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ABSTRACT FOR VOLUME 3 

 

This report presents the numerical portion of the research project on the impacts of 

loading history on the behavior of reinforced concrete bridge columns. In well-detailed 

reinforced concrete structures, reinforcing bar buckling and subsequent bar rupture serve as 

common failure mechanisms under extreme seismic events. Engineers often use a strain limit 

state which is associated with bar buckling as the ultimate limit state, but the relationship 

between the strain demand and resultant bar buckling is not well understood. Past research 

has indicated large impact of the cyclic loading history on the strain demand to achieve 

reinforcing bar buckling. On the other hand, sectional analysis is widely implemented by 

engineers to relate strain to displacement. However, the cyclic load history also has potential 

impact on the relationship between strain limits and displacement limits. As a result, it is 

important to study the seismic load history effect on the strain limit state of reinforcing bar 

buckling and on the relationship between local strain and structural displacement. In addition, 

Performance-Based Earthquake Engineering (PBEE) strongly depends on an accurate strain 

limit definition, so a design methodology needs to be developed to identify the strain limit for 

reinforcing bar buckling including the seismic load history effect.  

Two independent finite element methods were utilized to accomplish the goal of this 

research work. First, fiber-based analysis was utilized which employed the Open System for 

Earthquake Engineering Simulation (OpenSees). The fiber-based method was selected 

because of its accuracy in predicting strains and its computational efficiency in performing 

nonlinear time history analysis (NTHA). The uniaxial material models in fiber-based sections 

were calibrated with data from material tests. In addition, strain data and force-deformation 

response from large scale testing assists selection of element types and integration schemes 

to ensure accuracy. The advanced beam-column elements and material models in OpenSees 

resulted in a very accurate prediction of strain at local sections as well as global dynamic 

response of structures. A number of nonlinear time history analyses with 40 earthquake 

ground motions were conducted to investigate the effect of seismic load history on 
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relationship between structural displacement and strain of extreme fiber bars at the critical 

section. 

The second finite element model was established with solid elements to predict bar 

buckling. The model included a segment of reinforcing bar and its surrounding elements, 

such as spiral turns and concrete. This model separates itself from previous bar buckling 

research by utilizing actual sectional detailing boundary conditions and plastic material 

models instead of the simplified bar-spring model. The strain history is considered as the 

demand on this model. A series of strain histories from the experimental tests and fiber-based 

analyses were applied to the finite element model to study their impacts on the strain limit for 

reinforcing bar buckling.  

Initial analytical investigations have shown significant impact of load history on the 

strain demand to lead to reinforcing bar buckling in the plastic hinge region. This is also 

confirmed in the experimental observation which only included a limited number of load 

histories. The parametric study extended the range of load history types and also studied the 

effect of reinforcement detailing on bar buckling. On the other hand, analyses with fiber-

based models showed that the load history rarely impacts the relationship between local 

strain and structural displacement. A design approach was developed to include the load 

history effect on the strain limit state of bar buckling. 
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Chapter 1: Introduction 

1.1 Background and Scope 

The research presented in this report represents the analytical portion of the load history 

research project funded by the Alaska Department of Transportation and Public Facilities and 

the Alaska University Transportation Center and is the third of three volumes. The 

experimental portion of the project (Volumes 1 and 2) has shown that load history has large 

impact on the strain limit related to reinforcing bar buckling. Therefore, finite element 

methods are utilized to specify different mechanisms of bar buckling under a variety of load 

histories. The details of finite element models are shown in Chapters 3 and 5. In addition, the 

impact of load history on the relationship between strain and displacement are investigated. 

Presented in this volume of the report is a summary of the analytical modelling 

conducted as part of this research. This includes chapters on the role of fiber-modelling, 

finite element analysis, and finally a model for prediction of bar buckling for RC bridge 

columns.  

In order to quantify the load history effect on the strain limits and the relationship 

between strain and displacement, the numerical method implemented should be able to 

capture the global non-linear behavior of a reinforced concrete bridge column as well as the 

local damage such as reinforcing bar buckling. In the case of investigating the load history 

effect on the relationship between strain and displacement, a finite element method with 

fiber-based elements was utilized because of its capability in providing strain information. In 

addition, as a simplified method compared to a finite element model with solid elements, the 

fiber-based model significantly reduces the computational cost of the nonlinear time history 

analysis (NTHA). This will allow a large number of NTHAs to be conducted with a variety 

of earthquake ground motions and RC columns. However, for the purpose of capturing local 

non-linear damage, especially reinforcing bar buckling, a portion of the plastic hinge region 
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is model with solid elements. Non-linear material behavior is determined by material tests 

and assigned to both finite element models. 

1.2 Layout of Report 

This report contains the following chapters: Chapter 2 contains a literature review; 

Chapter 3 introduces the fiber-modelling employed as part of this research program; Chapter 

4 utilizes the fiber modelling of Chapter 3 to discuss the impact of load history on strain-

displacement relationships; Chapter 5 Introduces the development of the FEA model for 

buckling; Chapter 6 utilizes the FEA of Chapter 5 to develop a model to predict bar buckling; 

and Chapter 7 are the conclusions of the analytical portion.  
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Chapter 2: Literature Review 

2.1 General Discussion 

This chapter will review the numerical methods to simulate the nonlinear response of RC 

members. In the case of global force deformation response of a concrete structure, a frame 

element is often utilized to model the RC member. Frame elements are defined on the basis 

of moment of inertia (bending and torsion), elastic modulus, and cross sectional area, among 

other parameters. In the case of nonlinear analysis, section hysteretic rules, such as the 

Modified Takeda Degrading Stiffness model (Otani (1974)), are defined to address non-

linearity. However, if local behavior or damage is sought, a finite element method with solid 

or shell elements is utilized. Frame elements have apparent advantages in computational cost 

compared to a finite element models and it are often implemented in nonlinear time history 

analysis (NTHA). Nevertheless, engineers and researchers often acquire strain information in 

a NTHA to evaluate the damage under a seismic event. Fiber-based element models fulfill 

this requirement and also ensure reliable dynamic behavior as shown by Petrini et al. (2008).  

2.2 Relevant Articles on Numerical Simulation 

2.2.1 Fiber-Based Modeling of Reinforced Concrete Members 

Fiber-based elements are able to provide strain information in an RC section which serve 

as an indicator of the damage limit state, such as longitudinal bar buckling. To investigate the 

seismic load history effect, it is convenient to utilize the fiber-based model for conducting 

NTHA and evaluating the structural performance with strain information. The research 

described in this report utilizes the Open System for Earthquake Engineering Simulation 

(OpenSees) to conduct analysis with fiber-based models. 

Conventional frame elements utilize Euler-Bernoulli beam theory to distribute the lateral 

and axial displacement based on cubic Hermitian polynomials and linear Lagrangian shape 
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functions, respectively.  Beam theory represents the exact solution for a deformed member 

with a linear distribution of curvature and constant axial strain. In structural members with 

higher order curvature and axial strain distributions, such as nonlinear RC members, the 

theory will fail to capture the actual structural behavior.  Weiler (1990) and Neuenhofer 

(1993) stated that this limitation can be overcome with higher-order displacement 

interpolation functions in connection with internal element nodes. As a result, multiple 

displacement-based elements are required to model a nonlinear RC member.  

Spacone et al. (1996), and Neuehofer and Filippou (1997) developed a new nonlinear 

frame finite-element based on force interpolation functions as opposed to the displacement 

fields or shape functions in traditional finite elements. The external force or moment 

distributions on a beam or column are often known in the typical engineering problem, such 

as the linear moment distribution under lateral loading in RC bridge columns. The actual 

distribution of force can be implemented as the force interpolation function directly without 

any further assumptions. As a result, the solution from the flexibility (force)-based element is 

exact for this force distribution. Since the flexibility-based elements are based on exact force 

interpolation functions, the solution involves limited numerical integration error even with a 

small number of elements or integration points. By contrast, the displacement interpolation 

functions deviate from the exact solution, so that a finer mesh with a large number of 

displacement-based elements is required to compensate for the assumption on displacement 

field.  

Neuehofer and Filippou (1998) proposed the curvature-based displacement interpolation 

(CBDI) to enhance the functionality of the force-based element. This modification takes full 

advantage of the force interpolation field. Since the force distribution of a structural member 

is often known in actual engineering problems, only one force-based element with the exact 

force interpolation function is required. The CBDI allows locating multiple integration points 

within a force-based element to assess the high order deformation shape. Instead of multiple 

force-based elements, one element with multiple integration point allows the model to be 
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more efficient. The curvature-based interpolation procedure permits the consistent 

linearization of the governing compatibility equations for force-based elements.  

The localization of response in reinforced concrete members modeled by continuum 

finite elements was studied by de Borst et al. (1994) and Bazant and Planas (1998). Similar to 

their findings, the displacement-based element approach also causes localization of response 

over a single element while the force-based element suffers from the localization of 

deformation at a single integration point. Scott and Fenves (2006) found that the strain 

softening behavior of concrete could cause a softening section in a fiber-based element. In 

this case, the localization of deformation in the force-based element is significant. To address 

this issue in the force-based element, Scott and Fenves (2006) developed a force-based 

element with adjustable integration weight at the ends of the element. The integration weight 

can be selected based upon the length of plastic hinges for the purpose of spreading the 

plasticity. A modified Gauss-Radau plastic hinge integration method was implemented in this 

force-based element to allow the control of the integration weight. The proposed element was 

recommended for the nonlinear analysis of frame structures when softening and degradation 

of the members is expected.  

The approach of using one integration point to represent the plastic zone was adopted 

and improved by Lee and Filippou (2009). A new force-based element was developed to 

capture the development of the plastic zone depending on the moment gradient along the 

element. Figure 2.5 showes the inelastic zone length, which depends on a portion of the 

moment diagram where the moment magnitude exceeds the plastic moment capacity of the 

section. This method is able to capture the growth of the inelastic zone under incremental 

loading at the strain hardening section. However, a strain softening section during post peak 

behavior may not reach the plastic moment capacity of the section, but may still result in the 

spread of plasticity. Therefore, the approach using moment magnitude to define the extent of 

plasticity is not applicable with the strain softening section. Lee and Filippou (2009) then 

assumed the inelastic zone is fixed and time independent which is identical to Scott and 

Fenves’ (2006) assumption.  
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As discussed, several methods have been developed to overcome the response 

localization in the force-based element with a strain softening section. However, these 

approaches fail to converge in the case of strain hardening response. In order to have a single 

element type which accurately predicts both strain hardening and softening behavior, Scott 

and Hamutcuoglu (2008) applied a numerically consistent regularization on the force-based 

elements. The force-based element was regularized by utilizing interpolatory quadrature with 

two integration points of prescribed characteristic lengths at the element ends. As shown in 

Figure 2.6, a standard quadrature rule (Gauss Lobatto) is modified with two additional 

integration points within the plastic hinges at each end. Scott and Hamutcuoglu (2008) 

showed that this regularization ensured the accuracy for strain softening sections and 

maintained a convergent solution for the spread of plasticity under strain-hardening behavior. 

Alemdar and White (2005) studied the difference between displacement-based and 

flexibility-based elements. A mixed beam-column finite element formulation was also 

proposed for distributed plasticity analysis. Both the force field and displacement field were 

applied to the mixed beam-column element whose algorithm converts all residual 

displacements at the section and element levels to residual forces and then transfers them to 

the global level.  
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Figure 2.1 Sizes of Inelastic Zones in the Element from Lee and Filippou (2009) 

 

 

Figure 2.2 (a) Standard five-point Gauss–Lobatto integration rule and (b) five-

point Gauss–Lobatto rule regularized by addition of two integration points just inside 

the element ends from Scott and Hamutcuoglu (2008) 



Chapter 2: Literature Review   8 

 

2.2.2 Finite Element Method for Reinforcing Bar Buckling 

It is difficult to numerically simulate a RC structural member including the inelastic 

buckling of reinforcing bars. Modeling localized nonlinear behavior and the complicated 

boundary conditions as well as its interaction with the reinforcing bar requires extensive 

computational effort. Convergence failure often occurs during the analysis. However, the 

localized behavior must be simulated appropriately to study the effect of loading history and 

sectional detailing on bar buckling. Numerous modeling approaches have been developed to 

capture bar buckling in previous studies. Mau and El-Mabsout (1989) developed a beam-

column element to carry out inelastic analysis of reinforcing bars to generate the stress-strain 

behavior of buckled bars. Dhakal and Maekawa (2002) utilized the fiber-based technique in 

the finite element method to establish the average stress-strain relationship including post 

buckling behavior. Masukawa et al. (1999) presented the bar buckling model in which a 

beam-column element simulated the bar, and springs modeled the boundary condition at the 

hoops. The stress-strain behavior including bar buckling was implemented in a 3D finite 

element column model where the reinforcement and concrete were simulated with shell 

elements. Zong and Kunnath (2008) compared the stress-strain behavior of reinforcing bars 

in both a full column finite element model and an independent bar-with-springs model. Bar 

buckling over multiple spiral gauges was considered in this study. However, the full column 

finite element analysis assumed the concrete to be elastic which is fails to capture the plastic 

elongation of core concrete under compression. Calladine (1972) and Bae et al. (2005) both 

studied the impact of imperfections on inelastic bucking of longitudinal bars. An analysis of 

local bar buckling was conducted by Urmson and Mander (2012) to precisely predict the 

average stress and strain relationship after buckling. The ratio of hoop spacing and bar 

diameter was found to affect the crippling strength of a buckled bar which was governed by 

the compressive plastic ultimate strength of the bar section and the eccentricity of the bar 

respectively. 

In most cases, the goals of these studies are to investigate the effect of reinforcing bar 

buckling on stress-strain behavior, or the force-deformation response of the structural 
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member. Independent bar buckling models were developed to include the post-buckling 

behavior on the stress-strain relationship. The typical modeling approach simulated the bar 

with one or multiple beam-column elements with fixed ends and converted the hoops or 

spirals to springs to restrain out-of-plane deformation. The beam-column elements behaved 

uniaxially until the buckling load was reached. The out-of-plane deformation activates the 

restraining spring. Therefore, the buckled bar retains load carrying capacity because of the 

presence of the lateral restraint. These models provided a general idea of the post buckling 

behavior and a coarse prediction of buckling load in some cases, but the simplified boundary 

conditions do not consider the dilation of the concrete core and its effect on bar buckling. In 

addition, the effect of cyclic load history and reinforcement detailing, such as spacing of 

hoops and bar diameter, has not been quantified. 

2.3 Chapter Summery 

Past research has shown that the bar buckling is a common damage mechanism in RC 

bridge columns and the load history has obvious impact on the deformation limit state for bar 

buckling. However, the effect of seismic load history on the strain limit for bar buckling and 

the relationship between strain and displacement has not been quantified. As a result, the 

research discussed in this report focuses on defining the impact of the seismic load history on 

the relationship between strain and displacement as well as the bar buckling strain limit itself. 

Fiber-based and finite element models are developed and utilized to conducted analysis.  
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Chapter 3: Fiber-Based Modeling of 

Circular Reinforced Concrete Bridge 

Columns 

3.1 Introduction and Background 

The ability to predict the non-linear response of reinforced concrete structures is 

essential to meet the objective of performance-based seismic design. As a result, several 

methods have been used for the nonlinear analysis of reinforced concrete bridge columns, 

ranging from simple hand calculations, to frame element analysis, fiber-based element 

analysis, and solid/shell based finite element analysis. In the case of fiber-based analysis, the 

primary advantage is the local strain information that it provides at relatively low 

computational cost. Such information is important for Performance-Based Earthquake 

Engineering where the objective is to control structural performance (usually defined on the 

basis of strain) under prescribed seismic events. However, in order to implement fiber-based 

analysis, several modeling choices must first be made, and the implications of each fully 

understood.  

Discussed in this chapter is a brief primer on fiber-based modeling theory followed by a 

discussion of force and displacement-based elements. A method is then proposed for 

predicting the strain gradient in plastic hinge regions using the modified compression field 

theory. The subsequent section then discusses the importance of including strain penetration 

in the analysis model. The last section of the chapter demonstrates the accuracy of combining 

force-based elements, strain penetration elements, and the proposed strain gradient prediction 

method for accurate assessment of strain profiles in the plastic hinge region of bridge 

columns. The accuracy of the model to predict overall force-deformation response is also 

presented. All fiber-based analysis results in this chapter were conducted using the Open 

System for Earthquake Engineering Simulation (OpenSees). 



Chapter 3:Fiber-Based Modeling of Circular Reinforced Concrete Bridge Columns 11 

 

Some of the experimental data referenced later in this chapter was obtained from 

physical column tests conducted at North Carolina State University (Goodnight et al., 2012) 

as part of the large research program on the impact of load history on the behavior of 

reinforced concrete bridge columns (see companion volumes of this report). Through the 

implementation of an optical 3D measurement system (Optotrak), it was possible to obtain 

the engineering strain in the longitudinal reinforcement in the tests well into the nonlinear 

range. A series of LED markers were attached to the exposed reinforcement and the sensors 

(Optotrak cameras) captured the movement of the LED markers in 3D space. The elongation 

between two LED markers was utilized to calculate the average strain in each gauge length. 

This technique provides strain histories along the longitudinal direction of the bar. However, 

there are two basic assumptions in the strain calculation with Optotrak data: (1) the 

longitudinal reinforcement behaves uniaxially and (2) significant localization of strain does 

not occur inside one gauge length. Therefore, the strain calculated from Optotrak data are not 

considered to be valid after bar buckling or necking occurs. The Optotrak system and its 

operating mechanism are displayed in Figure 3.1. 

 

 

Figure 3.1. The dual camera Optotrak system, coordinate system, and LED markers on 

the reinforcement 

 



Chapter 3:Fiber-Based Modeling of Circular Reinforced Concrete Bridge Columns 12 

 

 

3.2 Theory of Fiber-Based Modeling 

Fiber-based analysis is well established for modeling structural members undergoing 

primarily flexural deformation. The difference between fiber-based elements and frame 

elements lies in the method to define the global structural behavior. Frame elements are 

defined on the basis of moment of inertia (bending and torsion), elastic modulus, and cross 

sectional area, among other properties. In the case of nonlinear analysis, section hysteretic 

rules, such as the Modified Takeda Degrading Stiffness model (Otani, S. (1974)) shown in 

Figure 3.2, are defined to address non-linearity. In the case of a fiber-based element, the 

cross section is divided into a series of fibers that follow prescribed constitutive relationships. 

As a result, the global force-deformation behavior of a fiber-based element depends on the 

individual material responses. A key advantage of fiber-based elements is that strain, stress, 

and curvature can be directly obtained whereas they may only be inferred with frame 

analysis. 

 

 

Figure 3.2. Modified Takeda Degrading Stiffness (Otani (1974)) Force-Deformation 

Response for RC Beams and Columns (drawing from Carr (2007)) 
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For the convenience of users, OpenSees provides a number of community developed 

constitutive models. A few parameters, such as steel yield strength and concrete compressive 

strength, are usually required to define both monotonic and cyclic stress-strain behavior. For 

this research, the steel model developed by Filippou, et al. (1983) and the concrete model 

developed by Yassin (1994) were selected for analysis. The steel material allows the user to 

control the cyclic behavior by defining a pair of hardening ratios in addition to an adjustable 

yield strength and elastic modulus. The concrete constitutive model has an inherent cyclic 

behavior which depends on user defined strength parameters. 

Fiber sections are assumed to remain plane throughout the analysis. For reinforced 

concrete, sections are divided into a number of concrete and steel segments as shown in 

Figure 3.3. Strain compatibility between reinforcement and the surrounding concrete is 

assumed. The sectional deformations consist of a moment and axial load resultant from the 

sectional deformations, including axial strain at the center of the section and the curvature. A 

unique solution of this deformation combination will be obtained based on a cyclic sectional 

analysis. 

 

Figure 3.3. Material Fibers in a Section 
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To establish a fiber-based element, a number of fiber-based sections are spread along the 

length of the element with each section located at an integration point. A predefined 

interpolation function of the force or the displacement is required to convert the global 

demand to sectional demands, which will be in terms of sectional moment or curvature 

demands. The sectional responses will be calculated, and then integrated to obtain the global 

response which will be either deformation or the reaction force. Therefore, the accuracy of 

the fiber-based element depends on 1) the force or displacement interpolation function 2) and 

the order of exact integration of the integration scheme which relates to the number and 

location of integration points. 

The integration scheme determines the locations of integration points where fiber 

sections are placed. In addition, the integration scheme is utilized to obtain either the global 

stiffness or flexibility matrix along with the interpolation function based on the displacement 

or force field. The type of integration scheme and the number of integration points determine 

the degree of polynomials up to which the numerical integration is exact. Various integration 

schemes are available in elements, including the Gauss-Lobatto, Gauss-Legendre, Gauss-

Radau integration (Hildebrand (1974)).   

Fiber-based elements are separated into two categories depending on the interpolation 

functions used. The force(flexibility)-based element utilizes the force interpolation function 

to distribute the nodal concentrated force to each section where a moment and axial force are 

assigned. The sectional response is then obtained in terms of a combination of axial strain 

and curvature. Subsequently, the curvature and axial strain are integrated to obtain the lateral 

displacement and axial elongation. In an engineering problem, the distribution of the force 

and moment are often known. For the case of seismic forces in bridges, the distribution of 

bending moment is triangular with a point load at the center of the superstructure (usually, 

inertia weight of the columns is either ignored or a portion of it is combined with the 

superstructure weight). The force-based element utilizes this linear load distribution to obtain 

the loading demand at each section. Therefore, there is no assumption on the force 
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interpolation function and equilibrium is satisfied at each section and end node. On the other 

hand, the displacement-based element applies a displacement shape function to distribute the 

nodal deformation to each section. As a result, each section will be forced to accommodate 

the tributary deformation. Each section will react with the moment and axial load. The global 

force will be obtained by extrapolating the sectional force to the node. A shortcoming of 

displacement-based elements is that the displacement shape function may not reflect the real 

deflected shape of a structural component. As a result, a finer mesh is often required with 

multiple displacement-based elements to increase the accuracy of the deformation shape. 

Moreover, equilibrium is only satisfied at the nodes and the distribution of moment along the 

column element is not ensured to be linear as it is in a bridge column. 

The displacement-based element utilizes a displacement interpolation function to 

distribute the nodal deformation along the element length. The nodal force is related to 

sectional behavior by integrating the sectional stress along with the interpolation function. 

Equilibrium is satisfied by a weighted integral sense as expressed in Eq. 3.1 from Alemdar 

and White (2005). 

 
0

( )
L

Tx dx   N D Q 0  3.1 

 

N(x) is constructed with the displacement interpolation functions. Matrix D, Q, and L 

are the stress-resultant section force, the external force at the nodes, and the length of the 

element respectively. Neuenhofer and Filippou (1998) proposed the force-based element 

where a prescribed force field is assigned instead of the displacement interpolation function. 

The element adapted a governing compatibility equation derived from the principle of virtual 

work as shown in Eq. 3.2 Alemdar and White (2005). 

 
0

( )
L

T

F x dx   N d q 0  3.2 

NF(x) represents the force interpolation functions, the sectional strain is represented by 

d, and the matrix q is referred to as the nodal displacement. Curvature-Based Displacement 

Interpolation (CBDI) was used to account for geometric nonlinear effects. At a coarse mesh 
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level, the CBDI method ensures that the distribution of deformation has a relatively high 

order of accuracy. 

The force-based element satisfies equilibrium on a section-by-section basis. The force-

based element, however, suffers from localization of deformation under strain-softening 

behavior which results in the response changes as a function of the number of integration 

points. The reinforced concrete section in fiber-based element tends to exhibit localization of 

deformation because of the post-peak softening of concrete and low post-yield hardening of 

steel. The force field in the element causes the maximum moment to always be located at the 

same section. In the extreme load case, the critical section may deform to pass the peak 

capacity point while other sections are still approaching the peak. This will cause continuous 

softening of the critical section and will prevent other sections from reaching their peak 

capacity. Consequently, the deformation will concentrate at the integration point associated 

with the critical section. The computed response is determined by the spread of the 

deformation implied by the integration weight. As discussed, a unique solution does not exist 

and is mesh dependent. In general, the force-based element sacrifices the inter-sectional 

compatibility to enforce the inter-sectional equilibrium. There is no compatibility restriction 

on the deformation gradient between two adjacent sections. 

 Alemdar and White (2005) stated that the displacement-based element satisfies 

equilibrium in a weighted integral sense at element nodes only. The imposed linear curvature 

field in the element is an assumption which may not capture the real behavior in structural 

components. To compensate for this potential shortcoming, a fine mesh with multiple 

elements is usually required for the displacement-based element thus increasing the 

computational cost. However, localization of deformation could also occur in the case of 

modeling one structural member with multiple displacement-based elements. The nodal 

displacements at each element satisfy compatibility and continuity while a displacement field 

is also imposed within a single element. However, there is no inter-element restriction on 

sectional deformation. Therefore, the curvature could also concentrate in a single 

displacement-based element while the sections have strain softening responses. As a result, 
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this requires special awareness on the number of displacement-based elements and number of 

integration points of a force-based element while modeling a reinforced concrete member. 

To evaluate the accuracy of both force and displacement-based elements, the analytical 

results are compared to test data. The experiments include a series of cyclic column tests 

subjected to controlled reversed cyclic loading as well as real earthquake time histories. The 

reinforced concrete columns were 8 ft (2.44m) in height and 2 ft (0.61m) in diameter. The 

reinforcement consisted of 16 0.75 in (19mm) diameter bars and a 0.375 in (9.5mm) spiral at 

2 in (51mm) pitch. As shown in Figure 3.4, the force-based element, denoted FB, generates a 

better prediction of the force-deformation relationship for a cyclic test result. It is also 

observed that the displacement-based element, denoted DB in Figure 3.4, overestimates the 

strength of the specimen. Though a finer mesh with multiple displacement-based elements 

can improve the accuracy, an over-meshed model can also lead to localization of the 

deformation at a single element.  

The force-based element was selected because of its accuracy in predicting the force-

deformation response of the specimen. However, there are multiple variations of force-based 

elements. One such element (termed ‘beam with hinges’) was developed by (Scott and 

Fenves (2006)) to overcome the ‘loss of objective’ problem. The ‘beam with hinges’ element 

utilizes a plastic hinge integration method which defines the integration weight of the critical 

section with a plastic hinge length. The element involves a modified Gauss-Radau integration 

rule where the weight of the end integration point is adjustable, as shown in Scott and Fenves 

(2006). A numerically consistent regularization is placed on the force-based element by Scott 

and Hamutcuoglu (2008) to resolve the dichotomy of the solutions from strain hardening and 

strain softening problems. This method will increase the accuracy when modeling a structural 

member with unknown sectional behavior or different post-yielding sectional behavior from 

one member end to the other end. Lee and Filippou (2009) proposed an element which has 

variable inelastic end zones.  Similar to the ‘beam with hinges’ element, its inelastic zone at 

member ends is represented by the characteristic length of the end integration point, which 

will vary depending on the magnitude of moment distribution. 
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Figure 3.4. Comparison between model predictions and test data 

 

3.3 Proposed methods for simulating RC bridge columns 

3.3.1 Experimental Observation 

It is usually not suggested to place multiple integration points in the plastic hinge region 

for a force-based element due to potential strain-softening behavior of the concrete section. 

Localization of deformation in RC members modeled by the finite element method was 

discussed by Borst et al. (1994) and Bazant and Planas (1998). Scott et al. (2004) stated that 

three to five Gauss-Lobatto integration points along the element would accurately represent 

the material nonlinear behavior, which results in using one integration point to represent the 

behavior of the plastic hinge. However, the distribution of strain in the plastic hinge region is 

not available without multiple integration points. Considering the case with a strain-

hardening section, such as a circular RC section, nine Gauss-Lobatto integration points were 

placed along the element. In addition, a strain penetration model serves as an extra 

‘integration point’ at the end of the element. The strain penetration model is discussed later in 

this chapter. A post-processing method of the strain information was proposed to include the 
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“tension shift effect”, described below and illustrated in Figure 3.5, on the distribution of 

strain and its application on post-processing strain data from a fiber-based model. 

The strain profile in the reinforcement within the plastic hinge region was obtained with 

the Optotrack 3D position measurement position measurement system. Figure 3.6 displays 

typical strain profiles at different displacement ductility levels where the compressive strain 

is usually lumped at the bottom of the column, but the tension strain fans out and extends to a 

section higher up in the column. This type of strain distribution occurred consistently during 

all column tests. It is believed that the tension shift effect causes the strain on the tension side 

of a flexural member to spread to higher levels without influencing the compressive strain. 
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Figure 3.5. Tension Shift Effect 

 

 
Figure 3.6. Strain Profiles of Longitudinal Reinforcement in Plastic Hinge Region 

 

Figure 3.7 shows the propagation of the inclined flexure-shear cracks for increasing 

levels of displacement ductility. A free body diagram is established along an inclined 

flexural-shear crack in Figure 3.5. The moment is linear and shear is uniform along the 

length of the column. The inclined flexural-shear crack results in a cracked inclined section 
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where the tensile zone is higher than the compressive zone. To maintain moment equilibrium 

of the free body, the tensile force from the reinforcement is related to the moment at the 

height of the compressive zone which refers to M1 instead of M2 in Figure 3.5. This causes a 

concentration of the compressive strain at the lower level of the column while the tensile 

strain propagated further up the column as shown in Figure 3.6. 

  

 

Figure 3.7. Crack Propagation from Experimental Tests Conducted at NCSU 

In the force-based element the predefined force interpolation function governs the 

moment and the axial load at each integration point. Sectional analysis provides resultant 

deformations due to this moment and axial load distribution. As shown in Figure 3.5, 

assuming an integration point IP0 is located at the same level of the compressive zone of the 
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inclined section, sectional analysis will provide strain at the extreme tension fiber bar 

according to the magnitude of M1. However, the predicted strain represents the behavior of 

the longitudinal rebar at a higher level than the location of IP0. Therefore, the section at IP0 

provides compressive strain at its level and tensile strain at a higher column level.  

It is well established that the cracking angle is required to quantify the tension shift 

effect. It has been observed that for a flexural member, the crack angle varies from the tensile 

side of the column to the compressive side of the column. At any specific point of the crack, 

the direction of the principal tensile strain depends on the combination of the longitudinal 

strain component from flexural behavior and the shear strain component. A simple example 

is the horizontal crack at the extreme tensile fiber which is caused only by the large uniaxial 

strain from flexure. However, as the crack propagates into the mid-section, shear stress 

increases while the tensile strain decreases. Therefore, cracks become steeper at the center of 

a column, as shown in Figure 3.7.  

3.3.2 Proposed Method to Predict Strain Gradient  

Crack angles vary due to the unique strain condition at each location of the section. The 

Modified Compression Field Theory (MCFT) developed by Vecchio and Collins (1986) is 

utilized to compute the crack angle distribution along the section. Vecchio and Collins (1988) 

utilized lay-up analysis to calculate the shear strength of a shear member. The MCFT is 

utilized in this chapter since it accounts for impact of the longitudinal and transverse 

reinforcement on the cracking angle of concrete. Sectional analysis is conducted to obtain a 

strain distribution along the section. A shear stress distribution will be assumed based on the 

flexural behavior. A combination of the strain distribution and the shear stress distribution 

will be applied to the section, as shown in Figure 3.8. A unique solution of the crack angle 

distribution can be obtained which will be integrated to derive the tension shift height in an 

inclined section. To apply this method, the following assumptions are made. 

1. The influence of flexural-shear interaction on sectional analysis is neglected. 
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2. Cracks propagate from extreme tensile fiber to the neutral axis of a flexural section. 

3. No bond slip between the concrete and the reinforcement occurs (from MCFT). 

4. Both longitudinal and transverse reinforcing bars are uniformly distributed over the 

element (from MCFT). 

Several modifications were made to the method from Vecchio and Collins (1988) to 

increase the accuracy of the crack angle prediction. First, the longitudinal strain is used as the 

demand instead of reinforcing bar stress. Cracking of concrete occurs when the principal 

strain exceeds the cracking strain. As a section deforms into nonlinear range, stress in the 

reinforcement may not vary significantly while the strain will keep increasing with the 

deformation. Therefore, it is more reliable to utilize the strain for the crack angle calculation. 

Second, the three point Gauss-Legendre integration scheme is utilized to reduce the 

computational effort. Crack angles of the section in three locations from the extreme tensile 

fiber to the neutral axis are derived. Locations and weights of integration points are 

determined by the Gauss-Legendre rule. The complete procedure to calculate the tension 

shift height is shown in Figure 3.9.  
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Figure 3.9. Method of Predicting Tension Shift Height 

The purpose of obtaining the tension shift height is to then allow the prediction of tensile 

strain gradient in the plastic hinge region. Fiber-based models provide longitudinal strain 

information at each section. The strain and the assumed shear stress at the three sectional 

integration points are extracted. A unique combination of shear stress and longitudinal strain 

at each point will results in a unique crack angle under MCFT. Three crack angles, θ1, θ2 and 

θ3, are derived for each fiber-based section. The tension shift height can be calculated 

utilizing Eq. 3.3 and 3.4 where w1, w2, and w3 are the integration weights of the angles 
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respectively. Hts, DC, and C represent tension shift height, column diameter and neutral axis 

depth of a section respectively. For the convenience of calculating the tension shift height, 

this chapter uses the angle between crack and longitudinal direction, as shown in Figure 3.9.  

A deformation gradient can be established with multiple element integration points 

placed in the plastic hinge region. Sections along the force-based element directly provide 

multiple points on the distribution of compressive strain. The tensile strain distribution can 

then be obtained by considering the tension shift effect. The implementation of this method 

will be shown later. 

D -C

ts 1 1 2 2 3 3
0

H  = tanθdx = w cotθ +w cotθ +w cotθ
C

  3.3 

 

1 2 3D -C = w +w +wC
 3.4 

 

3.3.3 Method to Include Strain Penetration 

Cracking was observed on the footing surface during experimental tests as expected and 

shown in Figure 3.10. When the column was subjected to large flexural deformation, a crack 

initiated near the tensile side of the column. This is due to the strain penetration of the 

longitudinal reinforcement into the footing. Because the longitudinal reinforcement has large 

tensile strains in the plastic hinge region, a strain gradient will exist inside the footing to 

allow the reinforcement strain to maintain strain compatibility. Globally, the reinforcement 

will slip from the footing by a certain amount of displacement which depends on the strain 

gradient level in the footing. A small portion of the footing surface concrete, which is bonded 

to the reinforcement, cracks to accommodate this bond slip displacement.  

In experimental tests, the bond slip displacement of reinforcement can be obtained by 

monitoring the vertical movement of the LED markers. Figure 3.11 portrays the bond slip 

hysteretic response at the lowest LED marker level on the reinforcement. Since the 

monitored marker is located about 1.0 in (25.4 mm) above the footing surface, the bond slip 

displacement may include a portion of plastic elongation of the reinforcement.  
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Figure 3.10. Crack on the footing near the tension side 

 

 

Figure 3.11. Bond slip hysteretic response  
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In the fiber-based analysis, a zero length section element is located at the base of the 

column element to include the bond slip behavior, as presented in Figure 3.12. The zero 

length element serves as a nonlinear rotational spring which accounts for the additional 

rotation at the base column section due to bond slip. The behavior of the zero length element 

depends on the associated fiber section. The fiber section consists of regular concrete fibers 

and special reinforcement fibers which are represented by a bond slip material. Zhao and 

Sritharan (2007) developed the bond slip material which implemented a stress-slip 

relationship to account for strain penetration. Both monotonic and cyclic stress-slip 

relationships were developed on the basis of experimental tests results. The bond slip is 

represented by the slip displacement in the material which depends on the stress in the 

reinforcement, as shown in Figure 3.13. Zhao and Sritharan (2007) had shown the bond slip 

material’s highly accuracy on predicting the debonding behavior of reinforcement.  

 

 

Figure 3.12. Model Lay-out with the zero section element 
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Figure 3.13. Stress-slip relationship from Zhao and Sritharan (2007)  

 

3.3.4 Benchmark Method to Capture Nonlinearity in RC Member with Fiber-

Based Model 

A common approach to capture nonlinearity in reinforced concrete members is to use the 

plastic hinge integration methods, as developed by Scott and Fenves (2006). The plastic 

hinge integration methods lumps the plasticity at a single integration point which is often at 

the end of the element, as shown in Figure 3.14. This method is very reliable for obtaining 

force-deformation response and maximum strain since it avoids the localization of plasticity 

– a common problem in simulation of RC members. A typical plastic hinge integration 

method – ‘beam with hinges’ element is selected to be the benchmark method because it is 

computationally efficient and dynamically robust, as shown later in this chapter. The model 

with nine integration point force-based element is evaluated by comparing its performance to 

this benchmark method. To reduce the computational cost, an elastic region is defined at the 

interior portion of the ‘beam with hinges’ element. The elastic properties, such as elastic 

modulus, cross sectional area and moment of inertia, are required within the interior region. 

It has been observed in the experimental tests that cracked regions cover most of a reinforced 

concrete column. As a result, a cracked section moment of inertia was used to model the 

elastic portion of the element. 
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Figure 3.14. Beam with Hinges Element from (M. Scott and F. Fenves (2006)) 

 

3.4 Calibration and Application of the Fiber Model  

Two independent fiber-based models were established both of which combine a force-

based column element and a zero length section element for the strain penetration. One of the 

models utilized a nine integration point force-based element for the purpose of obtaining 

distributed plasticity in the plastic hinge, while the other model implemented the ‘beam with 

hinges’ element. The material constitutive models were calibrated with recorded data from 

material tests. Predictions of large-scale static column tests, and shake table tests were 

conducted. The model combining the ‘beam with hinge’ element and strain penetration 

simulation is the solution with high computational efficiency in predicting the force-

deformation response, maximum strain at the critical section, and dynamic response. Its 

performance was assessed with test data. However, to produce the strain distribution in the 

plastic hinge region, the reinforced concrete column is simulated with the nine integration 

point force-based element (Gauss-Lobatto integration). The strain data was then post-

processed to provide the strain gradient within the plastic hinge.  
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3.4.1 Calibration on Material Constitutive Models 

A number of bar cyclic tests were conducted to ensure proper steel material behavior 

modeling. The steel constitutive material model from Filippou et al. (1983) was defined with 

the yield strength of 68 ksi (469 MPa) from monotonic material test result. The tensile and 

compressive hardening ratio in the steel model is adjusted to ensure the prediction matched 

the cyclic bar test result, as illustrated in Figure 3.15. The concrete compression strength was 

obtained from cylinder tests. The monotonic behavior of confined concrete was derived with 

the stress-strain model proposed by Mander et al. (1988). The concrete cyclic behavior was 

simulated using the constitutive model developed by Yassin (1994), as presented in Figure 

3.16. The tensile strength of concrete was neglected. 

 

 

Figure 3.15. Comparison of steel Material behavior in fiber model and tests 
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Figure 3.16. Cyclic behavior of unconfined concrete 

 

3.4.2 Prediction on Force and Strain from Static Tests 

Both models were utilized to predict test data from the eighteen column tests where the 

strain information is available up to reinforcement buckling. Definition of bond slip material 

in the zero length element ensures appropriate moment capacity compared to the column 

section. With the bond slip material, the zero length section element allows the correct 

amount of deformation to propagate into the element and avoids localization of deformation 

at the strain penetration model. In the case of a strain penetration model with underestimated 

strength, most of the deformation will migrate into the zero length section element. 

Therefore, the fiber-based model could underestimate curvature and the resultant strain at the 

plastic hinge of the column element.  

The plastic hinge length controls the extent of plasticity in the ‘beam with hinges’ 

element. The plastic hinge length can be specified by an empirical relationship proposed by 

Priestley et al. (2007), as shown in Eq. 3.5 to 3.7 
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where LSP , LP and LC are the strain penetration length, the plastic hinge length, and the 

column length, yf
 , uf  and bld

 are yield strength in MPa, ultimate stress in MPa and 

diameter of longitudinal reinforcement in mm respectively. Shown in Figure 3.17 is the 

comparison of force-deformation responses of the fiber-based model using the ‘beam with 

hinges’ element and bond slip model, with test data from a 3-cycle-set load history and three 

earthquakes ( 

Table 3.1). Information on the experimental tests is listed in Table 1. The section-by-

section-based equilibrium in the force-based element ensured an accurate prediction of 

response. The bond slip model contributes to the proper unloading and reloading stiffness of 

the model. However, the cycle to cycle strength degradation in the 3-cycle-set is not captured 

because of the absence of the cumulative damage in concrete. Figure 3.18 shows the 

predictions from the proposed model which has a force-based element with nine integration 

point as well as a zero section element. This model also has robust nonlinear behavior.  

  



Chapter 3:Fiber-Based Modeling of Circular Reinforced Concrete Bridge Columns 34 

 

 

Table 3.1. Test Information 

Test Load History 
D 

(mm) 
L/D Long. Steel (ρl) Spiral Detailing (ρs) 

9 3-Cycle-Set 610 4 16 #6 bars (1.6%) #3 at 2" (1%) 

10 Chichi 1999 610 4 16 #6 bars (1.6%) #3 at 2" (1%) 

11 Kobe 1995 610 4 16 #6 bars (1.6%) #3 at 2" (1%) 

12 Japan 2011 610 4 16 #6 bars (1.6%) #3 at 2" (1%) 

#6 and #3 bars have 19 mm and 9.5 mm diameter respectively 

ρl = longitudinal reinforcement ratio 

ρs =  volumetric ratio of transverse reinforcement 
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Figure 3.17. Comparison of force-deformation responses from the fiber model and 

test data 
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Figure 3.18. Comparison of strain hysteretic response from the fiber model and test 

data 

 

The force-based element with nine integration points is combined with strain penetration 

simulation to predict the strain gradient in the plastic hinge region. Implementation of the 

proposed method allows the tension shift height to be calculated. The shear stress is assumed 

to have a parabolic distribution across the section.  

The tensile strain profile is plotted including the tension shift. As shown in Figure 3.19, 

the predicted strain gradient is plotted against the strain profile from Test 9 to12. Tensile 

strain gradients (four on left) included the tension shift effect. The solid lines are the strain 

gradients at each significant peak displacement from experiments. Predictions are plotted in a 

dashed line with the same color at that displacement level. It is seen in both the model 

prediction and the test data that the plasticity spreads to a high level of displacement which 
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appears to be larger than the plastic hinge length calculated from Eq. 3.5. However, the 

compressive strain concentrates at the base of the column. 

The model with the ‘beam with hinges’ element utilizes a single element to represent the 

nonlinear behavior in the plastic hinge. As a result, this model can only represent the linear 

distribution of the curvature where the material plasticity is controlled by the strain at the 

critical section. In the case of the cantilever column, the maximum strain in the fixed end 

section is the most important parameter to assess the performance of the structure. The ‘beam 

with hinge’ element could still provide the relationship between column displacement and 

sectional strain, although it fails to predict high order curvature distribution. As shown in 

Figure 3.21, the top column displacement is measured as the structural deformation and the 

strain is obtained from the plastic hinge region. The comparison in Figure 3.20 shows good 

agreement between the model prediction and test data, especially, at the peak strain level. 

However, the residual strain at zero displacement level is consistently underestimated by the 

model. Therefore, the accumulation of reinforcement strain over multiple cycles is not 

captured precisely. The solution to overcome this issue could be the development of an 

advanced reinforcement material model to include the low cycle fatigue behavior of steel 

since most current constitutive models are calibrated by material testing with limited cycles.  
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Figure 3.19. Prediction of Strain Gradients 
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Figure 3.20. Comparison of strain hysteretic response from the fiber model and test 

data 
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Figure 3.21. Locations of displacement measurement and associated strain 

measurement (red arrow) 

3.4.3 Prediction on Response of Shake Table Tests 

The dynamic performance of the fiber-based models must be assessed such that the 

model may be used for further parametric studies. Therefore, both fiber-based models with 

‘beam with hinge’ element as well as the nine IP force-based element were implemented to 

predict the displacement response of two shake-table tests. In fiber-based time history 

analysis, Petrini et al. (2008) presented that no additional damping should be added, since the 

hysteretic damping has been included at the material level. Therefore, there is no viscous 

damping applied to the model.  

Petrini et al. (2008) conducted a shake-table test at the Centre of Research and Graduate 

Studies in Earthquake Engineering and Engineering Seismology where a hollow reinforced 

concrete column was subjected to the Morgan Hill earthquake. The Pacific Earthquake 

Engineering Research Centre (PEER) in conjunction with the Network for Earthquake 

Engineering Simulation (NEES) sponsored the Concrete Column Blind Prediction Contest 

(2010) at University of California, San Diego (UCSD). A full scale reinforced concrete 

bridge column was tested under a series of six ground motions from the Loma Prieta (1989) 

and Kobe earthquakes (1995). The comparisons of the displacement responses from the 
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fiber-based models and from the shake table tests are shown in Figure 3.22. Both fiber-based 

models capture most of the major peaks in the displacement response. However, they 

underestimate the residual displacement. In the UCSD shake table test, the underestimation 

of the residual displacement is due to lack of consideration of cumulative damage in 

concrete. The extensive residual displacement in the shake table test at the ROSE school is 

likely a result of local damage in the plastic hinge region, such as reinforcement buckling and 

concrete crushing or spalling. This column also ultimately suffered collapse due to a large P-

Delta moment. The ‘beam with hinge’ element model yielded slightly better predictions for 

the dynamic responses.  

 

 

 

Figure 3.22. Comparisons of displacement response from fiber model and test data 
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3.5 Chapter Conclusions  

In performance-based seismic engineering, engineers frequently use strain to assess 

performance of a structure. Strain values serve as a direct indicator of the local damage in 

modern engineering structures. Proposed modeling approaches fulfill the desire of strain 

information assessment. Their robust static and dynamic performances ensure the accuracy of 

prediction under various demands.   

In a circular bridge column, the strain gradient can be well predicted using the post-

processing approach with MCFT to quantify the tension shift effect of strain responses from 

the fiber-based model. The model combines a nine integration point force based element and 

a zero length element. The tension shift effect can be calculated from the crack angle 

distribution along the section and should be considered for the tensile strain distribution. As a 

computationally efficient method, which consists of a ‘beam with hinges’ element and the 

strain penetration simulation, is recommended while the strain magnitude or strain history at 

critical section is of paramount importance. However, this method requires the 

implementation of an empirical plastic hinge calculation to determine the length of spread of 

plasticity. Both models provided accurate force-deformation response and dynamic response 

as compared to the test results. It is worth noting that the approach to predict the angle 

distribution of the inclined flexural-shear cracking is suggested to be used for flexural 

members, such as beams and columns in a moment frame. Generally, both fiber based 

modeling approaches mentioned in this chapter can be applied to assemble a bridge and to 

assess the longitudinal bar strain along columns under earthquakes loading.  
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Chapter 4: Load History Effect on 

Relationship between Strain and 

Displacement 

4.1 General Discussion  

Given an RC bridge column, the one-to-one relationship between strain and 

displacement can be altered by the load history effect. At a given level of displacement 

magnitude, a variety of load histories may lead to different performance levels in a structure, 

which is often indicated by strain. For example, a load history with a large number of load 

cycles before reaching the peak displacement may result in more damage in the plastic hinge 

region, when compared to a monotonic pushover test. The strain is often selected as an 

indicator of performance since it directly relates to several damage mechanisms, such as 

concrete cracking, cover concrete spalling, core concrete crushing, and longitudinal bar 

buckling and subsequent rupture. The plastic hinge method by Priestley et al. (2007) 

combined with sectional analysis allows engineers to relate the strain to structural 

displacements. The structural configuration and sectional detailing determine the relationship 

between the strain and displacement. However, cyclic loading may also affect the local 

strain-global displacement relationship. To address this issue, the fiber-based model is 

utilized to study the effect of load history on the relationship between the strain and 

displacement.  

4.2 Ground Motion Selection  

This research specifically focuses on real earthquake load histories. Ground motions 

from different earthquakes, even from the same earthquake but at different stations, can be 

quite distinct. The key aspects of earthquake ground motions include peak ground 

acceleration (PGA), number of large acceleration pulses, magnitude of the large acceleration 

pulses, and the duration of strong shaking. While the ground motions were applied to a 
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structural system, the resultant structural displacement response (load history) will have 

corresponding features including the number of large displacement pulses, magnitude of the 

large displacement pulses, and the energy dissipation. A few examples of load histories are 

shown from Figure 4.1 to Figure 4.5. Figure 4.6 illustrates the profound difference in energy 

dissipation for different load histories. The acceleration in the ground motions of these 

examples were scaled to force the displacement response reaching the same magnitude, as a 

result of which allows the load history to be the sole variable. 

Forty earthquake ground motions with a PGA greater than 0.4g were selected, as listed 

in Table 4.1. The load history effect on the limit state of longitudinal bar buckling is the other 

task of this research. Therefore, the ground motions with large PGAs were selected to permit 

bar buckling without significant scaling of the ground motions. 

 

  

 

Figure 4.1 Load History from Chile Earthquake 
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Figure 4.2 Load History from Northridge Earthquake (Sylmar Station) 

 

 

Figure 4.3 Load History from Chichi Earthquake 
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Figure 4.4 Load History from Kobe Earthquake 

 

 

Figure 4.5 Load History from Northridge Earthquake (Pacoima Dam Station) 
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Figure 4.6 Energy Dissipation in the Example Load Histories 
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Table 4.1 Large Earthquake Ground Motion Database 

Earthquake Year Station PGA(g) 

Chile 2010 N.A. 0.6 

Japan 2011 TCGH 1.22 

Kobe 1995 N.A. 0.82 

Chichi 1999 

N.A. 0.65 

No1197 0.8 

No1231 1 

No1503 0.8 

No1507 0.6 

No1517 1.2 

No2658 1 

No3474 0.8 

Tabas 1978 N.A. 0.84 

Northridge 1994 
SylmarCSE 0.83 

Pacoima Dam 1.6 

Darfield(NZ) 2010 GDLC 0.72 

Christchurch(NZ) 2011 LPCC 0.88 

Calexico 2010 Array11 0.6 

Landers 1992 N.A. 0.8 

Duzce 1999 
Duzce 0.5 

Lamont 0.9 

Erzican 1992 N.A. 0.5 

Big Bear 1992 N.A. 0.5 

Imperial Valley 1979 

No160 0.8 

No180 0.5 

No183 0.6 

Superstitions Hills 1987 No727 0.8 

Managua 1972 No95 0.4 

Victoria 1980 No265 0.6 

Morgan Hill 1984 No451 1.2 

Chalfant 1986 N.A. 0.45 

 

Table 4.1 Continued 
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Mammoth Lake 1980 
No230 0.45 

No231 0.4 

Dinar 1995 No1141 0.45 

Cape Mendocino 1992 
No825 1.5 

No828 0.7 

Nihanni 1985 N.A. 1 

Loma Prieta 1989 N.A. 0.5 

San Fernando 1971 N.A. 1.2 

Coalinga 1983 N.A. 0.6 

North Palm Springs 1986 N.A. 0.7 

 

4.3 Parametric Study  

For RC bridge columns with different detailing, a large number of NTHAs were 

conducted with all the ground motions from the database. The variables considered in this 

parametric study include load history, aspect ratio, axial load ratio, and reinforcement ratio. 

As presented in Table 4.2, columns with various configurations, reinforcement detailing and 

axial load ratio (ALR) are simulated with fiber-based elements. The transverse steel consists 

of a #3 spiral at 2 inch pitch in all columns. The fiber-based model with “beam with hinges” 

element was utilized to model the column, since this element is a more accurate model 

compared to the one with nine integration points. In addition, the maximum strain in the 

plastic hinge region determines the likelihood of bar buckling, while there is no direct 

evidence showing that the strain distribution in adjacent regions affects bar buckling. As a 

result, the load history effect on the relationship between maximum strain and displacement 

is investigated rather than the relationship between the strain distribution and displacement. 

The method to generate strain distribution is utilized to obtain 3D interaction surfaces of 

axial strain, shear stress, and crack angle, given a location of the section. The interaction 

surfaces are shown in the Appendix I.  

All ground motions in the database are applied to each fiber-based column model in the 

NTHAs. The load history effect on the relationship between strain and displacement is 

studied by comparing the strain hysteretic response to the strain versus displacement curve 
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from monotonic analysis. The strain difference at the same displacement level between a 

monotonic analysis and a time history analysis then indicates the impact of the earthquake 

load history on the relationship between strain and the displacement.  

 

Table 4.2. Details of Columns 

Column # L (ft) D (ft) ALR dbl(in) # of Bars Ρs (%) 

1 8 2 5.3 0.75 16 0.9 

2 12 2 5.3 0.75 16 0.9 

3 16 2 5.3 0.75 16 0.9 

4 8 2 10 0.75 16 0.9 

5 8 2 15 0.75 16 0.9 

6 8 2 20 0.75 16 0.9 

7 8 2 5.3 0.75 12 0.9 

8 8 2 5.3 0.75 20 0.9 

 

 

Figure 4.7 and Figure 4.8 show an example of a strain hysteretic response which is 

compared to the strain and displacement relationship under monotonic loading. The influence 

of load history on the peak tensile strain value of a load history will change the likelihood of 

bar buckling which often occurs upon reversal from the large tensile strain (Moyer and 

Kowalsky (2003)). The magnitude of the tensile strain is believed to determine whether 

instability of a bar will occur upon reversal. Therefore, the peak tensile and compressive 

strain points were plotted against the monotonic strain and displacement relationship in 

Figure 4.8 to show the load history effect.  
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Figure 4.7 Displacement Response under Kobe Earthquake Ground Motion 

 

 

 

Figure 4.8 Strain Hysteretic Response  
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4.3.1 Strain Comparison for Column #1  

Column #1 is considered as the benchmark column since multiple specimens with 

identical detailing were tested, and whose results were utilized to calibrate the fiber-based 

models. Therefore, the model predictions on dynamic displacement and strain response with 

this column have very high accuracy. As mentioned, the peak strain points for extreme fiber 

bars were plotted against the relationship between strain and the displacement under 

monotonic loading. In addition, a linear regression line (solid line in the figure) is also 

generated and shown in Figure 4.9.  

 

 

 

Figure 4.9 Peak Strain Values from Earthquakes for Column #1 
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is able to predict very close values for the peak strain points from earthquake load histories. 

Moyer and Kowalsky (2003) illustrated that load cycles will increase the tensile strain by 

imposing an additional growth strain in the bar at each cycle. However, Figure 4.9 shows that 

different load histories still generate a similar strain value as others at a given displacement 

level.  Load cycles do not alter the peak strain significantly.  
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4.3.2 Strain Comparison for Column #2 

Column #2 has a larger aspect ratio (L/D=6) compared to the benchmark column. Due to 

the increase of flexibility, strain value at the similar displacement level is lower than the one 

from Column #1. A longer column requires less sectional deformation to reach the same 

displacement. The aspect ratio has apparent impact on the relationship between strain and the 

displacement which can be simply studied with the plastic hinge method (Priestley et al. 

(2007)) and will not be investigated here.  

On the other hand, the earthquake load history fails to affect the relationship between 

strain and the displacement. The peak strain points still follow the monotonic strain-

displacement curve at all deformation levels.  

 

 

Figure 4.10 Peak Strain Values from Earthquakes for Column #2 
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4.3.3 Strain Comparison for Column #3 

With a large flexibility at aspect ratio of 8, strain in the base section of Column #3 has a 

low magnitude compared to all previous columns. Again, no significant impact from load 

history is observed in the relationship between strain and the displacement.  

 

 

Figure 4.11 Peak Strain Values from Earthquakes for Column #3 
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4.3.4 Strain Comparison for Column #4 

The axial load ratio in Column #4 was increased to 10% from the 5.3% of the 

benchmark column. The change of axial load ratio will increase the P-Delta effect and the 

sectional behavior in the fiber-based element. Comparing Figure 4.12 with Figure 4.9, the 

compressive strain in the section significantly increased due to a larger axial load. The 

impact of axial load on the sectional deformation and strain value has been studied with 

moment-curvature analysis and plastic hinge method. 

Generally, the load history is not able to alter the relationship between strain and the 

displacement which still follows the monotonic curve.  

 

 

Figure 4.12 Peak Strain Values from Earthquakes for Column #4 
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4.3.5 Strain Comparison for Column #5 

Significant increase of axial load in Column #5 leads to reduction of tensile strain at a 

given displacement level, as presented by the least square error line in Figure 4.13. Deviation 

occurs between the tensile strains from monotonic curve and some of the peak strain points 

from earthquakes. However, the monotonic strain-displacement curve still serves as a good 

prediction for the peak strain points from most of the earthquakes.  

 

 

Figure 4.13 Peak Strain Values from Earthquakes for Column #5 
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4.3.6 Strain Comparison for Column #6 

A large axial load ratio of 20% in Column#6 is an extreme case for a regular RC bridge 

column. At displacements larger than 5 in (Figure 4.14), the monotonic curve generally 

predicts 10% to 15% larger strain values compared to the peak points from NTHA. In design, 

over-prediction of strain from a monotonic curve is on the conservative side, so it is not 

necessary to include the load history effect only for the case with excessive large axial load.  

 

 

Figure 4.14 Peak Strain Values from Earthquakes for Column #6 
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4.3.7 Strain Comparison for Column #7 

The number of bars in Column #7 is reduced from 16 to 12 and results in a 

corresponding reinforcement ratio 1.2%. This column represents an extremely low reinforced 

case. Again, the monotonic strain-displacement curve provides extremely close prediction for 

the peak strain points from all the earthquakes.  Load history still fails to influence the 

relationship of strain and the displacement.  

 

 

Figure 4.15 Peak Strain Values from Earthquakes for Column #7 
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4.3.8 Strain Comparison for Column #8 

Column #8 has a reinforcement ratio 2% and represents a heavily reinforced case. It is 

observed in the both Figure 4.15 and Figure 4.16 that the reinforcement ratio does not change 

the relationship between strain and the displacement, while the bar diameter remains the 

same. In the case of altering the bar diameter to achieve the desired reinforcement ratio, the 

pre-defined plastic hinge length of the ‘beam with hinges’ element will be change, which is 

likely to affect the relationship between strain and displacement. The effect of bar diameter 

can also be studied with the plastic hinge method. The load history also fails to force the peak 

strain values deviate from the prediction of monotonic curve.  

 

 

Figure 4.16 Peak Strain Values from Earthquakes for Column #8 

  

y = 0.0074x - 0.0029y = 0.002x + 0.0005

-0.02

0

0.02

0.04

0.06

0.08

-10 -5 0 5 10

St
ra

in

Displacement (in)

Peak Points from 40 EQs

Monotonic



Chapter 4: Load History Effect on Relationship between Strain and Displacement 63 

 

4.4 Chapter Summary 

A large number of NTHAs were conducted with 8 columns which considered the 

variables including axial load ratio, aspect ratio and reinforcement ratio. The load history 

effect on the relationship between strain and the displacement was investigated with each 

column. It was shown that very limited effect was imposed on the relationship by all the load 

histories. Instead, the structural parameters themselves had more impact on the strains at the 

critical section. It is not necessary to include the load history effect on the relationship 

between strain and the displacement in design or assessment, although, as noted in Volume 1 

of this report (as well as in Chapter 5 and 6 of Volume 3), loading history does impact the 

strain limits associated with performance limit states such as bar buckling. 
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Chapter 5: Development of Finite Element 

Model for Bar Buckling 

5.1 Introduction 

As an important limit state for earthquake engineering, reinforcing bar buckling is 

generally regarded as the condition beyond which a structure requires replacement. For 

example, the current practice of the California and Alaska Departments of Transportation is 

to replace structural members that exhibit a high degree of reinforcing bar buckling. This is 

the result of the likely fracture that occurs following the  development of micro-cracks at the 

onset of local bar buckling (Restrepo-Posada, 1994) that tend to propagate with increasing 

strains (Erasmus, 1981). As a consequence, accurate models to predict the onset of bar 

buckling are critical for seismic design, but generally absent in the literature. While empirical 

models to predict bar buckling exist, and serve as a useful purpose for design, they are 

nonetheless limited by the boundaries of the data used in their generation. Furthermore, from 

the perspective of developing a fundamental understanding of behavior, accurate prediction 

of longitudinal bar buckling requires either analytical or computational solutions that are 

supported by experimental evidence. 

A number of researchers have related bar buckling to monotonic loading in compression 

and some studies considered the effect of cyclic loading on bar buckling. Rodriguez et al. 

(1999) found that longitudinal bars are most prone to buckling upon reversal from cycles of 

significant tension. Moyer and Kowalsky (2003) concluded that the tensile stain demand has 

a large impact on bar buckling upon subsequent compressive reversals. Therefore, bar 

buckling should include the effect of the entire loading history. It has also been observed in 

experiments (Goodnight and Kowalsky (2012)) that cyclic load history has a significant 

effect on tensile strains which lead to buckling upon reversal. In addition, reinforcing bars 

often buckle before concrete cracks close. Berry and Eberhard (2005) established a practical 

performance model to predict the deformation level where bars buckle. The model includes 
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the effect of the confinement ratio, axial-load ratio, aspect ratio, and longitudinal bar 

diameter on the required deformation for bar buckling.  

It is difficult to numerically simulate a RC structural member including the inelastic 

buckling of longitudinal reinforcing bars. Modeling localized nonlinear behavior and the 

complicated boundary conditions, as well as their interactions with the reinforcing bar, 

requires extensive computational cost, as failure of convergence often occurs in analysis. 

However, the localized behavior must be simulated appropriately to study the effect of 

loading history and section detailing on bar buckling. Numerous modeling approaches have 

been developed to capture bar buckling in reinforced concrete structures. Mau and El-

Mabsout (1989) developed a beam-column element to carry out inelastic analysis of 

reinforcing bars to generate the stress-strain behavior of buckled bars. Dhakal and Maekawa 

(2002) utilized the finite element method to establish the stress-strain relationship including 

post buckling behavior and implemented it into a fiber-based model. Masukawa et al. (1999) 

presented a classic bar buckling model in which a beam-column element was utilized to 

simulate the bar and springs modeled the boundary condition at the hoops. The model was 

applied to study the inelastic buckling stress. Zong and Kunnath (2008) compared the stress-

strain behavior of reinforcing bars in both a full column finite element model and an 

independent bar-with-springs model. Bar buckling over multiple spiral layers was considered 

in this study. However, the full column finite element analysis assumed the concrete to be 

elastic which is actually representing a bearing foundation of longitudinal bars and spirals. 

Calladine (1972) and Bae et al. (2005) both studied the impact of imperfections on inelastic 

bucking of longitudinal bars.  

In most cases, the goals of these studies were to investigate the effect of reinforcing bar 

buckling on stress-strain behavior, or the force-deformation response of the structural 

member. Independent bar buckling models were developed to include the post-buckling 

behavior on the stress-strain relationship. The typical modeling approach simulated the bar 

with one or multiple beam-column elements with fixed ends and converted the hoops or 

spirals into springs to restrain out-of-plane deformation. The beam-column elements behaved 
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uniaxially until the buckling load was reached, and the out-of-plane deformation activates the 

restraining spring. Therefore, the buckled bar retained load carrying capacity because of the 

presence of the lateral restraint. These models provided a general idea of the post buckling 

behavior and a coarse prediction of buckling load in some cases, but the simplified boundary 

conditions do not consider the dilation of the concrete core and its effect on bar buckling. In 

addition, the effect of cyclic load history and reinforcement detailing, such as spiral pitch and 

bar diameter, has not been studied.  

5.2 Research Objective 

Presented in this chapter is a hybrid finite element method to accurately predict bar 

buckling in RC members. The approach contains a fiber-based model to predict the strain 

history at the local region, which results from global force or displacement demand on the 

structural member. A finite element model with solid elements simulates the potential 

buckling region of a bar and the boundary condition from adjacent hoops and concrete. The 

fiber-based model produces the local strain history which is then applied to the finite element 

model of the local area in the plastic hinge region. The overall objective of this model is to 

generate recommendations on seismic design considering longitudinal bar buckling as the 

limit state. To accomplish this objective, it is of obvious importance to study the effect of 

load history and sectional detailing, such as transverse steel details, reinforcing bar diameter, 

axial load ratio and column aspect ratio, on inelastic bar buckling. A parametric study using 

the two-step approach described in this chapter will fulfill this requirement.  
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5.3 Experimental Observation on Inelastic Bar Buckling 

upon Reversal of Loading  

Moyer and Kowalsky (2003) observed the influence of tension strains on the eventual 

buckling of longitudinal bars, and described a tension-based buckling mechanism. Moyer and 

Kowalsky (2003) illustrated the distinct features of the tension-based bar buckling 

mechanism summarized as follows. First, buckling of reinforcement requires reversal of 

loading. Second, significant tension strain is required to activate the tension-based bar 

buckling mechanism at a later cycle. Third, the accumulation of tensile strain over multiple 

loading cycles impacts longitudinal bar buckling. Lastly, since bar buckling eventually 

occurs under compression, it is important to quantify the compressive load capacity 

associated with bar buckling.  

Figure 5.1(a) displays an idealized reinforced concrete column and location of its 

extreme fiber bars. At the bottom location of the column, Bar 2 on the left side of the column 

will be subjected to tensile strain under a load towards the right. In contrast, Bar 1 on the 

right side of the column will experience a compressive strain. The uniaxial strains in 

reinforcing bars change their sense upon reversal of the lateral loading.  

Figure 5.1 (b) represents the force-deformation relationship of a complete loading cycle. 

Bar 2 is under tension when the column is loaded from the origin to State A. Upon reversal 

from State A to State E, the strain in Bar 2 changes to compression, while Bar 1 experiences 

a tensile strain. Large flexural cracking on the tensile side of the column will occur. As a 

result, Bar 2 represents the only source for compressive stability at State B, where the 

reinforcement is prone to buckle. Bar 1 may also suffer from buckling upon reversal from 

State E. Moyer and Kowalsky (2003) stated that the different loading history of Bar 1 from 

Bar 2 led to growth strain. The growth strain caused a larger total tensile strain than the one 

from monotonic loading, which in turn likely results in instability upon reversal.  
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Figure 5.1. Tension-Based Buckling Mechanism from Moyer and Kowalsky (2003) 
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5.4 Theoretical Inelastic Column Buckling upon Reversal 

of Loading 

Euler’s method to calculate the critical buckling load of an elastic column is shown in 

Eq. 5.1 where the Es, I, K and L represents the Young’s modulus of steel, moment inertia of 

the column, column effective length factor, and the length of column, respectively. In order 

to estimate the inelastic buckling force, Engesser (1889) applied a modification to Euler’s 

theory by replacing the Young’s modulus with the tangent modulus ET, as shown in Eq.5.2 

However, Jasinski (1895) stated that the modulus varies along the buckled column section 

because of the strain variation in the section. A reduced modulus method (double modulus) 

was then developed by Engesser (1891) and Karman (1910) to account for the modulus 

variation along the section in a buckled column. However, numerous experiments have 

shown that test results matched the prediction from tangent modulus theory. The load 

increase after buckling predicted by the reduced modulus theory was hardly observed. 

Shanley (1946) acknowledged that the tangent modulus equation should be used as a basis 

for determining the buckling force of a member in the inelastic range, although the reduced 

modulus theory represents the exact behavior of inelastic buckling. It is worth noting that all 

of these investigations considered inelastic buckling under monotonic compressive load. 
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5.5 Theoretical Case Study on Inelastic Bar Buckling 

To quantify the buckling load, the tangent modulus theory is utilized in this section to 

explain the tension influence on inelastic bar buckling. Two idealized RC columns as shown 

in Figure 5.2 are considered. The sectional detailing is shown in Table 5.1. The two columns 

are displaced to different magnitudes of deformation at State A, then are both reversed to the 
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same displacement at State E. It is assumed that the left bar (denoted as Bar 2 in Figure 5.1) 

reaches a tension strain 0.04 while the other left bar has a tensile strain 0.02 at State A. The 

stress-strain responses of the two bars are shown in Figure 5.2, by implementing the 

reinforcing steel constitutive model from Dodd and Restrepo-Posada (1995). Corresponding 

to Eq. 5.3, the buckling stress (fcr) curves are portrayed in Figure 5.2 (dashed lines) for the 

two stress-strain response. It can be observed that the bar which experienced strain history 1 

buckled before the crack closure at State D. This explains Moyer and Kowalsky’s (2003) 

statement that significant tensile strain is required to activate the tension-based buckling, 

since reversal from a larger tensile strain imposes a more severe reduction in tangent 

modulus and a larger increase in nominal bar stress. Both of the phenomena increase the 

likelihood of bar buckling. 

   T
cr
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A


 5.3 

Moyer and Kowalsky (2003) also stated that the crack closure at zero strain (State D) 

engages the concrete and enhances the compression zone stability, thus postponing buckling. 

As the structure continuous to load from State D in Figure 5.2, the compressive stress 

increase in the Bar 2 will be limited because of the concrete contribution in compression. 

Theoretically, it is possible to generate bar buckling after crack closure as the buckling stress 

(blue dashed line) curve in Figure 5.2 will intersect with the stress-strain response eventually. 

However, it often requires a large sectional curvature as well as a large structural 

deformation to accomplish the required compressive stress. Similarly, bar buckling in a 

reinforced concrete column is hardly seen under monotonic loading since the section fails to 

provide the required compressive stress in the bars. The degradation of tangent modulus and 

the increase in nominal bar stress under monotonic compression is much lower than those 

from a large reversal strain.  The structural system will fail under bar fracture on the tensile 

side of the section before the onset of buckling in compressive bars. To predict bar buckling, 

a model is required to relate the structural load history to sectional cyclic behavior which 

eventually determines the strain history on longitudinal bars. In addition, the effect of the 
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axial load ratio and the aspect ratio on the relationship between the structural deformation 

history and the bar strain history should be investigated. Fiber-based elements are 

implemented in this chapter to provide a tool for this purpose. 

In summary, the tangent modulus theory explains the influence of tensile strain 

magnitude on longitudinal bar buckling. However, both Moyer and Kowalsky (2003) and 

Kunnath and El-Bahy (1996) observed a large impact of the number and characteristics of the 

load cycles on the required deformation ductility to initiate bar buckling. This cannot be 

explained by the idealized column behavior with tangent modulus theory. Therefore, a 

computational finite element model is proposed to overcome this problem. 

 

Table 5.1. Parameters in the Case Study 

Parameters Values Units 

Spiral Spacing 100 mm 

K 0.5 N.A. 

Es 200000 MPa 

fy 470 MPa 

db(#6 bar) 19 mm 
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Figure 5.2.  Stress-Strain Responses upon Reversal from Tension 
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5.6 Fiber-Based Modeling of Reinforced Concrete 

Structures 

The onset of reinforcing bar buckling depends significantly upon the strain history. 

However, structural demand is often expressed in terms of loads or deflections. It is therefore 

important to establish a reliable relationship between global loading and local strain 

response. A fiber-based element model is utilized to evaluate local resultant strain under 

static or dynamic loading. Feng et al. (2012) introduced the fiber-based method to capture the 

nonlinear behavior of reinforced concrete columns. The model was shown to accurately 

predict dynamic displacement response and local strain via comparison to multiple static 

column tests and dynamic shake table tests. To obtain strain response from an earthquake 

load history, a nonlinear time history analysis will be conducted with the fiber-based model. 

As shown in Figure 5.3, the fiber-based element technique consists of a force-based 

element and a zero length element. The force-based element represents the reinforced 

concrete column itself while the zero length element captures the strain penetration behavior 

into the footing. By modeling strain penetration, the inelastic strains that develop below the 

footing-column interface and the associated impacts on total column deformation will be 

captured. Otherwise, the material strains would be overestimated for a given column lateral 

displacement. Figure 5.4 shows the accurate prediction of the hysteretic strain response this 

model provides when subjected to a given loading history. Figure 5.5 illustrates the locations 

at which the structural displacements and longitudinal bar strains are measured. 



Chapter 5: Development of Finite Element Model for Bar Buckling 74 

 

 

 

 

Figure 5.3. Fiber-Based Model from Feng et al. (2012) 
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Figure 5.4. Comparison of strain hysteretic response from the fiber model and test data 
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Figure 5.5. Locations of displacement measurement and associated strain measurement 

(red arrow)  
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5.7 Proposed Finite Element Bar Buckling Model 

(Strain-Based) 

5.7.1 Goal of Simulation 

As previously described, longitudinal bar buckling occurs within the plastic hinge 

region, upon reversal from a tensile strain which leads to the bars serving as the sole source 

for compression zone stability. The reversal strain causes a large compressive stress demand 

and reduction of tangent modulus where the bars are then prone to buckling until the cracks 

close. In addition, the number and magnitude of cycles from a load history or strain history 

also affects inelastic bar buckling (Moyer and Kowalsky (2003) and Kunnath and El-Bahy 

(1996)). The level of tensile strain that may be sustained prior to buckling is impacted by the 

boundary conditions that support the longitudinal reinforcing bars in the potential buckling 

region, which in turn depend on the local reinforcement detailing and sectional geometry. For 

example, even upon reversal from a large tensile strain, a smaller spiral pitch can reduce the 

unsupported length of the bar and postpone buckling.  

On the other hand, the boundary conditions are impacted by compressive strain which 

causes dilation of the concrete core and yielding of the transverse steel. The yielding of 

transverse steel leads to permanent plastic elongation and eventually increases the 

unsupported length of bars at subsequent loading cycles. It is the goal of the model presented 

in this section to capture all of these effects. 

5.7.2 Geometric Detailing and Boundary Conditions 

To capture localized behavior, the geometry of the finite element model must reflect the 

conditions in the plastic hinge region precisely. This chapter considers a circular RC column 

with 2.4 m height and 0.6 m diameter. Longitudinal reinforcement consists of 16 # 6 bars 

(1.9 cm diameter) and transverse reinforcement is a # 3 spiral (0.95 cm diameter) at 50 mm 

pitch. As shown in Figure 5.6, a segment of the extreme fiber bar in the plastic hinge region 

is modeled with Abaqus (software for finite element analysis) since it will experience the 
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most severe strain demand. One of the most important dimensions in the model is the 

unsupported length of the longitudinal bar. A number of researchers, including Bae et al. 

(2005) and Mander (1984), suggested that bar buckling over an unsupported length of 6 

times bar diamter should be avoided to maintain ductile behavior of the structural member. 

As a result, unsupported lengths exceeding 6 times bar diameter are not considered in this 

model. (The unsupported length of a #6 bar over 50 mm spiral pitch is 2.7db). However, it 

has been observed in multiple experimental tests (Goodnight et al. 2013) that longitudinal 

bars could buckle over more than one spiral layer. To include bucking over multiple spiral 

turns, the length of the bar modeled above the top of footing is 17.8 cm which contains three 

spiral layers. The corresponding length to diameter ratio is 9.3. This length to diameter ratio 

is large enough to cover the possible buckling length suggested by Bae et al. (2006). In the 

case of a larger bar diameter, a similar length to diameter ratio should be used. The width of 

the concrete core is equal to the circumferential spacing of the longitudinal bars, as shown in 

Figure 5.6. The bottom portion of the bar is inserted into a concrete tube to simulate the 

development of the reinforcement in the footing and to model the bond slip. The 

development length 8.6 cm in the concrete tube is determined by matching the magnitude of 

slip at the specific strain level to test results. The cover concrete is not modeled since it is 

likely to spall under cyclic loading before bar buckling occurs cover concrete provides little 

resistance to outward bar displacement. Transverse reinforcement is located against the core 

concrete and the longitudinal bar to provide lateral restraint. To avoid overestimation of the 

restraint from the transverse steel, the modeled spiral is extended to the location of adjacent 

bars and fixed at their locations. Since both the model itself and the loading are symmetric, 

only half of the system is analyzed. 

The spirals or hoops are the primary source of resistance for bar buckling. In addition, 

the spiral provides confinement for the core concrete. Therefore, it is important to ensure an 

accurate model of lateral stiffness from the transverse steel. In a reinforced concrete column, 

the spiral turns are in firm contact with the longitudinal reinforcement. Theoretically, the 

contact area is infinitely small if both the spiral and bar have ideal circular cross sections. To 

define the interaction between the longitudinal bar and spiral in the finite element model, a 
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contact area is required to transfer the stresses. The ideal infinitesimal contact area should be 

avoided to prevent stress concentration. As a result, the spiral in the model is treated as a 

square section which has identical area and moment of inertia as shown in Figure 5.7. The 

cross sectional area and moment of inertia determine the axial and flexural stiffnesses 

respectively. Therefore, the equivalent square spiral provides identical lateral restraint to bar 

buckling and confinement of the core concrete.   

 

 

Figure 5.6. Geometry of the Model 

                           1 
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Figure 5.7. Spiral Configurations 

 

5.7.3 Material Models 

As shown in Table 5.2, different materials are assigned to the parts of the bar buckling 

model. The plasticity model developed by Lemaitre and Chaboche (1990) is utilized to define 

the inelastic behavior of the reinforcing bar and transverse steel. The evaluation and shift of 

the yield surface are defined by several hardening factors, as shown in Figure 5.8. The 

kinematic hardening behavior of the steel is defined using the data from material tests for 

both longitudinal bar and spiral. There is usually very limited isotropic hardening behavior 

observed in the structural steel. Therefore, no isotropic hardening is considered in the spiral, 

while the steel material in the longitudinal bar contains a limited amount of isotropic 

hardening, according to Nip et al. (2010). The concrete material is simulated with a 

combination of elastic and plastic models based on the modification of Lee and Fenves 

(1998) to the plasticity model proposed by Lubiner et al. (1989). Under compressive stress, 
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the resultant lateral expansion of the core concrete loads the spiral and consequently alters 

the boundary condition. The plasticity theory implements the non-associated potential plastic 

flow with a Drucker-Prager hyperbolic function to simulate the material behavior under 

multi-directional confinement. The dilation angle in the Drucker-Prager hyperbolic function 

dominates the expansion behavior of the concrete under uniaxial loading. While there is not a 

commonly accepted value of the dilation angle, Malm (2006) showed that a dilation angle 

ranging from 20 to 40 degrees has only a minor impact on the structural response. However, 

excessive expansion of concrete under low axial compressive loads has been observed at 

dilation angles larger than 30 degrees. In addition, Alejano and Alonso (2005) stated that 

increasing the degree of confinement and plastic strain reduces the dilation angle. Since the 

hyperbolic function assumes a constant dilation angle, a small value should be utilized and, 

in this study, the dilation angle is assumed to be 20 degrees. The Damaged Plasticity 

Concrete model in Abaqus considers damage in terms of a combination of the degradation of 

material stiffness on reloading and the rapidity of strength recovery as shown in Figure 5.9. 

The strength degradation has been represented approximately with the unique loading 

method discussed later. Therefore, no additional damage of the concrete material was 

defined. Lastly, damage in the footing concrete is assumed only in terms of bond slip. The 

concrete in the footing is assumed to remain elastic.  
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Figure 5.8           Y                                 q            U   ’         

6.11 (2010) 

 

 

Figure 5.9. Recovery of Compression from a Tensile Loading Cycle from Abaqus 

         U   ’         6    (    ) 
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Table 5.2. Material Properties 

Material Parameter Value (MPa) 

Concrete 
Compressive Strength 42 

Elastic Modulus 30680 

Steel in the 

Longitudinal Bar 

Yield Strength 469 

Elastic Modulus 200000 

Steel in the Spiral 
Yield Strength 510 

Elastic Modulus 200000 

 

 

5.7.4 Interactions 

Interactions between the different parts of the model are defined in terms of normal 

behavior and tangential behavior. The normal behavior of all interactions is considered as 

hard bearing which allows separation but prohibits penetration of the two contacting objects. 

The tangential behavior of all the interactions is defined in terms of friction. The bond 

between the reinforcing bar and the core concrete will be severely damaged under large 

tensile strains which results in large flexural cracks. Therefore, very low tangential friction is 

modeled in the interaction between the longitudinal bar and core concrete. In contrast, 

assuming less damage is in the footing, a much larger coefficient of friction on the tangential 

behavior between the longitudinal bar and footing tube is defined.  

5.7.5 Loading Method 

The loading on the finite element model is static displacements at the top of the 

longitudinal bar and the concrete block with displacements which produce an average bar 

strain of the desired magnitude. To limit computational time, prediction of concrete cracking, 

its spacing and location, is not simulated in the model. However, capturing the longitudinal 

bar bucking mechanism requires the presence of cracks to cause instability in the 
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reinforcement according to Moyer and Kowalsky (2003). Both confining and restraining 

effects of the spiral are passive mechanism which will be activated by core concrete dilation 

and the onset of longitudinal bar buckling. Moyer and Kowalsky (2003) concluded that 

longitudinal bar buckling was likely to occur before cracks close, where bars serve as the sole 

source of stability. In contrast, the confining effect can only be activated while concrete is 

under compression. In summary, the impacts of cracks on longitudinal bar buckling are to 

cause instability in reinforcement upon reversal from significant tensile loading prior to the 

confining effect in concrete. 

The recovery of compressive strength after crack closure was indicated in the test results 

from Goodnight et al. (2012). A loading cycle of force-deformation response from an 

experimental test is displayed in Figure 5.10. At the reversal of loading from point A to point 

C in Figure 5.10, the stiffness increases at Point B where crack closure was observed. The 

recovery of compressive strength of concrete was also observed in the fiber-based model 

prediction. It is noted that the stiffness increase at the crack closure point is more profound in 

the prediction as shown in Figure 5.10. The fiber-based model assumes the cracked section 

remains plane such that the crack will close as soon as the curvature of this section (or 

concrete strain) becomes zero upon reversal from tension. At this point, the concrete 

compressive stiffness will increase rapidly. However, the occlusion of aggregates in a 

cracked RC member is not as perfect as the model assumes. As a result, the recovery of 

stiffness during crack closure in a test is a relatively smooth process and not as sudden as the 

model predicts. 

To capture longitudinal bar buckling, the model must duplicate the crack closure 

boundary condition upon reversal of loading. The model utilizes a simple solution which 

assumes that the concrete has cracked and that only the reinforcing bar resists tension. On the 

subsequent compressive cycle, the concrete block is not compressed until the displacement at 

the top of the bar reaches the top of the concrete block. Both the bar and the concrete core 

will be compressed to the target strain level from this crack closure point. As discussed in the 

tension-based bar buckling theory, the onset of bar buckling will occur before the concrete 
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block is under compression. Therefore, out-of-plane deformation from the onset of bar 

buckling is expected to be observed before cracks close. However, this deformation is 

usually small and will become much more obvious as the compressive loading increases.  
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(a) (b) 

 

(c) (d) 

Figure 5.10. Force-Deformation Response from Test 9 and Simulation 
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5.8 Model Validation 

A research program on load history effects is ongoing at North Carolina State 

University. This program consists of extensive large scale tests on reinforced concrete bridge 

columns and analytical studies using finite element methods. More than 20 circular columns, 

as shown in Figure 5.11, were subjected to quasi-static tests with a series of column top 

displacement histories. The displacement histories include the three-cycle-set and earthquake 

displacement histories.  Nonlinear time history analyses were conducted with a fiber-based 

model and selected ground motions from large magnitude earthquakes. The displacement 

response from the column model was utilized as the control displacement for the tests. The 

experimental data are implemented to calibrate both the fiber-based model and finite element 

bar buckling model. Goodnight et al. (2012) described the Optotrak sensor system used in 

these tests to record the displacements at a series of points along exposed reinforcing bars. 

The strain profiles along a reinforcing bar were generated by calculating the difference in 

position between two adjacent LED markers. Specimens were loaded until longitudinal bar 

buckling occurred. To validate the finite element bar buckling model, the strain history which 

a buckled bar experienced in the experiment was applied to the bar buckling model.  

5.8.1 Introduction of Test Results 

The experimental data from two tests was implemented to validate the behavior of the 

bar buckling model. Strain histories from Tests A and B were utilized as input into the finite 

element bar buckling model. The behavior of the model was compared to the observations 

from both tests. The specimens in both tests had identical geometry and reinforcement 

detailing.  

Test A and B were selected because of their distinct loading histories. Test A employed 

a three cycle set load history, which represents an extreme case of an earthquake with 

multiple loading reversals and large energy input, as shown in Figure 5.12. The average 

strain from the bottom three gauges was imposed on the bar buckling model in an attempt to 

capture the bar buckling. The reinforcement in the specimen of Test A experienced a large 
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number of loading cycles before it reached the critical tensile strain prior to buckling upon 

load reversal. In contrast, the load history of Test B is from the Kobe, 1994 Japan earthquake 

and contains a limited number of large displacement pulses. Therefore, the results from these 

two tests represent extreme cases of displacement history. In addition, the extreme fiber at 

the two faces of the specimens in Test A and B experienced different tension-compression 

strain histories. One of the extreme fiber bars in Test B sustained a large tension strain and a 

subsequent compression strain while the other extreme fiber bar was subjected to a large 

compression strain first, a subsequent tension strain and then a compression strain again. 

Therefore, buckling of the two extreme fiber bars was observed in different loading cycles, as 

shown in Figure 5.12 and Figure 5.13. The displacements towards the south in Figure 5.12 

were considered to be positive. 

 

 

Figure 5.11. Setup of Experimental Tests 

 1 

North South 
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(a) 

 

(b) 

Figure 5.12. Loading History from Test A (a) and Test B (b) 
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(a) 

 

(b) 

Figure 5.13. Reinforcement Buckling in Test A (a) and Test B (b)  

 

5.8.2 Comparison between Model Prediction and Observation of North Bar from 

Test B 

In Test B, the extreme fiber bar on the north side of the specimen was observed to 

buckle after a few cycles of loading. Figure 5.5 showed that the reinforcement on the north 

side of the specimen would be subjected to tension under the loading in south direction 
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(positive). The Kobe load history has a large positive (south) displacement cycle at the 

beginning as displayed in Figure 5.12. Therefore, the extreme fiber bar on the north side of 

the specimen was subjected to a large tensile strain, and upon reversal, bar buckling was 

expected. However, the bar did not buckle until reversal of loading from the displacement 

ductility 9.3 at 6.56 sec shown as μ9.3
6.56 

in Figure 5.12.  

As discussed, the strain history up to the time that bar buckling was applied to the finite 

element model.  For the bar on the north side of specimen B, there were four displacement 

ductility levels before the bar buckled, including μ-1.5
3.44

, μ10
3.86

, μ-6.1
4.42

 and μ9.3
6.56

. Figure 

5.14 displays the corresponding strain profiles of the north extreme fiber bar at the four 

displacement ductility levels. The strain demand applied to the buckling model is obtained by 

averaging the strain data points at the three bottom gauges, as shown in Table 5.3. A strain 

history of -0.0025, 0.055, -0.004, 0.051, and -0.0018 was applied to the bar buckling model, 

as shown in Figure 5.14. A complete loading cycle consists of two branches of monotonic 

loading. The half cycle number is thus utilized to define the loading in Figure 5.14 and 

subsequent figures. An ideal computational result would include the following: 1) no 

buckling upon reversal from μ10
3.86

, 2) buckling upon reversal from μ9.3
6.56

, and 3) spiral 

yielding when the longitudinal bar buckles. 

Figure 5.15 shows the model behavior and longitudinal plastic strain distribution at each 

peak loading point. The stages of loading are denoted by the average strain on the 

longitudinal bar. Figure 5.15(b) shows that no plastic strain was developed at the average 

strain -0.0025. The strain distribution in the bar is relatively uniform at the average strain -

0.055, as shown in Figure 5.15(c), and large plastic strains in the longitudinal bar are 

observed. For the compressive cycle at the average strain -0.004, the non-uniform strain 

distribution in the longitudinal bar was developed. Dilation of the core concrete activated the 

confining effect of the spirals, but did not yield the spiral. The longitudinal bar buckled upon 

reversal from the average tensile strain 0.051, as shown in Figure 5.15(f). The plastic strain 

distribution is significantly non-uniform in the buckled region. Tensile strain is observed at 
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the outside face even in this compressive cycle and large compressive strains are 

concentrated on the inner face of the bar.  

As shown in Figure 5.16, the model predicts the buckling to occur at the same cycle as 

observed in the experimental test. In addition, the model illustrates the accumulation of strain 

non-uniformity across the longitudinal bar upon reversals from tensile strains. The strain 

non-uniformity developed upon reversal from the average tensile strain of 0.055 to -0.04 and 

caused a minimal deformation in the longitudinal bar. Loading upon reversal from the 

average tensile strain of 0.051 led to an eccentricity of the compressive load which resulted 

in inelastic bar buckling. Bae et al. (2008) also showed the effect of ‘minimal bar 

deformation’ or ‘eccentricity’ on the required buckling stress. Unlike the model described in 

this chapter, they induced fictitious deformations in the bar, while the strain history leads to 

bar deformations in the finite element model. Spiral yielding in the buckled region was also 

captured (Figure 5.17). Bar buckling occurs with large out-of-plane deformation and plastic 

strains in spiral layers.  
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Table 5.3. Strain History Values 

 Compressive Strain  Tensile Strain 

Time 
Gauge 

1 

Gauge 

2 

Gauge 

3 
Avg. Time 

Gauge 

1 

Gauge 

2 

Gauge 

3 
Avg. 

3.44 -0.0029 -0.0024 -0.0021 -0.0025 3.86 NA 0.053 0.057 0.055 

4.42 0.0015 -0.012 -0.0014 -0.0040 6.56 NA 0.048 0.053 0.051 

7.16 NA NA NA -0.0018      

 

  



Chapter 5: Development of Finite Element Model for Bar Buckling 94 

 

 

 

(a) 

 

(b) 

Figure 5.14. Strain Profile (a) and Strain History (b) of North Extreme Fiber Bar from 

Kobe Load History 
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(a) Strain: 0 (b)Strain: -0.0025 (c)Strain: 0.055  

  

(a) Strain: -0.004 (b)Strain: 0.051 (c)Strain: -0.0018  

Figure 5.15. Loading Process with Strain History from Test B (North Bar) 

 

Avg. Strain 
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Figure 5.16. Predicted and Observed Longitudinal Bar Buckling 

 

 

Figure 5.17. Yielding of Spiral in the Buckled Region 

     1 
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5.8.3 Comparison between Model Prediction and Observation of South Bar from 

Test B 

In multiple experimental tests, the reinforcing bars buckled at the location where the 

spiral yielded in a previous loading cycle. The extreme fiber bar on the south side of the 

specimen for Test B buckled under these conditions. The measured strain history of the south 

extreme fiber bar was applied to the model to assess its ability to capture spiral yielding prior 

to buckling when subjected to this load history. 

Figure 5.18 shows the strain gradient in the plastic hinge at peak displacement ductility 

level of 10 (8.4in, 21cm) and peak displacement ductility of -6.1 (5.1in, 13cm). As shown in 

Table 5.4, the strain levels at the bottom three gauges (2in, 50mm gauge length) from the 

strain profiles were extracted from the data and averaged. The target strain in the third cycle, 

which refers to 4.84 sec in the original time history response, is not available from the 

Optotrak system data since the bar had already buckled. The difference in position of two 

adjacent LED markers does not correspond to engineering strain since the bar no longer 

deforms uniaxially. Therefore, as shown in Eq.5.4 the peak displacement at 4.84 sec was 

used to linearly interpolate the stain from the loading cycle of 3.86 sec. Again, the recorded 

strain history from Test B was applied to the finite element bar buckling model. As before, 

the results from the bar bucking model are compared to the observations from the test to 

assess its performance. 

1
2

2

5.5
 -0.023 -0.015  

8.4



  

  5.4 

The model behavior and plastic strain distribution at each peak loading point is shown in 

Figure 5.18. Two spiral layers yielded under a compressive strain of -0.023 as observed in 

the test, as shown in Figure 5.21. The plastic deformation of the spirals from this 

compressive cycle increased the unsupported length of the bar which resulted in development 

of inelastic bar buckling before crack closure. The model predicted the onset of buckling 

before any compressive load on the concrete was applied, as shown in Figure 5.19(d). In 
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addition, profound outward deformation confirms bar buckling at the peak compressive strain 

of -0.015. The predicted and observed buckling deformations are compared in Figure 5.20.  

 

 

 (a) (b) 

Figure 5.18. Strain Profile (a) and Strain History (b) of South Extreme Fiber Bar in 

Kobe Load History 
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(a) Strain: 0 (b)Strain: -0.023 (c)Strain: 0.031  

 

(d)Crack Closure (e)Strain: -0.015 

Figure 5.19. Loading Process with Strain History from Test B (South Bar) 
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Figure 5.20. Predicted and Observed Longitudinal Bar Buckling 

 

Table 5.4 Target Strain Values 

 Compressive Strain  Tensile Strain 

Time 
Gauge 

1 

Gauge 

2 

Gauge 

3 
Avg. Time 

Gauge 

1 

Gauge 

2 

Gauge 

3 
Avg. 

3.86 -0.037 -0.013 -0.02 -0.023 4.42 0.027 0.031 0.033 0.031 

4.84 N.A. N.A. N.A. -0.015      
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Figure 5.21. Yielding of Spiral at the Compressive Strain -0.023  

 

5.8.4 Comparison between Model Prediction and Observation of North Bar from 

Test A 

The column specimen of Test A was subjected to a three-cycle-set loading history. 

Figure 5.12 showed the loading history of the top column displacement. Compared to Test B, 

more damage was observed in the plastic hinge before buckling, such as cover concrete 

crushing and spalling. A large number of loading cycles at displacement ductility 2 and 4 did 

not cause yielding of the spiral. However, cumulative plastic strains were observed at each 

loading cycle at displacement ductility 6, as shown in Figure 5.23. The extreme fiber bar on 

the north side of the column buckled upon reversal from a displacement ductility of 8. 

Figure 5.22 portrays strain profiles of the extreme fiber bar on the north side of the 

column. As discussed, the strain history applied to the bar buckling model was obtained by 
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averaging the strain within the six inch region above the column-footing interface. Since 

strain profiles do not change significantly from cycle to cycle at the same ductility level, the 

average strains are assumed to be constant in all three cycles at the same displacement 

ductility. Elastic cyclic loadings and cycles at displacement ductility 1 were neglected. 

However, for the three-cycle-set, the strain history needs to include most of the peak strains 

because every specific strain level is equal or larger than the strain in previous cycles. 

As previously discussed, it is not reliable to use strain data from the Optotrak system at 

the first compressive cycle of ductility 8 where the bar buckled. Eq. 5.4 was utilized to 

linearly extrapolate the strain from the previous cycle. Table 5.5 lists all the strain values 

from three base gauges of the strain profile. The target strain history is shown in Table 5.5.  

As shown in Figure 5.24 (b), the dilation of the core concrete caused a non-uniform 

strain distribution in the longitudinal bar, at a displacement ductility level of 2. The non-

uniform strain and small deformation in the bar can be considered as an imperfection or 

eccentricity in subsequent loading cycles. The transverse reinforcing steel restrained the bar 

from buckling at low ductility levels. As marked by the red ellipse in Figure 5.24(i), the 

strain along the outside surface of the bar remains in tension during compressive loading 

cycles. This residual tensile strain at the outer surface of the bar accumulated cycle by cycle. 

Similarly, the residual compressive strain accumulates around the inside surface of the bar. 

The degree of eccentricity increased from cycle to cycle, and a large restraining capacity 

from spirals was required to prevent buckling. In addition, both the test result and model 

prediction show that the plastic strain in the spiral accumulates at loading cycles 

corresponding to displacement ductility of 6 as portrayed in Figure 5.23. As the plastic 

deformation in the spiral increases, the unsupported length of the bar is altered. Bar buckling 

occurs at the first compressive cycle of displacement ductility 8 due to the reduction of 

buckling stress from the accumulation of the imperfection and spiral deformation. The 

comparison of bar buckling in the model and the experimental test is displayed in Figure 

5.25. Note the yielding in several turns of the spiral, as shown in Figure 5.26 and plotted in 

Figure 5.23. 
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 (a) (b) 

Figure 5.22. Strain Profile (a) and Strain History (b) of North Extreme Fiber Bar in 

Test A 
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Table 5.5. Target Strain Values 

 
Tensile Strain   Compressive Strain 

Ductility 
Gauge 

1 

Gauge 

2 

Gauge 

3 
Avg. Ductility 

Gauge 

1 

Gauge 

2 

Gauge 

3 
Avg. 

2 0.014 0.005 0.012 0.010 -2 -0.0027 -0.0041 -0.0022 -0.0030 

3 0.02 0.018 0.015 0.018 -3 -0.0046 -0.0054 -0.005 -0.0050 

4 0.026 0.023 0.021 0.023 -4 -0.0056 -0.0077 -0.006 -0.0064 

6 0.039 0.032 0.032 0.034 -6 -0.0018 -0.0177 -0.0096 -0.0092 

8 0.053 0.043 0.044 0.047 -8 N.A. N.A. N.A. -0.0122 

 

 

  

Figure 5.23. Spiral Strain Hysteretic Response 
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Figure 5.24. Loading Process with Strain History from Test A (North Bar) 
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(a)Strain: 0 (b)Strain: 0.01 (c)Strain:-0.003 (d)Strain:0.018 

 

(e)Strain: -0.005 (f)Strain: 0.023 (g)Strain: -0.0064 (h)Strain: 0.034 

 

 

  



Chapter 5: Development of Finite Element Model for Bar Buckling 107 

 

 

 

 

(i)Strain: -00.0092 (j)Strain: 0.047 (k)Strain: -0.0122 
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Figure 5.25. Comparison of Bar Buckling between the Test Result and Model 

Prediction 

 

 

Figure 5.26. Yielding of Spiral at Buckling Region 
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5.9 Summary of Findings 

Several factors have been found to determine the inelastic bar buckling in RC members, 

as listed in  

Table 5.6. It has been suggested by the finite element analysis that the compressive 

strain in core concrete can cause imperfection in the longitudinal bars which lead to large 

plastic deformations of the spiral which, in turn, alters the unsupported length at later loading 

cycles. The case study with tangent modulus theory for inelastic bar buckling explains the 

importance of reversal from a significant tensile strain on both the reduction of the tangent 

modulus and the increase of compressive stress in the bar. As the steel material is simulated 

appropriately, the finite element model also captures the impact of tangent modulus on 

inelastic buckling. Most importantly, the plastic deformation of spiral turns can cause 

significant increase of unsupported length of the bar for later compressive cycle. On the other 

hand, the diameter of the bar and the spiral pitch determine the bar moment of inertia and the 

original unsupported length respectively. The proposed finite element model will also be able 

to include the effect of reinforcement detailing on inelastic bar buckling. 
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Table 5.6. Factors Affecting Inelastic Bar Buckling 

 

Factors 
Load/Strain History 

Related or Not 
Evidence 

Magnitude of Bar Stress Yes Tangent Modulus Theory 

Tangent Modulus Yes Tangent Modulus Theory 

Unsupported Length  Yes Finite Element Model 

Imperfection/Eccentricity Yes Finite Element Model 
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5.10 Chapter Conclusions   

Inelastic bar buckling in RC members is a complicated behavior since idealized uniaxial 

monotonic behavior does not exist. Theoretically, it is impacted by the bar diameter, spiral 

pitch and stress strain behavior under cyclic loading. However, either the tangent modulus 

theory or the double modulus theory only explains the inelastic buckling at the material level 

assuming an idealized uniaxial behavior. The finite element model showed that the strain 

history affects the unsupported length and imposed imperfections in the bar. The model was 

established for the purpose of capturing the effect of load history and reinforcement detailing 

on the inelastic bar buckling. 

Presented in this chapter was also a two-step numerical method to accurately predict 

longitudinal bar buckling under seismic loading. Nonlinear time history analysis with a fiber-

based model provides the displacement response of a structure and the associated strain 

history response in the plastic hinge region. The strain history is then used as the loading for 

the finite element model to predict bar buckling. The finite element bar buckling model must 

consider local geometry of the structural member and reinforcement detailing. An earthquake 

load history will have three major characteristics, including number, magnitude, and degree 

of symmetry of the loading cycles. Considering these features of a loading history, three 

strain histories from experimental tests were selected and imposed on the finite element bar 

buckling model. The model was shown to accurately capture the load history effect on 

inelastic bar buckling. It is more important that the analytical result decomposed the load 

history effect into the follow findings: 1) a significant tensile strain is required to activate 

buckling upon reversal, 2) a single large compressive cycle prior to the tensile cycle can alter 

the unsupported length of the bar and can create imperfections resulting in subsequent 

eccentricity, and 3) the cyclic loading causes accumulation of spiral plastic deformations and 

bar imperfections. All of these load-history-based factors have been shown to influence the 

onset of inelastic bar buckling. 
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This numerical method will be implemented to further quantify the effects of the seismic 

load history and reinforcement detailing on bar buckling. A parametric study with the 

proposed analysis method is underway, and will include a variety of load histories. The effect 

of spiral pitch, axial load ratio, aspect ratio and reinforcing bar diameter on bar buckling is 

also being investigated with the proposed method.  
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Chapter 6: Deformation Limit States for 

Longitudinal Bar Buckling  

6.1 Introduction 

For Performance-Based Seismic Design, accurate estimates of structural performance 

are of paramount importance. In the case of reinforced concrete bridge columns, a key 

performance limit state is the onset of reinforcing bar buckling because many engineers 

consider this damage level as the condition beyond which a structure may require 

replacement. Previous research (Rodriguez et al. (1999)) has shown that bar buckling is more 

likely to occur under cyclic loading. In addition, Kunnath and El-Bahy (1997) and Moyer and 

Kowalsky (2003) observed that the characteristics of cyclic loading impacted the required 

deformation to produce bar buckling.  While empirical models exist that have been 

developed on the basis of the existing column test database, as presented by Berry and 

Eberhard (2005), direct consideration of the effect of loading history on reinforcing bar 

buckling has not been previously included in design. 

Modeling of RC structures to capture local damage, such as reinforcing bar buckling, has 

been shown to be difficult in the past. Several researchers have focused on modeling inelastic 

bar buckling under monotonic loading, such as Mau and El-Mabsout (1989), Dhakal and 

Maekawa (2002), Bae et al. (2005), and Urmson and Mander (2012). Zong et al. (2013) 

observed the buckled shape of reinforcing bars over multiple hoop layers and investigated the 

stress-strain behavior of bars in a full column finite element model. Independent “Beam-on-

Springs” models were also developed to obtain the bar stress-strain behavior after buckling 

given different reinforcement detailing. Zong et al. (2013) concluded that the post-buckling 

bar stress-strain response on compression depends on the ratio of buckled length to bar 

diameter.  

Moyer and Kowalsky (2003) observed the influence of tensile strains on the onset of bar 

buckling, and described a tension-based buckling mechanism. Moyer and Kowalsky (2003) 
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illustrated the distinct features of the tension-based bar buckling mechanism summarized as 

follows. First, buckling of reinforcement requires reversal of loading. Second, significant 

tensile strain is required to activate the tension-based bar buckling mechanism upon reversal. 

Third, the accumulation of tensile strain over multiple loading cycles impacts longitudinal 

bar buckling. Lastly, since bar buckling in the end occurs under compression, it is important 

to quantify the compressive load capacity associated with bar buckling. In order to capture 

nonlinear bar buckling under cyclic loading, this chapter utilizes a finite element model 

developed by Feng et al. (2013)
2
 to conduct nonlinear analysis of RC bridge columns. The 

goals of the research discussed in this chapter are to define tensile strain limits and to develop 

a corresponding design approach for the reinforcing bar buckling limit state that considers 

the effect of load history. 

6.2 Finite Element Model to Capture Bar Buckling 

Recent research by Feng et al. (2013)
2
 summarized the factors which have the potential 

to impact inelastic bar buckling. These factors, including the magnitude of bar stress, tangent 

modulus reduction, unsupported bar length, and bar axial force eccentricity, are strongly 

related to the loading history that the member is subjected to, and the corresponding strain 

history of the individual reinforcing bar. As a result, a hybrid finite element method was 

introduced to study the impact of load history on inelastic bar buckling in RC bridge 

columns. Feng et al. (2013)
2
 utilized fiber-based elements to simulate reinforced concrete 

columns and conducted nonlinear time history analysis (NTHA) to obtain column 

displacement response as well as the strain history response of the individual reinforcing 

bars. The strain history of the longitudinal bars obtained from the NTHA was then used as 

the forcing function in a local finite element model developed using solid elements, where 

bar buckling was captured and the effect of strain history on buckling was investigated. 

Figure 6.1 shows the model mesh and geometry from Feng et al. (2013)
2
 which reflect the 

local detailing in a RC bridge column. 
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Based on the analysis results, Feng et al. (2013)
2
 decomposed the characteristics of load 

history and their impact on bar buckling in RC members into the following observations: 1) a 

significant longitudinal bar tensile strain is required to activate buckling upon subsequent 

loading in compression; 2) a large level of compressive strain demand on the longitudinal 

reinforcing bar prior to bar buckling alters the unsupported length of the longitudinal bar as 

the dilation of the core concrete under compression may lead to plastic spiral elongation; 3) 

additional cycles of loading may cause accumulation of hoop plastic deformation and 

longitudinal bar imperfection (eccentricity). These load-history-based factors have been 

shown to influence the required tensile strain which results in inelastic bar buckling upon 

reversal of loading. 

 

 

                                 
 

Figure 6.1. Finite Element Model for Bar Buckling from Feng et al. (2013)
2 

 

6.3 Selection of Ground Motions 

Ground motions from large earthquakes were collected from several sources for use in 

NTHA of the research discussed in this chapter. The ground motions selected were intended 

to cover several large historical seismic events. Forty ground motions from different 

earthquakes, including subduction events and strike-slip events, were selected and are shown 

in Table 6.1. All ground motions have peak ground accelerations greater than 0.4 g. During 
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the course of the analysis, the ground motions were scaled as much as 150% in order to 

generate response large enough to initiate bar buckling in the finite element model. 
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Table 6.1. Ground Motion Database 

Earthquake Year Station PGA(g) 

Chile 2010 N.A. 0.6 

Japan 2011 TCGH 1.22 

Kobe 1995 N.A. 0.82 

Chichi 1999 

N.A. 0.65 

No1197 0.8 

No1231 1 

No1503 0.8 

No1507 0.6 

No1517 1.2 

No2658 1 

No3474 0.8 

Tabas 1978 N.A. 0.84 

Northridge 1994 
SylmarCSE 0.83 

Pacoima Dam 1.6 

Darfield(NZ) 2010 GDLC 0.72 

Christchurch(NZ) 2011 LPCC 0.88 

Calexico 2010 Array11 0.6 

Landers 1992 N.A. 0.8 

Duzce 1999 
Duzce 0.5 

Lamont 0.9 

Erzican 1992 N.A. 0.5 

Big Bear 1992 N.A. 0.5 

Imperial Valley 1979 

No160 0.8 

No180 0.5 

No183 0.6 

Superstitions Hills 1987 No727 0.8 

Managua 1972 No95 0.4 

Victoria 1980 No265 0.6 

Morgan Hill 1984 No451 1.2 

Chalfant 1986 N.A. 0.45 
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Table 6.1 Continued 

Mammoth Lake 1980 
No230 0.45 

No231 0.4 

Dinar 1995 No1141 0.45 

Cape Mendocino 1992 
No825 1.5 

No828 0.7 

Nihanni 1985 N.A. 1 

Loma Prieta 1989 N.A. 0.5 

San Fernando 1971 N.A. 1.2 

Coalinga 1983 N.A. 0.6 

North Palm Springs 1986 N.A. 0.7 
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6.4 Impact of Load History on Buckling Mechanism 

Previous researchers (Moyer and Kowalsky (2003) and Kunnath and El-Bahy (1997)) 

have shown the impact of load history on reinforcing bar buckling. While longitudinal and 

transverse bar diameters and bar spacing have long been known to impact the onset of bar 

buckling, for initial analysis, load history was the only variable. Analyses were conducted on 

a circular RC column 2.4 m in height and 0.6 m in diameter. Longitudinal reinforcement 

consists of 16 #6 bars (1.9 cm in diameter) and transverse reinforcement is a #3 spiral (0.95 

cm diameter) at 5 cm pitch. 

The column was modeled using fiber-based elements, the details of which are noted in 

Feng et al. (2013)
1
 and NTHA was conducted to obtain top column displacement response 

and reinforcing bar strain history. Each analysis under the effect of a specific ground motion 

provided two strain histories, one for each of the two bars located furthest from the section 

center since these bars are more vulnerable to buckling than other bars in the section. 

Therefore, a total of 80 strain histories were collected for use in the finite element bar 

buckling model, the details of which are discussed in Feng et al. (2013)
2
. If the strain history 

failed to generate bar buckling in the finite element bar buckling model, the associated 

ground motions were scaled up to 1.5 times the original record. However, there were a 

number of ground motions that still failed to provide severe strain history and cause bar 

buckling in the finite element analysis. Only the ground motions and their corresponding load 

history which were able to generate bar buckling under limited scaling factor were utilized to 

study the effect of load history on reinforcing bar buckling. Over-scaling and arbitrary 

manipulation of ground motions were avoided in order to maintain the load history 

characteristics of real earthquake events.    

As discussed, the strain histories from the fiber-based analyses results were used as the 

displacement-controlled loading input into the finite element bar buckling model developed 

by Feng et al. (2013)
2
. In the work described in this chapter, bar buckling was said to have 

occurred if the outward displacement of the longitudinal bar reaches 0.1 times the bar 
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diameter. The outward displacement limit is empirical and is based on the work of Massone 

and Morader (2009) and Bae et al. (2005) where a large reduction of bar strength was 

observed after buckling with an eccentricity larger than 0.1 times the bar diameter.  

6.4.1 Load History Analysis Results 

The results from the finite element analysis showed that bar buckling occurred under 14 

strain histories (Figure 6.2), which were from 12 of the 40 NTHAs. This means that twelve 

earthquakes successfully lead to bar buckling while only two of them (Kobe and Chichi 

Station 1503) buckled both extreme fiber bars in the column. The arrow on the load histories 

in Figure 6.2 refers to the loading cycle in which bar buckling was observed in the analysis. 

The location of Bar 1 and Bar 2 with respect to the displacement direction is shown in Figure 

6.3. Table 6.2 lists the earthquake ground motions which generated bar buckling. 
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Table 6.2. Earthquakes Causing Bar Buckling 

Earthquake Station 
Scaling 

Factor 
Buckled Bar 

Tabas N.A. 1 Bar 2 

Darfield GDLC 1 Bar 2 

Chichi No 1197 1.1 Bar 1 

Chichi No 1503 1.1 Both 

San Fernando N.A. 1.2 Bar 2 

Northridge Sylmar(CSE) 1.2 Bar 2 

Kobe N.A. 1.2 Both 

Japan 2011 TCGH 1.2 Bar 2 

Morgan Hill No 451 1.3 Bar 1 

Duzce Duzce 1.4 Bar 1 

Cape 

Mendocino 
No 828 1.4 Bar 2 

Coalinga N.A. 1.4 Bar 1 
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Figure 6.2. Longitudinal Bar Strain Histories and Buckling 
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Figure 6.3. Locations of Bars 

 

6.4.2 Key Findings from Load History Analysis Results 

Although bar buckling is known as a compressive phenomenon, Moyer and Kowalsky 

(2003) described a tension based buckling mechanism which revealed severe bar instability 

upon reversal from a large tensile strain in RC members. In addition, the compressive cycle 

in a strain history, which does not buckle the longitudinal bar, may change the boundary 

condition of the bar by plastically elongating the hoops, as discussed in detail by Feng et al. 

(2013)
2
. Therefore, the required tensile strain to result in instability during further 

compressive loading may be reduced at a larger unsupported length caused by the plastic 

elongation of hoops.  

A significant outcome of the initial analysis is the role of previous compressive cycles 

on bar buckling. It is well established that the level of transverse bar restraint impacts the 

onset of bar buckling. For example, tighter spiral pitch provides larger lateral restraint against 
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bar buckling. However, what is less obvious is the transient nature of the restraint provided 

by the transverse steel. What follows below is a key revision to the Moyer and Kowalsky 

model (2003) to account for the transient nature of transverse steel restraint, which also was 

noted by Goodnight et al. (2013). 

Consider Figure 6.4 which shows the plastic hinge region (without cover concrete) in an 

RC column subjected to combined flexure and axial load. Under counterclockwise moment 

(see Figure 6.4(a)), the left side of the column in the bottom plastic hinge region is placed in 

compression. This causes the concrete in the compressive zone to expand, thus activating the 

transverse steel, as shown in Figure 6.5. If the counterclockwise moment is sufficiently 

severe, the transverse steel will yield and the boundary conditions for supporting the 

longitudinal bars change. Now, consider the clockwise moment (see Figure 6.4(b)). The 

longitudinal bars previously in compression are now subjected to tensile strain and cracks 

form on the tensile side of the member. Upon a second counterclockwise moment (Figure 

6.4(c)), the longitudinal reinforcing bars on the left become the sole source of compression 

zone stability before crack closure. The occurrence of buckling under this cycle of loading is 

dictated by the ability of the bar to carry compression, which in turn is a function of the 

detailing and the restraint provided by the transverse steel. During the loading in Figure 

6.4(a), the restraint provided by the transverse steel is affected not only by the level of 

detailing, but also the impact of previous compressive loading on the member.  
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 (a) (b) (c) 

Figure 6.4. Plastic Hinge Region in Cyclic Loading 

 

 

 

Figure 6.5. Sectional View under the Load in Figure4(a) (deformations are exaggerated) 

 

In this series of analyses, twelve out of fourteen observed instances of bar buckling in 

the finite element analysis exhibited yielding of the transverse steel prior to bar buckling. The 

yielding of the transverse steel was caused by a single large compressive cycle prior to bar 

bucking. This is easily explained with reference to Figure 6.2 in which the arrows represent 

the loading cycle where reinforcing bar bucking was first observed in the analysis. Prior to 

the cycle that resulted in bar bucking, the peak tensile strain in the longitudinal bars, εt, is 

shown by the circular marker. Lastly, the magnitude of the transverse steel strain achieved in 
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the prior compression cycle is identified with the variable εh next to the square markers. As a 

consequence, it is observed that bar buckling occurs after reversal from the peak tensile strain 

following the yielding of the transverse steel in all cases. The importance of yielding in the 

transverse steel is further highlighted in Figure 6.2(a), (c), (g), (j), and (n) where the peak 

tensile strain demand occurs prior to yielding of the transverse steel, yet buckling was 

delayed to cycles later in the response (although still upon reversal from the peak tensile 

strain after yielding of the transverse steel). 

Only the analysis depicted in Figure 6.2(e) and (h) resulted in reinforcing bar buckling 

without yielding of the transverse steel. In the case of Figure 6.2(e), there were extensive 

tensile cycles which resulted in the bar under axial compression upon reversal. When 

applying an axial load to the reinforcing bar, there will always be some degree of eccentricity 

due to imperfections in the bar. Analytically, it is of course possible to apply uniform 

compression to a longitudinal bar. However, in this finite element model, the boundary 

conditions on either side of the reinforcing bar are non-uniform. On one side, the concrete 

expands, bearing on the bar, and on the opposing side, the transverse steel provides restraint. 

This condition is the same as would be expected in a physical test. As a consequence, non-

uniform stresses and strains will form along the bar cross section, which is shown in detail by 

Feng et al. (2013). The level of non-uniform stress increases upon each reversal from the 

large tensile strains. A similar argument can be made in the case of Figure 6.2(h), although 

only with 2 cycles of tensile loading, albeit a very high levels of tensile strain.  

In summary, the initial analysis demonstrated that both compressive strain in the section 

(as it effects the degree of yielding in transverse steel and corresponding longitudinal 

boundary conditions), and tension strain (as it effects accumulation of non-uniform stress as 

well as the bar deformation that must be sustained upon reversal), are important variables 

impacted by load history. Given the apparent importance of compression loading and its 

impact on bar restraint, the remainder of this chapter will focus on a deeper exploration to 

quantify the effect of this variable, and how it may be considered in developing strain limits 

for reinforcing bar buckling for specific levels of detailing.  



Chapter 6:Deformation Limit States for Longitudinal Bar Buckling  130 

 

6.5 Parametric Study on Bar Buckling  

As noted previously, the peak compressive strain in a section determines the degree of 

plastic elongation in transverse steel, and as a result the effective boundary conditions 

supporting a reinforcing bar, while the peak tensile strain represents the amount of 

deformation that must be sustained upon further reversals of loading in compression if a bar 

is to avoid buckling.  

In order to study this phenomenon more closely, a series of ‘single cycle’ analysis were 

conducted. The analyses consisted of subjecting the finite element bar buckling model of 

Figure 6.1 to a prescribed compressive strain followed by a tensile strain, and then a second 

reversal in compression. For the given level of initial compressive strain demand, if the level 

of tensile strain did not initiate bucking, the analysis was re-run, with the tensile strain 

increased until bar bucking occurred upon reversal. Consider Figure 6.6 as an example, 

which shows this process for a given level of reinforcement detailing. In Figure 6.6(a), the 

model was subjected to a compressive strain of 1%. This was followed by loading in tension, 

and then a second reversal in compression. The level of tensile strain was increased until 

buckling occurred upon reversal in compression. In the case of Figure 6.6(a), a compression 

strain of 1% required a tensile strain of 3% to result in buckling upon reversal. The same 

iterative process was then employed for a larger initial compressive strain, as shown in 

Figure 6.6(b) where the model was subjected to a compressive strain of 2%. In this case, the 

required tensile strain to cause buckling upon reversal was only 2% as the increased level of 

compression resulted in an increase in spiral plastic strain and hence a reduction in the 

restraint provided to the longitudinal bar. Figure 6.6 shows a third example where the 

compressive strain was increased to 3%, which required an even smaller level of tensile 

strain to result in bar buckling upon reversal.  
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(a) (b) (c) 

Figure 6.6. Reverse Cyclic Strain Histories 

 

The analysis method described in Figure 6.6 was applied to sections with a variety of 

detailing as shown in Table 6.3. For the purpose of developing a design equation to define 

strain limits for reinforcing bar buckling, this chapter considers two key parameters: (1) The 

ratio of transverse steel spacing to the longitudinal bar diameter, and (2) The ratio of the 

hoop diameter to the longitudinal bar diameter. The first of these represents the original 

unsupported length which is one of the most critical factors in inelastic bar buckling. The 

second indicates the relative lateral restraint to resist bar buckling with respect to the bar 

diameter which determines the outward deformation demand on the restraint if bar 

eccentricity occurs. To vary the two ratios, the longitudinal bar diameter and hoop spacing 

were used as the variables. The spiral diameter was varied in the parametric study since 

altering the spiral diameter changes the interaction between hoops and the concrete block in 

the simplified finite element model from Feng et al. (2013)
2
. To capture the local confining 

effect accurately with a different spiral diameter, the thickness of the concrete block in the 

finite element model needs to be redefined based on the experimental results with the 

corresponding spiral diameters. As a consequence, only the bar diameter and spiral pitch 

were selected as the variables for consistency with the finite element model. Later in this 

chapter, comparisons to the existing column database which contains a large range of 

transverse bar diameters, will allow further study into the accuracy of the model.  
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For each detailing configuration, tensile and compressive strain limit curves were 

developed. Results of the analysis for the sections in Table 6.3 are shown in Figure 6.7. In 

each case, the thick black line with markers represents the relationship between imposed 

compressive strain and the required tensile strain to cause buckling upon reversal for the 

section under consideration. The thin grey line represents the strain in the transverse steel 

under corresponding compressive strain and the dashed line shows the yielding strain limit of 

transverse steel.  

As expected, when the compressive strain demand in the section increases, the 

transverse steel strain increases, which results in reduced restraint against bar buckling and a 

corresponding reduction in the tensile strain limit in the longitudinal bar to initiate buckling 

upon reversal. The reduction of the tensile strain limit for bar buckling is more profound in 

sections 1 and 2, which correspond to Figure 6.7(a) and (b), when compared to section 3 

(Figure 6.7(c)). Therefore, the compressive strain has more impact on the tensile limit state 

for bar buckling in sections that are heavily reinforced in the transverse direction. On the 

other hand, while the longitudinal bar diameter increases from Figure 6.7(a) to (d) and (e), 

the tensile strain limit becomes less sensitive to the impact of the compressive strain since the 

longitudinal bar itself is more stable. 
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Table 6.3. Sectional Variables in Parametric Study 

Section 

Number 

Spiral 

Pitch 

cm(in) 

Spiral 

Diameter 

cm(in) 

Bar 

Diameter 

cm(in) 

Pitch/Bar 

Diameter 

s/dbl 

Spiral/Bar 

Diameter 

dh/dbl 

Volumetric Ratio 

ρv (%) 

1 5 (2) 0.95 (0.375) 1.9 (0.75) 2.6 0.5 0.92 

2 3.8 (1.5) 0.95 (0.375) 1.9 (0.75) 2 0.5 1.22 

3 7.6 (3) 0.95 (0.375) 1.9 (0.75) 4 0.5 0.61 

4 5 (2) 0.95 (0.375) 2.2 (0.875) 2.3 0.43 0.92 

5 5 (2) 0.95 (0.375) 2.5 (1) 2 0.38 0.92 
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(a) Section 1 (b) Section 2 

  
(b) Section 3 (d) Section 4 

 

 
(e) Section 5 

 

Figure 6.7. Strain Limit Relationship for Bar Buckling  
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6.6 Proposed Equations for Bar Buckling Strain Limit 

State 

The data from Figure 6.7 can be used to develop design equations that relate 

compressive and tensile strains to key geometric variables.  Expressions were developed 

using multi-linear regression, as shown in Eq. 6.1 to 6.3. The three variables considered in 

the equations are the ratio of spiral pitch to the longitudinal bar diameter and the ratio of the 

hoop diameter to longitudinal bar diameter. These equations can be used for both SI units and 

US customary units, and both tensile and compressive strains are positive in the equations. 

Due to the limited reinforcement combination in the parametric study, these equations are 

suggested to be used in modern detailed RC sections where s/dbl is less than 5 and the 

volumetric ratio of transverse steel is greater than 0.5%. The comparisons between the 

predictions from Eq. 6.1 to 6.3 and the analysis results are shown in Figure 6.8 where the 

total R square value from the regression is 0.958.  
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 (a) (b)  

 
(c) (d)  

 

(e) 

Figure 6.8. Comparison of Proposed Equation and Analytical Result 
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6.6.1 Comparison of Proposed Model to Tests Conducted at NCSU 

To verify the accuracy of the proposed model, the expressions were utilized to predict 

the buckling strains for twelve experimental tests conducted at North Carolina State 

University, where specimens were subjected to three-cycle-set and real earthquake load 

histories. Details of these tests can be found in Goodnight et al. (2013), where the important 

feature is that an advanced instrumentation system was used which allowed measurement of 

strains in longitudinal steel well into the nonlinear range. The photo in Figure 6.1 shows LED 

markers in a sample test that were placed directly on the longitudinal steel and monitored 

with a non-contact instrumentation system. As shown in the strain history from Figure 6.9, 

the peak tensile and compressive strain combination prior to buckling (circles) were extracted 

from the test data to represent the buckling strain limit while the strain combinations at lower 

deformation levels (squares) were extracted as the strain magnitudes which failed to generate 

buckling. Both of these combinations are plotted against the proposed model, as shown in 

Figure 6.10. If the prediction is correct, any combination of strains outside the curve should 

buckle the bar and a couple of strains inside the curve should not lead to bar buckling in 

Figure 6.10. In most cases, it appears that the proposed model provides a good indication of 

the boundary between the buckled and non-buckled strain limits. The impact of section 

detailing on the buckling strain limit is also captured well by the proposed equations from 

Figure 6.10(a) to (e). 
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Figure 6.9. Strain Points for Bar Buckling in Test Data 
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Figure 6.10. Comparison of Proposed Design Equation and Test Data 
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(a) #6 bar with #4 spiral at 7cm  

 
(b)  #6 bar with #3 spiral at 10cm 

 

 

  

0.00

0.02

0.04

0.06

0.08

0.10

0.005 0.01 0.015 0.02 0.025

Te
n

si
le

  S
tr

ai
n

Compressive Strain

Design Equation
Buckled Bar
Non-Buckled Bar

0.00

0.02

0.04

0.06

0.08

0.10

0.005 0.01 0.015 0.02 0.025

Te
n

si
le

  S
tr

ai
n

Compressive Strain

Design Equation

Buckled Bar

Non-Buckled Bar



Chapter 6:Deformation Limit States for Longitudinal Bar Buckling  141 

 

 

  
(c) #6 bar with #3 spiral at 7cm  

 

 
(d) #6 bar with #3 spiral at 4cm 
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(e) #6 bar with #3 spiral at 5cm 
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6.7 Application of the Design Equation 

The primary function of the proposed design equation is to identify the strain limit state 

for bar buckling with a given sectional detailing. For design, it would be more helpful to 

express the equation in terms of displacements. Therefore, the strain limit curves need to be 

converted to a displacement relationship given the structural member length and the axial 

load. Sectional analysis and the plastic hinge method can be used for this purpose, or 

alternatively a fiber-based model could be constructed for each case. 

Outlined below is a step by step approach that is also accompanied by a numerical 

example of a bridge column. The details of the column example are as follows: Column 

dimensions: 2.4 m in height, 0.6 m in diameter; Material properties: f’c = 41 MPa, fy = 468 

MPa; Axial load in compression of 756 kN; Internal reinforcement of 16 #6 bars and #3 

spiral at 7 cm. 

1. Generate Strain Limit Curve with Eq. 6.1-6.3:  
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The corresponding strain limit curve is shown in Figure 6.11(a) 



Chapter 6:Deformation Limit States for Longitudinal Bar Buckling  144 

 

2. Find the end points of each branch as shown in Figure 6.11(a), and convert them to 

corresponding displacement combinations which will be used to establish the 

displacement limit curve. 

The point of (0.01, 0.07) from Figure 6.11(a) is selected as an example to carry through 

the process. 

3. Apply sectional analysis to obtain the curvature at the both strain values of the 

point: 

M-φ analysis results in a curvature of 0.081 1/m for a bar compressive strain of 0.01. 

M-φ analysis results in a curvature of 0.161 1/m for a bar tensile strain of 0.07. 

4. Estimate the equivalent yield curvature with the equation from Priestley et al. 

(2007):  

φy = 2.25εy/D =2.25*0.00234/0.6=0.0088  1/m 

5. Calculate the plastic hinge length with the equations from Priestley et al. (2007):  

LSP = 0.022fyedbl = 0.022*468*1.9 = 19.6 cm 

k = 0.2(fu/fy -1)=0.2*(650/468-1) = 0.078 

Lp = kLC+LSP = 0.078*240+19.6 = 38.3 cm < 2LSP 

Lp = 2LSP = 2*19.6 = 39.2 cm 

6. Calculate the equivalent yield displacement: 

∆y = φy(H+LSP)
2
/3 = 0.000088*(240+19.6)

2
/3 = 1.98 cm 

7. Calculate the total displacement : 

∆c = ∆y+∆p = ∆y+(φc- φy)LPH = 1.98+(0.00081-0.000088)*39.2*240 = 8.8 cm 



Chapter 6:Deformation Limit States for Longitudinal Bar Buckling  145 

 

∆t = ∆y+∆p = ∆y+(φt- φy)LPH = 1.98+(0.00161-0.000088)*39.2*240 = 16.3 cm 

8. Select another point from Figure 6.11(a) and go through step 2 to 7 again to obtain 

the displacement combination: 

The strain combination of (0.01, 0.07) leads to the displacement combination of (8.8, 

16.4). Similarly, the strain combinations of (0, 0.07), (0.0133, 0.0276), and (0.0196, 0) 

lead to the displacement combinations of (0, 16.3), (11.2, 7.1), and (15.4, 0) cm, 

respectively. 

9. Utilize the four displacement points to establish the displacement limit curve, as 

shown in Figure 6.11(b). 

  

 (a)  (b) 

Figure 6.11. Displacement Limit Relationship for Bar Buckling 
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Figure 6.11 presents the outcome of this calculation for the example column described 

above. The manner in which this graph is used would be to identify the column displacement 

that induces compression in a given bar, and then read up to find the required column 

displacement that would cause the required amount of tension to cause bar buckling upon 

reversal. For example, a lateral column displacement of 5 cm would require 16cm in the 

opposing direction to initiate bucking. From a post-earthquake assessment perspective where 

input motions are known, this could of course be rather useful; however, for design, where 

imposed member deformation are unknown in advance of an earthquake, it is suggested the 

displacement to be assumed at the same level in each direction. As a consequence, to obtain 

the column displacement limit for the onset of bar buckling, the one point on the curve where 

the column displacements are the same is identified. In the case of the example in Figure 

6.11, that occurs at a displacement of 10.5 cm.  

As an alternative, the strain limits themselves can be obtained with a simpler process. 

First, a moment curvature analysis is conducted to obtain the relationship between the tensile 

strain and compressive strain at given levels of curvature level which indicates a single 

displacement level. Each combination of compressive and tensile strain is then plotted along 

with the strain limit curve from Eq. 6.1-6.3, an example of which is shown in Figure 6.12. 

The intersecting point (0.012, 0.04) represents the strain limit for the onset of bar buckling 

which combines a compressive strain of 0.012 and a tensile strain of 0.04. 
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Figure 6.12. Method to Define Strain Limit 
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6.8 Comparison to Structural Performance Database 

The Structural Performance Database (http://www.ce.washington.edu/~peera1/) contains 

experimental results from cyclic column tests where bar buckling was observed and the 

corresponding displacement levels were recorded. The range of parameters for column 

detailing are as follow: aspect ratios from 2 to 6.6; column diameters from 0.25 to 1.5 m; 

longitudinal bar diameters from 7 to 43 mm; ratios of hoop diameter to longitudinal bar 

diameter from 0.28 to 0.71; ratio of hoop spacing to longitudinal bar diameters from 1.3 to 

8.4; axial load ratios from 4% to 70%.  

The proposed equations were used to predict the buckling strain limit curve in which the 

predicted displacement limit for bar buckling can be obtained with the method previously 

discussed.  As shown in Figure 6.13, the predicted displacement level for the 49 tests from 

the database serves as a very good limit beyond which bar buckling will be observed in the 

tests. The horizontal axis in Figure 6.13 is the number of each tested column and each data 

point represents a column test. Around 70% of the data points (∆exp/∆pre) in Figure 6.13 are 

within the range from 0.9 to 1.5.  

There are a few reasons for the scatter in Figure 6.13. (1) The method to determine 

displacement at which bar buckling occurs is affected by the accuracy of the plastic hinge 

method which is used to convert the strain to the displacement. Goodnight et al. (2013) found 

that the plastic hinge method overestimated the tensile strain in longitudinal bars from 

experimental tests. As a consequence, given a strain limit from the proposed equation, the 

predicted displacement level by the plastic hinge method will be underestimated as shown by 

most points in Figure 6.13. This is why the comparisons in Figure 6.10 with tests conducted 

at NCSU were presented first. Strain information was directly available from the tests 

conducted at NCSU, and the accuracy of the model can as a result be readily established. 

However, direct strain information is generally not available in the literature due to difficulty 

in measurement, and as a consequence can only be inferred by analysis. A more reliable 

method, such as fiber-based modeling, to convert local strain to column displacements may 
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allow the proposed method to provide a better deformation limit prediction for bar buckling. 

Analyses have shown that the displacements at a given level of strain using fiber-based 

analysis are consistently larger than those obtained from the plastic hinge method (Goodnight 

and Feng (2012)). Nonetheless, for design, it is unlikely that a fiber-based model will be 

employed and until more accurate plastic hinge length expressions are developed, the 

approach described above may be used to achieve conservative results for identifying the 

displacement limit state to initiate bar buckling. (2) The proposed method has a defined 

numerical limit for longitudinal bar deformation to identify the onset of bar buckling; 

however, the manner in which bar bucking is reported in the literature may be open to some 

degree of interpretation by individual researchers and is usually not quantitatively measured 

but qualitatively observed. The experimental tests conducted at NCSU (see Figure 6.11) used 

a quantitative definition which can be then be assessed via the instrumentation system 

employed. The same cannot be done for the experiments in the structural performance 

database. (3) Most of the tests included in the Structural Performance Database were ramp-up 

cyclic tests where the incremental displacement from cycle to cycle may not precisely define 

the deformation limit state for the onset of bar buckling. For example, for a 3-cycle-set 

loading history, if the deformation limit state for buckling is at ductility 5, the onset of bar 

buckling can only be observed if the displacement ductility level of 5 is directly imposed on 

the test specimen. Often, loading may proceed directly from ductility 4 to ductility 6. Bar 

buckling may have been observed at ductility 5 had the column been subjected to ductility 5 

level deformation prior to proceeding to ductility 6. As a result, the recorded displacement at 

ductility 6 would overestimate the deformation limit state for onset of bar buckling. The 

same argument can be made for loading from ductility 6 to 8, and beyond. 
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Figure 6.13. Prediction against Test Data 

 

6.9 Chapter Conclusions 

This chapter investigates the characteristics of real earthquake load histories and the bar 

strain history which impacts inelastic bar buckling in circular RC columns. A significant 

finding in this investigation is that the longitudinal bar buckling often occurs upon reversal 

from a tensile strain, after transverse steel yielded in a previous compressive strain cycle. 

Plastic elongation of transverse steel results in an increase in the unsupported length of the 

longitudinal reinforcing bar, which is a critical factor for inelastic bar buckling.  

Given the fact that future earthquake load histories cannot be known in advance for 

design, a single cycle reverse cyclic loading was utilized to include the most critical factors 

of load history on bar buckling, which are the peak compressive and tensile strains. Strain 

limit curves for bar buckling were established for various reinforcement detailing and design 

equations were developed for the generation of these curves. The variables in the equations 
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are reinforcing bar diameter, transverse reinforcement diameter, and transverse steel spacing. 

The proposed equations accurately predict the demarcation point of bar buckling for tests 

conducted at NCSU using an advanced non-contact instrumentation system. In addition, a 

simple method to define the displacement limit state for bar buckling is introduced and 

compared against an existing column database. The comparison shows that the predicted 

displacement serves as a good limit to define the initiation of bar buckling.  
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Chapter 7: Conclusions 

7.1 General Discussion 

Traditional earthquake engineering quantifies the earthquake intensity based on its 

energy release or the force it imposes on the structure. However, the characteristics of load 

history or load path may also impact the damage level of a structure. Also, it is important to 

identify the damage or performance level as limit states in PBEE. For RC structures, 

longitudinal bar buckling is generally regarded as the condition beyond which the structure 

requires replacement. For instance, the current practice of the California and Alaska 

Departments of Transportation is to replace structural members that exhibit a high degree of 

reinforcing bar buckling. As a result, this research work specifically focuses on the 

investigation of the seismic load history effect on the onset of bar buckling in RC bridge 

columns.  

Previous research (Moyer and Kowalsky (2003)) has revealed the influence of tensile 

strain on bar buckling, upon reversal of tensile loading. The strain on individual bars 

determines the onset of reinforcing bar buckling when the structural displacement is often 

used as the demand in design. Therefore, it is necessary to study the impact of load history on 

the relationship between local strain and displacement. The plastic hinge method and 

sectional analysis is the normal approach utilized to obtain local strain values given a 

deformation on a structural member. However, the plastic hinge method is empirical and 

does not include the effect of reverse cyclic loading on structural member behavior. Fiber-

based finite elements are implemented in this research in order to relate the strain to 

displacement. A large amount of work was focused on the theory of fiber-based elements, 

which eventually allowed the author to modify the model and increase its accuracy. The 

force-based element was adapted to simulate the reinforced concrete column because of its 

accuracy in establishing the relationship between the local and global deformations. Two 

fiber-based models were developed one of which is simple and accurately predicts strain 
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magnitude while the other is able to provide the strain distribution with a post-processing 

method. The model with the ‘Beam with Hinges’ element is selected, because of its accuracy, 

for a parametric study on the relationship between strain and the displacement. Different 

structural configurations and sectional detailing are also considered in the study.  

The load history effect on the strain limit itself for bar buckling was investigated on a 

finite element bar buckling model. The model was established with eight node brick elements 

and material models discussed in previous chapters. Two load histories from experimental 

tests were converted to strain histories and applied to the finite element bar buckling model 

to verify its accuracy. A large number of strain histories from nonlinear time history analyses 

were applied to the bar buckling model to study the effect of strain history on the onset of bar 

buckling. Given the fact that the engineer is not able to design a structure with the knowledge 

of a future earthquake load history, it was decided to utilize a reverse cyclic loading to 

include the most critical load history effect. A parametric study was then conducted for the 

purpose of developing a design equation to quantify the strain limit for bar buckling. The 

load history is not a variable in this parametric study since it was assumed that a load history 

has little additional impact other than its peak tensile and compressive strain. The design 

equation was developed to be simple and applicable for all systems of units. Given a 

sectional detailing, engineers can utilize the equation to calculate the strain limit for buckling 

or to assess the capacity of an existing structure. 
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7.2 Load History Effect on Relationship between Strain 

and Displacement 

As a direct indicator of local damage, such as bar buckling and concrete crushing, strain 

response in a RC section results from global deformation demand. The relationship between 

the displacement and strain needs to be well-established considering the load history effect. 

Specifically for bar buckling, Moyer and Kowalsky (2003) have illustrated the growth strain 

from cyclic loading. The growth strain accumulates in loading cycles which may lead to a 

larger strain at the maximum displacement of a structure compared to the one from 

monotonic loading. Therefore, a parametric study with the fiber-based model was conducted 

for the purpose of quantifying the load history effect on the relationship between strain and 

displacement. 

In general, the parametric study showed little load history effect on the relationship 

between the strain and displacement for all the column configurations. In the fiber-based 

model, the curvature distribution along the element is integrated to obtain nodal 

displacement. The growth strain proposed by Moyer and Kowalsky (2003) is a factor which 

may provide a larger tensile strain value at a given curvature level. For example, given a 

section diameter of 2 ft, if the strain on the tensile and compressive extreme fiber bars are 

0.04 and -0.01, the curvature is around (0.04+0.01)/2=0.05 1/ft. In another case, the tensile 

growth strain could lead to the strains of 0.045 and -0.005 which also results in a curvature of 

(0.045+0.005)/2=0.05 1/ft. However, the parametric study showed minimal load history 

effect on the relationship between strain and displacement since the accumulation of growth 

strain is not seen in the fiber-based section. As a result, it is suggested to neglect load history 

effect on the relationship between strain and the displacement in design.  
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7.3 Load History Effect on the Strain Limit for Bar 

Buckling 

The load history or strain history has significant impact on the strain limit for 

longitudinal bar buckling. The most significant findings are: (1) the bar is prone to buckling 

upon reversal from a tensile strain; (1) the magnitude of the tensile strain determines the 

likelihood of bar buckling; (3) a compressive strain can significantly reduce the required 

tensile strain to cause buckling. The critical factors in bar buckling, including magnitude of 

bar stress, tangent modulus, unsupported length, and imperfection, are strongly related to the 

strain history. Therefore, it is believed that the strain history on a bar determines the onset of 

bar buckling. However, the large number of analyses with the finite element bar buckling 

model showed that the most important characteristic of an earthquake load history is its 

resultant maximum compressive and tensile strain in the bar, which determines the degree of 

plastic spiral elongation prior to bar buckling and instability upon reversal of loading 

respectively. In addition, the engineer will not be able to predict the future load history or 

strain history in design. Therefore, the reverse cyclic strain history was selected in the 

parametric study to concentrate the most important characteristics in a load or strain history. 

A series of strain limit curves for bar buckling were established considering a variety of 

sectional detailing. A design equation was then proposed to quantify the strain limit for bar 

buckling given a RC section. The proposed equation includes the effect of strain history and 

reinforcement detailing on bar buckling. Engineers can also use the proposed equation to 

assess the capacity of a given set of sectional detailing in terms of the buckling strain limit, 

which can be converted to displacement capacity with the plastic hinge method or any other 

equivalent method. Since the strain limits predicted by the equation are in terms of a 

relationship between the tensile and compressive strain, a design approach is recommended 

to select the unique combination of tensile and compressive strain which gives the same 

displacement magnitude on both direction. The displacement value serves as the deformation 

limit state for bar buckling which considers the load history effect and the sectional detailing. 
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Figure A1. Locations at Tensile Side of a Section 
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Figure A2. Crack Angle Surface at Location 1 
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Figure A3. Crack Angle Surface at Location 2 

 

 

Figure A4. Crack Angle Surface at Location 3 


	Chapter 1: Introduction
	1.1 Background and Scope
	1.2 Layout of Report

	Chapter 2: Literature Review
	2.1 General Discussion
	2.2 Relevant Articles on Numerical Simulation
	2.2.1 Fiber-Based Modeling of Reinforced Concrete Members
	2.2.2 Finite Element Method for Reinforcing Bar Buckling

	2.3 Chapter Summery

	Chapter 3: Fiber-Based Modeling of Circular Reinforced Concrete Bridge Columns
	3.1 Introduction and Background
	3.2 Theory of Fiber-Based Modeling
	3.3 Proposed methods for simulating RC bridge columns
	3.3.1 Experimental Observation
	3.3.2 Proposed Method to Predict Strain Gradient
	3.3.3 Method to Include Strain Penetration
	3.3.4 Benchmark Method to Capture Nonlinearity in RC Member with Fiber-Based Model

	3.4 Calibration and Application of the Fiber Model
	3.4.1 Calibration on Material Constitutive Models
	3.4.2 Prediction on Force and Strain from Static Tests
	3.4.3 Prediction on Response of Shake Table Tests

	3.5 Chapter Conclusions

	Chapter 4: Load History Effect on Relationship between Strain and Displacement
	4.1 General Discussion
	4.2 Ground Motion Selection
	4.3 Parametric Study
	4.3.1 Strain Comparison for Column #1
	4.3.2 Strain Comparison for Column #2
	4.3.3 Strain Comparison for Column #3
	4.3.4 Strain Comparison for Column #4
	4.3.5 Strain Comparison for Column #5
	4.3.6 Strain Comparison for Column #6
	4.3.7 Strain Comparison for Column #7
	4.3.8 Strain Comparison for Column #8

	4.4 Chapter Summary

	Chapter 5: Development of Finite Element Model for Bar Buckling
	5.1 Introduction
	5.2 Research Objective
	5.3 Experimental Observation on Inelastic Bar Buckling upon Reversal of Loading
	5.4 Theoretical Inelastic Column Buckling upon Reversal of Loading
	5.5 Theoretical Case Study on Inelastic Bar Buckling
	5.6 Fiber-Based Modeling of Reinforced Concrete Structures
	5.7 Proposed Finite Element Bar Buckling Model (Strain-Based)
	5.7.1 Goal of Simulation
	5.7.2 Geometric Detailing and Boundary Conditions
	5.7.3 Material Models
	5.7.4 Interactions
	5.7.5 Loading Method

	5.8 Model Validation
	5.8.1 Introduction of Test Results
	5.8.2 Comparison between Model Prediction and Observation of North Bar from Test B
	5.8.3 Comparison between Model Prediction and Observation of South Bar from Test B
	5.8.4 Comparison between Model Prediction and Observation of North Bar from Test A

	5.9 Summary of Findings
	5.10 Chapter Conclusions

	Chapter 6: Deformation Limit States for Longitudinal Bar Buckling
	6.1 Introduction
	6.2 Finite Element Model to Capture Bar Buckling
	6.3 Selection of Ground Motions
	6.4 Impact of Load History on Buckling Mechanism
	6.4.1 Load History Analysis Results
	6.4.2 Key Findings from Load History Analysis Results

	6.5 Parametric Study on Bar Buckling
	6.6 Proposed Equations for Bar Buckling Strain Limit State
	6.6.1 Comparison of Proposed Model to Tests Conducted at NCSU

	6.7 Application of the Design Equation
	6.8 Comparison to Structural Performance Database
	6.9 Chapter Conclusions

	Chapter 7: Conclusions
	7.1 General Discussion
	7.2 Load History Effect on Relationship between Strain and Displacement
	7.3 Load History Effect on the Strain Limit for Bar Buckling

	APPENDICES

