76 0.006 .0025678 .0151952

cmief | -.0243308 .0031932 -7.62 0.000 -.0305893 -.0180723
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pmg | -.0549521 .0034193 -16.07 0.000 -.0616538 -.0482504

ffp | .0197104 .0042398 4.65 0.000 .0114006 .0280203

mem | -.0543391 .0141093 -3.85 0.000 -.0819928 -.0266854
markland | .1333112 .0025552 52.17 0.000 .1283032 .1383193
mcalpine | .0677524 .0022923 29.56 0.000 .0632597 .0722452
cannelton | .0919282 .002353 39.07 0.000 .0873165 .09654
newburgh | -.0254207 .0021139 -12.03 0.000 -.0295639 -.0212774
smithland | .0770753 .0022713 33.93 0.000 .0726235 .081527
lock52 | -1.15779 .0040387 -286.68 0.000 -1.165706 -1.149874
lock53 | -2.118428 .0041173 -514.52 0.000 -2.126497 -2.110358

_cons | 4.505408 .1847737 24.38 0.000 4.143257 4.867559

Linear regression Number of obs = 520330
Regression Table 11A R-squared = 0.1672

Root MSE = 6.1843

| Robust

a2s In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .2202103 .0392837 5.61 0.000 .1432154 .2972052
year2003 | -.4799853 .0386322 -12.42 0.000 -.5557032 -.4042674

year2004 | -.43124 .0381956 -11.29 0.000 -.5061021 -.3563778
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year2005 | 1.117138 .0397227 28.12 0.000 1.039283 1.194993
year2007 | .9473858 .0401136 23.62 0.000 .8687645 1.026007
year2008 | 1.058205 .0396267 26.70 0.000 .9805381 1.135872
year2009 | -.0232961 .039923 -0.58 0.560 -.101544 .0549518
year2010 | .9539579 .0403338 23.65 0.000 .874905 1.033011
year2011 | 1.218589 .0402718 30.26 0.000 1.139657 1.29752
year2012 | 2.18528 .0457922 47.72 0.000 2.095529 2.275032
January | -.5460942 .0441783 -12.36 0.000 -.6326822 -.4595062
February | -.6584821 .0439808 -14.97 0.000 -.7446831 -.572281
March | -.6603731 .0443555 -14.89 0.000 -.7473084 -.5734378
April | -.5703849 .0437911 -13.03 0.000 -.6562142 -.4845557
May | -.6090074 .0434649 -14.01 0.000 -.6941972 -.5238176
June | -.3880202 .0429926 -9.03 0.000 -.4722844 -.3037561
August | .5428368 .0451865 12.01 0.000 .4542727 .6314009
September | .6647205 .0448943 14.81 0.000 .5767291 .752712
October | .3703518 .0451103 8.21 0.000 .281937 .4587667
November | .1660767 .0446852 3.72 0.000 .0784951 .2536583
December | -.5681771 .0441113 -12.88 0.000 -.6546338 -.4817203
discharge | -6.08e-06 1.55e-07 -39.19 0.000 -6.38e-06 -5.78e-06
disch2 | 1.98e-12 1.63e-13 12.10 0.000 1.66e-12 2.30e-12
dirdown | -.1373787 .0171546 -8.01 0.000 -.1710011 -.1037562
tugboat | 4.058808 .4774243 8.50 0.000 3.123071 4.994545
pushboat | 4.580293 .4751936 9.64 0.000 3.648929 5.511658
num_processed | .0550109 .0017673 31.13 0.000 .051547 .0584748

draftldft | .0832056 .0110963 7.50 0.000 .0614572 .1049541
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draftitft | .0245502 .0089655 2.74 0.006 .006978 .0421223
tonnage | .0008453 .0000632 13.37 0.000 .0007213 .0009692
clecc| .2329871 .031543 7.39 0.000 .1711638 .2948104
ppp | .219207 .0234733 9.34 0.000 .1732001 .2652139
crp | .1399033 .0294647 4.75 0.000 .0821533 .1976532
cmief | -.2605091 .0300157 -8.68 0.000 -.3193389 -.2016792
pmg | -.033342 .0312007 -1.07 0.285 -.0944944 .0278104
ffp | -.1507262 .0381939 -3.95 0.000 -.225585 -.0758674
mem | -.1613283 .1155738 -1.40 0.163 -.3878493 .0651927
markland | -.0464904 .0422547 -1.10 0.271 -.1293082 .0363274
mcalpine | 1.188187 .0447351 26.56 0.000 1.100507 1.275866
cannelton | -.3466043 .0399933 -8.67 0.000 -.4249898 -.2682187
newburgh | -.2756462 .0373156 -7.39 0.000 -.3487837 -.2025088
smithland | 1.142645 .0708244 16.13 0.000 1.003832 1.281459
lock52 | -2.592256 .0352959 -73.44 0.000 -2.661435 -2.523077
lock53 | -5.870125 .0320354 -183.24 0.000 -5.932913 -5.807336
lengthsmall | -.0078023 .0001016 -76.77 0.000 -.0080015 -.0076031

_cons | -2.609062 .4971648 -5.25 0.000 -3.58349 -1.634635

Linear regression Number of obs = 517229
Regression Table 11B R-squared = 0.6472
Root MSE = .64844
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| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

year2002 | .1569433 .0038762 40.49 0.000 .1493461 .1645406
year2003 | .0451818 .0036035 12.54 0.000 .038119 .0522446
year2004 | .0121042 .0036123 3.35 0.001 .0050242 .0191842
year2005 | .2085273 .0040214 51.85 0.000 .2006454 .2164093
year2007 | .2100427 .0042165 49.81 0.000 .2017784 .218307
year2008 | .1786866 .0041521 43.04 0.000 .1705487 .1868245
year2009 | 6.50e-07 .0040933 0.00 1.000 -.0080221 .0080234
year2010 | .0671672 .004243 15.83 0.000 .0588511 .0754833
year2011 | .0575265 .0042924 13.40 0.000 .0491135 .0659395
year2012 | .2970067 .0052808 56.24 0.000 .2866565 .307357

January | -.0653878
February | -.1297922

March | -.1110544

.0045938 -14.23 0.000

.0044512 -29.16 0.000

.0045359 -24.48 0.000

-.0743916 -.0563841

-.1385164

-.1210681

-.1199447 -.1021642

April | -.1251509 .0045365 -27.59 0.000 -.1340424 -.1162595

May | -.1371579 .0044957 -30.51 0.000 -.1459694 -.1283463

June | -.0683626 .0046264 -14.78 0.000 -.0774302 -.059295
August | .1247686 .0051892 24.04 0.000 .114598 .1349393
September | .0967322 .0050577 19.13 0.000 .0868191 .1066452
October | .0783248 .005125 15.28 0.000 .0682801 .0883696
November | .0194199 .0049806 3.90 0.000 .0096581 .0291816

December | -.0967278 .0046161 -20.95 0.000

discharge | -1.06e-06

1.70e-08 -62.04 0.000

-1.09e-06 -
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disch2 | 3.11e-13 1.98e-14 15.67 0.000 2.72e-13 3.50e-13

dirdown | -.0935724 .0018017 -51.94 0.000 -.0971036 -.0900412

tugboat | .2850007 .1037053 2.75 0.006 .0817417 .4882598

pushboat | .3130068 .1036133 3.02 0.003 .109928 .5160856

yearbuilt | -.0004873 .0000748 -6.51 0.000 -.0006339 -.0003406

num_processed | .0059962 .0002235 26.83 0.000 .0055582 .0064341

draftldft | .0200309 .0012765 15.69 0.000

.0175289 .0225328

draftltft | -.0109947 .0010143 -10.84 0.000 -.0129826 -.0090067

tonnage | .0000448 8.87e-06 5.05 0.000 .0000274 .0000622

horsepower | 7.42e-06 1.01e-06 7.35 0.000 5.44e-06 9.40e-06

clcc | .0144605 .0030007 4.82 0.000 .0085793 .0203417

ppp | -.0006243 .0027083 -0.23 0.818 -.0059326 .0046839

crp | .0088726 .0032199 2.76 0.006 .0025617 .0151834

cmief | -.0241939 .0031908 -7.58 0.000 -.0304477 -.0179401

pmg | -.0558783 .0034186 -16.35 0.000 -.0625786 -.0491781

ffp | .0221594 .004238 5.23 0.000 .013853 .0304657

mem | -.0491444 .0140898 -3.49 0.000 -.0767598 -.0215289

markland | .13339 .0025635 52.03 0.000 .1283657 .1384144

mcalpine | .0232598 .0027065 8.59 0.000 .0179552 .0285645

cannelton | .0924199 .0023562 39.22 0.000 .0878017 .097038
newburgh | -.024937 .0021183 -11.77 0.000 -.0290888 -.0207852
smithland | -.047674 .0044758 -10.65 0.000

-.0564464 -.0389017

lock52 | -1.158002 .0040386 -286.73 0.000 -1.165918 -1.150087

lock53 | -2.118641 .0041132 -515.09 0.000 -2.126703 -2.11058

lengthsmall | .0002077 6.37e-06 32.58 0.000

.0001952 .0002202
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_cons | 4.409499 .1847146 23.87 0.000 4.047464 4.771534

Linear regression

Number of obs = 520330

Regression Table 11C R-squared = 0.1672
Root MSE = 6.1843
| Robust
a2s_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]
year2002 | .2202103 .0392837 5.61 0.000 .1432154 .2972052

year2003 | -.4799853 .0386322 -12.42 0.000

year2004 | -.43124 .0381956 -11.29 0.000
year2005 | 1.117138 .0397227 28.12 0.000
year2007 | .9473858 .0401136 23.62 0.000
year2008 | 1.058205 .0396267 26.70 0.000

year2009 | -.0232961 .039923 -0.58 0.560

year2010 | .9539579 .0403338 23.65 0.000
year2011 | 1.218589 .0402718 30.26 0.000
year2012 | 2.18528 .0457922 47.72 0.000

January | -.5460942 .0441783 -12.36 0.000
February | -.6584821 .0439808 -14.97 0.000
March | -.6603731 .0443555 -14.89 0.000

April | -.5703849 .0437911 -13.03 0.000

-.5557032 -.4042674
-.5061021 -.3563778
1.039283 1.194993
.8687645 1.026007
.9805381 1.135872
-.101544 .0549518
.874905 1.033011
1.139657 1.29752
2.095529 2.275032
-.6326822 -.4595062
-.7446831 -.572281

-.7473084 -.5734378

-.6562142 -.4845557
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May | -.6090074 .0434649 -14.01 0.000 -.6941972 -.5238176

June | -.3880202 .0429926 -9.03 0.000 -.4722844 -3037561

August | .5428368 .0451865 12.01 0.000 .4542727 .6314009

September | .6647205 .0448943 14.81 0.000 .5767291 .752712

October | .3703518 .0451103 8.21 0.000 .281937 .4587667

November | .1660767 .0446852 3.72 0.000 .0784951 .2536583

December | -.5681771 .0441113 -12.88 0.000 -.6546338 -.4817203

discharge | -6.08e-06 1.55e-07 -39.19 0.000 -6.38e-06 -5.78e-06

disch2 | 1.98e-12 1.63e-13 12.10 0.000 1.66e-12 2.30e-12

dirdown | -.1373787 .0171546 -8.01 0.000 -.1710011 -.1037562

tugboat | 4.058808 .4774243 8.50 0.000 3.123071 4.994545
pushboat | 4.580293 .4751936 9.64 0.000 3.648929 5.511658

num_processed | .0550109 .0017673 31.13 0.000 .051547 .0584748

draftldft | .0832056 .0110963 7.50 0.000 .0614572 .1049541

draftitft | .0245502 .0089655 2.74 0.006 .006978 .0421223

tonnage | .0008453 .0000632 13.37 0.000 .0007213 .0009692

clec | .2329871 .031543 7.39 0.000 .1711638 .2948104

ppp | .219207 .0234733 9.34 0.000 .1732001 .2652139

crp | .1399033 .0294647 4.75 0.000 .0821533 .1976532

cmief | -.2605091 .0300157 -8.68 0.000 -.3193389 -.2016792

pmg | -.033342 .0312007 -1.07 0.285 -.0944944 .0278104

ffp | -.1507262 .0381939 -3.95 0.000 -.225585 -.0758674

mem | -.1613283 .1155738 -1.40 0.163 -.3878493 .0651927

markland | 0 (omitted)

mcalpine | 1.240147 .0497075 24.95 0.000 1.142721 1.337572
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cannelton | -.3274612 .0355219 -9.22 0.000 -.3970829 -.2578394
newburgh | -.2811157 .0399053 -7.04 0.000 -.3593289 -.2029025

smithland | 1.153584 .0690639 16.70 0.000 1.018221 1.288947
lock52 | -2.608665 .0442665 -58.93 0.000 -2.695426 -2.521904
lock53 | -5.886533 .0417439 -141.02 0.000 -5.96835 -5.804716

lengthsmall | -.0078023 .0001016 -76.77 0.000 -.0080015 -.0076031
lift | -.0027347 .0024856 -1.10 0.271 -.0076064 .0021369

_cons | -2.559837 .5005013 -5.11 0.000 -3.540804 -1.57887

Linear regression Number of obs = 517229
Regression Table 11D R-squared = 0.6472
Root MSE = .64844
| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+
T

year2002 | .1569433 .0038762 40.49 0.000 .1493461 .1645406
year2003 | .0451818 .0036035 12.54 0.000 .038119 .0522446
year2004 | .0121042 .0036123 3.35 0.001 .0050242 .0191842
year2005 | .2085273 .0040214 51.85 0.000 .2006454 .2164093
year2007 | .2100427 .0042165 49.81 0.000 .2017784 .218307

year2008 | .1786866 .0041521 43.04 0.000 .1705487 .1868245
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year2009 | 6.50e-07 .0040933 0.00 1.000 -.0080221 .0080234
year2010 | .0671672 .004243 15.83 0.000 .0588511 .0754833
year2011 | .0575265 .0042924 13.40 0.000 .0491135 .0659395
year2012 | .2970067 .0052808 56.24 0.000 .2866565 .307357
January | -.0653878 .0045938 -14.23 0.000 -.0743916 -.0563841
February | -.1297922 .0044512 -29.16 0.000 -.1385164 -.1210681
March | -.1110544 .0045359 -24.48 0.000 -.1199447 -.1021642
April | -.1251509 .0045365 -27.59 0.000 -.1340424 -.1162595
May | -.1371579 .0044957 -30.51 0.000 -.1459694 -.1283463
June | -.0683626 .0046264 -14.78 0.000 -.0774302 -.059295
August | .1247686 .0051892 24.04 0.000 .114598 .1349393
September | .0967322 .0050577 19.13 0.000 .0868191 .1066452
October | .0783248 .005125 15.28 0.000 .0682801 .0883696
November | .0194199 .0049806 3.90 0.000 .0096581 .0291816
December | -.0967278 .0046161 -20.95 0.000 -.1057751 -.0876804
discharge | -1.06e-06 1.70e-08 -62.04 0.000 -1.09e-06 -1.02e-06
disch2 | 3.11e-13 1.98e-14 15.67 0.000 2.72e-13 3.50e-13
dirdown | -.0935724 .0018017 -51.94 0.000 -.0971036 -.0900412
tugboat | .2850007 .1037053 2.75 0.006 .0817417 .4882598
pushboat | .3130068 .1036133 3.02 0.003 .109928 .5160856
yearbuilt | -.0004873 .0000748 -6.51 0.000 -.0006339 -.0003406
num_processed | .0059962 .0002235 26.83 0.000 .0055582 .0064341
draftldft | .0200309 .0012765 15.69 0.000 .0175289 .0225328
draftltft | -.0109947 .0010143 -10.84 0.000 -.0129826 -.0090067

tonnage | .0000448 8.87e-06 5.05 0.000 .0000274 .0000622
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horsepower | 7.42e-06 1.01e-06 7.35 0.000 5.44e-06 9.40e-06
clecc | .0144605 .0030007 4.82 0.000 .0085793 .0203417
ppp | -.0006243 .0027083 -0.23 0.818 -.0059326 .0046839
crp | .0088726 .0032199 2.76 0.006 .0025617 .0151834
cmief | -.0241939 .0031908 -7.58 0.000 -.0304477 -.0179401
pmg | -.0558783 .0034186 -16.35 0.000 -.0625786 -.0491781
ffo | .0221594 .004238 5.23 0.000 .013853 .0304657
mem | -.0491444 .0140898 -3.49 0.000 -.0767598 -.0215289
markland | 0 (omitted)
mcalpine | -.1258231 .0029786 -42.24 0.000 -.1316611 -.1199851
cannelton | .0374946 .0020845 17.99 0.000 .0334091 .0415801
newburgh | -.009244 .0022707 -4.07 0.000 -.0136945 -.0047936
smithland | -.0790599 .0043804 -18.05 0.000 -.0876454 -.0704745
lock52 | -1.110924 .0042856 -259.22 0.000 -1.119323 -1.102524
lock53 | -2.071562 .0043471 -476.54 0.000 -2.080083 -2.063042
lengthsmall | .0002077 6.37e-06 32.58 0.000 .0001952 .0002202

lift | .0078465 .0001508 52.03 0.000 .0075509 .008142

_cons | 4.268262 .1847407 23.10 0.000 3.906176 4.630348

Linear regression Number of obs = 520330

Regression Table 12A R-squared = 0.1885

Root MSE = 6.1046
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| Robust

a2s_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

year2002 | .0474641 .038721 1.23 0.220 -.0284278 .123356
year2003 | -.4045675 .0384562 -10.52 0.000 -.4799403 -.3291946
year2004 | -.3936844 .0379402 -10.38 0.000 -.4680461 -.3193227
year2005 | 1.000216 .0393115 25.44 0.000 .9231667 1.077265
year2007 | .8293075 .0395114 20.99 0.000 .7518665 .9067486
year2008 | .7660486 .039043 19.62 0.000 .6895256 .8425716
year2009 | -.0862673 .0399368 -2.16 0.031 -.1645423 -.0079924
year2010 | .9293271 .0403249 23.05 0.000 .8502914 1.008363
year2011 | .7844598 .0403335 19.45 0.000 .7054073 .8635123
year2012 | 2.01502 .0442941 45.49 0.000 1.928205 2.101835
January | -.4496624 .0437068 -10.29 0.000 -.5353263 -.3639985
February | -.3861406 .0435704 -8.86 0.000 -.4715372 -.3007439
March | -.6754243 .0438735 -15.39 0.000 -.7614149 -.5894337
April | -.4714113 .0433335 -10.88 0.000 -.5563436 -.3864789
May | -.6013121 .0430071 -13.98 0.000 -.6856047 -.5170196
June | -.2851444 .0422504 -6.75 0.000 -.3679538 -.2023349
August | .4664965 .0439261 10.62 0.000 .3804027 .5525903
September | .6005984 .0435375 13.79 0.000 .5152664 .6859305
October | .3800741 .0447924 8.49 0.000 .2922825 .4678657
November | .3546724 .0447501 7.93 0.000 .2669637 .4423811

December | -.2194961 .044012 -4.99 0.000 -.3057583 -.1332339
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discharge | -8.19e-06 1.55e-07 -52.79 0.000 -8.49e-06 -7.88e-06
disch2 | 1.57e-11 2.15e-13 73.00 0.000 1.53e-11 1.6le-11
dirdown | -.1316754 .0169348 -7.78 0.000 -.164867 -.0984837
tugboat | 3.806524 .4688979 8.12 0.000 2.887499 4.725549
pushboat | 4.312809 .4667292 9.24 0.000 3.398035 5.227583
num_processed | .0648419 .0017574 36.90 0.000 .0613975 .0682863
draftldft | .0823399 .010936 7.53 0.000 .0609056 .1037742
draftltft | .0225754 .0088346 2.56 0.011 .0052599 .0398909
tonnage | .0007052 .0000623 11.31 0.000 .000583 .0008273
clecc | .1895918 .0312653 6.06 0.000 .1283128 .2508709
ppp | .2466214 .0231926 10.63 0.000 .2011646 .2920782
crp | .1737565 .0291021 5.97 0.000 .1167174 .2307957
cmief | -.2665066 .0296243 -9.00 0.000 -.3245692 -.2084439
pmg | .0229822 .0307519 0.75 0.455 -.0372904 .0832549
ffp | -.1701082 .0377272 -4.51 0.000 -.2440523 -.0961641
mem | -.2416441 .1131282 -2.14 0.033 -.4633719 -.0199163
markland | -.9917243 .0445019 -22.28 0.000 -1.078947 -.9045019
cannelton | -.6554796 .0359915 -18.21 0.000 -.7260218 -.5849374
newburgh | -.1322203 .0393807 -3.36 0.001 -.2094053 -.0550353
smithland | .6558009 .0647921 10.12 0.000 .5288105 .7827914
lock52 | 3.283218 .024475 134.15 0.000 3.235247 3.331188
lengthsmall | -.0076309 .0001012 -75.40 0.000 -.0078292 -.0074325
lift | .0743136 .0023514 31.60 0.000 .069705 .0789222
wicket | -2.126946 .0518847 -40.99 0.000 -2.228639 -2.025254

wickdisch | -.0000141 1.27e-07 -111.25 0.000 -.0000143 -.0000138
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_cons | -4.168864 .4891479 -8.52 0.000

-5.127579 -3.21015

Linear regression

Number of obs = 517229

Regression Table 12B R-squared = 0.6722
Root MSE = .62504
| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

year2002 | .1266761 .0037086 34.16 0.000 .1194074 .1339449
year2003 | .0582826 .0035514 16.41 0.000 .0513221 .0652432
year2004 | .0185758 .0035429 5.24 0.000 .0116319 .0255198
year2005 | .1880941 .0039382 47.76 0.000 .1803753 .1958129
year2007 | .1894257 .0040431 46.85 0.000 .1815013 .19735
year2008 | .1278506 .0039457 32.40 0.000 .1201171 .135584
year2009 | -.01101 .0041117 -2.68 0.007 -.0190687 -.0029512
year2010 | .0630046 .0042597 14.79 0.000 .0546557 .0713536
year2011 | -.0185009 .004326 -4.28 0.000 -.0269798 -.0100219
year2012 | .2672227 .0048685 54.89 0.000 .2576807 .2767648

January | -.0484798 .004437 -10.93 0.000

February | -.0821544 .0043051 -19.08 0.000

March | -.1135023 .0043671 -25.99 0.000

-.0571762 -.0397834

-.0905922 -.0737166

-.1220615 -.104943
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April | -.1076251 .0043972 -24.48 0.000 -.1162434 -.0990067
May | -.1354962 .0043681 -31.02 0.000 -.1440576 -.1269348
June | -.0504538 .0043951 -11.48 0.000 -.059068 -.0418397
August | .1112834 .0048082 23.14 0.000 .1018595 .1207072
September | .0854555 .004672 18.29 0.000 .0762985 .0946124
October | .0799343 .0050245 15.91 0.000 .0700865 .0897821
November | .0522845 .0049934 10.47 0.000 .0424977 .0620713
December | -.0358985 .0045725 -7.85 0.000 -.0448605 -.0269366
discharge | -1.42e-06 1.92e-08 -73.99 0.000 -1.46e-06 -1.39e-06
disch2 | 2.70e-12 3.46e-14 78.07 0.000 2.63e-12 2.77e-12
dirdown | -.0925813 .0017368 -53.30 0.000 -.0959854 -.0891772
tugboat | .2701971 .1001469 2.70 0.007 .0739123 .4664819
pushboat | .2970792 .1000584 2.97 0.003 .1009678 .4931905
yearbuilt | -.0004969 .0000723 -6.87 0.000 -.0006386 -.0003552
num_processed | .0079724 .0002206 36.14 0.000 .00754 .0084047
draftldft | .0201695 .0012279 16.43 0.000 .0177628 .0225762
draftltft | -.0106908 .0009758 -10.96 0.000 -.0126033 -.0087783
tonnage | .0000379 8.56e-06 4.42 0.000 .0000211 .0000546
horsepower | 4.12e-06 9.68e-07 4.26 0.000 2.23e-06 6.02e-06
clecc| .0055919 .0028901 1.93 0.053 -.0000726 .0112563
ppp | .0044275 .0026295 1.68 0.092 -.0007263 .0095813
crp | .0144288 .0031168 4.63 0.000 .00832 .0205376
cmief | -.0255813 .0030608 -8.36 0.000 -.0315804 -.0195822
pmg | -.0456443 .0032874 -13.88 0.000 -.0520874 -.0392011

ffp | .0210364 .0040734 5.16 0.000 .0130527 .0290201
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mem | -.0641074 .0134323 -4.77 0.000 -.0904342 -.0377805
markland | .133442 .0025796 51.73 0.000 .1283862 .1384979
cannelton | .1063245 .0020322 52.32 0.000 .1023415 .1103075
newburgh | -.0194499 .0022082 -8.81 0.000 -.023778 -.0151218
smithland | -.094009 .0039988 -23.51 0.000 -.1018465 -.0861714
lock52 | .961396 .004874 197.25 0.000 .9518431 .970949
lengthsmall | .0002376 6.15e-06 38.61 0.000 .0002256 .0002497
lift | .0032819 .0001364 24.06 0.000 .0030146 .0035492
wicket | -1.523252 .0068223 -223.27 0.000 -1.536623 -1.50988
wickdisch | -2.46e-06 1.90e-08 -129.45 0.000 -2.49e-06 -2.42e-06

_cons | 4.296649 .1785424 24.07 0.000 3.946712 4.646587

Linear regression Number of obs = 520330

Regression Table 12C R-squared = 0.1960

Root MSE = 6.0765

| Robust

a2s In| Coef. Std.Err. t P>|t|] [95% Conf. Interval]

+
T

year2002 | .047629 .0384857 1.24 0.216 -.0278018 .1230598
year2003 | -.4086547 .0383103 -10.67 0.000 -.4837416 -.3335677

year2004 | -.4005521 .0377816 -10.60 0.000 -.4746029 -.3265014
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year2005 | .994599 .039145 25.41 0.000 .9178761 1.071322
year2007 | .8297767 .0392948 21.12 0.000 .7527601 .9067932
year2008 | .7618434 .0389043 19.58 0.000 .6855922 .8380946
year2009 | -.0874591 .0397909 -2.20 0.028 -.165448 -.0094703
year2010 | .9249156 .0401851 23.02 0.000 .846154 1.003677
year2011 | .7776346 .0401423 19.37 0.000 .698957 .8563123
year2012 | 2.022189 .0441068 45.85 0.000 1.935742 2.108637
January | -.4525527 .0433763 -10.43 0.000 -.5375688 -.3675365
February | -.389608 .0433541 -8.99 0.000 -.4745807 -.3046353
March | -.6801991 .0436495 -15.58 0.000 -.7657508 -.5946474
April | -.4744298 .0430671 -11.02 0.000 -.55884 -.3900197
May | -.6068661 .042792 -14.18 0.000 -.6907369 -.5229952
June | -.2891084 .0418828 -6.90 0.000 -.3711973 -.2070195
August | .4692481 .0436517 10.75 0.000 .3836921 .5548041
September | .6020004 .0431317 13.96 0.000 .5174636 .6865373
October | .381405 .0445677 8.56 0.000 .2940536 .4687563
November | .355156 .044724 7.94 0.000 .2674984 .4428136
December | -.2217018 .043966 -5.04 0.000 -.3078738 -.1355299
discharge | -8.06e-06 1.55e-07 -51.94 0.000 -8.37e-06 -7.76e-06
disch2 | 1.55e-11 2.15e-13 71.81 0.000 1.50e-11 1.59e-11
dirdown | -.1306232 .0168566 -7.75 0.000 -.1636616 -.0975848
tugboat | 3.804045 .4579616 8.31 0.000 2.906454 4.701635
pushboat | 4.312146 .4557602 9.46 0.000 3.41887 5.205422
num_processed | .0640589 .0017413 36.79 0.000 .060646 .0674717

draftldft | .0796613 .0108754 7.32 0.000 .0583458 .1009769
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draftitft | .0254358 .0087918 2.89 0.004 .0082042 .0426674
tonnage | .0007206 .000062 11.63 0.000 .0005991 .000842
clecc| .2009731 .0311699 6.45 0.000 .1398811 .2620652
ppp | .242276 .0230372 10.52 0.000 .1971238 .2874281
crp| .171001 .028936 5.91 0.000 .1142873 .2277146
cmief | -.2717288 .0294941 -9.21 0.000 -.3295364 -.2139212
pmg | .0254091 .0305888 0.83 0.406 -.0345441 .0853622
ffp | -.1737013 .0375143 -4.63 0.000 -.2472281 -.1001745
mem | -.2331128 .1122083 -2.08 0.038 -.4530375 -.013188
markland | -.9918165 .044499 -22.29 0.000 -1.079033 -.9046
cannelton | -.6541062 .0359884 -18.18 0.000 -.7246423 -.58357
newburgh | -.1320367 .0393786 -3.35 0.001 -.2092175 -.0548559
smithland | .6559311 .0647682 10.13 0.000 .5289874 .7828748
lock52 | 6.084658 .0462297 131.62 0.000 5.994049 6.175267

lengthsmall | -.0076304 .0001012 -75.43 0.000 -.0078287 -.0074322
lift | .0743465 .002351 31.62 0.000 .0697387 .0789544

wicket | -3.738726 .0549462 -68.04 0.000 -3.846419 -3.631033
wickdisch | -8.60e-06 1.31e-07 -65.39 0.000 -8.85e-06 -8.34e-06

lock52disch | -9.54e-06 9.46e-08 -100.89 0.000 -9.73e-06 -9.36e-06

_cons | -4.172348 .4784848 -8.72 0.000 -5.110163 -3.234533

Linear regression Number of obs = 517229

Regression Table 12D R-squared = 0.6796
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Root MSE = .61796

| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

year2002 | .1266868 .0036634 34.58 0.000 .1195066 .1338669
year2003 | .0576919 .0035027 16.47 0.000 .0508267 .0645571
year2004 | .0175584 .0035038 5.01 0.000 .0106911 .0244256
year2005 | .1872165 .0039054 47.94 0.000 .179562 .194871
year2007 | .1895337 .0040035 47.34 0.000 .1816869 .1973805
year2008 | .1273031 .0039368 32.34 0.000 .119587 .1350191
year2009 | -.0111373 .0040578 -2.74 0.006 -.0190904 -.0031841
year2010 | .0623932 .0042321 14.74 0.000 .0540985 .0706879
year2011 | -.0194078 .0042748 -4.54 0.000 -.0277863 -.0110293
year2012 | .2685579 .0048747 55.09 0.000 .2590036 .2781122
January | -.0489544 .0043363 -11.29 0.000 -.0574533 -.0404555
February | -.0826616 .0042381 -19.50 0.000 -.090968 -.0743551
March | -.1142793 .0042947 -26.61 0.000 -.1226968 -.1058619
April | -.1080749 .0043138 -25.05 0.000 -.1165298 -.0996201
May | -.1364972 .0042885 -31.83 0.000 -.1449026 -.1280918
June | -.0511086 .0042833 -11.93 0.000 -.0595036 -.0427135
August | .1117631 .0047503 23.53 0.000 .1024526 .1210735
September | .0856954 .0045739 18.74 0.000 .0767307 .0946602

October | .0801535 .0049624 16.15 0.000 .0704274 .0898797
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November | .0523964 .0049762 10.53 0.000 .0426431 .0621497
December | -.0362305 .0045532 -7.96 0.000 -.0451546 -.0273064
discharge | -1.40e-06 1.91e-08 -73.38 0.000 -1.44e-06 -1.37e-06
disch2 | 2.67e-12 3.45e-14 77.40 0.000 2.60e-12 2.74e-12
dirdown | -.0924227 .0017174 -53.82 0.000 -.0957888 -.0890567
tugboat | .2688334 .1005793 2.67 0.008 .0717011 .4659656
pushboat | .2954194 .1004921 2.94 0.003 .098458 .4923808
yearbuilt | -.0005124 .0000715 -7.16 0.000 -.0006525 -.0003722
num_processed | .0078602 .0002167 36.28 0.000 .0074356 .0082849
draftldft | .0198196 .0012134 16.33 0.000 .0174414 .0221977
draftltft | -.0103904 .0009639 -10.78 0.000 -.0122796 -.0085013
tonnage | .0000401 8.44e-06 4.75 0.000 .0000235 .0000566
horsepower | 4.20e-06 9.55e-07 4.40 0.000 2.33e-06 6.08e-06
clec | .0074666 .0028604 2.61 0.009 .0018603 .0130729
ppp | .0038627 .0025909 1.49 0.136 -.0012153 .0089408
crp | .0140436 .0030762 4.57 0.000 .0080144 .0200729
cmief | -.0266531 .0030281 -8.80 0.000 -.0325881 -.0207181
pmg | -.0449441 .0032458 -13.85 0.000 -.0513058 -.0385824
ffp | .0201973 .0040166 5.03 0.000 .0123248 .0280697
mem | -.0630339 .0133324 -4.73 0.000 -.0891651 -.0369028
markland | .1334205 .0025781 51.75 0.000 .1283676 .1384735
cannelton | .1065395 .0020305 52.47 0.000 .1025597 .1105192
newburgh | -.0193834 .0022065 -8.78 0.000 -.0237081 -.0150587
smithland | -.0939357 .003989 -23.55 0.000 -.1017541 -.0861173

lock52 | 1.410238 .0090562 155.72 0.000 1.392489 1.427988
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lengthsmall | .0002376 6.14e-06 38.72 0.000 .0002256 .0002496
lift | .0032892 .0001362 24.15 0.000 .0030222 .0035561
wicket | -1.780662 .0083098 -214.28 0.000 -1.796949 -1.764375

wickdisch | -1.58e-06 2.29e-08 -69.18 0.000 -1.63e-06 -1.54e-06

lock52disch | -1.53e-06 2.00e-08 -76.36 0.000 -1.57e-06 -1.49e-06

_cons | 4.32841 .1774647 24.39 0.000 3.980585 4.676235

Regression Table 13

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq"  chi2 P

a2s_In 5.2e+05 46 6.074109 0.1962 97891.40 0.0000

s2e_In 5.2e+05 48 .6179152 0.6796 885526.02 0.0000

| Coef. Std.Err. z P>|z| [95% Conf. Interval]

a2s_In |
year2002 | .0495181 .0388075 1.28 0.202 -.0265431 .1255794

year2003 | -.4071335 .0395793 -10.29 0.000 -.4847076 -.3295595
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year2004 | -.4000302 .039175 -10.21 0.000 -.4768119 -.3232485
year2005 | .9950588 .0381465 26.09 0.000 .9202931 1.069825
year2007 | .8293174 .0384362 21.58 0.000 .7539838 .904651
year2008 | .7587913 .0385929 19.66 0.000 .6831507 .8344319
year2009 | -.0874018 .0401601 -2.18 0.030 -.1661142 -.0086894
year2010 | .9182322 .0396709 23.15 0.000 .8404786 .9959858
year2011 | .7729029 .0398636 19.39 0.000 .6947717 .8510341
year2012 | 2.036713 .0436382 46.67 0.000 1.951184 2.122243
January | -.460083 .0433751 -10.61 0.000 -.5450965 -.3750694
February | -.395852 .0438999 -9.02 0.000 -.4818941 -.3098099
March | -.684375 .0445787 -15.35 0.000 -.7717477 -.5970023
April | -.4781526 .0437404 -10.93 0.000 -.5638821 -.392423
May | -.6083386 .0432692 -14.06 0.000 -.6931446 -.5235325
June | -.2937801 .0416486 -7.05 0.000 -.3754098 -.2121504
August | .4664052 .0412373 11.31 0.000 .3855815 .5472289
September | .599026 .0412442 14.52 0.000 .5181889 .6798632
October | .3741365 .0417931 8.95 0.000 .2922234 .4560495
November | .3519243 .0424073 8.30 0.000 .2688076 .435041
December | -.2242183 .0436989 -5.13 0.000 -.3098666 -.1385699
discharge | -8.06e-06 1.60e-07 -50.33 0.000 -8.37e-06 -7.75e-06
disch2 | 1.55e-11 2.22e-13 69.58 0.000 1.50e-11 1.59e-11
dirdown | -.1295154 .0169002 -7.66 0.000 -.1626391 -.0963917
tugboat | 4.092493 .6135745 6.67 0.000 2.889909 5.295077
pushboat | 4.652973 .611373 7.61 0.000 3.454704 5.851242

num_processed | .0630277 .0018835 33.46 0.000 .059336 .0667193
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draftldft | .0786479 .0111847 7.03 0.000 .0567263 .1005694
draftitft | .0356993 .009097 3.92 0.000 .0178695 .053529
tonnage | .0007154 .0000628 11.38 0.000 .0005922 .0008385
clec| .203531 .0305658 6.66 0.000 .1436231 .2634389
ppp | .2358189 .023778 9.92 0.000 .189215 .2824229
crp | .173447 .0292932 5.92 0.000 .1160334 .2308605
cmief | -.2660221 .0294346 -9.04 0.000 -.3237129 -.2083314
pmg | -1.28e-06 .0311501 -0.00 1.000 -.0610544 .0610518
ffp | -.1659893 .0381112 -4.36 0.000 -.2406859 -.0912927
mem | -.2225033 .1129424 -1.97 0.049 -.4438663 -.0011404
markland | -.9962002 .0408244 -24.40 0.000 -1.076215 -.916186
cannelton | -.6576196 .0330804 -19.88 0.000 -.722456 -.5927831
newburgh | -.145637 .0363621 -4.01 0.000 -.2169055 -.0743685
smithland | .6530749 .0610984 10.69 0.000 .5333243 .7728255
lock52 | 6.090555 .0508287 119.83 0.000 5.990932 6.190177
lengthsmall | -.0076311 .0000952 -80.17 0.000 -.0078177 -.0074446
lift | .073981 .0021942 33.72 0.000 .0696805 .0782816
wicket | -3.746869 .0558274 -67.12 0.000 -3.856289 -3.637449
wickdisch | -8.58e-06 1.44e-07 -59.70 0.000 -8.87e-06 -8.30e-06
lock52disch | -9.55e-06 1.38e-07 -69.40 0.000 -9.82e-06 -9.28e-06

_cons | -4.556895 .6287167 -7.25 0.000 -5.789157 -3.324633

+.
T

s2e_In [
year2002 | .1266619 .0039486 32.08 0.000 .1189228 .134401

year2003 | .0576489 .0040267 14.32 0.000 .0497567 .065541
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year2004 | .0175036 .0039853 4.39 0.000 .0096926 .0253145
year2005 | .1871989 .0038807 48.24 0.000 .1795929 .1948049
year2007 | .1895349 .0039102 48.47 0.000 .1818709 .1971988
year2008 | .127349 .0039275 32.42 0.000 .1196511 .1350468
year2009 | -.011156 .0040904 -2.73 0.006 -.019173 -.003139
year2010 | .0623669 .0040441 15.42 0.000 .0544406 .0702931
year2011 | -.0193756 .0040698 -4.76 0.000 -.0273523 -.011399
year2012 | .268415 .0044604 60.18 0.000 .2596728 .2771572
January | -.0489115 .0044132 -11.08 0.000 -.0575611 -.0402618
February | -.0827246 .0044662 -18.52 0.000 -.0914782 -.0739709
March | -.1143204 .0045351 -25.21 0.000 -.123209 -.1054317
April | -.108115 .0044498 -24.30 0.000 -.1168365 -.0993935
May | -.1365401 .0044019 -31.02 0.000 -.1451676 -.1279125
June | -.0512598 .0042369 -12.10 0.000 -.059564 -.0429556
August | .1118896 .0041951 26.67 0.000 .1036673 .1201119
September | .0858455 .0041958 20.46 0.000 .0776219 .0940691
October | .0801821 .0042518 18.86 0.000 .0718487 .0885154
November | .0523608 .0043143 12.14 0.000 .0439049 .0608167
December | -.0362697 .0044455 -8.16 0.000 -.0449827 -.0275567
discharge | -1.40e-06 1.63e-08 -86.12 0.000 -1.44e-06 -1.37e-06
disch2 | 2.67e-12 2.26e-14 118.05 0.000 2.62e-12 2.71e-12
dirdown | -.0924418 .0017193 -53.77 0.000 -.0958115 -.0890721
tugboat | .2789916 .0640126 4.36 0.000 .1535292 .404454
pushboat | .3061943 .0639256 4.79 0.000 .1809023 .4314862

yearbuilt | -.0005203 .0000681 -7.64 0.000 -.0006537 -.0003869
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num_processed | .0079172 .0002029 39.01 0.000 .0075195 .008315
draftldft | .0199083 .0011518 17.29 0.000 .0176509 .0221657
draftltft | -.0102477 .0009464 -10.83 0.000 -.0121026 -.0083928
tonnage | .0000439 8.16e-06 5.38 0.000 .0000279 .0000599
horsepower | 3.50e-06 9.06e-07 3.86 0.000 1.72e-06 5.27e-06

clecc | .0072381 .0031436 2.30 0.021 .0010768 .0133994
ppp | .0039213 .0024508 1.60 0.110 -.0008822 .0087249
crp | .0139592 .0029924 4.66 0.000 .0080942 .0198242
cmief | -.0268075 .0030154 -8.89 0.000 -.0327176 -.0208974
pmg | -.0448718 .0032028 -14.01 0.000 -.0511493 -.0385943
ffo | .020681 .0039594 5.22 0.000 .0129207 .0284413
mem | -.0631643 .0114977 -5.49 0.000 -.0856993 -.0406292
markland | .1334968 .0041537 32.14 0.000 .1253557 .141638
cannelton | .1065762 .0033658 31.66 0.000 .0999793 .1131731
newburgh | -.0194429 .0037011 -5.25 0.000 -.0266969 -.0121889
smithland | -.0939744 .0062159 -15.12 0.000 -.1061573 -.0817914
lock52 | 1.410173 .0051734 272.58 0.000 1.400034 1.420313
lengthsmall | .0002377 9.68e-06 24.55 0.000 .0002187 .0002567
lift | .0032857 .0002233 14.72 0.000 .0028481 .0037233
wicket | -1.780985 .0056812 -313.49 0.000 -1.79212 -1.76985
wickdisch | -1.58e-06 1.46e-08 -107.99 0.000 -1.61e-06 -1.55e-06
lock52disch | -1.53e-06 1.40e-08 -109.16 0.000 -1.56e-06 -1.50e-06

_cons | 4.332414 .1522227 28.46 0.000 4.034063 4.630765
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Correlation matrix of residuals:

a2s_In s2e_In
a2s_In 1.0000

s2e_In 0.1951 1.0000

Breusch-Pagan test of independence: chi2(1) = 19692.591, Pr = 0.0000

Linear regression Number of obs = 520330

Regression Table 14A R-squared = 0.2196

Root MSE = 5.9864

| Robust

a2s_In| Coef. Std.Err. t P>|t|] [95% Conf. Interval]

+.
T

year2002 | .1196528 .0380373 3.15 0.002 .0451009 .1942048
year2003 | -.2777292 .0377267 -7.36 0.000 -.3516723 -.203786
year2004 | -.3442373 .0374449 -9.19 0.000 -.4176281 -.2708466
year2005 | 1.017341 .038536 26.40 0.000 .9418113 1.09287
year2007 | .9043007 .0386606 23.39 0.000 .8285272 .9800742
year2008 | .8300155 .0386108 21.50 0.000 .7543396 .9056914
year2009 | -.1763574 .0389315 -4.53 0.000 -.2526619 -.1000529

year2010 | .9166091 .0392122 23.38 0.000 .8397544 .9934638
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year2011 | .7276194 .0391651 18.58 0.000 .6508571 .8043817
year2012 | 1.906825 .0428074 44.54 0.000 1.822923 1.990726
January | -.3106906 .0427843 -7.26 0.000 -.3945465 -.2268348
February | -.2835621 .0426963 -6.64 0.000 -.3672455 -.1998787
March | -.5269775 .0431176 -12.22 0.000 -.6114867 -.4424684
April | -.4721807 .042478 -11.12 0.000 -.5554362 -.3889252
May | -.6988175 .0422937 -16.52 0.000 -.7817118 -.6159231
June | -.3861573 .041273 -9.36 0.000 -.4670511 -.3052634
August | .4248927 .0427894 9.93 0.000 .3410267 .5087586
September | .4685208 .0423618 11.06 0.000 .385493 .5515485
October | .3321825 .0440238 7.55 0.000 .2458972 .4184679
November | .2454454 044039 5.57 0.000 .1591304 .3317604
December | -.0845948 .0433271 -1.95 0.051 -.1695146 .0003249
discharge | -8.12e-06 1.53e-07 -52.92 0.000 -8.42e-06 -7.82e-06
disch2 | 1.54e-11 2.12e-13 72.66 0.000 1.50e-11 1.58e-11
dirdown | -.1309382 .0166065 -7.88 0.000 -.1634864 -.0983901
tugboat | 3.94776 .4473052 8.83 0.000 3.071056 4.824464
pushboat | 4.429109 .4451441 9.95 0.000 3.55664 5.301577
num_processed | .0614827 .00171 35.95 0.000 .0581312 .0648342
draftldft | .0778421 .0107086 7.27 0.000 .0568535 .0988306
draftltft | .0282807 .0086688 3.26 0.001 .0112901 .0452713
tonnage | .0007413 .000061 12.16 0.000 .0006218 .0008607
clec| .2327432 .0306982 7.58 0.000 .1725757 .2929108
ppp | .2217037 .0226775 9.78 0.000 .1772564 .2661509

crp | .1668082 .0285375 5.85 0.000 .1108756 .2227408
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cmief | -.2917432 .0290636 -10.04 0.000 -.3487071 -.2347794
pmg | .0089402 .0302054 0.30 0.767 -.0502614 .0681418
ffp | -.1692591 .0369627 -4.58 0.000 -.2417048 -.0968134
mem | -.186275 .1101525 -1.69 0.091 -.4021704 .0296205
markland | 2.049786 .049516 41.40 0.000 1.952736 2.146835
cannelton | .7197957 .0378177 19.03 0.000 .6456742 .7939172
newburgh | -.6087702 .0395512 -15.39 0.000 -.6862892 -.5312512
smithland | -2.119763 .06849 -30.95 0.000 -2.254002 -1.985525
lock52 | 5.875264 .0454947 129.14 0.000 5.786096 5.964432
lengthsmall | -.0012821 .0001146 -11.19 0.000 -.0015067 -.0010574
lift | -.142127 .0030225 -47.02 0.000 -.148051 -.136203
wicket | -4.784051 .0553096 -86.50 0.000 -4.892456 -4.675646
wickdisch | -8.59e-06 1.30e-07 -66.14 0.000 -8.85e-06 -8.34e-06
lock52disch | -9.29e-06 9.32e-08 -99.68 0.000 -9.47e-06 -9.11e-06
chambout | 4.303113 .0375513 114.59 0.000 4.229514 4.376713
chamblpart | -.9573437 .0966891 -9.90 0.000 -1.146851 -.7678361
chamb2part | 4.834428 .1622737 29.79 0.000 4.516377 5.15248

_cons | -4.467151 .4672477 -9.56 0.000 -5.382941 -3.55136

Linear regression Number of obs = 517229
Regression Table 14B R-squared = 0.6830
Root MSE = .6147
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| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .1280672 .0036116 35.46 0.000 .1209885 .1351458
year2003 | .0662824 .0034875 19.01 0.000 .059447 .0731178
year2004 | .02043 .0034492 5.92 0.000 .0136697 .0271902
year2005 | .1875949 .0038379 48.88 0.000 .1800727 .1951172
year2007 | .190441 .0039171 48.62 0.000 .1827636 .1981184
year2008 | .1299428 .0038822 33.47 0.000 .1223339 .1375517
year2009 | -.0166552 .0039849 -4.18 0.000 -.0244654 -.008845
year2010 | .0615642 .0041797 14.73 0.000 .053372 .0697563
year2011 | -.0238665 .0042126 -5.67 0.000 -.032123 -.01561
year2012 | .2637621 .0048262 54.65 0.000 .254303 .2732212
January | -.0391144 .0043214 -9.05 0.000 -.0475842 -.0306447
February | -.0751028 .0042239 -17.78 0.000 -.0833815 -.0668241
March | -.1041226 .0042819 -24.32 0.000 -.1125151 -.0957302
April | -.1047208 .0043079 -24.31 0.000 -.1131642 -.0962774
May | -.1379575 .0042935 -32.13 0.000 -.1463727 -.1295423
June | -.0554296 .0042882 -12.93 0.000 -.0638344 -.0470248
August | .1105913 .0047182 23.44 0.000 .1013439 .1198388
September | .0793471 .0045333 17.50 0.000 .070462 .0882323
October | .077516 .0049094 15.79 0.000 .0678938 .0871382
November | .0462882 .0049154 9.42 0.000 .0366541 .0559222

December | -.0268206 .0045359 -5.91 0.000 -.0357108 -.0179304
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discharge | -1.42e-06 1.92e-08 -73.78 0.000 -1.46e-06 -1.38e-06
disch2 | 2.69e-12 3.50e-14 76.73 0.000 2.62e-12 2.76e-12
dirdown | -.0924647 .0017084 -54.12 0.000 -.095813 -.0891163
tugboat | .2710255 .0996456 2.72 0.007 .0757234 .4663277
pushboat | .2967117 .0995585 2.98 0.003 .1015802 .4918433
yearbuilt | -.0004962 .0000711 -6.97 0.000 -.0006357 -.0003568
num_processed | .0076932 .0002158 35.65 0.000 .0072703 .0081161
draftldft | .0195763 .0012069 16.22 0.000 .0172109 .0219417
draftltft | -.0101073 .0009597 -10.53 0.000 -.0119883 -.0082262
tonnage | .0000411 8.39e-06 4.90 0.000 .0000246 .0000575
horsepower | 4.21e-06 9.50e-07 4.43 0.000 2.35e-06 6.07e-06
clcc| .0090827 .0028477 3.19 0.001 .0035012 .0146642
ppp | .0025975 .0025796 1.01 0.314 -.0024584 .0076533
crp | .0137774 .003063 4.50 0.000 .0077739 .0197808
cmief | -.0275909 .003015 -9.15 0.000 -.0335002 -.0216816
pmg | -.0460802 .0032295 -14.27 0.000 -.0524099 -.0397504
ffp | .0208724 .0039984 5.22 0.000 .0130357 .0287092
mem | -.0599932 .0133146 -4.51 0.000 -.0860894 -.033897
markland | .2965022 .0037336 79.41 0.000 .2891844 .30382
cannelton | .1791385 .0023673 75.67 0.000 .1744986 .1837783
newburgh | -.0429515 .0022745 -18.88 0.000 -.0474095 -.0384935
smithland | -.2396857 .0046532 -51.51 0.000 -.2488059 -.2305655
lock52 | 1.40035 .0090324 155.04 0.000 1.382647 1.418053
lengthsmall | .0005744 8.15e-06 70.51 0.000 .0005584 .0005903

lift | -.0082237 .0002255 -36.48 0.000 -.0086656 -.0077818
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wicket | -1.830722 .0083395 -219.52 0.000 -1.847067 -1.814376
wickdisch | -1.59e-06 2.30e-08 -69.23 0.000 -1.64e-06 -1.55e-06
lock52disch | -1.52e-06 2.00e-08 -76.23 0.000 -1.56e-06 -1.48e-06
chambout | .2293348 .0035527 64.55 0.000 .2223717 .2362979
chamblpart | -.1625734 .0152689 -10.65 0.000 -.1924999 -.132647
chamb2part | .5525689 .0204818 26.98 0.000 .5124252 .5927126

_cons | 4.286074 .1763165 24.31 0.000 3.9405 4.631649

Linear regression Number of obs = 520330
Regression Table 14C R-squared = 0.2247
Root MSE = 5.967
| Robust

a2s In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+
T

year2002 | .1177896 .0380123 3.10 0.002 .0432867 .1922925
year2003 | -.3300284 .0376825 -8.76 0.000 -.4038848 -.2561719
year2004 | -.3601414 .0374177 -9.62 0.000 -.433479 -.2868037
year2005 | 1.030486 .0385145 26.76 0.000 .9549987 1.105973
year2007 | .8720903 .0385747 22.61 0.000 .7964852 .9476955

year2008 | .8616049 .0385241 22.37 0.000 .7860988 .937111
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year2009 | -.3122364 .0388362 -8.04 0.000 -.3883542 -.2361186
year2010 | .7872932 .0391806 20.09 0.000 .7105004 .864086
year2011 | .6265709 .0391408 16.01 0.000 .5498563 .7032856
year2012 | 1.720279 .0428943 40.11 0.000 1.636208 1.804351
January | -.313741 .0425749 -7.37 0.000 -.3971864 -.2302956
February | -.2776907 .0424716 -6.54 0.000 -.3609336 -.1944477
March | -.5015254 .0429093 -11.69 0.000 -.5856263 -.4174245
April | -.4209954 .0422361 -9.97 0.000 -.5037768 -.3382139
May | -.6132103 .0420548 -14.58 0.000 -.6956363 -.5307843
June | -.3840754 .0409255 -9.38 0.000 -.464288 -.3038628
August | .464025 .0425654 10.90 0.000 .3805981 .5474519
September | .5534055 .0422859 13.09 0.000 .4705265 .6362846
October | .3166235 .0437618 7.24 0.000 .2308518 .4023953
November | .302218 .0437899 6.90 0.000 .2163913 .3880448
December | -.083692 .0430828 -1.94 0.052 -.1681331 .000749
discharge | -8.11e-06 1.53e-07 -52.99 0.000 -8.41e-06 -7.81e-06
disch2 | 1.53e-11 2.12e-13 72.09 0.000 1.49e-11 1.57e-11
dirdown | -.1315565 .0165527 -7.95 0.000 -.1639993 -.0991136
tugboat | 3.983558 .4434869 8.98 0.000 3.114338 4.852779
pushboat | 4.459356 .4413269 10.10 0.000 3.594369 5.324343
num_processed | .060558 .0017055 35.51 0.000 .0572152 .0639007
draftldft | .0764254 .0106801 7.16 0.000 .0554928 .097358
draftltft | .0298622 .0086431 3.46 0.001 .012922 .0468024
tonnage | .0007592 .0000608 12.49 0.000 .0006401 .0008784

clec | .2421198 .0305685 7.92 0.000 .1822064 .3020332
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ppp | .2148233 .0226166 9.50 0.000 .1704956 .2591511
crp | .1627868 .0284466 5.72 0.000 .1070323 .2185413
cmief | -.2946804 .028982 -10.17 0.000 -.3514842 -.2378766
pmg | .0052037 .0301154 0.17 0.863 -.0538215 .0642289
ffp | -.1706626 .0368299 -4.63 0.000 -.242848 -.0984773
mem | -.1471457 .1098053 -1.34 0.180 -.3623607 .0680693
markland | 4.093374 .0516557 79.24 0.000 3.992131 4.194618
cannelton | 1.643042 .0390995 42.02 0.000 1.566408 1.719676
newburgh | -.8276299 .0394131 -21.00 0.000 -.9048783 -.7503816
smithland | -3.982196 .0726632 -54.80 0.000 -4.124614 -3.839778
lock52 | 5.899513 .0456124 129.34 0.000 5.810114 5.988912
lengthsmall | .0027115 .0001253 21.63 0.000 .0024658 .0029572
lift | -.2807254 .0034274 -81.91 0.000 -.2874429 -.2740079
wicket | -5.650825 .0560553 -100.81 0.000 -5.760692 -5.540959
wickdisch | -8.58e-06 1.30e-07 -65.88 0.000 -8.84e-06 -8.33e-06
lock52disch | -9.33e-06 9.34e-08 -99.95 0.000 -9.51e-06 -9.15e-06
mainout | 6.855582 .0474051 144.62 0.000 6.76267 6.948495
auxout | 2.671019 .0497884 53.65 0.000 2.573435 2.768602
chamblpart | -.2510299 .0998953 -2.51 0.012 -.4468216 -.0552381
chamb2part | 4.457936 .1659534 26.86 0.000 4.132672 4.783199

_cons | -4.324094 .4634639 -9.33 0.000 -5.232469 -3.415719

Linear regression Number of obs = 517229
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Regression Table 14B R-squared = 0.6834

Root MSE = .61424

| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .1279873 .0036109 35.44 0.000 .1209099 .1350646
year2003 | .0637135 .003494 18.23 0.000 .0568652 .0705617
year2004 | .019656 .0034532 5.69 0.000 .0128879 .0264241
year2005 | .1882483 .0038426 48.99 0.000 .180717 .1957797
year2007 | .1888605 .0039171 48.21 0.000 .181183 .1965379
year2008 | .1315137 .0038811 33.89 0.000 .1239069 .1391204
year2009 | -.0233943 .0040022 -5.85 0.000 -.0312385 -.0155501
year2010 | .0551829 .0041882 13.18 0.000 .0469741 .0633918
year2011 | -.028842 .0042218 -6.83 0.000 -.0371166 -.0205675
year2012 | .2544797 .0048713 52.24 0.000 .2449322 .2640272
January | -.0392438 .0043148 -9.10 0.000 -.0477006 -.030787
February | -.0748202 .0042158 -17.75 0.000 -.083083 -.0665575
March | -.1028415 .0042751 -24.06 0.000 -.1112205 -.0944625
April | -.1021543 .0043004 -23.75 0.000 -.1105829 -.0937257
May | -.1337001 .0042895 -31.17 0.000 -.1421075 -.1252928
June | -.0552884 .0042765 -12.93 0.000 -.0636702 -.0469065
August | .1125287 .0047119 23.88 0.000 .1032934 .1217639

September | .0835473 .004526 18.46 0.000 .0746765 .092418
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October | .0767442 .0048963 15.67 0.000 .0671475 .0863408
November | .0491215 .0049087 10.01 0.000 .0395006 .0587424
December | -.0267509 .0045253 -5.91 0.000 -.0356204 -.0178815
discharge | -1.42e-06 1.92e-08 -73.78 0.000 -1.46e-06 -1.38e-06
disch2 | 2.68e-12 3.51e-14 76.45 0.000 2.61e-12 2.75e-12
dirdown | -.0924979 .0017071 -54.19 0.000 -.0958437 -.089152
tugboat | .2706395 .0998366 2.71 0.007 .0749629 .4663162
pushboat | .2961175 .0997498 2.97 0.003 .1006111 .4916239
yearbuilt | -.0004947 .0000711 -6.95 0.000 -.0006341 -.0003553
num_processed | .0076421 .0002157 35.42 0.000 .0072192 .0080649
draftldft | .0194932 .0012065 16.16 0.000 .0171285 .0218579
draftltft | -.0100277 .0009591 -10.46 0.000 -.0119075 -.0081479
tonnage | .0000416 8.38e-06 4.96 0.000 .0000252 .000058
horsepower | 4.27e-06 9.49e-07 4.49 0.000 2.40e-06 6.13e-06
clec | .0095472 .0028453 3.36 0.001 .0039705 .015124
ppp | .0022392 .0025791 0.87 0.385 -.0028157 .0072941
crp | .0135883 .0030623 4.44 0.000 .0075862 .0195904
cmief | -.0277038 .0030143 -9.19 0.000 -.0336118 -.0217958
pmg | -.0463091 .0032277 -14.35 0.000 -.0526354 -.0399829
ffp | .0207972 .0039966 5.20 0.000 .0129639 .0286305
mem | -.0580429 .0133205 -4.36 0.000 -.0841506 -.0319352
markland | .3974482 .0049893 79.66 0.000 .3876694 .4072271
cannelton | .2247493 .0027795 80.86 0.000 .2193015 .2301971
newburgh | -.0537448 .002291 -23.46 0.000 -.058235 -.0492545

smithland | -.3317203 .0056555 -58.65 0.000 -.3428048 -.3206357
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lock52 | 1.401533 .0090401 155.04 0.000 1.383815 1.419252
lengthsmall | .0007717 .0000105 73.23 0.000 .000751 .0007923
lift | -.0150668 .0003115 -48.36 0.000 -.0156774 -.0144562
wicket | -1.873494 .0084761 -221.03 0.000 -1.890107 -1.856881
wickdisch | -1.59e-06 2.31e-08 -69.12 0.000 -1.64e-06 -1.55e-06
lock52disch | -1.52e-06 2.00e-08 -76.30 0.000 -1.56e-06 -1.48e-06
mainout | .3553818 .0052605 67.56 0.000 .3450715 .3656921
auxout | .1490089 .0044497 33.49 0.000 .1402876 .1577303
chamblpart | -.1276444 .0155455 -8.21 0.000 -.1581131 -.0971756
chamb2part | .5339744 .020711 25.78 0.000 .4933816 .5745672

_cons | 4.292133 .1763858 24.33 0.000 3.946422 4.637844

Linear regression Number of obs = 520330

Regression Table 15A R-squared = 0.2226

Root MSE = 5.9749

| Robust

a2s In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .1231505 .0379358 3.25 0.001 .0487976 .1975034
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year2003 | -.3422922 .0376873 -9.08 0.000 -.4161582 -.2684262
year2004 | -.3923822 .0374168 -10.49 0.000 -.465718 -.3190464
year2005 | 1.014129 .0385625 26.30 0.000 .9385475 1.08971
year2007 | .8878543 .0386849 22.95 0.000 .8120331 .9636754
year2008 | .8402751 .0385191 21.81 0.000 .7647789 .9157713
year2009 | -.2997026 .0385945 -7.77 0.000 -.3753466 -.2240586
year2010 | .7956164 .0390384 20.38 0.000 .7191024 .8721303
year2011 | .588736 .0390588 15.07 0.000 .512182 .66529
year2012 | 1.675305 .0430109 38.95 0.000 1.591005 1.759605
January | -.3022149 .0426062 -7.09 0.000 -.3857217 -.2187081
February | -.2636118 .0425148 -6.20 0.000 -.3469395 -.1802842
March | -.5062293 .0429567 -11.78 0.000 -.5904231 -.4220355
April | -.4142415 .0422607 -9.80 0.000 -.4970712 -.3314118
May | -.6089981 .0420852 -14.47 0.000 -.6914837 -.5265125
June | -.3520909 .0408837 -8.61 0.000 -.4322217 -.2719601
August | .4423185 .0425953 10.38 0.000 .358833 .525804
September | .5592907 .0422308 13.24 0.000 .4765196 .6420618
October | .3580376 .0437882 8.18 0.000 .2722141 .4438612
November | .316425 .0438859 7.21 0.000 .23041 .40244
December | -.0875563 .0431019 -2.03 0.042 -.1720348 -.0030778
discharge | -8.03e-06 1.54e-07 -52.17 0.000 -8.34e-06 -7.73e-06
disch2 | 1.51e-11 2.16e-13 69.86 0.000 1.46e-11 1.55e-11
dirdown | -.1311165 .0165748 -7.91 0.000 -.1636027 -.0986304
tugboat | 3.94949 .4532823 8.71 0.000 3.06107 4.837909

pushboat | 4.427298 .4511421 9.81 0.000 3.543073 5.311522
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num_processed | .0605774 .0017091 35.44 0.000 .0572276 .0639271
draftldft | .0778906 .0106966 7.28 0.000 .0569256 .0988557
draftltft | .0294636 .0086559 3.40 0.001 .0124984 .0464288
tonnage | .0007556 .0000609 12.40 0.000 .0006362 .000875

clec | .2385789 .0305778 7.80 0.000 .1786475 .2985104
ppp | .2158595 .0226497 9.53 0.000 .1714667 .2602522
crp | .1627785 .0284908 5.71 0.000 .1069375 .2186195
cmief | -.2939463 .029018 -10.13 0.000 -.3508206 -.237072
pmg | .0050743 .0301696 0.17 0.866 -.0540572 .0642058
ffp | -.1685238 .0368491 -4.57 0.000 -.2407469 -.0963006
mem | -.1354123 .1100529 -1.23 0.219 -.3511126 .0802879
markland | .2374704 .0405691 5.85 0.000 .1579562 .3169846
cannelton | .0609043 .0347721 1.75 0.080 -.0072479 .1290565
newburgh | -379615 .039134 -9.70 0.000 -.4563165 -.3029135
smithland | -.8439852 .0418867 -20.15 0.000 -.9260818 -.7618886
lock52 | 5.927354 .0455587 130.10 0.000 5.83806 6.016647
leneffbig | -.0073114 .0000928 -78.76 0.000 -.0074933 -.0071294
leneffsm | -.0041519 .0000421 -98.63 0.000 -.0042344 -.0040694
lift | -.0542831 .0020823 -26.07 0.000 -.0583643 -.050202
wicket | -4.349985 .0542026 -80.25 0.000 -4.456221 -4.24375
wickdisch | -8.44e-06 1.31e-07 -64.25 0.000 -8.69e-06 -8.18e-06
lock52disch | -9.30e-06 9.33e-08 -99.76 0.000 -9.49e-06 -9.12e-06

_cons | 4.543105 .4818305 9.43 0.000 3.598733 5.487478
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Linear regression

Regression Table 15B

Number of obs = 517229
R-squared = 0.6815
Root MSE = .61608

| Robust

s2e_In| Coef. Std.

Err. t P>|t| [95% Conf. Interval]

year2002 | .1295862
year2003 | .0573626
year2004 | .0161346
year2005 | .1881229
year2007 | .1890324
year2008 | .1297431
year2009 | -.0051819
year2010 | .0710028

year2011 | -.0183528

.0036553

.0034869

.0034985

.0038991

.0039883

.0039354

.0039913

.0041525

.0042323

3545 0.000 .122422 .1367504

16.45 0.000 .0505285 .0641968

4.61 0.000 .0092777 .0229916

48.25 0.000 .1804808 .195765

47.40 0.000 .1812155 .1968492

32.97 0.000 .1220299 .1374564

-1.30 0.194 -.0130046 .0026408

17.10 0.000 .062864 .0791416

-4.34 0.000 -.026648 -.0100576

year2012 | .2573197 .004935 52.14 0.000 .2476471 .2669922

January | -.0398958 .0043148 -9.25 0.000 -.0483526 -.031439

February | -.0743792

.00422 -17.63 0.000 -.0826503 -.066108

March | -.1022776 .0042794 -23.90 0.000 -.1106651 -.09389

April | -.0997957 .0043003 -23.21 0.000 -.1082241 -.0913673

May | -.1275602 .0042893 -29.74 0.000 -.1359672 -.1191533

June | -.0497129 .0042626 -11.66 0.000 -.0580676 -.0413583
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August | .1126984 .0047335 23.81 0.000 .1034209 .1219759
September | .0902817 .0045594 19.80 0.000 .0813454 .099218
October | .0806338 .0049311 16.35 0.000 .070969 .0902985
November | .0563224 .004958 11.36 0.000 .0466048 .0660401
December | -.0306036 .0045318 -6.75 0.000 -.0394859 -.0217214
discharge | -1.40e-06 1.94e-08 -72.33 0.000 -1.44e-06 -1.36e-06
disch2 | 2.64e-12 3.55e-14 74.40 0.000 2.57e-12 2.71e-12
dirdown | -.0924125 .0017122 -53.97 0.000 -.0957683 -.0890567
tugboat | .2716964 .1006845 2.70 0.007 .074358 .4690349
pushboat | .2983666 .1005974 2.97 0.003 .1011989 .4955342
yearbuilt | -.0004974 .0000713 -6.97 0.000 -.0006372 -.0003576
num_processed | .0077574 .0002164 35.85 0.000 .0073333 .0081815
draftldft | .0194969 .0012108 16.10 0.000 .0171237 .0218701
draftltft | -.0101364 .0009616 -10.54 0.000 -.0120212 -.0082516
tonnage | .0000418 8.41e-06 4.97 0.000 .0000253 .0000583
horsepower | 4.19e-06 9.52e-07 4.40 0.000 2.32e-06 6.05e-06
clecc| .0117835 .0028491 4.14 0.000 .0061994 .0173677
ppp | .0028031 .0025886 1.08 0.279 -.0022705 .0078767
crp | .0134256 .0030729 4.37 0.000 .0074029 .0194483
cmief | -.0276185 .0030238 -9.13 0.000 -.0335449 -.021692
pmg | -.0448492 .0032382 -13.85 0.000 -.0511959 -.0385025
ffp | .0177339 .0040083 4.42 0.000 .0098777 .0255901
mem | -.0625961 .0133834 -4.68 0.000 -.0888272 -.036365
markland | .0349922 .0023965 14.60 0.000 .0302952 .0396893

cannelton | .07726 .0019484 39.65 0.000 .0734412 .0810788
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newburgh | -.0102072 .0021899 -4.66 0.000 -.0144994 -.005915
smithland | .0376224 .0028693 13.11 0.000 .0319986 .0432462
lock52 | 1.407009 .009065 155.21 0.000 1.389242 1.424776
leneffbig | -.0006258 .0000118 -52.91 0.000 -.000649 -.0006026
leneffsm | 6.10e-06 3.10e-06 1.97 0.049 2.68e-08 .0000122
lift | .0061132 .0001196 51.10 0.000 .0058787 .0063477
wicket | -1.759685 .0083294 -211.26 0.000 -1.77601 -1.74336
wickdisch | -1.57e-06 2.32e-08 -67.64 0.000 -1.62e-06 -1.53e-06
lock52disch | -1.52e-06 2.00e-08 -76.11 0.000 -1.56e-06 -1.48e-06

_cons | 5.126485 .1776763 28.85 0.000 4.778245 5.474725

Linear regression Number of obs = 520330
Regression Table 16A R-squared = 0.2241
Root MSE = 5.969
| Robust

a2s In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

year2002 | .117376 .0379922 3.09 0.002 .0429125 .1918395
year2003 | -.3299123 .0376946 -8.75 0.000 -.4037926 -.256032
year2004 | -.3672418 .0374291 -9.81 0.000 -.4406017 -.2938819

year2005 | 1.02098 .0385469 26.49 0.000 .9454295 1.096531
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year2007 | .8740121 .0385767 22.66 0.000 .798403 .9496211
year2008 | .8587695 .0385524 22.28 0.000 .7832081 .934331
year2009 | -.2766347 .0386033 -7.17 0.000 -.3522959 -.2009734
year2010 | .7947656 .0389452 20.41 0.000 .7184343 .8710969
year2011 | .5889285 .0390754 15.07 0.000 .5123419 .6655151
year2012 | 1.686895 .0430466 39.19 0.000 1.602525 1.771265
January | -.2843716 .0426094 -6.67 0.000 -.3678847 -.2008585
February | -.2503981 .0425088 -5.89 0.000 -.3337141 -.167082
March | -.4903218 .042957 -11.41 0.000 -.5745161 -.4061275
April | -.3937964 .0422641 -9.32 0.000 -.4766327 -.31096
May | -.5899642 .0420979 -14.01 0.000 -.6724748 -.5074536
June | -.3619499 .0409357 -8.84 0.000 -.4421825 -.2817173
August | .4500483 .0426099 10.56 0.000 .3665342 .5335624
September | .5417987 .042255 12.82 0.000 .4589802 .6246172
October | .3170813 .043807 7.24 0.000 .2312209 .4029418
November | .2723774 .0438005 6.22 0.000 .1865299 .3582249
December | -.0853888 .0430968 -1.98 0.048 -.1698572 -.0009205
discharge | -8.13e-06 1.54e-07 -52.91 0.000 -8.43e-06 -7.83e-06
disch2 | 1.52e-11 2.16e-13 70.55 0.000 1.48e-11 1.56e-11
dirdown | -.1313131 .0165585 -7.93 0.000 -.1637672 -.0988591
tugboat | 3.976127 .4431387 8.97 0.000 3.10759 4.844665
pushboat | 4.452509 .4409724 10.10 0.000 3.588217 5.316801
num_processed | .0604454 .0017063 35.43 0.000 .0571011 .0637897
draftldft | .07695 .0106852 7.20 0.000 .0560074 .0978926

draftltft | .0295014 .0086468 3.41 0.001 .012554 .0464488
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tonnage | .0007585 .0000608 12.48 0.000 .0006394 .0008777
clec | .2403079 .0305667 7.86 0.000 .1803981 .3002178
ppp | .2148931 .0226261 9.50 0.000 .1705467 .2592394
crp | .1629568 .028461 5.73 0.000 .1071741 .2187394
cmief | -.2966108 .0289911 -10.23 0.000 -.3534324 -.2397892
pmg | .0048699 .0301319 0.16 0.872 -.0541878 .0639276
ffp | -.1662911 .0368405 -4.51 0.000 -.2384972 -.094085
mem | -.1407321 .1097315 -1.28 0.200 -.3558024 .0743382
markland | .2437542 .0406625 5.99 0.000 .1640569 .3234515
cannelton | .0594942 .0348009 1.71 0.087 -.0087144 .1277029
newburgh | -.3714346 .0391644 -9.48 0.000 -.4481957 -.2946735
smithland | -.8129213 .0420096 -19.35 0.000 -.8952589 -.7305838
lock52 | 5.904483 .0456233 129.42 0.000 5.815063 5.993903
leneffbig | -.0071332 .0000933 -76.48 0.000 -.007316 -.0069504
leneffsm | -.0041745 .0000423 -98.62 0.000 -.0042574 -.0040915
lift | -.054377 .0020837 -26.10 0.000 -.058461 -.0502931
wicket | -4.310974 .0542196 -79.51 0.000 -4.417243 -4.204705
wickdisch | -8.51e-06 1.31e-07 -64.74 0.000 -8.77e-06 -8.25e-06
lock52disch | -9.34e-06 9.34e-08 -100.05 0.000 -9.52e-06 -9.16e-06
chambilpart | -.1759445 .0988685 -1.78 0.075 -.3697235 .0178346
chamb2part | 4.465592 .1659679 26.91 0.000 4.1403 4.790884

_cons | 4.31424 .4721175 9.14 0.000 3.388904 5.239575
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Linear regression Number of obs = 517229
Regression Table 16B R-squared = 0.6824
Root MSE = .61526
| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .1278023 .0036169 35.34 0.000 .1207133 .1348912
year2003 | .0592593 .0035036 16.91 0.000 .0523925 .0661262
year2004 | .0182045 .0034636 5.26 0.000 .0114159 .0249931
year2005 | .1882608 .0038679 48.67 0.000 .1806799 .1958417
year2007 | .1863638 .0039278 47.45 0.000 .1786655 .1940621
year2008 | .1307786 .0038938 33.59 0.000 .1231469 .1384102
year2009 | -.0032234 .0039627 -0.81 0.416 -.01099 .0045433
year2010 | .0712221 .0041477 17.17 0.000 .0630928 .0793514
year2011 | -.018597 .0042207 -4.41 0.000 -.0268694 -.0103246
year2012 | .2598502 .0049349 52.66 0.000 .2501779 .2695225
January | -.0373676 .004314 -8.66 0.000 -.045823 -.0289123
February | -.0724593 .0042178 -17.18 0.000 -.0807262 -.0641925
March | -.1001198 .0042769 -23.41 0.000 -.1085023 -.0917372
April | -.0966035 .0043004 -22.46 0.000 -.1050321 -.0881749
May | -.1244148 .0042931 -28.98 0.000 -.132829 -.1160005
June | -.0501999 .0042729 -11.75 0.000 -.0585746 -.0418251

August | .1139136 .0047345 24.06 0.000 .104634 .1231931
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September | .0890789 .0045509 19.57 0.000 .0801592 .0979986
October | .0771726 .0049004 15.75 0.000 .0675679 .0867774
November | .0523349 .0049125 10.65 0.000 .0427066 .0619633
December | -.0294025 .0045275 -6.49 0.000 -.0382762 -.0205288
discharge | -1.42e-06 1.94e-08 -73.23 0.000 -1.46e-06 -1.38e-06
disch2 | 2.67e-12 3.55e-14 75.12 0.000 2.60e-12 2.74e-12
dirdown | -.0924415 .0017099 -54.06 0.000 -.0957928 -.0890902
tugboat | .2695647 .1004636 2.68 0.007 .0726591 .4664703
pushboat | .296128 .1003766 2.95 0.003 .0993929 .492863
yearbuilt | -.0004956 .0000713 -6.96 0.000 -.0006353 -.000356
num_processed | .0077407 .0002161 35.81 0.000 .0073171 .0081643
draftldft | .0193774 .0012091 16.03 0.000 .0170076 .0217472
draftltft | -.0101438 .0009606 -10.56 0.000 -.0120265 -.0082611
tonnage | .0000418 8.40e-06 4.97 0.000 .0000253 .0000582
horsepower | 4.23e-06 9.51e-07 4.45 0.000 2.37e-06 6.10e-06
clecc | .0119494 .0028479 4.20 0.000 .0063676 .0175311
ppp | .0027071 .0025854 1.05 0.295 -.0023602 .0077744
crp | .0134508 .0030687 4.38 0.000 .0074362 .0194653
cmief | -.027875 .0030202 -9.23 0.000 -.0337944 -.0219556
pmg | -.0448408 .0032325 -13.87 0.000 -.0511764 -.0385051
ffp | .0179619 .0040045 4.49 0.000 .0101133 .0258105
mem | -.0629679 .0133691 -4.71 0.000 -.0891709 -.0367649
markland | .0372647 .0024161 15.42 0.000 .0325292 .0420001
cannelton | .0771859 .0019567 39.45 0.000 .0733508 .081021

newburgh | -.0087351 .0022045 -3.96 0.000 -.0130559 -.0044142
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smithland |

lock52 | 1.405804 .0090744 154.92 0.000

leneffbig | -.0006006 .0000118 -50.81 0.000
leneffsm |

8.65e-07 3.06e-06 0.28 0.778

lift | .0060694 .0001201 50.53 0.000

wicket | -1.753891 .0083262 -210.65 0.000
wickdisch | -1.58e-06 2.32e-08 -68.21 0.000
lock52disch | -1.53e-06 2.00e-08 -76.42 0.000
chamblpart | -.0720352 .0157934

chamb2part |

_cons | 5.098419 .1774104 28.74 0.000

.0430252 .0028579 15.05 0.000

-4.56 0.000

.5268643 .020763 25.38 0.000

.0374238 .0486265
1.388018 1.423589
-.0006237 -.0005774
-5.13e-06 6.86e-06
005834 .0063048
-1.77021 -1.737572
-1.63e-06 -1.54e-06
-1.57e-06 -1.49e-06
-.1029897 -.0410806
4861694 .5675592

47507 5.446137

Linear regression

Regression Table 17A

Number of obs = 520330

R-squared = 0.2247
Root MSE = 5.9671
| Robust
a2s In| Coef. Std.Err. t P>|t] [95% Conf. Interval]
year2002 | .1095472 .0379955 2.88 0.004 .0350771 .1840172

year2003 | -.3332459

year2004 | -.3591089

.0376922

-8.84 0.000

.0373959 -9.60 0.000

-.4071213 -.2593704

-.4324036 -.2858141
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year2005 |
year2007 |
year2008 |
year2009 |
year2010 |
year2011 |
year2012 |
January |
February |

March |

April | -.3904925 .0422566 -9.24 0.000

May | -

June | -.

August |
September
October |
November

December

1.024818 .0385372 26.59 0.000
.876425 .0385717 22.72 0.000
.865703 .038536 22.46 0.000
-.2874506 .0385857 -7.45 0.000
.7929477 .0389291 20.37 0.000
.5774385 .0390687 14.78 0.000
1.665408 .0430257 38.71 0.000
-.2842174 .0426088 -6.67 0.000

-.2505748 .0425018 -5.90 0.000

-.4912646 .0429566 -11.44 0.000

.5845323 .0420769 -13.89 0.000

3620572 .0409243 -8.85 0.000

4594805 .0425902 10.79 0.000

| .5531463 .0422165 13.10 0.000

.3219125 .0437857 7.35 0.000
| .27536 .0437885 6.29 0.000

| -.0848464 .0430832

-473314

-1.97 0.049

9492858 1.100349
.8008258 .9520243
7901736 .9412324
-.3630772 -.2118239

7166479 .8692474

.5008651 .6540119

1.581079 1.749737
-.3677294 -.2007055
-.333877 -.1672725
-.5754581 -.407071

-.3076709

-.6670017 -.5020628

-4422676 -.2818468

.3760052 .5429559
4704033 .6358893

.236094 .4077311

.1895359 .3611841

-.1692882 -.0004046

discharge | -8.14e-06 1.53e-07 -53.13 0.000 -8.44e-06 -7.84e-06

disch2 |
dirdown |

tugboat |

1.53e-11 2.14e-13 71.54 0.000
-.1328519 .0165531 -8.03 0.000

4.050208 .4440056 9.12 0.000

1.49e-11 1.57e-11

-.1652954 -.1004084

3.179971 4.920445

pushboat | 4.519855 .4418401 10.23 0.000 3.653862 5.385848

num_processed |

draftldft |

.075739 .0106811 7.09 0.000

.0572047 .0017126 33.40 0.000

.0538482 .0605613

.0548044 .0966736
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draftitft | .0296118 .0086437 3.43 0.001 .0126703 .0465532
tonnage | .000776 .0000608 12.77 0.000 .0006568 .0008951
clecc| .241853 .0305569 7.91 0.000 .1819624 .3017435
ppp | .2127982 .0226194 9.41 0.000 .1684648 .2571315
crp | .1625672 .0284557 5.71 0.000 .106795 .2183394
cmief | -.2957783 .0289801 -10.21 0.000 -.3525784 -.2389782
pmg | -.0030301 .0301242 -0.10 0.920 -.0620726 .0560123
ffp | -.1639159 .0368353 -4.45 0.000 -.2361118 -.0917199
mem | -.1196449 .1097029 -1.09 0.275 -.3346591 .0953693
markland | .1844878 .0406874 4.53 0.000 .1047418 .2642338
cannelton | .0617165 .0347659 1.78 0.076 -.0064236 .1298567
newburgh | -.3778169 .0391718 -9.65 0.000 -.4545924 -.3010413
smithland | -.8380227 .0420093 -19.95 0.000 -.9203596 -.7556858
lock52 | 5.899254 .0455974 129.38 0.000 5.809885 5.988624
leneffbig | -.0054554 .0001389 -39.27 0.000 -.0057277 -.0051832
leneffsm | -.0041461 .0000423 -98.01 0.000 -.004229 -.0040632
lift | -.0536216 .0020825 -25.75 0.000 -.0577032 -.04954
wicket | -4.294953 .054124 -79.35 0.000 -4.401034 -4.188871
wickdisch | -8.55e-06 1.31e-07 -65.44 0.000 -8.81e-06 -8.30e-06
lock52disch | -9.34e-06 9.33e-08 -100.06 0.000 -9.52e-06 -9.15e-06
chamblpart | -.181442 .0987094 -1.84 0.066 -.3749093 .0120253
chamb2part | 4.415599 .1667519 26.48 0.000 4.088771 4.742428
decoupled | 1.777333 .0881869 20.15 0.000 1.60449 1.950177

_cons | 2.236098 .4897481 4.57 0.000 1.276208 3.195989
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Linear regression Number of obs = 517229
Regression Table 17B R-squared = 0.6856

Root MSE = .61213

| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .124705 .003599 34.65 0.000 .1176512 .1317589
year2003 | .0579298 .0034851 16.62 0.000 .051099 .0647606
year2004 | .0214868 .0034443 6.24 0.000 .0147361 .0282374
year2005 | .1898253 .0038522 49.28 0.000 .182275 .1973755
year2007 | .1873224 .0039152 47.84 0.000 .1796486 .1949961
year2008 | .1335159 .0038785 34.42 0.000 .125914 .1411177
year2009 | -.0075785 .0039407 -1.92 0.054 -.0153023 .0001452
year2010 | .0704495 .0041308 17.05 0.000 .0623534 .0785457
year2011 | -.0232805 .0041988 -5.54 0.000 -.03151 -.0150509
year2012 | .2510634 .0048939 51.30 0.000 .2414716 .2606552
January | -.0373686 .0042936 -8.70 0.000 -.0457839 -.0289533
February | -.0725681 .0041898 -17.32 0.000 -.0807799 -.0643563
March | -.1004762 .0042536 -23.62 0.000 -.1088132 -.0921392
April | -.0953023 .004272 -22.31 0.000 -.1036752 -.0869293

May | -.1222427 .0042573 -28.71 0.000 -.1305869 -.1138984
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June | -.0502054 .0042436 -11.83 0.000 -.0585228 -.041888
August | .1176533 .004709 24.98 0.000 .1084239 .1268828
September | .0936631 .0045251 20.70 0.000 .084794 .1025322
October | .0791449 .0048795 16.22 0.000 .0695813 .0887085
November | .0536159 .0048871 10.97 0.000 .0440373 .0631945
December | -.0292013 .0044987 -6.49 0.000 -.0380186 -.0203839
discharge | -1.42e-06 1.90e-08 -74.88 0.000 -1.46e-06 -1.38e-06

disch2 | 2.69e-12 3.43e-14 78.59 0.000 2.63e-12 2.76e-12
dirdown | -.0930608 .0017012 -54.70 0.000 -.0963951 -.0897265
tugboat | .2876317 .1003781 2.87 0.004 .0908939 .4843696
pushboat | .3113641 .1002913 3.10 0.002 .1147962 .507932

yearbuilt | -.0004934 .000071 -6.95 0.000 -.0006325 -.0003544

num_processed | .0063449 .0002157 29.42 0.000 .0059221 .0067676

draftldft | .0187669 .0012036 15.59 0.000 .0164079 .021126
draftltft | -.0101532 .0009559 -10.62 0.000 -.0120267 -.0082797
tonnage | .000043 8.36e-06 5.14 0.000 .0000266 .0000594
horsepower | 5.25e-06 9.47e-07 5.55 0.000 3.40e-06 7.11e-06
clecc| .0130569 .0028313 4.61 0.000 .0075076 .0186062
ppp | .0017932 .0025741 0.70 0.486 -.003252 .0068384
crp | .0134504 .0030552 4.40 0.000 .0074623 .0194386
cmief | -.0273363 .0030058 -9.09 0.000 -.0332276 -.021445
pmg | -.0482726 .0032181 -15.00 0.000 -.05458 -.0419653
ffp | .0182786 .0039899 4.58 0.000 .0104585 .0260988
mem | -.0535978 .0132924 -4.03 0.000 -.0796505 -.0275452

markland | .0133752 .0023034 5.81 0.000 .0088607 .0178898
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cannelton | .0781841 .0019225 40.67 0.000 .0744161 .0819521
newburgh | -.0112658 .0021868 -5.15 0.000 -.0155519 -.0069797
smithland | .0329053 .0028357 11.60 0.000 .0273474 .0384632
lock52 | 1.40379 .0090619 154.91 0.000 1.386029 1.421551
leneffbig | .0000744 .0000138 5.39 0.000 .0000473 .0001014
leneffsm | .0000123 3.03e-06 4.05 0.000 6.35e-06 .0000182
lift | .0063805 .0001186 53.78 0.000 .006148 .006613
wicket | -1.747492 .0082545 -211.70 0.000 -1.763671 -1.731313
wickdisch | -1.60e-06 2.28e-08 -70.26 0.000 -1.65e-06 -1.56e-06
lock52disch | -1.53e-06 2.00e-08 -76.41 0.000 -1.57e-06 -1.49e-06
chamblpart | -.0742691 .0157116 -4.73 0.000 -.1050633 -.0434748
chamb2part | .5065662 .0207989 24.36 0.000 .4658011 .5473313
decoupled | .7149842 .008175 87.46 0.000 .6989614 .7310069

_cons | 4.269961 .1770495 24.12 0.000 3.92295 4.616973

Linear regression Number of obs = 520330
Regression Table 18A R-squared = 0.2247

Root MSE = 5.9669

| Robust

a2s In| Coef. Std.Err. t P>|t] [95% Conf. Interval]
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year2002 | .108599 .0379912 2.86 0.004 .0341374 .1830607
year2003 | -.3316232 .037687 -8.80 0.000 -.4054884 -.257758
year2004 | -.3587002 .0373928 -9.59 0.000 -.4319889 -.2854114
year2005 | 1.024868 .0385316 26.60 0.000 .9493474 1.100389
year2007 | .8778528 .0385658 22.76 0.000 .802265 .9534407
year2008 | .8660519 .0385347 22.47 0.000 .790525 .9415788
year2009 | -.2919614 .0385915 -7.57 0.000 -.3675996 -.2163233
year2010 | .7886552 .038931 20.26 0.000 .7123517 .8649587
year2011 | .5696029 .0390945 14.57 0.000 .492979 .6462268
year2012 | 1.658228 .0430506 38.52 0.000 1.57385 1.742606
January | -.2822822 .042607 -6.63 0.000 -.3657905 -.1987739
February | -.2490208 .0424995 -5.86 0.000 -.3323184 -.1657232
March | -.4900009 .0429585 -11.41 0.000 -.5741982 -.4058035
April | -.3908304 .0422579 -9.25 0.000 -.4736545 -.3080062
May | -.5866784 .0420825 -13.94 0.000 -.6691588 -.5041981
June | -.3622069 .0409246 -8.85 0.000 -.4424177 -.281996
August | .4583049 .0425859 10.76 0.000 .3748379 .5417719
September | .5505471 .0422151 13.04 0.000 .4678068 .6332874
October | .3221855 .0437855 7.36 0.000 .2363674 .4080037
November | .2726558 .043795 6.23 0.000 .186819 .3584926
December | -.0836275 .0430809 -1.94 0.052 -.1680648 .0008097
discharge | -8.14e-06 1.53e-07 -53.15 0.000 -8.45e-06 -7.84e-06
disch2 | 1.53e-11 2.14e-13 71.54 0.000 1.49e-11 1.57e-11

dirdown | -.132734 .0165526 -8.02 0.000 -.1651766 -.1002914
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tugboat | 4.044796 .4444639 9.10 0.000 3.173661 4.915931
pushboat | 4.511301 .442304 10.20 0.000 3.644399 5.378203
num_processed | .0585178 .0017235 33.95 0.000 .0551397 .0618958
draftldft | .0753383 .0106802 7.05 0.000 .0544054 .0962712
draftltft | .0301239 .0086436 3.49 0.000 .0131827 .0470652
tonnage | .0007772 .0000608 12.79 0.000 .000658 .0008963
clecc | .2442262 .0305651 7.99 0.000 .1843195 .3041329
ppp | .2077906 .0226515 9.17 0.000 .1633945 .2521868
crp | .1615619 .0284547 5.68 0.000 .1057916 .2173322
cmief | -.289217 .029012 -9.97 0.000 -.3460796 -.2323543
pmg | -.0053835 .030124 -0.18 0.858 -.0644256 .0536585
ffp | -.1681302 .0368455 -4.56 0.000 -.2403463 -.0959141
mem | -.1314327 .1096416 -1.20 0.231 -.3463267 .0834614
markland | .074741 .0477348 1.57 0.117 -.0188177 .1682996
cannelton | .0164915 .036196 0.46 0.649 -.0544514 .0874345
newburgh | -.3671394 .0392445 -9.36 0.000 -.4440573 -.2902215
smithland | -.7900336 .0436483 -18.10 0.000 -.8755829 -.7044842
lock52 | 5.898291 .0455902 129.38 0.000 5.808935 5.987646
leneffbig | -.005612 .000142 -39.53 0.000 -.0058902 -.0053337
leneffsm | -.0042677 .0000511 -83.47 0.000 -.0043679 -.0041675
lift | -.0471837 .0025384 -18.59 0.000 -.0521588 -.0422085
wicket | -4.252538 .0549904 -77.33 0.000 -4.360318 -4.144759
wickdisch | -8.55e-06 1.31e-07 -65.45 0.000 -8.81e-06 -8.30e-06
lock52disch | -9.33e-06 9.33e-08 -100.01 0.000 -9.51e-06 -9.15e-06

chambilpart | -.2082472 .0988152 -2.11 0.035 -.401922 -.0145725
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chamb2part | 4.41765 .1667196 26.50 0.000 4.090885 4.744415
decoupled | 1.888122 .0938381 20.12 0.000 1.704202 2.072041
bargeout | -.022459 .0051172 -4.39 0.000 -.0324885 -.0124295

_cons | 2.373068 .4908168 4.83 0.000 1.411082 3.335053

Linear regression Number of obs = 517229
Regression Table 18B R-squared = 0.6857
Root MSE = .61203
| Robust

s2e_In| Coef. Std.Err. t P>|t] [95% Conf. Interval]

+.
T

year2002 | .1249742 .0035976 34.74 0.000 .117923 .1320254
year2003 | .0574655 .0034849 16.49 0.000 .0506352 .0642957
year2004 | .0213678 .0034434 6.21 0.000 .0146189 .0281168
year2005 | .1898105 .0038534 49.26 0.000 .182258 .1973631
year2007 | .186909 .0039153 47.74 0.000 .1792352 .1945828
year2008 | .1334246 .0038781 34.40 0.000 .1258236 .1410255
year2009 | -.0062909 .0039428 -1.60 0.111 -.0140187 .0014369
year2010 | .0716861 .0041337 17.34 0.000 .0635843 .079788
year2011 | -.0210156 .0042075 -4.99 0.000 -.0292621 -.012769

year2012 | .2531191 .0048956 51.70 0.000 .2435239 .2627143
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January | -.0378913 .0042916 -8.83 0.000 -.0463027 -.0294798

February | -.0729987 .0041874 -17.43 0.000 -.0812059 -.0647914

March | -.1008246 .0042509 -23.72 0.000 -.1091562 -.0924931

April | -.0951823 .0042695 -22.29 0.000 -.1035503 -.0868143

May | -.121601 .0042553 -28.58 0.000 -.1299413 -.1132607

June | -.0501505 .0042414 -11.82 0.000 -.0584635 -.0418374

August | .1179856 .004709 25.06 0.000 .1087562 .1272151

September | .0944166 .0045241 20.87 0.000 .0855496 .1032836

October | .079055 .0048778 16.21 0.000 .0694947 .0886152

November | .0543851 .0048879 11.13 0.000 .0448051 .0639652

December | -.0295412 .0044972 -6.57 0.000 -.0383556 -.0207269

discharge | -1.42e-06 1.90e-08 -74.87 0.000 -1.46e-06 -1.38e-06

disch2 | 2.69e-12 3.42e-14 78.61 0.000 2.62e-12 2.76e-12

dirdown | -.0930966 .0017009 -54.73 0.000 -.0964303 -.0897629

tugboat | .2945367 .100523 2.93 0.003 .0975148 .4915587

pushboat | .319343 .1004372 3.18 0.001 .1224893 .5161966

yearbuilt | -.0004912 .000071 -6.92 0.000 -.0006302 -.0003521

num_processed | .005991 .0002186 27.41 0.000 .0055625 .0064194

draftldft | .0189062 .0012034 15.71 0.000 .0165475 .0212649

draftltft | -.0102412 .0009557 -10.72 0.000 -.0121144 -.008368

tonnage | .0000446 8.36e-06 5.33 0.000 .0000282 .0000609

horsepower | 4.92e-06 9.47e-07 5.19 0.000 3.06e-06 6.77e-06

clec | .0122214 .0028317 4.32 0.000 .0066715 .0177714

ppp | .0032351 .0025763 1.26 0.209 -.0018143 .0082846

crp | .0136872 .0030549 4.48 0.000 .0076997 .0196748
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cmief | -.0292581 .0030074 -9.73 0.000 -.0351525 -.0233638
pmg | -.0475903 .0032194 -14.78 0.000 -.0539003 -.0412804
ffp | .0197529 .0039885 4.95 0.000 .0119355 .0275702
mem | -.0502274 .0132758 -3.78 0.000 -.0762476 -.0242071
markland | .0451347 .0028514 15.83 0.000 .039546 .0507235
cannelton | .0912395 .0020539 44.42 0.000 .0872139 .095265
newburgh | -.0143799 .0021932 -6.56 0.000 -.0186786 -.0100812
smithland | .0190504 .0030425 6.26 0.000 .0130871 .0250136
lock52 | 1.404006 .0090652 154.88 0.000 1.386239 1.421774
leneffbig | .0001194 .000014 8.53 0.000 .0000919 .0001468
leneffsm | .0000474 3.92e-06 12.10 0.000 .0000397 .0000551
lift | .004517 .0001565 28.87 0.000 .0042103 .0048237
wicket | -1.759727 .0082902 -212.27 0.000 -1.775975 -1.743478
wickdisch | -1.60e-06 2.28e-08 -70.26 0.000 -1.65e-06 -1.56e-06
lock52disch | -1.53e-06 2.00e-08 -76.45 0.000 -1.57e-06 -1.49e-06
chamblpart | -.0664891 .0157837 -4.21 0.000 -.0974246 -.0355536
chamb2part | .5059333 .0207975 24.33 0.000 .4651709 .5466958
decoupled | .6828919 .0081929 83.35 0.000 .666834 .6989498
bargeout | .0064908 .0003507 18.51 0.000 .0058035 .0071782

_cons | 4.220555 .1771616 23.82 0.000 3.873324 4.567787

Regression 19
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Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq"  chi2 P
a2s_In 5.2e+05 51 5.96443 0.2250 120718.91 0.0000
s2e_In 5.2e+05 53 .6119732 0.6858 912896.32 0.0000

March | -.4925917 .0438235 -11.24 0.000

| Coef. Std.Err. z P>|z| [95% Conf. Interval]
a2s_In |
year2002 | .1110624 .0381576 2.91 0.004 .0362749 .1858499
year2003 | -.3298803 .0388773 -8.49 0.000 -.4060784 -.2536823
year2004 | -.3579883 .0385092 -9.30 0.000 -.4334649 -.2825117
year2005 | 1.025538 .0374763 27.36 0.000 .9520858 1.09899
year2007 | .8775064 .0377906 23.22 0.000 .8034382 .9515746
year2008 | .8630476 .0379538 22.74 0.000 .7886596 .9374357
year2009 | -.2930291 .0392575 -7.46 0.000 -.3699723 -.2160858
year2010 | .7797058 .0387631 20.11 0.000 .7037315 .8556801
year2011 | .5607897 .03912 14.34 0.000 .4841159 .6374635
year2012 | 1.666492 .0430994 38.67 0.000 1.582019 1.750966
January | -.2885173 .0426278 -6.77 0.000 -.3720663 -.2049683
February | -.2531831 .0431349 -5.87 0.000 -.337726 -.1686403

-.578484 -.4066993
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April | -.3930135 .043004 -9.14 0.000 -.4772998 -.3087272
May | -.5878927 .0425706 -13.81 0.000 -.6713295 -.5044558
June | -.366258 .0409223 -8.95 0.000 -.4464642 -.2860518
August | .455864 .0405015 11.26 0.000 .3764825 .5352454
September | .5475589 .0405582 13.50 0.000 .4680664 .6270515
October | .3156126 .0411218 7.68 0.000 .2350154 .3962098
November | .2704976 .04174 6.48 0.000 .1886888 .3523065
December | -.085306 .0429502 -1.99 0.047 -.1694868 -.0011251
discharge | -8.14e-06 1.57e-07 -51.75 0.000 -8.45e-06 -7.84e-06
disch2 | 1.53e-11 2.18e-13 69.95 0.000 1.49e-11 1.57e-11
dirdown | -.1316265 .0165952 -7.93 0.000 -.1641525 -.0991004
tugboat | 4.214196 .6025134 6.99 0.000 3.033291 5.3951
pushboat | 4.746721 .6003513 7.91 0.000 3.570054 5.923388
num_processed | .0572428 .0018789 30.47 0.000 .0535603 .0609253
draftldft | .0731777 .0109833 6.66 0.000 .0516508 .0947046
draftltft | .0437059 .0089337 4.89 0.000 .0261962 .0612156
tonnage | .0007617 .0000617 12.34 0.000 .0006407 .0008826
clecc| .246967 .0300139 8.23 0.000 .1881407 .3057932
ppp | .2003768 .0233739 8.57 0.000 .1545647 .2461889
crp | .1648324 .0287652 5.73 0.000 .1084536 .2212112
cmief | -.2797095 .0289381 -9.67 0.000 -.3364272 -.2229919
pmg | -.0355337 .0305937 -1.16 0.245 -.0954964 .0244289
ffp | -.1576405 .0374261 -4.21 0.000 -.2309943 -.0842867
mem | -121191 .1109373 -1.09 0.275 -.3386241 .0962421

markland | .0700765 .0442613 1.58 0.113 -.0166741 .1568271
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cannelton | .0129542 .0331493 0.39 0.696 -.0520173 .0779256
newburgh | -.3806734 .0357803 -10.64 0.000 -.4508016 -.3105453
smithland | -.7945297 .040656 -19.54 0.000 -.8742141 -.7148454
lock52 | 5.901052 .0499873 118.05 0.000 5.803078 5.999025
leneffbig | -.005652 .0001424 -39.69 0.000 -.0059312 -.0053729
leneffsm | -.0042675 .0000471 -90.55 0.000 -.0043599 -.0041752
lift | -.04721 .0023662 -19.95 0.000 -.0518476 -.0425724
wicket | -4.254911 .0553366 -76.89 0.000 -4.363369 -4.146454
wickdisch | -8.55e-06 1.41e-07 -60.44 0.000 -8.82e-06 -8.27e-06
lock52disch | -9.33e-06 1.35e-07 -69.04 0.000 -9.60e-06 -9.07e-06
chamblpart | -.1987594 .0859598 -2.31 0.021 -.3672375 -.0302813
chamb2part | 4.403109 .1395764 31.55 0.000 4.129545 4.676674
decoupled | 1.876583 .0985595 19.04 0.000 1.68341 2.069756
bargeout | -.022973 .0047853 -4.80 0.000 -.0323521 -.0135939

_cons | 2.121825 .6381206 3.33 0.001 .8711317 3.372519

+.
T

s2e_In |
year2002 | .1249196 .0039158 31.90 0.000 .1172447 .1325945
year2003 | .0574298 .0039892 14.40 0.000 .049611 .0652486
year2004 | .021294 .0039512 5.39 0.000 .0135498 .0290382
year2005 | .1897768 .0038453 49.35 0.000 .1822401 .1973134
year2007 | .1868884 .0038776 48.20 0.000 .1792884 .1944883
year2008 | .1334532 .0038957 34.26 0.000 .1258178 .1410886
year2009 | -.0063106 .0040329 -1.56 0.118 -.0142149 .0015938

year2010 | .0716871 .0039857 17.99 0.000 .0638753 .0794989

188




year2011 | -.0209627 .0040283 -5.20 0.000 -.028858 -.0130674
year2012 | .2529879 .004443 56.94 0.000 .2442798 .2616961
January | -.0378396 .0043744 -8.65 0.000 -.0464133 -.0292659
February | -.0730535 .0044261 -16.51 0.000 -.0817285 -.0643785
March | -.1008563 .0044966 -22.43 0.000 -.1096695 -.0920432
April | -.0951799 .0044125 -21.57 0.000 -.1038283 -.0865316
May | -.1216222 .004368 -27.84 0.000 -.1301834 -.1130611
June | -.0502944 .0041988 -11.98 0.000 -.0585239 -.0420649
August | .1181173 .0041557 28.42 0.000 .1099723 .1262622
September | .0945815 .0041615 22.73 0.000 .0864252 .1027378
October | .0791125 .0042194 18.75 0.000 .0708425 .0873825
November | .0543772 .0042829 12.70 0.000 .0459828 .0627715
December | -.0295558 .0044069 -6.71 0.000 -.0381931 -.0209185
discharge | -1.42e-06 1.61e-08 -87.82 0.000 -1.45e-06 -1.39e-06
disch2 | 2.69e-12 2.24e-14 120.00 0.000 2.65e-12 2.73e-12
dirdown | -.0931141 .0017028 -54.68 0.000 -.0964514 -.0897767
tugboat | .304793 .0634098 4.81 0.000 .1805121 .4290739
pushboat | .3302327 .0633251 5.21 0.000 .2061178 .4543475
yearbuilt | -.0005036 .0000676 -7.44 0.000 -.0006362 -.000371
num_processed | .0060505 .0002037 29.70 0.000 .0056511 .0064498
draftldft | .0190071 .0011409 16.66 0.000 .016771 .0212431
draftltft | -.0100893 .0009375 -10.76 0.000 -.0119267 -.008252
tonnage | .0000484 8.09e-06 5.99 0.000 .0000326 .0000643
horsepower | 4.19e-06 9.01e-07 4.65 0.000 2.42e-06 5.95e-06

clecc | .0120095 .0031138 3.86 0.000 .0059065 .0181125

189




ppp | .0033214 .00243 1.37 0.172 -.0014414 .0080842
crp | .0136127 .0029638 4.59 0.000 .0078039 .0194216
cmief | -.0294422 .0029901 -9.85 0.000 -.0353027 -.0235816
pmg | -.0474887 .0031729 -14.97 0.000 -.0537074 -.0412699
ffp | .0202249 .0039227 5.16 0.000 .0125366 .0279132
mem | -.0503525 .0113905 -4.42 0.000 -.0726774 -.0280275
markland | .0452759 .0045437 9.96 0.000 .0363704 .0541814
cannelton | .0912726 .0034014 26.83 0.000 .0846059 .0979392
newburgh | -.0144262 .0036734 -3.93 0.000 -.021626 -.0072264
smithland | .0190867 .0041721 4.57 0.000 .0109095 .0272638
lock52 | 1.403959 .0051315 273.60 0.000 1.393902 1.414017
leneffbig | .0001193 .0000146 8.16 0.000 .0000906 .0001479
leneffsm | .0000474 4.84e-06 9.80 0.000 .0000379 .0000569
lift | .0045116 .0002429 18.57 0.000 .0040355 .0049877
wicket | -1.760034 .0056791 -309.91 0.000 -1.771164 -1.748903
wickdisch | -1.60e-06 1.45e-08 -110.25 0.000 -1.63e-06 -1.57e-06
lock52disch | -1.53e-06 1.39e-08 -110.32 0.000 -1.56e-06 -1.50e-06
chamblpart | -.0676497 .0088199 -7.67 0.000 -.0849364 -.0503629
chamb2part | .5059282 .0143211 35.33 0.000 .4778594 .533997
decoupled | .6828155 .0101149 67.51 0.000 .6629907 .7026402
bargeout | .0064949 .0004912 13.22 0.000 .0055322 .0074576

_cons | 4.233282 .1521023 27.83 0.000 3.935167 4.531397

Correlation matrix of residuals:
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a2s_In s2e_In
a2s_In 1.0000

s2e_In 0.1786 1.0000

Breusch-Pagan test of independence: chi2(1) = 16488.085, Pr = 0.0000

191




	Operational Model Correct Cover
	141120 Inland Waterway Operational Model & Simulation Along the Ohio River Final Report MTIC
	141120 Inland Waterway Operational Model & Simulation Appendices

