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Executive Summary

Structural Health Monitoring (SHM) aims to analyze civil, mechanical and aerospace systems
in order to assess incipient damage occurrence. In this project, we are concerned with the devel-
opment of an algorithm within the SHM paradigm for application to civil engineering structures.
Vibration-based techniques are the ones considered to be the most appropriate to perform SHM of
civil engineering structures. They are based on the premise that damage will alter the properties of
the structure, which will be manifested in its dynamic response. Thus, by measuring and analyzing
the vibration response time histories it will be possible to detect such changes.

A “mixed” approach to vibration based SHM is explored in this project, combining the com-
parative advantages provided by “model based” and solely “data based” techniques. A damage
sensitive feature (DSF) is defined using experimental modal parameters which may be obtained
from operational/ambient vibration response of the structure. This DSF is proportional to the
relative change in any diagonal element of the stiffness matrix of a model of the structure, with
structural damage being represented as localized stiffness reduction. Although the DSF is derived
in a model-based setting, necessary parametric modeling assumptions are kept to a minimum. The
DSFs extracted from measured vibration response data are used to perform damage assessment in
a statistical pattern recognition (data-based) framework, using empirical complementary cumula-
tive distribution functions (ECCDFs) of the DSFs. The inherent statistical nature of the framework
allows for uncertainties induced by measurement noise, environmental/ambient effects etc. Meth-
ods are discussed to perform a three-fold probabilistic structural health assessment: (a) “Is there a
change in the current state of the structure compared to the baseline state?”, (b) “Does the change
indicate a localized stiffness reduction or increase?”, with the latter representing a situation of ver-
ification of retrofitting operations, and (c) “What is the severity of the change in a probabilistic
sense?”’. Particular effort is made to account for “non-damage” related structural variations, in-

duced, for example, by diurnal temperature changes, using lower and upper bound ECCDFs to



define the baseline structural state. Such an approach is intended to decouple normal structural
variations from damage induced changes. The damage assessment procedure is discussed using
numerical simulations of ambient vibration testing of a bridge deck system, considering both com-

plete and partial instrumentation scenarios.



1. Introduction

Structural Health Monitoring (SHM) is the task of evaluating the current condition of a structural
system, e.g. a building or a bridge in civil engineering applications, to establish whether the system
can be considered “healthy” to meet its daily operational requirements. In case the evaluation
results in declaring the system to be “damaged”, then SHM may also be used in planning and
validating the necessary retrofitting operations. With the national infrastructure rapidly decaying
because of lack of resources and/or proper maintenance, a successful SHM strategy is of paramount
interest to engineers and government authorities responsible for the continuous functionality of
complex structural systems such as bridges. In today’s world, bridges play a vital role in the
urban landscape (e.g. nearly 90 percent of the national food chain moves on state bridges) and
hence need to be kept constantly operational so as to prevent disruption to large sectors of our
society. However, according to the latest report of the American Society of Civil Engineers, about
25 percent of the entire national bridge inventory comprises bridges that are either structurally
deficient or functionally obsolete. In about 15 years, 50 percent of this nation’s bridges will be
over 50 years old and this will imply an unprecedented commitment of both financial and human
resources. Consequently, there will be the need for more reliable, economic and easy to conduct
inspections that can take advantage of the many advances in other areas, like computer technology,
material science and statistics. It is in this framework that the concept of SHM needs to be framed.
Thanks to the latest innovations in computer and sensor technology, it is now possible to collect
large amounts of data that represent the response of the bridge to the environment excitation and,
through the analysis of such data, to provide an instantaneous assessment of the bridge conditions.

Current research efforts in vibration based SHM usually involve either “model based” or “data



based” techniques. Both these classes of methods have their own domains of comparative advan-
tages and disadvantages. Model based methods involve solving an inverse problem, where the pa-
rameters of an assumed analytical model of the true physical system are identified/updated, either
directly or iteratively, such that the response of the identified/updated model mimics the measured
response from the real structure. While the identification of an accurate parametric model of the
structure will allow the identification of the existence, location and severity of structural damage,
accurate models of true physical systems seldom exist in practice. Moreover, both deterministic
as well as stochastic (accounting for modeling assumption, environmental variation, measurement
noise etc. induced uncertainties) model updating/identification techniques usually involve the so-
lution of some nonlinear optimization problem(s), and they can efficiently handle the problem only
when a limited number of model parameters are to be optimized (identified). This necessitates a
considerable amount of reliability in the a priori analytical model. In situations where the represen-
tative model may not be very reliable, and this is often the case for large and complicated systems,
the model-based health monitoring procedure should treat all the model parameters as unknown.
However, applying conventional model based techniques to large and complicated systems will,
firstly, prove inefficient if one treats all/most of the model parameters as unknowns/uncertain, and
secondly, may not converge at all to a unique identified/updated system [1-4].

As an alternative, solely data-based methods do not require any a priori definition of accurate
physical models of the structure, and instead rely exclusively on the data recorded from the true
structure [5,6]. Hence, such methods circumvent the inevitable uncertainties induced by assump-
tions in any parametric model-based technique. In essence, these methods attempt to identify pat-
terns characterizing the structure by analyzing the recorded vibration signatures of the structure,
thus also classifying them as “pattern recognition” based methods, implemented in a statistical
pattern recognition framework. In structural damage detection, these patterns are called damage
sensitive features (DSF), which are quantities that indicate the presence of damage in a structure
[6]. Hence, an appropriate DSF should be sensitive to structural damage, which in turn is related

to changes in the structural properties. However, the structural properties also vary due to fluctu-



ations in environmental and operational conditions. Therefore, a good DSF should be sensitive to
changes in the structural properties induced by damage while being insensitive to variations due to
non-damage related conditions. In order to learn the typical variations in the DSFs induced by ex-
ternal factors, the DSFs extracted from the measured responses of the baseline (healthy) structure
under different environmental/operational conditions are first used to construct a baseline statis-
tical model of the DSFs (training). Such a model represents statistically the normal fluctuations
that the DSFs will experience; any variation beyond this normal range will signal damage occur-
rence. Once the training model is built, the DSFs extracted from any new measured response of
the structure (healthy or damaged) can be compared to the baseline statistical model (testing) to
identify whether the structure is still in a healthy state or has undergone any deterioration/damage.
The inherent statistical nature of the pattern recognition framework also allows one to account for
uncertainties induced by measurement noise, input variability, etc. In spite of the above apparent
advantages of such methods, contributing to their general robustness in structural damage identi-
fication, the performance of any particular method within this framework in successfully locating
and quantifying damage depends on the particular damage sensitive feature used. Due to the choice
of the damage sensitive features, which are often selected as abstract information not explicitly re-
lated to the physical properties of the system, traditional damage detection algorithms developed
within the statistical pattern recognition framework can seldom locate and quantify damage, al-
though they can accurately distinguish between a “damaged” and a “healthy” structural system.
Moreover, in SHM applications to buildings and bridges, measured data from different damage
states of the true system are not available in practice, and hence the statistical pattern recognition
approach is implemented in what is called an unsupervised learning mode. (The term unsupervised
is used to denote the lack of data recorded from any damage state of the structure during training,
as opposed to supervised learning where data from both healthy and damage conditions are used
to build the training model.) Thus, the solution to the damage detection problem ends up assigning
the new measured data to one of two classes: the previously learnt (healthy) class, or a never seen

before (damaged) class; questions on the type, location and severity of the damage are usually left



unanswered.

Some other challenges in data-based methods include the selection of an appropriate statistical
model for the DSFs, and of an appropriate metric to measure the “distance” of newly extracted
features from the baseline statistical model. While normally distributed features and the squared
Mahalanobis distance (SMD) metric are popular choices [7, 8], the normal distribution assumption
may be erroneous, especially when the number of available observations (size of the measured
training data set) is not large. (In case of large civil structures, the costs of instrumentation and
data storage/data processing, faulty instruments etc. may create situations of limited training data.)
Moreover, in such cases of small sample training data set, the estimation of a well-conditioned co-
variance matrix for evaluating the SMD metric, as well as threshold selection for damage detection
using the SMD metric, may require special treatments [9].

In view of the aforementioned reasons, we pursue a “mixed” approach in this study, attempting
to combine the comparative advantages of model-based and data-based techniques into a robust
vibration based continuous SHM strategy. Due to their intuitive relationship with the structural
topology and characteristics, modal properties, especially when in the form of mode shapes, can
be expected to solve the problems of damage location and severity quantification, if a modal param-
eter based damage sensitive feature is so defined as to be tailored to that purpose. In fact, several
studies in the past have addressed the problem of structural damage detection using modal parame-
ters, either through some direct comparative measures, or in conjunction with some model-related
assumptions (e.g. the mass matrices of the damaged and undamaged systems’ models are the
same etc.) to estimate damage induced changes in element stiffnesses/flexibilities [10-14]. While
modal frequencies, a global dynamic property of the structure, are usually relatively insensitive to
local structural damage, mode shapes, being “spatially distributed” features, contain information
which may be employed for damage location purposes. Although the direct comparison of mode
shapes using inner product norms to test their linear dependence (Cauchy-Schwarz inequality), as
in the Modal Assurance Criterion/Coordinate Modal Assurance Criterion, seems an obvious ap-

proach and has often been adopted in the literature, the differences reflected by such measures can



be expected to be of a lower order than the actual differences in the structural flexibility matrix
[15]; thus, for the purpose of structural damage detection, the use of such measures may not pro-
vide sufficiently discernible results. Instead, in [15, 16] modal parameter comparative measures
are derived which mimic changes in the structural flexibility and stiffness matrices. This report is
based on the DSF introduced in [16], which gives a measure of the relative difference between the
corresponding diagonal elements of the stiffness matrices of the models of two systems at compar-
ison. The DSF is defined in terms of the experimental modal parameters, which may be identified
from the ambient/operational response of the monitored structural system using any operational
modal analysis technique. To obtain normalized mode shapes, it is usually necessary to know the
applied input(s) and have at least one pair of sensor and actuator placed at the same location on
the monitored system [3]; since we consider here the more feasible operational testing scenario
(output-only data), the identified experimental mode shapes will need to be normalized follow-
ing an alternative approach. For this purpose, a procedure is discussed to estimate proportional
mass normalizing factors, using the sparsity requirement of the mass matrix at the measurement
locations. Although the derivation of the DSF and the mode shape normalization are performed
in a model-based setting, as will be evident later, we keep the necessary parametric modeling as-
sumptions to a minimum, and in fact do not require the a priori knowledge of any mass/stiffness
parameter values. The mode shape normalization and DSF computation are discussed in Section
2.

While the definition of the DSF is in a model-based framework, the damage assessment proce-
dure, using the DSFs extracted from measured vibration response data, is developed according to
the statistical pattern recognition paradigm. The empirical complementary cumulative distribution
functions (ECCDFs) of the extracted DSFs are computed for that purpose; damage assessment is
performed by comparing the ECCDFs obtained during the testing stage with the ECDDFs created
during the training stage. The statistical modeling of the DSFs using ECCDFs avoid the assump-
tion of any particular type of parametric distribution to statistically model the DSFs, and hence

may be expected to provide a more robust damage assessment. The proposed structural health as-



sessment approach attempts to answer three questions: (1) “Is there a change in the current state of
the structure compared to the baseline state?”, (2) “Does the change indicate a localized stiffness
reduction or increase (in case of retrofitting)?”, and (3) “What is the severity of the change in a
probabilistic sense?”. The possible scenario of localized stiffness increase is also included, and is
intended for applications in which the success of planned retrofitting operations need to be verified
[17,18]; three ratios of the Lukaszyk—Karmowski metric ([19]) are used, with the empirical prob-
ability density functions (epdfs) derived from the ECCDFs of the DSFs, to distinguish between
localized stiffness increase (retrofit) and decrease (damage). For the purpose of damage severity
estimation, damage probability vs. damage severity curves are derived from the ECCDfs [20].

It has been widely reported in the literature that modal parameters are significantly affected
by “non-damage” related structural variations, induced, for example, by temperature changes, or
other environmental/operational fluctuations [21-24]. Hence, in the entire damage assessment ap-
proach discussed here, such effects are particularly taken into account using lower and upper bound
ECCDFs to define the baseline structural state; these lower and upper bounds are obtained using
training response time histories measured in different environmental conditions. Such an approach
is intended to decouple normal structural variations from damage induced changes. The lower and
upper bound baseline ECCDFs are also used to quantify the uncertainty in the damage probability
- damage severity curves; the two-level uncertainty in the damage severity may be expected to
include both statistical (epistemic) uncertainty induced by measurement noise, estimation errors,
input variability etc., as well as systematic (aleatoric) uncertainty induced by unmeasured variables
(e.g. temperature). The derivation of the training and testing ECCDFs of the DSFs are discussed
in Section 3, and the different levels of damage assessment using the ECCDFs are discussed in
Section 4 using numerical simulations of ambient vibration testing of a bridge deck system, con-

sidering both complete and partial instrumentation scenarios.



2. SPDSF: Stiffness Proportional Damage Sensitive

Feature

In SHM structural damage is often modeled as localized stiffness reduction. Therefore, construct-
ing a DSF which measures the deviation of the stiffness properties from a reference baseline state
may be expected to deliver optimal results in damage detection. In order to define such a feature,
let us consider an N degrees of freedom (DOF) classically damped model of a system, whose

dynamic behavior is governed by the equation of motion:
My + Ly +Ky =u 2.1

where M, L and K are respectively the N x N mass, damping and stiffness matrices of the
model, y, y and ¥ denote respectively the nodal displacement, velocity and acceleration vectors of
dimension N x 1, and u is the /V x 1 dimensional input dynamic forcing vector. Let the state of the
system described by Eq. (2.1) and the above model matrices be the baseline (healthy) state. Next,
let us consider an alternative state of the system denoted by the matrices: {M* L* K*}. This
alternative state represents the system in an unknown condition, either damaged or same as the
baseline, and its dynamic behavior will still be governed by a similar equation as Eq. (2.1). Using
these notations, the damage sensitive feature discussed here attempts to measure the departure of
the {i, 1} element of K* from the {4,i}""* element of K:
Ki; — K,

DSF,; = —_—** 2.2
K. 2.2)



where the subscripts indicate the row and column numbers, respectively. Now, let us denote by

{A, ®} the eigenvalue and eigenvector matrices corresponding to the baseline state:

A = diag(\i, Mo, -, Ay) = dnidiag(f, fa. L fr) (2.3)
¢1,1 (bl,Q ¢1,N

I o

ON1 ON2  ONN

where \;, f; and the column vector ¢; denote the jth modal eigenvalue, frequency and mode shape,
respectively, while ¢; ; denotes the ith component (corresponding to DOF i) of ¢;. The scenario
considered in this project is that of ambient/operational monitoring, and hence the input u in Eq.
(2.1) is unknown, and only the output responses are measured at all DOFs (full instrumentation)
or at only a subset of the NV DOFs (partial instrumentation). In such a situation, the identified
experimental mode shapes are, in general, arbitrary scaled. Such a set of arbitrarily scaled complete

mode shapes will then satisfy the orthogonality relations:

'M® =a; P'KP = Aa (2.5)

where « is a diagonal matrix containing the squares of the normalization factors: o« = diag(ay, as, - - -

As for the physical matrices, let {A*, ®* a*} denote the eigenvalue, eigenvector, and normal-
izing factor matrices of the alternative state of the system. Then, defining the matrices: A =
M'KM™, and A* = M*'K*M*™!, a DSF similar to the one in Eq. (2.2) may be defined and
written in terms of the modal parameters as:
% N *2 \ % k—1
e Aii — Af, Zj:l ¢7‘,,j>‘jaj

DSF; = —L T (2.6)
N —
A Zj:l Cbg,j/\jaj '




While the DSF of Eq. (2.6) has the obvious advantage of being applicable for general systems, it
will be able to detect damage (stiffness reduction) accurately under the condition that M ~ M";
although damage may not affect the system’s mass in any noticeable extent, the mass matrices in
the two states, M and M, can still be different due to environmental (e.g. humidity) or operational
(traffic on a bridge) variability. As an alternative, one can go from the DSF in Eq. (2.6) to the DSF
in Eq. (2.2), at the cost of the assumption of a lumped mass matrix (i.e. M and M" are diagonal),

with the DSF in Eq. (2.2) then written in terms of the experimental modal parameters as:

2
N 2 -1 N *2 \ % x—1
(Z{j:l i %) > (Zj:lgbi,j)‘j&j )
2
N 42 x—1 N 92 -1
<Z_j:1 i ) (Zj:l i,j)‘jO‘j

DSF; = 1 — 2.7)

In this project, we consider systems which can be represented through lumped mass models, and
hence we will use the DSFs in Eq. (2.7). Since this DSF measures the relative change in the
system’s local stiffness properties compared to the benchmark state, it is referred to as Stiffness
Proportional Damage Sensitive Feature (SPDSF). Note that, even though the DSFs in both Egs.
(2.6) and (2.7) are written for an identified complete spectrum, since the summations in these
equations are performed over the modes (i.e. index : = mode number), in situations where only
N,,, modes are identified from the data, the DSFs may still be computed using only these IV,
modes in the summations.

While any appropriate operational modal analysis technique may be used with the measured
response data to identify the system’s frequencies (or eigenvalues) and the mode shapes at the
sensor locations, the normalizing factors in o and a* necessary in Eq. (2.7) (or Eq. (2.6)) still
need to be evaluated. One may employ the topological requirements of the M and K matrices for
this purpose [4]. Since we consider here systems with general (may be completely populated) K
matrices, we will not use any requirement (e.g. sparsity or connectivity) posed by the K matrix.
Instead, we will use the sparsity requirement of diagonal (lumped) M matrices to estimate the
normalizing factors. As proved in [4], in output only situations, for models with diagonal M, with

sufficient instrumentation to enable a unique mode shape expansion, one can only identify a model



proportional to the true model by a single scalar factor, without using any a priori knowledge of
the value of any physical parameter. This means we will be able to identify uniquely only (N — 1)
normalizing factors using the sparsity of M. Let us then rewrite the matrix of normalizing factors
by factoring out the first element o as: o« = opdiag(fy = 1,35, -+ , Bn), where 8; = /. The
proportional normalizing factors {fs,--- , Sy} can then be estimated by solving the following

linear system of equations (depicting the sparsity of M) in the least squares sense:

ZJ(bl]

= —¢i1¢u1,  fori,l € Sandi#1 (2.8)

”MZ

where S is the set of instrumented DOFs. If the system is instrumented with N sensors (i.e. N,
elements in S), Eq. (2.8) will constitute a set of (N2 — N,)/2 equations, thereby leading to the
minimal instrumentation requirement of N, > (1 4+ /8N — 7)/2 to be able to uniquely estimate
all the (V — 1) 8,’s. (However, any random location of the NV, sensors may not provide a unique
estimate; the reader is referred to [4] for more details on instrumentation requirements for global
identifiability.) Similarly, the (N — 1) 3;’s can be solved using the identified modal parameters of

the alternative state of the system. Then, the DSF of Eq. (2.7) can be rewritten as:

o (T ) (S )
“ (o ¢:3ﬁ;»“1> (Zhetnn)

DSF, =1 — (2.9)

where, to evaluate the ratio o /a;, one would need some assumption on the value of any physical
parameter of the system. If the assumption is made that the change in the total mass (= sum of
all element masses) of the system in its transition from one state to another is minimum, then this

ratio may be estimated as:

. N Pl (2

o . % i=1 =1 "2,3~7

a_l = argmin g Lii — M, =5 N o (2.10)
1 af /oy i—1 Zi:l (Zj:l qbi,jﬁj )

In the rest of the report the DSFs used will be evaluated using Eq. (2.9), along with Egs. (2.8)
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and (2.10). Even though the DSF in Eq. (2.9) is written for an identified complete spectrum, in
situations where only N,, < N modes are identified from the data, the DSF may still be computed
using only these NV, modes in the summation. However, in order to identify the normalizing factors
though Egs. (2.8) and (2.10), all N modes need to be identified at the sensor locations; if NV,,, < N
modes are identified then other approaches may be used to compute these factors [25]. Since the
DSFs discussed herein are particular to the different DOFs constituting the model of the system,
these DSFs may be used not only to test for the existence of damage in the system, but also to
locate the damage to the neighbourhood of any particular DOF. Moreover, since the DSFs provide
a measure of the relative change, with respect to the baseline state, in the diagonal elements of the

stiffness matrix, they may also be used to assess the severity of any localized damage.
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3. Empirical Complementary Cumulative Distribu-

tions of SPDSF

Inherent in the definition of the DSFs in Section 2 is a comparison between two states of the system,
unlike traditional DSFs which represent a single state of the system. For example, a change in the
stiffness of an element connecting nodes ¢ and | would be reflected in a change in the values of the
i1th and [th elements in the main diagonal of K, and this change would be captured by DSF; and
DSF,. However, as discussed in Section 1, changes in structural properties may also be introduced
by factors other than damage. The DSFs of Section 2 will not only measure the change in the
stiffness properties induced by structural damage, but will also measure stiffness changes induced
by environmental and operational variability. It is pertinent that the damage detection procedure be
able to distinguish between the damage induced and non-damage induced fluctuations in the DSFs,
so as to reduce instances of false alarms and false safety. This requirement defines an objective
of the training phase: to define boundaries for the fluctuations of the DSFs that can be considered
normal (non-damage induced), and thereby define a reference “healthy” zone against which new
realizations of the DSFs, extracted from the system under unknown conditions, can be compared.
To this end, we use the cumulative distribution functions (CDFs) of the DSFs, treating each DSF
as a random variable, as discussed below.

It is possible to cast the SHM problem in a probabilistic framework by introducing the “prob-
ability of damage” assigned to any model parameter [14,20]. In the context of this report, such a
probability can be assigned to each diagonal element of K, and be defined as the probability that

the {i,i}th element, K

4,00

of the stiffness matrix in an unknown (possibly damaged) state be less

12



than a prescribed fraction of the same element, K ;, in the baseline (healthy) state:

PE™E(d) = P(K;, < (1-d)K,;) ford € [0,1) (3.1)

(2

where d is the fractional stiffness reduction (damage). Eq. (3.1) can be rewritten using the DSF

defined in Section 2 as:

Ki; — K,
@ = (S 2 a) 52)
— 1-P 7K:i’i_K;’i<d 33
- 1— T (3.3)
— 1- CDFpgsr, (d) (3.4)

The training procedure to build statistical models of the baseline state’s DSFs, encompassing
the normal variability of the CDFs of the DSFs, can then be performed as discussed herein. Let
ny, denote the number of measurement campaigns (= number of sets of measured response data)
that have been conducted on the monitored system under different healthy conditions; these differ-
ent healthy conditions includes different environmental and operational conditions of the healthy
state of the system. For example, data collected during different periods of the year may rep-
resent the different environmental conditions, while data recorded under different traffic condi-
tions will depict different operational conditions. Also let N be the number of sensors used in
each measurement campaign, and S be the set of the Ny measured DOFs. From such measure-
ments, a set Y = {A(p), @“’)}, forp=1,---, ny., of modal parameters may be identified, where
AP e RNXN and &) ¢ RN*N are the pth realizations (i.e. identified from the pth set of
measured response data) of the eigenvalue (squared circular modal frequency) and mode shape

matrices, respectively. The set Y is then divided into two subsets Y and Yy, such that:

Yo UYy =Y, YanYy=0; Yg,Yv#0;, |[Yu|=nm |[Yv|=nv (3.5)

Now, the identified modal parameters contained in the set Y}; are considered as reference, while

13



those in the set Yy, are considered to come from an unknown state of the system, i.e., following the
terminology used in Section 2, Y} corresponds to the baseline state while Yy, corresponds to the
the alternative state (although both these sets contain modal information of the healthy state of the
system). Then, each set of modal parameters in Y7 is compared with each and every set of modal
parameters in Yy using the DSF of Eq. (2.9); this results in a total of ny sets, each set containing
ny values, of DSF;, for all : € S. Empirical cumulative distribution functions (ECDFs) of DSF;
are then computed using Eq. (3.6) [26], for each of these ny sets, treating the ny DSF; values in

each set (DSF/ 7 for p=1,--- ,ng) as random realizations:
. 1 A
ECDF); (d) = o > U(d—-DSFY) Vj=1,-- nyandi=1,--- N,  (3.6)
=1

where U|(z) is the Heaviside function:

0 z2<0
Ui) =405 2=0 (3.7)
1 z>0.

and DSF/ J denotes the DSF corresponding to the DOF measured by sensor ¢ and obtained com-
paring the jth modal parameter set from Y7 to the pth modal parameter set from Y.

The ECDF%SFi(d) in Eq. (3.6) can be substituted in place of CDFpg,(d) in Eq. (3.2); the
resulting P*™(d) in Eq. (3.2), computed as 1 — ECDFgy. (d), is then referred to as the Empirical
Complementary Cumulative Distribution Function (ECCDF) of DSF; (i.e. ECCDF{)SE (d)). In this
way, we get ny number of curves representing ECCDFpgp, (d), for each i € S. The maximum
and minimum bounds of these 7y, number of ECCDFpgg, (d) = P*™#°(d) are then computed, to
estimate an acceptable range of d, denoting normal environmental/operational variability. These
lower and upper bound ECCDFs also define the lower and upper bound probabilities associated

with each value of d in this range, for each DSF;, ¢ € S.
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At the time of testing, a new set of response data is measured with the N, sensors from the
structure under unknown conditions, and a single set of modal parameters is identified from this
data set. This new set of modal parameters is compared to each and every of the ny sets of modal
parameters in Y obtained during the training stage, with the new set and the ny training sets
respectively corresponding to the alternative state and the baseline state as per the terminology in
Section 2. The resulting ny values of DSF; are then used to compute a single ECCDFpg, (d),
following the procedure outlined in the training stage, for every ¢ € S. This single ECCDFpg, (d)
is then compared with the lower and upper bounds of ECCDFpgp, (d) obtained during the training
stage for damage assessment purposes. This comparison may be performed using different mea-
sures, with different objectives, which are discussed in the next section, using a numerical example

for illustration purposes.
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4. Different Levels Of Damage Assessment With Nu-

merical Example

4.1 Numerical example description

To illustrate the different levels of the proposed damage assessment procedure, as well as to test its
performance, we consider a simple lumped mass model of a bridge deck. This model constitutes
of two interconnected spring-mass chains: each chain consists of alternately placed flexural links
and lumped masses, with the corresponding lumped masses of the two chains being additionally
connected by flexural links. Such a simple model can be used to represent simple overpasses or
single spans of supported girder bridges, with the flexural links representing the various segments
of the girders and the lumped masses the mass of the deck. Because of the structure of the model,
its dynamic behavior will contain both global bending and global torsional modes of the deck.
The particular model used in this project is shown in Fig. 4.1, and has 12 DOFs, with 12 lumped
masses and 20 flexural links; the 12 vibration modes of this model (in the baseline state) are shown
in Fig. 4.2, and represent 6 (dominantly) bending and 6 (dominantly) torsional modes. (The term
“dominant” is used in the description of the modes, since the modes will be pure bending/torsion
only for a symmetric mass/stiffness distribution; they will otherwise be coupled bending-torsion,
with either bending/torsion dominating, as in all the numerical simulations performed in the project
due to random parameter perturbations, environmental effects, damage etc.)

Table 4.1 lists the 10 different states considered here: the States 1 to 5 represent the healthy

system, in different environmental conditions, the States 6 to 9 represent 4 different damaged states
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with damages of different severities and in different elements, while State 10 represents the case
where a certain portion of a girder is retrofitted leading to a stiffness increase in one of the flexural
links. The baseline (State 1) model parameters are also given in Fig. 4.1, and the parameters in the
other states are obtained from these baseline parameters.

In the training phase, 20 tests are performed on each of the 5 healthy states, 1 to 5: state 1
represents the baseline condition, states 2 and 3 represent environmental conditions where only
the —y side of the bridge is subjected to a temperature decrease/increase, while states 4 and
5 represent environmental conditions where only the +y side of the bridge is subjected to a
temperature decrease/increase. In each test the stiffness parameters defining the model are ran-
domly perturbed: for any spring stiffness k;, its value in the rth simulation is chosen as k] =
Elk;] +U(—px,, pr,) E[k;], where E[k;] is the mean value of that spring stiffness in that state (from
Fig. 4.1 and Table 4.1), and U/ (l;, [,.) is the uniform probability distribution between the limits /; and
I, (px, given in Fig. 4.1). While the change in the stiffness parameters given in Table 4.1 represents
systematic changes, induced by temperature change, damage etc., and remain constant over all the
20 tests on the same state, the random perturbations with I/ (—py,, px, ) indicate statistical and inher-
ent model/operational fluctuations within a state, and thus vary in the 20 different tests on the same
state. The perturbed model in each test is excited by Gaussian white noise input forces applied at
all the DOFs. The resulting “true” response accelerations are corrupted by adding 10% root mean
square Gaussian white noise sequences (to simulate measurement noise) to get the “measured”
acceleration responses at the instrumented DOFs. Two instrumentation set-ups are considered: (1)
complete instrumentation, i.e. 12 sensors measuring the acceleration response of all the lumped
masses, and (2) partial instrumentation, with 8 sensors, measuring the acceleration response of the
8 shaded lumped masses as shown in Fig. 4.1. The importance of considering partial instrumenta-
tion scenarios is that it is usually not feasible to instrument all the degrees of freedom in the system
owing to limitations imposed by financial cost, data storage/processing costs, accessibility issues,
etc. Such a partial instrumentation set-up has the advantage that all the springs’ effects are being

seen by the sensors; hence a damage in any of the 20 springs will be detected, and located to a
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Baseline model parameters:

m=125x10°kgViefl,..., 12}
E[k]=7.12x10"N/m ¥V i €{1,...,20}
pp,=001viefl,... 20}

Rayleigh damping: ¢} = {; = 0.01

Figure 4.1: Bridge model and baseline model parameters used in numerical example. Shaded
lumped masses denote sensor locations in partial instrumentation.

Table 4.1: Different states of the bridge deck structure considered in the example.

State | Condition Description Affected DOFs
1 Undamaged | Baseline condition

2 Undamaged | k; = 0.99E[k;) Vi € {1,---,7}

3 Undamaged | k; = 1.01E[k;] Vi e {1,---,7}

4 Undamaged | k; = 0.99E[k;| Vi € {8,--- ,14}

5 Undamaged | k; = 1.01E[k;] Vi € {8,--- ,14}

6 Damaged ki = 0.70Ek] 1

7 Damaged k16 = 0.80E[k16] 2 and 8
8 Damaged ks = 0.80E k3] 2 and 3
9 Damaged ks = 0.70E[ks] 2 and 3
10 Retrofitted | k3 = 1.25E]ks] 2 and 3
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particular DOF. As discussed in Section 2, for a 12 DOF system, using only 6 sensors will be suf-
ficient to estimate the 11 normalizing factors, and hence the DSFs at all the 6 instrumented DOFs.
But in such a situation possible damages in some springs will go undetected; e.g. if we do not have
sensors on mg and my, we will still be able to estimate {DSF;, DSF3, DSF5, DSFg, DSF;y, DSF15},
but these will not capture the presence of possible damages in k7 and k.

The set of “measured” acceleration responses in each test are used in a stochastic subspace
identification algorithm, the Enhanced Canonical Correlation Analysis (ECCA) [27], which has
shown great potential in separating noise modes from structural modes, to identify the modal fre-
quencies and arbitrarily scaled mode shape components at the measured DOFs. With 20 tests per
state, and 5 healthy states, the set Y in Section 3 consists of 100 sets (ny, = 100) of identified
training modal parameters; the subsets Y and Yy, are then constructed with 50 sets of modal pa-
rameters in each, 10 sets from each of the 5 states. Thus, both the subsets Yy and Yy contain
information of all the systematic stiffness changes induced by environmental variability. The ap-
proach discussed in Sections 2 and 3 is then used to estimate the lower and upper bound ECCDFs
of the DSFs at the measured DOFs. Figs. 4.3 and 4.4 show these lower and upper bound ECCDFs
(thick red curves) of DSF; and DS F3, obtained respectively in the full and partial instrumentation
scenarios. (Note that these bounds are state-independent, since they are created using the training
data, and use the extracted modal information from all the 5 healthy states together.)

In the testing phase, 10 tests are performed on each of the 10 states in Table 4.1, with each
test simulated in the same way as in the training phase. The modal parameters identified through
ECCA for each of these 10 tests (on any given state), are compared with the 50 sets of training
modal parameters in Y, and the resulting 50 DSFs, at each of the measured DOFs, are used to
construct the testing ECCDFs. Thus, with the 10 tests on each state, we get 10 testing ECCDFs
of the DSFs at the measured DOFs for each state. Figs. 4.3 and 4.4 compare, respectively for the
full and partial instrumentation scenarios, these 10 testing ECCDFs (thin black curves) with the
lower and upper bound training ECCDFs, for DS F; and DS Fj; in States 1, 8, 9 and 10. Evidently,

the testing ECCDFs tend to fall outside these bounds when and where structural change is present
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(States 8, 9 and 10 at DOF3), otherwise remain inside the bounds for all the other cases where
damage is not present. In addition, while in States 8 and 9 the training ECCDFs of DSF3 shift to
the right of the training bounds (indicating damage), in State 10 they shift to the left (validating a
retrofitting operation). The fact that the testing ECCDFs at non-damaged locations fall within the
lower and upper bound training ECCDFs is useful, since it is as important to be able to identify
an undamaged structure as undamaged (reduced false alarms), as it is to be able to classify a
damaged structure as damaged (reduced false safety). (False alarms will lead to economic losses
from unnecessary suspension of operations, while false safety may even lead to structural collapse
and loss of life; both will result in a decreased confidence in the SHM system [6].) Within a
deterministic framework, a value of the SPDSF higher than 0 would be considered indicative of
damage, as only one reference (healthy) structure would be considered. On the contrary, the initial
training phase performed in the currently proposed approach enables us to set a reasonable range
of values of d, within which a non-zero d can be considered as due to the influence of external

factors, e.g. temperature, traffic, wind, etc.

4.2 Existence of change in the state of the system

To quantitatively detect the existence of change in stiffness at a location in the structure under
unknown conditions (testing stage), one would need to compute some measure of mismatch (or
agreement) between the testing ECCDF and the lower and upper bounds of the training ECCDFs.

For this purpose, we compute the measure:
P =Fr(d= Lyr5) — Fr(d =Uss) (4.1)

where £, U and Fr (or 7) denote respectively the lower bound training, upper bound training
and testing (from a single test) ECCDFs. The value d = Lg7 5 is the d corresponding to the 97.5
percentile of £, while d = Us 5 is the d corresponding to the 2.5 percentile of /. Then, Fr(d =

Lg7.5) represents the percentile in F7- corresponding to d = Lg7 5, and Fr(d = Uy 5) represents the
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percentile in F- corresponding to d = Us 5. This P value measures how much the testing ECCDF
agrees with (falls within) the zone demarcated by the lower and upper bound training ECCDFs;
the lower the P value the lesser is this agreement and higher is the probability that some form of
change (in stiffness) exists at that location. Fig. 4.5 illustrates the P value computation for change
detection at DOF 3 in States 1 (DOF 3 undamaged) and 9 (DOF 3 damaged). From Fig. 4.5, it can
be seen that in State 1, for both full and partial instrumentation scenarios, the testing ECCDF, T,
falls completely between the training boundaries, £ and U/; this condition is associated with a value
of P equal to 1, as Frr(d = Lg75) is equal to 1, while F-(d = Uy 5) is equal to 0. On the other
hand, the testing ECCDF for State 9 falls outside the training boundaries, resulting in a value of P
less than 1, since Fr(d = Log75) is again equal to 1, but Fr-(d = Us 5) is approximately 0.8 for the
partial instrumentation case, while exactly equal to 1 for the case of full instrumentation. However,
it must be noted that the P value does not indicate whether the change in stiffness is negative
(indicating damage) or positive (indicating retrofitting). Tables 4.2 and 4.3 list, respectively for the
full and partial instrumentation scenarios, the mean of the P values computed from the 10 tests
on each of the 10 states; the values at the DOFs with change has been highlighted in bold font.
Evidently, the P values are much higher at undamaged/unretrofitted locations.

The wide separation of the P values, between locations with change (damage or retrofitting)
and no change, highlights the potential of the present analysis in meeting both the requirements
of a useful classification tool, i.e. classifying unchanged as unchanged and changed as changed.
In general, a threshold will need to be selected to define a boundary between changed and un-
changed in terms of P. Here we select the threshold Pry = 0.95, with P < Pry indicating the
existence of change in the location under consideration. With this threshold and criterion, we per-
form the change existence assessment task, for each of the testing cases; Tables 4.4 and 4.5 present
the results of this analysis, respectively for the full and partial instrumentation scenarios, with a
value of /10 denoting that an existence of change has been detected based on the extracted fea-
tures in z tests out of the 10 tests. These results show a satisfactory performance of this method,

with only 4% (44/1110) misclassification of unchanged as changed and no misclassifications of
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Figure 4.5: Calculation of P values for SPDSFs of DOF 3, using testing ECCDFs from single
tests, in States 1 and 9: P = Fr(d = Lo7.5) — Fr(d = Us5). (L: lower bound training ECCDF L;
U: upper bound training ECCDF U/; T sample testing ECCDF F- (from single test); Lg75: 97.5
percentile of L£; Us 5: 2.5 percentile of U4.)
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Table 4.2: Mean P values (change locations in bold) for full instrumentation.

DOFs

States
1

2

3

4

5

6

7

8

9

10

O O Ol W~

— = = O
N = O

0.98
0.98
0.98
0.97
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98

0.97
0.98
0.97
0.98
0.98
0.98
0.97
0.96
0.98
0.97
0.97
0.98

0.98
0.97
0.98
0.98
0.96
0.97
0.97
0.98
0.98
0.98
0.97
0.98

0.98
0.98
0.96
0.98
0.98
0.98
0.97
0.98
0.98
0.98
0.98
0.98

0.98
0.97
0.97
0.98
0.95
0.95
0.97
0.98
0.98
0.98
0.97
0.92

0.10
0.94
0.94
0.96
0.98
0.98
0.95
0.98
0.98
0.97
0.98
0.98

0.98
0.19
0.98
0.98
0.96
0.98
0.98
0.20
0.98
0.98
0.98
0.98

0.95
0.11
0.31
0.98
0.91
0.92
0.97
0.97
0.98
0.98
0.94
0.95

0.98
0.02
0.02
0.96
0.98
0.97
0.90
0.98
0.98
0.96
0.97
0.98

0.97
0.18
0.35
0.98
0.97
0.98
0.98
0.98
0.98
0.98
0.97
0.98

Table 4.3: Mean P values (change locations in bold) for partial instrumentation.

DOFs

States
1

2

3

4

5

6

7

8

9

10

= = 00 ~J O Ot W+~

N O

0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98

0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98

0.98
0.98
0.98
0.97
0.98
0.98
0.98
0.98

0.98
0.97
0.98
0.98
0.98
0.98
0.98
0.97

0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.94

0.16
0.97
0.98
0.98
0.98
0.98
0.98
0.97

0.98
0.98
0.98
0.98
0.98
0.38
0.98
0.98

0.97
0.81
0.98
0.95
0.98
0.98
0.98
0.97

0.98
0.34
0.98
0.98
0.91
0.98
0.98
0.98

0.98
0.50
0.98
0.98
0.98
0.98
0.98
0.98

26




Table 4.4: Change existence detection using P values with Py, = 0.95 (P < Py, = change) for

ful instmmeéltation.
tates

DOFs| 17 9 5 4 5 7 8 9 10

1 0/10 0/10 0/10 0/10 0/10 10/10 0/10 1/10 0/10 0/10
2 0/10 0/10 1/10 0/10 1/10 1/10 10/10 10/10 10/10 10/10
3 0/10 1/10 0/10 1/10 1/10 1/10 0/10 10/10 10/10 10/10
4 1/10 0/10 0/10 0/10 0/10 2/10 0/10 0/10 1/10 0/10
5 0/10 0/10 1/10 0/10 2/10 0/10 1/10 4/10 0/10 1/10
6 0/10 0/10 1/10 0/10 2/10 0/10 0/10 3/10 0/10 0/10
7 0/10 1/10 0/10 1/10 0/10 1/10 0/10 0/10 1/10 0/10
8 0/10 1/10 0/10 0/10 0/10 0/10 10/10 2/10 0/10 0/10
9 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10
10 0/10 1/10 0/10 0/10 0/10 1/10 0/10 0/10 1/10 0/10
11 0/10 1/10 0/10 0/10 0/10 0/10 0/10 2/10 0/10 1/10
12 0/10 0/10 0/10 0/10 2/10 0/10 0/10 1/10 0/10 0/10

Table 4.5: Change existence detection using P values with Py, = 0.95 (P < Py, = change) for
partial instrumentation.

States

DOFs | 2 3 4 5 6 7 8 9 10

1 1/10 0/10 0/10 0/10 0/10 10/10 0/10 2/10 0/10  0/10
3 0/10 0/10 0/10 1/10 0/10 1/10  0/10 7/10 10/10 10/10
5 1/10 0/10 1/10 0/10 0/10 0/10  0/10  0/10 0/10  0/10
6 0/10 0/10 2/10 0/10 0/10 0/10  0/10  2/10 0/10  0/10
7 0/10 0/10 0/10 0/10 0/10 0/10  0/10  0/10 1/10  0/10
8 0/10 0/10 0/10 0/10 0/10 0/10  10/10 0/10 0/10  0/10
10 0/10 0/10 0/10 0/10 0/10 0/10  0/10  0/10 0/10  0/10
12 0/10 0/10 0/10 0/10 1/10 0/10  0/10 1/10 0/10  0/10

changed as unchanged for the full instrumentation scenario, and 1.9% (14/750) misclassification
of unchanged as changed and 6% (3/50) misclassifications of changed as unchanged for the partial
instrumentation scenario.

With full instrumentation we may also locate the stiffness element(s) that have experience dam-
age or that have undergone retrofitting: in States 8, 9 and 10, DOFs 2 and 3 show the existence
of change, and hence the stiffness k3 has changed; similarly in States 7 ki has changed, while
in State 6, only DOF 1 shows the existence of change, and hence k; has changed. However, for

the partial instrumentation scenario, such an element level change detection will in general not
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be possible: in States 8, 9 and 10, DOF 3 shows the existence of change, but since DOFs 2, 4
and 9 are unmeasured, any/all of the stiffnesses ks, k4 and k17 may have changed; similarly in
State 7 either/both k1 and k;¢ may have changed, while in State 6 either/both k; and k; may have
changed. We say in general because, in case all of the neighbouring DOFs of a given DOF is
measured, then it will be possible to detect the individual stiffness element(s) with change, for
the stiffness elements connecting to that given DOF; e.g. if the damaged elements were amongst
{ks, ko, k15, k¢, k7, koo }, then it would have been possible to detect them even in the partial instru-
mentation case. An alternative in partial instrumentation scenarios will be to estimate the mode
shape components at the unmeasured DOFs using, e.g. additional model topology requirements

[3,4], at the cost of introducing more modeling assumptions into the solution.

4.3 Existence and type of change: Localized stiffness reduction
vs. increase

While the P value does a two-class classification (changed vs. unchanged), it does not differentiate
between damage induced (stiffness decrease) and retrofitting induced (stiffness increase) changes.
It may be better however to instead perform, if possible, a three-class classification: unchanged vs.
damaged vs. retrofitted. This may be important especially in verification of retrofitting operations,
where an intentional interference into the structural system has the possibility of unintentional
introduction of structural damage. We explore here such an alternative classification exercise us-
ing the Lukaszyk—Karmowski metric [19], which compares two probability distributions (density

functions) as:

Dxy = / / |z =yl fx(7)gy (y)drdy 4.2)

where fx(z) and gy (y) are the probability density functions of the random variables x and y.
Dy y is not a distance metric in the strict sense as it, in general, does not satisfy the identity of

indiscernibles: Dx x # 0 unless « (and y = z) have a Dirac delta distribution, i.e. = = y is actually
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one exact value. The generally non-zero value of Dx x may be seen as a reflection of inevitable
experimental error [19], since even for the same parameter, different sets of experiments will lead
to different sets of measured values. The most useful property of the Lukaszyk—Karmowski metric
from our perspective is that it satisfies the triangle inequality as an equality, i.e. Dx z = Dxy +
Dy.z. This property may be exploited to solve our three-class classification problem as follows:
let f;, fi and f7 be the empirical probability density functions (epdfs) corresponding respectively

to the lower bound training, upper bound training and testing ECCDFs. Then:

. D ) . )
Doy = Dpr + Dy ie. __ TEM 1 = no stiffness change in testing state
D7+ Dur
. D : . )
Der =~ Dry + Dyrie. — TET 1= stiffness decrease (damage) in testing state (4.3)
Dry + Dyt
. DMT . . . .
Dyt =~ Dryy + Doy ie. —————— ~ 1 = stiffness increase (retrofit) in testing state
Dryu + Dy
In Eq. (4.3) we use “~” instead of “=""to account for numerical errors introduced in the compu-

tation of the epdfs from the ECCDFs, and in the 2-D numerical integration necessary to compute
the Lukaszyk—Karmowski metrics from the epdfs. Here, we compute the epdfs as histograms from
the decreases in the ECCDPFs at different d’s; Fig. 4.6 shows such histogram plots for the DSFs at
DOF 3 in States 1 (DOF 3 undamaged) and 9 (DOF 3 damaged). The testing epdfs are constructed,
for each state, using the mean of the DSFs estimated in the 10 tests. The necessary numerical in-
tegrations are performed using the trapezoidal rule in 2-D. Tables 4.6 to 4.8 and 4.9 to 4.11 lists,
respectively for the full and partial instrumentation scenarios, the values of the three ratios of the
computed Lukaszyk—Karmowski metrics given in Eq. (4.3); the values at the stiffness change loca-
tions are highlighted in bold font. Evidently, the first ratio, Dy, /(Ds7 + Dy ), correctly indicates
the presence of change (stiffness increase or decrease) at a DOF by taking values much lesser than
1; the second ratio, D,7/(Dry + Dy ), indicates the presence of damage induced change (stiff-
ness decrease) by taking values close to 1; while the third ratio, Dy;7 /(D + D7), indicates the
presence of retrofitting induced change (stiffness increase) by taking values close to 1.

As in the change detection using P values, using the Lukaszyk—Karmowski metric ratios too
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we may locate the individual stiffness element(s) with damage/retrofit in the full instrumentation
scenario, but, in general, only a neighbourhood consisting of a set of possible stiffness element(s)

with damage/retrofit in the partial instrumentation scenario.
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Figure 4.6: Approximate empirical probability density functions (epdf), computed as histograms
from corresponding ECCDFs, for SPDSFs of DOF 3 in States 1 and 9. (£: lower bound training
epdf f.; U: upper bound training epdf f;,; 7: mean (of 10 tests) testing epdf f7.)
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Table 4.6: Ratio Dy /(De1 + Dyr) (= 1 = no stiffness change) for full instrumentation.
States

POEs 1179 3 4 5 6 7 8 9 10

097 096 097 096 097 0.42 097 097 097 0.97
098 097 098 097 097 097 0.50 0.45 0.36 0.41
098 096 0.98 097 097 098 098 0.52 0.39 0.46
096 096 095 096 096 096 096 095 0.96 0.96
097 096 0.95 097 095 097 096 089 097 0.97
095 095 093 094 095 094 095 093 095 0.95
097 097 095 093 097 095 097 097 097 097
093 094 093 094 094 094 0.44 093 095 094
9 097 098 098 098 097 098 098 098 0.98 0.98
10 096 096 0.95 096 096 093 096 096 0.95 0.96
11 096 095 096 095 096 096 096 094 096 0.96
12 096 096 0.96 093 092 096 096 094 096 0.95

O 1 O UL i W

Table 4.7: Ratio D7 /(Dry + Dur) (= 1 = stiffness decrease/damage) for full instrumentation.
States

DOFs 1y 9 3 4 5 6 7 8 9 10

0.39 043 031 024 032 0.99 032 030 0.35 0.35
0.36 0.46 0.31 046 0.50 0.45 0.99 0.99 0.99 0.27
0.30 0.54 0.31 049 048 041 0.39 0.99 0.99 0.23
0.32 035 0.26 0.33 032 040 034 0.27 040 0.31
0.33 043 0.22 031 024 034 026 0.16 041 0.30
0.36 0.37 0.24 0.28 0.33 0.27 030 0.50 0.35 0.37
0.40 043 056 0.64 046 0.57 045 0.43 0.41 046
0.47 042 026 043 0.29 035 0.99 0.27 0.36 0.30
9 0.45 037 038 042 026 041 033 044 039 0.29
10 0.34 032 025 0.34 028 0.22 031 043 025 0.29
11 0.30 0.27 0.30 047 0.28 0.30 0.28 0.51 0.41 0.30
12 0.41 042 031 056 020 0.39 033 0.22 041 0.48

O 1O Ot Wi+~
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Table 4.8: Ratio Dy /(Dry + Dr7) (= 1 = stiffness increase/retrofit) for full instrumentation.
States

DOFs 1 2 3 4 5 6 7 8 9 10

0.29 026 037 046 0.36 0.26 0.36 0.39 0.33 0.33
0.31 024 037 024 021 0.25 021 0.24 0.31 0.99
0.38 0.19 037 0.22 0.23 0.28 029 0.19 0.29 0.99
0.37 034 044 035 037 0.29 0.35 0.42 0.29 0.38
0.35 0.27 049 037 047 0.34 0.43 0.64 0.28 0.39
0.33 032 048 042 0.36 043 0.39 0.23 0.34 0.32
0.28 0.26 0.18 0.15 0.24 0.18 0.25 0.26 0.27 0.24
0.25 028 0.45 028 0.41 035 024 044 0.33 0.39
0.25 0.31 030 026 043 0.27 0.35 0.25 0.29 0.39
0.35 0.36 045 034 042 0.52 0.37 0.27 0.46 0.40
0.39 043 039 024 041 0.38 0.41 0.22 0.28 0.39
0.28 0.27 037 0.19 055 0.29 0.36 0.50 0.28 0.23

0 ~J O Ol W N~

[ T (o)
N = O
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Table 4.9: Ratio Dy /(D7 + Dyr) (= 1 = no stiffness change) for partial instrumentation.
States

DOFs 14" 9 3 4 5 6 7 8 9 10

0.98 0.98 098 098 098 0.46 0.98 0.98 0.98 0.98
0.97 099 097 099 0.99 098 098 0.80 0.57 0.51
0.98 0.98 097 098 098 0.98 097 096 0.97 0.98
096 096 093 095 095 095 096 096 0.96 0.96
0.98 0.97 096 095 097 0.96 0.98 0.97 0.98 0.98
0.95 0.97 097 097 097 097 0.54 097 097 097
0.98 098 0.96 098 0.97 0.95 097 0.98 097 0.96
094 094 095 089 092 093 095 092 094 0.92

= = 00 ~J O Ot W+

N O

Table 4.10: Ratio D7 /(Dry + Dur) (= 1 = stiffness decrease/damage) for partial instrumenta-
tion.

States

1 2 3 4 5 6 7 8 9 10
0.41 042 035 029 035 0.99 037 034 036 0.36
0.22 0.37 0.20 0.31 036 0.27 028 0.89 0.99 0.20
0.39 0.38 0.26 0.38 0.34 0.39 030 0.23 042 0.32
0.32 0.30 0.22 0.26 0.26 0.26 027 044 034 0.30
0.32 040 0.49 0.56 0.41 0.53 038 0.39 0.35 0.35
0.50 037 0.29 045 034 036 0.98 0.35 0.38 0.30
0.26 0.26 0.19 0.26 0.23 0.18 0.25 0.30 0.22 0.21
0.45 040 0.35 0.59 0.25 046 035 0.26 045 0.49

DOFs

= = 00 ~J O Ot W+~

N O

Table 4.11: Ratio Dy /(Dry + D7) (= 1 = stiffness increase/retrofit) for partial instrumenta-
tion.

States

1 2 3 4 5 6 7 8 9 10
0.27 0.27 032 0.39 032 0.23 031 0.33 0.32 0.32
049 031 0.52 036 0.32 041 040 0.09 0.17 0.99
0.29 0.30 0.43 0.30 0.33 0.29 0.39 047 0.27 0.36
0.37 039 0.52 044 0.44 044 042 026 0.35 0.39
0.36 0.29 0.22 0.18 0.27 0.20 0.30 0.30 0.33 0.33
0.21 0.31 0.40 0.25 033 0.32 0.18 0.33 0.31 0.39
0.43 043 0.53 043 047 056 044 038 049 0.51
0.26 0.30 0.34 0.19 047 0.25 0.34 0.46 0.26 0.24

DOFs

= = 00 ~J O Ot W+~

N O
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4.4 Severity of change

Once a location with potential stiffness change in the testing state has been identified using the
‘P values or the Lukaszyk—Karmowski metric ratios, the testing ECCDF (£r) can be further used
with the lower (£) and upper (I/) bound training ECCDFs to quantify the severity of the change
in a probabilistic sense. This may be achieved by first selecting two values of d corresponding to
some percentiles of £ and I/; let these two values be d,,. and d.,,, corresponding respectively to
the th percentile of £ and 7;,th percentile of U. Also, let d... be the d corresponding to any ~y7th
percentile of F’r. Then, the testing ECCDF can be adjusted to account for the training variability to
get two new ECCDFs depicting a lower and upper bound damage probability vs. damage severity
as:

Fp=P(D >d) =, where d = d.,, —d,

L

Vv € [0;1] 4.4)
Fp=P(D >d)=~r, where d = d.., —d,

u
resulting in a probability box model of the uncertainty in damage severity. Figs. 4.7 and 4.8
shows such lower and upper bound damage probability vs. damage severity curves, corresponding
to v, = 0.05 and 7, = 0.95, for DOF3 in States 1 (no damage), 8 (damage), 9 (damage) and
10 (retrofit). Using such curves we can make inferences of the form: (a) for a given damage
severity d, the probability that the damage at that location is ar least d is between Fp (a lower
bound probability) and Fp (a higher bound probability), and (b) for a given damage probability
Fp, there is a probability F, that there exists at least between d (a lower bound least severity)and
d (a higher bound least severity) damage at that location. For example, from Fig. 4.7, inferences
like the following can be made for DOF 3 in State 9: For the full instrumentation scenario (a)
the probability that there is at least 10% damage (stiffness reduction) is between 19% and 77%,
and (b) there is a probability of 60% that there exists at least 8.5% to 11% damage; for the partial
instrumentation scenario (c) the probability that there is at least 8% damage is between 43% and
96%, and (d) there is a probability of 80% that there is at least 6.3% to 10.7% damage. Similarly,

from Fig. 4.8, some possible inferences are: the probability that there is at least 6% damage
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(stiffness reduction) in State 8 is (a) between 54% and 96%, given full instrumentation, and (c)
between 16% and 90%, given partial instrumentation; there is a probability of 80% that there exists
(b) at least 4.8% to 7.3% damage, given full instrumentation, and (d) at least 3.1% to 7.5% damage,
given partial instrumentation; the probability that there is at most 10% stiffness increase (retrofit)
in State 10 is () between 60% and 95%, given full instrumentation, and (g) between 25% and 89%,
given partial instrumentation; there is a probability of 60% that there is (f) at most 7.5% to 10%
stiffness increase, given full instrumentation, and (h) at most 7.7% to 12% stiffness increase, given
partial instrumentation.

From the curves for State 9 (Fig. 4.7), it can be seen that the least damage severity at DOF3 is
estimated to be between 8.5% and 11% (full instrumentation), or between 7% and 11.5% (partial
instrumentation), with a 60% probability. Also, with full instrumentation, the estimated damage
severity ranges between 7.5% (with 80% probability of exceedance, compared to 95th percentile
of Fy) and 12% (with 20% probability of exceedance, compared to 5th percentile of F;), while for
partial instrumentation this estimate ranges from 6.3% to 13.3%. Since all the three flexural links
(ks3, k4 and kq7) connected to the lumped mass m3 have the same undamaged stiffness, assuming
no random element stiffness perturbation, the theoretical approximate reduction in the stiffness
matrix element K5 3 for State 9 (30% reduction in k3) is 10%. The estimated damage severity from
our analysis compares reasonably well with this approximate theoretical estimate. The estimation
uncertainty increases slightly in the partial instrumentation scenario, which may be expected owing
to less measured information in this scenario. Moreover, the missing measured information for
partial instrumentation does not allow us to do an element level damage severity quantification.
For example, based on the estimated least reduction, with a 60% probability, in K3 3 in State 9, and

assuming k3 = k4 = k17 = ko, we can estimate the severity of reduction, say «, in k3 as:

3k0 — (2 + Oé):l{?g
3k

€ [0.085,0.11] = a € [0.67,0.745] 4.5)

i.e. there is a probability of 60% that the reduction in stiffness ks is at least between 67% and
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Figure 4.7: Uncertain probabilistic description of damage severity, at DOF 3 in States 1 and 9, us-
ing lower and upper bound damage probability vs. damage severity curves, obtained by comparing
the mean testing ECCDFs with the 95 percentile of the upper bound training ECCDFs (Uy5) and 5
percentile of the lower bound training ECCDFs (L5).
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74.5%. The calculation in Eq. (4.5) is possible because of full instrumentation, which allows
us to locate the individual damaged element as ks, as discussed at the end of the sections on
change existence detection. Since with partial instrumentation we will not be able to identify
the individual element k3 as damaged, we will not be able to quantify the element level damage
severity accurately; in such a case the estimated element level damage will range from mild and
distributed (all of k3, k4 and k;7 damaged) to severe and localized (either of ks, k4 or k17 damaged).
Discussions and calculations similar to this paragraph on State 9 may also be done for the damage
severities in other damage states, e.g. State 1 (healthy, low damage severity) from Fig. 4.7, and
States 8 (damaged, but lower severity than State 9) and 10 (retrofitted, negative damage severity)
from Fig. 4.8.

The two level uncertainty in the damage severity expressed through the two ECCDFs in Eq.
(4.4) may be interpreted in the following way: (a) the uncertainty (probability) of damage sever-
ity given by a single ECCDF will include the effects of measurement noise, input variability, and
also the environmental/opetational variability in the training (healthy) state, while (b) the range
of possible values the damage probability may take will include the effect of unknown environ-
mental/opetational conditions in the testing state. This interpretation is a result of the definition
of the DSF in Section 2 and the computation of the ECCDFs in Section 3. Based on these, using
the terminology of Section 2, each individual ECCDF depicts the variability of the baseline state,
while the possible range of such ECCDFs (denoted by the lower and upper bounds) depict the
variability of the alternative state. While the alternative state’s variability is taken into account
in the training stage by including data from different environmental/opetational conditions in the
set Y, of modal parameters, in the testing stage, with a single test, we can assume a stationary
environmental/operational conditions (no variability). This stationary environmental/operational
condition is however unknown to us. Hence, instead of comparing the testing ECCDF against only
one training ECCDF, it may be better to compare it against the entire range of possible training
ECCDFs, or alternatively to the lower and upper bound training ECCDFs as done here, to take

into account our lack of knowledge of the testing environmental/operational conditions. Such a
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comparison will account for our lack of knowledge by treating the testing data to be coming from

different (hypothetical) environmental/operational conditions.
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5. Experimental Application

Although the example considered in the numerical validation is on a bridge deck, the developed
methodology may be applied to any other type of structural system as well. While the project is
primarily targeted towards SHM of bridges, data from damaged real bridges are difficult to obtain.
However, future experiments using a laboratory scale bridge system are currently in the planning
stage at the Carleton Laboratory of Columbia University. In order to demonstrate the robustness
of the proposed methodology when applied to experimental data, in this section, we present the
results obtained using the data collected from a four story steel frame subjected to base excitation
using the shake table facility available at the Carleton Laboratory of Columbia University (Figure
5.1).

The frame has an inter-story height of 533 mm, floor plate dimensions of 610 x 457 x 12.7 mm,
and it is diagonally braced in one direction (North-South direction), from here onwards denoted as
the strong direction, as opposed to the perpendicular direction (East-West direction), referred to as
the weak direction. The columns and the diagonal braces have cross-sectional dimensions of 50.8 x
9.5 mm and 50.8 x 6.4 mm, respectively. All the structural connections are bolted using connection
plates and angles. The frame is excited along the weak direction of bending. The base excitation
is provided using the 1.5 x 1.5 m platform uniaxial hydraulic shaking table facility available at
the Carleton Laboratory of Columbia University, New York. The frame is mounted on the table
and the structure-table connection is sufficiently bolted to reproduce a fixed-base behavior. In the
discussion herein, we use the structural acceleration at the centroids of the floors, indicated as t; in
Figure 5.2, for ¢ = 1, , 4. Using the assumption of rigid floors and the coincidence of floor centers

of mass and centroids, the frame is modeled as a 1-D 4-DOF system. Six different types of input
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Table 5.1: Different states of the steel frame considered for the experimental application.

Affected Stiffness Re-
State Condition | Description DOFs duction at af-
fected DOF's
Ul Undamaged | Baseline Condition - -
U2 Undamaged | 40% mass addition to 3"¢ floor - -
D1 Damaged 15% stiffness reduction at 3" floor 2 and 3 ;i:ﬁl z;t DOFs
D2 Damaged 30% stiffness reduction at 3¢ floor 2 and 3 ;53(1710 di’t DOFs
D3 Damaged 60% stiffness reduction at 3" floor 2 and 3 ;(ZO di’t DOFs
. . 7.5% at DOFs
nd rd
D4 Damaged 15% stiffness reduction at 2™* and 3 12and3 | 1 and 3, 15%
floors
at DOF 2

ground motions (band limited white noise, EC8, El Centro, Hachinohe, Kobe and Northridge) are
applied to the table. For this application, the OKID/ERA [28] algorithm is employed to identify the
modal properties of the frame, using the measured acceleration responses of the floors as outputs
and of the table as input.

To assess the applicability of the approaches discussed herein, in addition to the above frame,
here onwards referred to as the healthy system (U1), an additional healthy condition U2 is con-
sidered, by adding two masses at the third floor: one on the south and the other on the north floor
edge. The training data set is constituted by 89 input-output sets of acceleration histories. Four
different “damaged” frames (D1 to D4) are also tested using the same set of 6 inputs. In these
damaged frames, structural damage is simulated as stiffness reduction, by replacing one or more
columns of the “healthy” frame with columns of reduced cross-sectional area (50.8 x 7 mm). The
testing set consists of 144 data sets: 10 from state U1, 14 from state U2 and 30 from each of the
four damaged states.

The results of the stiffness change detection and location are presented in Table 5.2. In Table
5.2, for each state, the ratio n/N indicates the number of tests, n, over the overall tests performed
under a certain state, NV, for which a change in the given diagonal term of the stiffness matrix is

identified; the letter in parenthesis indicates whether that change is identified as due to damage (D)
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Table 5.2: Results for stiffness change identification and location.

State K1 K;2 Kss Kia
1/10 (D)

Ul 2/10 (D) 0/10 2/10 (R) 2/10 (R)

U2 0/14 0/14 0/14 0/14

D1 0/30 0/30 30/30 (D) 2/30 (D)

D2 0/30 30/30 (D) 30/30 (D) 0/30

D3 17/30 (R) 30/30 (D) 30/30 (D) 0/30

D4 0/30 21/30 (D) 30/30 (D) 0/30

or retrofitting (R). Type I error, i.e. the error made by declaring damaged the system, when it is
instead undamaged, is low and equal to 1.6% (5 out of 306 cases). Adversely, Type II error, i.e.
the error made by declaring healthy the structure, when it is instead damaged, is equal to 25.6%
(69 out of 270 cases). While damage scenarios D2 and D3 are correctly identified and located with
100% accuracy, the method identifies the stiffness change at DOF 3, but fails at identifying such
change at DOF 2 for the damage scenario D1; similarly, for state D4, stiffness change at the third
inter-story is identified both at DOF 2 and 3, but the stiffness reduction at the second inter-story
cannot be identified from these results. One possible reason behind this misidentification is that
both damage scenarios D1 and D3 cause torsion in the system, which may not be captured well by
the 4 DOFs 1-D model used. Nonetheless, even in these scenarios the overall system is identified
as damaged, and the region containing the damaged elements is identified accurately as well.
Figure 5.3 shows the results of the stiffness change extent quantification. For any DOF, the
plot in Figure 5.3 is obtained as follows. Let d9U5% correspond to the 95th percentile from the
upper bound training ECCDEF. Such d?fr’% is subtracted from the d’s associated with the 144 testing
ECCDFs. From the resulting new shifted 144 ECCDFs, the median d values, here onwards referred
to as d5UO;f° , are obtained. Finally, for any given state, the average of such d?;f” values are computed
over all the tests performed on that state, e.g. over the 10 tests on State Ul. Comparing the average
estimated damage extent displayed in Figure 5.3 with the theoretical values presented in the last

column of Table 5.1, it is evident that the proposed approach is able to quantify the extent of

stiffness change with reasonable accuracy.
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Figure 5.3: Average damage extent for the six states of the experimental application.

An interesting observation from this experiment is the apparent increase in first-story stiffness
with damage. The phenomenon may be appreciated in Table 5.2: at DOF 1, for State D3, 17 out
of the 30 tests identify an unexpected, systematic increase in stiffness at the first inter-story. Such
phenomenon is clearly observable when analyzing the change in stiffness in the tested states shown
in Figure 5.3. Such increase in stiffness is less marked for state D4, since the DOF 1 in this state
also includes the effect of a damage in the second story; in fact, the average value of the estimated
damage extent should be approximately equal to 0.075 in state D4 (Table 5.1). One possible expla-
nation of the first story stiffness increase may be the activation of some strengthening mechanism
(e.g. increased participation of the braces in load resistance, particularly strong torsional compo-
nent, etc.) in the first story when there is damage at some other stories. Such trend is more marked
as the damage severity increases: while for damage scenarios D1 and D2 the average stiffness in-
crease at the first inter-story is between 5-6% (Figure 5.3), for damage scenario D3 the increase in
stiffness is nearly 8%, causing more than half of the tests performed from this state to be declared
retrofitted at the first inter-story (Table 5.2). A similar unexpected increase in stiffness has been
observed for the same structure also in [4,29], where the stiffness properties of the frame structure

have been identified using different approaches than the one presented in this report.
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6. Summary and Conclusions

In this project, a “mixed” approach for structural health monitoring using ambient/operational
vibration response measurements is proposed. This approach is general and can be applied to
both bridges and building structures. The DSFs, defined in a model based setting in terms of ex-
perimental modal parameters (natural frequencies and mode shapes), attempt to measure relative
localized stiffness reductions. The assessment of the structural health is performed in a statis-
tical pattern recognition (solely data based) framework using the DSFs extracted from response
measurements. The features in the training stage, extracted from response measurements on the
baseline (healthy) structure, in a wide variety of environmental/operational conditions (e.g. in dif-
ferent diurnal/seasonal temperatures, traffic, wind, etc.,), are used to compute a range of ECCDFs,
from which lower and upper bound training ECCDFs are estimated. Such a training procedure
intends to decouple the normal (non-damage induced) structural variations from damage induced
changes, by defining a zone of normal variability of the baseline structural state through the esti-
mated lower and upper bound training ECCDFs. The ECCDFs of DSFs extracted from the data
collected in the testing stage are then compared against the lower and upper bound training EC-
CDFs to assess the presence, location and severity of any change in the structural stiffness param-
eters. To detect the existence of damage induced changes two methods of analysis are discussed:
one based on a measure (P value) of mismatch between the testing ECCDF and the zone defined
by the lower and upper bound training EECDFs, and the other based on three different ratios of the
Lukaszyk—Karmowski metric computed using epdfs derived from the testing and upper and lower
bound training ECCDFs. The P value based method performs a two-class classification, i.e. no

change vs. change in stiffness at the location under consideration. The method using Lukaszyk—
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Karmowski metric ratios instead allows us to perform a three-class classification, i.e. no change
vs. reduction (i.e. damage) vs. increase (i.e. retrofitting) in stiffness at the location under con-
sideration, and hence may also be used for verification of retrofitting operations. The results of a
numerical example simulating ambient vibration testing of a bridge deck system illustrates that,
with the localized definition of the DSF, using either/both the above two methods one may detect
and locate the existence of any stiffness change with reasonable accuracy. After the existence and
location of change detection, the severity of change is also estimated using the testing and lower
and upper bound training ECCDFs. For this purpose the testing ECCDF is adjusted using different
percentiles of the two training ECCDF bounds, resulting in a probability box model to represent
the exceedance probability for different change severity levels. Such a model consists of a lower
and an upper bound curves, representing the probability of change vs. severity of change, using
which, for any given change severity a lower and upper bound of the probability of exceedance can
be estimated, and vice versa. The numerical example of the bridge deck shows that the severity of
stifftness reduction/increase induced by damage/retrofitting may be estimated with reasonable ac-
curacy using such curves. The two level uncertainty in the damage severity attempts to segregate:
(a) the uncertainty from measurement noise, input variability, and environmental/opetational vari-
ability in the training (healthy) state, expressed through a single exceedance probability of severity
of change, and (b) the uncertainty from unknown environmental/opetational conditions in the test-
ing state, expressed through a range of possible values the exceedance probability may take. If
the monitored system is fully instrumented, then the proposed DSF and health assessment method
allow also an accurate element level change localization and severity estimation, while for partially

instrumented systems it successfully identifies a region within which damage is confined.
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