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5 DATA ANALYSIS AND SYSTEM PERFORMANCE 

This chapter presents (a) a set of acoustic emission (AE) data recorded by the monitoring system 

and data analysis using ICEPAKTM, a pattern classifier for use in real-time structural health and 

reliability monitoring, (b) calculation of effective stress at a web gap detail using weigh-in-

motion (WIM) data and refined finite element analysis, (c) calculation of effective stress at a web 

gap detail using strain data from field monitoring, (d) findings related to monitoring system 

performance, and (d) a summary.  

5.1 ACOUSTIC EMISSION DATA ANALYSIS 

The goal was to examine the types of AE signals detected from fatigue-sensitive details to 

determine, among the different AE signals generated during normal traffic conditions, how to 

use these signals to assess the performance of the bridge detail.  

5.1.1 Data Acquisition 

AE data was recorded using four sensors arranged as shown in Figure 4-3 and Figure 4-4.  Two 

sample data files that were recorded on July 09, 2014 and on July 11, 2014, respectively, were 

used in the data analysis presented in this section.  The data represent AE signals captured on the 

bridge near the fatigue-sensitive detail under normal traffic conditions.  PLB signals near the 

sensors were also recorded for reference.  

5.1.2 Data Preprocessing 

Data generated in the AE Win closed proprietary format (“.dta”) are not compatible with the 

ICEPAKTM software developed by TISEC Inc.  The TISEC SABRETM system components 

include a waveform extraction utility (WEU v 2.1) to convert AE win data in a format compatible 

with ICEPAKTM.  WEU v 2.1 was also used to convert to a second universal format (.wav) that 

is compatible with the waveform visualization software.  The PRISM module enabled waveform 

visualization in both time and power spectral domains.  ICEPAKTM was used to classify data via 

pre-trained classifiers designed by the ICEPAK software package. 
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5.1.3 Pencil Lead Break (PLB) Signals 

The fracture-event representation signals generated by PLB serve as a reference to identify the 

presence of any significant fracture type signals within the ensemble of AE data collected under 

normal traffic conditions.   

Typical signals present in a PLB data file are shown in Figure 5-1.  The PRISM package can be 

used for visual inspection after converting the data to PRISM compatible .wav files.  Visual 

inspection of signals is very important to identify the signals that are not suitable for further 

analysis.  One such example is the presence of oversaturated signals.  Use of such signals in 

analysis is known to produce skewed spectral characteristics that prevent reliable signal analysis.   

 

(a) An oversaturated signal (b) A good signal 
 

 
(c)  A possible noise 

Note: X-axis: Time (101.9 μs/Div); Y-axis: Voltage (50 V/Div) 
 

Figure 5-1.  Typical signals present in a data file 
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5.1.4 Unsupervised Learning via Clustering 

The data collected from the bridge was examined directly to identify any significant similar AE 

activity formations using non-linear mapping (NLM) and clustering analysis available in 

ICEPAKTM.  NLM presents multi-dimensional data in a 2-D space and preserves the inter-data 

distance and directional information.  If the data in the multi-dimensional space are very close to 

one another, the corresponding NLM should also render their closeness to one another but not 

their orientation.  

NLM can be performed in time, power, phase, cepstral, and auto-correlation domains.  The data 

set used for NLM and clustering analysis included little more than 11,000 AE signals that were 

above the set threshold of 45dB.  NLM was performed using one feature domain at a time to 

visually detect significant naturally forming concentrations.  These results are shown in Figure 

5-2 to Figure 5-6.  Out of the 5 domains, the spectral power domain produced three significant 

concentrations as shown in Figure 5-3.  Clustering was performed using the same spectral power 

domain features, and produced three significant concentrations as presented in Figure 5-7.  The 

clusters are aligned with the visual presentation of the NLM result.  In order to make the side-by-

side comparison easier, spectral power domain results from NLM and clustering are presented in 

Figure 5-8 and Figure 5-9.  Later, as shown in Figure 5-10, the three clusters that were identified 

through the power domain analysis were separated for further analysis. 

 

 
Figure 5-2.  NLM Time Domain 

 

 
Figure 5-3.  NLM Power Domain 
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Figure 5-4.  NLM Phase Domain 

 
Figure 5-5.  NLM Cepstral Domain 

 

 
Figure 5-6.  NLM Auto-Correlation Domain 

 
Figure 5-7.  Clustering Power Domain 

 

 
Figure 5-8.  NLM Power Domain 

 
Figure 5-9.  Clustering Power Domain 
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(a) Cluster 1 (b) Cluster 2 

 
(c) Cluster 3 

Figure 5-10.  Individual data clusters 

The individual data clusters were exported and labeled as [cl1], [cl2], and [cl3].  Then, each 

cluster was used to train a three-class classifier.  Four statistical classifiers (i.e., linear 

discriminant, K-nearest neighbor, empirical Bayesian, and minimum distance classifiers) and a 

neural network classifier were tested.  The design of the classifiers included optimizing the 

feature sets.  The design procedure included separating available data into two groups; one was 

used to train the classifiers and the other to test the performance of the classifiers.  The 

classification results are shown in Figure 5-11 to Figure 5-15.  As an example, [cl1] had a total of 

7,915 data points.  This set was separated into two groups of 3,957 and 3,958 data points for 

training and testing, respectively.  When the linear discriminant three-class classifier was trained 

with 3,957 data points, the data was classified into three classes with rejections.  As shown in 

Figure 5-11, classes 1, 2, and 3 contain 3777, 2, and 0 data points with 178 rejections.  The 

classification rate is 95.45%.  In other words, 95.45% of the data in [cl1] falls into class 1 (i.e., 
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3,777/3,957 × 100).  A similar process was employed for [cl2] and [cl3] data sets, and yielded 

classification rates of 94.99% and 95.95%, respectively.  When all three data sets were 

considered, the linear discriminant three-class classifier yielded a weighted average classification 

rate of 95.43% for training (Figure 5-11).  Overall, all the classification methods yielded very 

high classification rates for training as well as for testing.   

 

Figure 5-11.  Linear Discriminant Figure 5-12.  K-Nearest Neighbors 
 

Figure 5-13.  Empirical Bayesian Figure 5-14.  Minimum Distance 
 

 
Figure 5-15.  Neural Network 

Next, the PLB data was tested against this three-class classifier with a rejection option.  The 

rejection option is triggered when an incoming signal cannot be classified with an acceptable 

level of confidence.  The PLB data file contained 100 data points.  The PLB data fell into class 1 
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and 2 but not class 3, with a lot of rejections.  Nine data points were classified as class 1 and 8 as 

class 2.  None was classified as class 3.  There were 83 rejections. 

Finally, the trained classifiers and the associated feature extraction engine were exported from 

the ICEPAKTM program.  The AE data collected from the bridge and PLB data were also 

exported in the PRISM-compatible waveform format.  The PRISM program waveform 

visualization and real time classification capability were used to identify the type of waveforms 

in the three classifications (i.e., in class 1, 2, and 3) along with the rejected ones.  Figure 5-16 to 

Figure 5-18 show sample PLB signal waveforms in class 1, class 2, and the rejected group. 

 
Note: X-axis: Time (102.4 μs/Div); Y-axis: Voltage (50 V/Div) 

Figure 5-16.  A sample PLB waveform in class 1 

 
Note: X-axis: Time (102.4 μs/Div); Y-axis: Voltage (50 V/Div) 

Figure 5-17.  A sample PLB waveform in class 2 

 
Note: X-axis: Time (102.4 μs/Div); Y-axis: Voltage (50 V/Div) 

Figure 5-18.  A sample rejected PLB waveform 
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The PRISM program was used to analyze the waveform characteristics of signals in each class 

and the rejected group, and yielded the following observations: 

• The waveforms classified as class 1 usually have very fast rise times, relatively quiet pre-

trigger portion, and a broad spectral content spanning from 100 to 400 kHz (Figure 5-19). 

• The waveforms classified as class 2 usually have very fast rise times; however, the pre-

trigger portion may show some small structure, and the main pocket contains multiple 

ringing peaks.  The spectral content mainly centers around 150 kHz with very little or 

nothing above 250 kHz, and nothing below 100 kHz (Figure 5-20). 

• The waveforms classified as class 3 usually have a slower rise time, and the spectral content 

is mainly located below 100 kHz and centered around 50 to 75 kHz.  Moreover, there is 

absolutely nothing above 200 kHz (Figure 5-21). 

• The waveforms classified as “rejected” are mostly associated with over-saturated clipped 

waveforms, and some have slow changing, somewhat smooth, waveform centered around 50 

kHz (Figure 5-22). 

• The number of waveforms being classified as class 1 is 4 to 6 times more than those of class 

2 and class 3 while the sizes of class 2 and class 3 are relatively comparable.  In general, 

there are about 5% of waveforms being rejected. 
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(a) Time domain 

X-axis: Time (102.4 μs/Div) 
Y-axis: Voltage (50 V/Div) 

 
(b) Frequency domain 

X-axis: Frequency (50 kHz/Div) 
Y-axis: Amplitude (0.1/Div) 

Figure 5-19.  A sample class 1 waveform and its power spectrum 
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(a) Time domain 

X-axis: Time (102.4 μs/Div) 
Y-axis: Voltage (50 V/Div) 

 
(b) Frequency domain 

X-axis: Frequency (50 kHz/Div) 
Y-axis: Amplitude (0.1/Div) 

Figure 5-20.  A sample class 2 waveform and its power spectrum 
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(a) Time domain 

X-axis: Time (102.4 μs/Div) 
Y-axis: Voltage (50 V/Div) 

 
(b) Frequency domain 

X-axis: Frequency (50 kHz/Div) 
Y-axis: Amplitude (0.1/Div) 

Figure 5-21.  A sample class 3 waveform and its power spectrum 
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(a) Time domain 

X-axis: Time (102.4 μs/Div) 
Y-axis: Voltage (50 V/Div) 

 
(b) Frequency domain 

X-axis: Frequency (50 kHz/Div) 
Y-axis: Amplitude (0.1/Div) 

Figure 5-22.  A sample “rejected” waveform and its power spectrum 
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5.1.5 AE Data Analysis Observations 

There are two general types of fracture-related AE activities observed under cyclic loading 

conditions: crack tip opening during increased loading (upward load cycle) and crack face 

rubbing during decreasing load (downward cycle).  This observation and correlation of the AE 

activities was derived largely based on past railroad bridge inspection experience of TISEC Inc.  

The observations of sample data analysis show that both class 1 and class 2 waveforms are more 

structured with a faster rise time at the beginning of the waveform.  Thus, they are associated 

with the AE signals from the crack opening.  Even though class 1 and class 2 waveforms 

represent characteristics of crack opening signals, more accurate characterization requires having 

access to AE signals that represent properties of steel used in the bridge, component dimensions, 

exposure conditions, etc.  Class 3 waveforms are more slowly rising, and their spectral content is 

more in line with common background transient noise.  The rejected waveforms are more likely 

due to saturation and clipping of the signal, and the non-saturated ones, centered around 50 kHz 

are more likely results from structural resonance.  

Since class 1 and 2 waveform characteristics closely represented AE signals from the crack 

opening, the source location plots were analyzed.  As shown in Figure 5-23, there were no active 

sources documented within the zone of interest.  Therefore, further analysis was not performed.  

When AE sources are located within the zone of interest, the following steps can be followed to 

validate the presence of potential cracking or crack opening events: 

• Check the waveforms (Figure 5-24) to evaluate the resemblance of signals to the crack 

opening signals.   

• Observe the source location plots for the formation of data clusters and the cluster growth 

direction. 

• Correlate AE events with the strain data from the strain gage that is mounted to develop the 

load matrix.  If AE events occur during increase in strain, there is a potential for the 

presence of a crack opening event. 

• If the observations of the above steps require additional investigations, make a field visit 

and perform NDE to confirm the observations. 

• If NDE fails to identify cracking, adjust signal thresholds and gains to calibrate the 

monitoring system for the specific detail. 
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Figure 5-23.  AE source location plot 

 

 
Figure 5-24.  Waveform observation 
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5.2 FATIGUE PERFORMANCE EVALUATION 

5.2.1 WIM Data and Hot Spot Stresses 

WIM data was obtained for I-94 EB from a station located in Berrien County, City of New 

Buffalo.  The station is located 22.5 miles west of the bridge site.  The data covers 11 months of 

a year, except August due to a corrupted data file.  According to the data, the bridge carries 

48,500 vehicles daily, with 30% of the vehicles being trucks (i.e., ADTT of 14,550).  Of the 

trucks, 84.6% travel in the outer lane (i.e., 12,309 trucks).  

The gross weight of the fatigue truck was calculated following the Guide Specifications for 

Fatigue Evaluation of Existing Steel Bridges (AASHTO 1990), Section 2, Alternative 3, and 

weigh-in-motion data.  Use of 11 month data yielded the gross weight of 57 kips.  Following the 

AASHTO LRFD (2013) Article 3.6.1.4, an impact factor of 15% and a constant spacing of 30 ft 

between the main axles were used in analysis.  As per the MBE (2011), 75 percent of the stress 

calculated using the fatigue truck with impact was used.  Following the procedure discussed in 

section 3.6, fatigue truck load with impact was applied, and the weld toe stresses at L1 web gap 

were calculated (Table 5-1).  As per the MBE (2011) commentary C7.2.2.2, a multiplier less than 

two can be used to calculate the maximum stress range when the fatigue truck load is greater 

than 54 kips.  However, a factor of two was considered to yield a conservative result.  With the 

factor of two, the maximum stress range, (Δf)max, ranges from 10.54 ksi to 10.88 ksi.  

Table 5-1.  HSS at L1 Weld Toe due to Fatigue Truck Load 

Reference point location 
from weld toe 

Distance from weld toe 
with t = 0.545 in. 

(in.) 

Stress in Y-direction (SYY) 
(ksi) 

Fixed Abutment Pinned Abutment 
0.4t * 0.218 3.75 3.87 
0.9t  0.491 2.52 2.60 
1.4t  0.763 2.03 2.10 

*t = web thickness Hot Spot Stress (ksi) 5.27 5.44 

According to Hobbacher (2008), all applicable load effects need to be superimposed.  Pook 

(2007) indicated that the residual stresses affect fatigue performance in the same manner as the 

mean applied stress.  As presented in section 3.6.5.2, depending on the girder end fixity over the 

abutment, hot spot stress at the L1 web gap due to cast-in-place concrete deck weight ranges 

from 6.57 ksi to 9.14 ksi.  According to the statements presented in Hobbacher (2008) and Pook 

(2007), the fatigue evaluation of L1 detail requires combining deck weight effects and the fatigue 

truck induced stress.  Following the procedure discussed in section 2.3.4, hot spot stress and S-N 



120 
Remote Monitoring of Fatigue-sensitive Details on Bridges 

curves can be used to evaluate fatigue performance.  The L1 web gap detail is a Category C’ 

detail with a constant-amplitude fatigue threshold (CAFT) of 12 ksi.  As discussed in section 

2.3.4, the use of S-N curve with hot spot stress for fatigue performance evaluation requires 

modifying the values using a hot spot stress ratio between reference detail and the detail to be 

assessed.  In order to simplify the calculation procedure presented herein, the S-N curve and the 

CAFT values were used without any modifications.  When the combined effect of cast-in-place 

deck load and the fatigue truck is considered, the maximum effective stress, (Δf)max, ranges from 

17.11 ksi to 20.02 ksi.  When compared with the CAFT of 12 ksi, the detail will have a finite 

fatigue life.  

5.2.2 Hot Spot Stresses from Field Measured Strain Data 

Three strain gages were mounted at the L1 web gap to calculate weld toe stress (Figure 4-5).  As 

per the hot spot stress calculation guidelines presented in Hobbacher (2008), the gages were 

mounted at a 0.4t, 0.9t, and 1.4t distance from the weld toe.  In this particular instance, t is the 

thickness of the girder web.  Figure 5-25, Figure 5-26, and Figure 5-27 show a set of sample 

strain data collected during the study.  The strain data collected using each gage was multiplied 

by the steel modulus of elasticity, 29,000 ksi, to calculate the stresses at respective locations (i.e., 

σ0.4t, σ0.9t, and σ1.4t).  Then the hot spot stress (HSS) was calculated using Eq. 5-1 as a time 

series.  The ASTM E1049-85 rainflow counting algorithm was used to calculate stress ranges 

and the respective number of stress cycles.  Finally, the measured effective stress range, Δf, was 

calculated using Eq. 5-2. 

2.52 σ0.4t - 2.24 σ0.9t + 0.72 σ1.4t       (5-1) ∆ = (ΣΥ Δf )         (5-2) 

where, γi = fraction of cycles at a particular stress range and Δfi = midwidth of the particular 

stress range. 

According to the procedure given in MBE (2011), the effective stress is calculated using Eq. 5-3.  

When strain data is collected through field measurements and the mean fatigue life is to be 

calculated, the stress-range estimate partial load factor, Rs, is taken as 1. (∆ ) = R (ΣΥ Δf )         (5-3) 
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Section 7 of MBE (2011) notes that field measurements are the most accurate way to estimate 

the stresses acting on a bridge of interest; however, the maximum stress range is unlikely to be 

observed by collecting data within a limited duration.  As a result, the MBE (2011) recommends 

using the maximum stress range of twice the measured stress range, i.e., (Δf)max = 2(Δf)eff.  

 
Figure 5-25.  A sample strain profile collected at 0.4t 



122 
Remote Monitoring of Fatigue-sensitive Details on Bridges 

 
Figure 5-26.  A sample strain profile collected at 0.9t 

 
Figure 5-27.  A sample strain profile collected at 1.4t 

Hobbacher (2008) presented a procedure to use S-N curves with hot spot stresses (See Section 

2.3.4 for details.)  Even though hot spot stresses are used in this section for fatigue performance 

evaluation using measured strains, the S-N curve and the CAFT value of Category C’ detail were 
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used without any modifications.  Even if all the stress cycles are counted, the effective stress 

range, (Δf)eff, calculated using strain data recorded at the web gap is only 0.8 ksi.  As per the 

MBE (2011), the maximum stress range is1.6 ksi, which is twice the effective stress range [i.e., 

(Δf)max = 2(Δf)eff = 1.6 ksi].  When the stresses induced by the cast-in-place deck dead load is 

included, the (Δf)max ranges from 12.14 ksi to 12.48 ksi, which is slightly greater than the CAFT 

of 12 ksi, and it can be safely assumed to have an infinite fatigue life.  However, the maximum 

stress ranges calculated using strain data are much smaller than the stresses calculated using 

fatigue truck loads based on WIM data.  Above all, the cast-in-place concrete deck weight has 

generated very high stresses at the weld toe and requires further investigations. 

5.3 RELIABILITY PERFORMANCE OF THE MONITORING SYSTEM  

5.3.1 AE and Strain Data Acquisition 

As presented in section 4.1.1, the monitoring system has a low power computer with a single AE 

board and 4 AE sensors.  Channel 1 of the AE board malfunctioned after one year and two weeks 

from system installation on the bridge.  The Mistras Inc. had a one-year warranty for the system, 

and the board was repaired and tested as per the warranty terms even though the warranty time 

had briefly expired.  The diagnostic report stated “the dual ADC IC at location U14A failed, the 

part number 13.04840 was replaced, and then retested channel 1 and the other three channels 

for signal amplitude and noise levels.”  Other than the aforementioned channel 1 malfunction, 

the system was performing as expected.   

The Mobile Broadband 5GB data plan from Verizon Wireless and Sierra Wireless – AirLink 

GX400 modem were used for communication and data transfer.  The monitoring system is 

capable of acquiring strain data at a fast rate adequate to capture traffic-induced strain.  

However, real-time display of data from 12 strain gages and 4 AE data channels significantly 

slows down the display speed.  The objective of this study was to monitor a targeted detail using 

a limited number of sensors.  The real-time display of data from 4 AE sensors and the strain gage 

(for developing the load matrix) was satisfactory.  Also, the delay in real-time display, wireless 

communication and data transfer speed is satisfactory. 



124 
Remote Monitoring of Fatigue-sensitive Details on Bridges 

5.3.2 Remote Access 

LogMe In Pro software allows remote access and data transfer.  Figure 5-28 shows a few menu 

options available in LogMe In Pro.  Remote Desktop Connection can be used to access the 

remote computer in the SHM system.  At several instances, operating LogMe In Pro features did 

not work due to an incompatibility between LogMe In and Remote Desktop Connection.  When 

LogMe In Pro is activated following Remote Desktop Connection, the file transfer feature 

through File Manager becomes inactive.  Further, once the Remote Control panel is accessed, a 

blank window opened and showed the message: “Terminal Server Display is Inactive.”  This 

problem was rectified after restarting the system using the Reboot option available under the 

Computer Management pulldown menu in Log Me In Pro.  At one time, the system was in 

operation but could not access using Log Me In Pro.  Hence, Remote Desktop Connection was 

used and gave access to Log Me In technical support using the logmein123.com website.  

Technical support provided a code over the phone to enable the web access.  The Pro version of 

Log Me In was installed remotely, and the system was rebooted using the rebooting program 

available on the desktop.   

 
Figure 5-28.  Menu options available in LogMe In Pro 

5.3.3 Data Replay 

AE Win can be used on a computer without an AE data acquisition board in the office to replay 

data downloaded from the remote monitoring system.  When an AE board is not connected to the 

computer, the warning shown in Figure 5-29 appears.  Once the “OK” button is selected, a 
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template file is loaded.  If needed, the reasons for the warning can be viewed in the error.log file 

in the default folder.  In order to replay data, a sensor layout file (*.lay) that is developed for the 

particular bridge needs to be opened before replaying the data file.  At several instances, the 

software crashed, and the message shown in Figure 5-30 appeared.  Sometimes, this problem 

was rectified by opening a default layout file before opening the user generated bridge specific 

layout file. 

 
Figure 5-29.  A warning message that appears when data replay program is opened 

 

 
Figure 5-30.  Program closure warning 

5.3.4 System Reboot 

As discussed in section 4.1.1, the computer should be rebooted using the rebooting program 

available on the desktop.  It is very important to follow the rebooting sequence especially when 

the system is remotely located.  

5.3.5 MS View 

MS View program is used to display and record solar power system data (See section 4.1.5.3 for 

more details.)  However, when the MPPT charge controller is programmed using MS View, it 

requires disconnecting and reconnecting the data cable manually from the computer in order to 

establish data communication.  Otherwise, the MPPT charge controller is not identified by the 

MS View software.  This requires programming the MPPT charge controller and evaluating the 

proper functioning of the device before incorporating the device in a remote monitoring system. 
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5.3.6 Solar Array 

As the first step in solar power system performance evaluation, performance of the MPPT charge 

controller was evaluated under laboratory conditions using a constant voltage power supply.  

Figure 5-31 shows power supply (array) voltage, battery voltage, charge current, and load 

current.  Initially, a load (other than the monitoring system) was connected and allowed to drain 

charge from the battery without supplying power from the array.  As shown, the load drains a 

constant current of 1.70 A while the battery voltage drops steadily.  When the battery voltage is 

about 11.8 V, array voltage was increased up to 17.4 V, and the charging cycle was started.  As 

soon as the charging cycle started, there was an increase in battery voltage.  The battery voltage 

was steadily increased to 14 V while the current drawn by the load was retained at 1.70 A.  Once 

the battery voltage reached the preset maximum of 14 V, the absorption stage of the charging 

cycle began, and the battery voltage was maintained.  When the battery voltage reached the 

maximum, there was an artificial increase in array voltage, but the charge current decreased.  

During the absorption duration, the charge current dropped gradually until it reached the load 

current of 1.70 A.  The charge current and the load current remained at this value as long as the 

array voltage is maintained at a voltage above the battery voltage.   

A typical discharge, charge, absorption, and float cycles are shown in Figure 5-32.  During 

laboratory testing, the float cycle was not observed even after 5.5 hours.  Also, when the power 

supply (array) voltage was disconnected, a sudden drop in battery voltage was observed (Figure 

5-32).  
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Figure 5-31.  Battery charging and discharging evaluation under laboratory conditions 

 

 
Figure 5-32.  Theoretical battery discharge and recharge cycle 

The solar array system performance was evaluated under field conditions.  The data logging 

capability of the MPPT charge controller enabled the measurement of array voltage, array power, 

battery voltage, charge current, load current, exposure condition, and several other parameters.  

The solar power system performance was evaluated during the month of July, 2014.  During the 

system evaluation period, the charge controller provided an average gain of 19% to the current 

produced by the solar panel, with peaks in current gain during peak sunshine hours of 34%.  This 

average gain was lower than expected, but it was well within the range of 10% to 35% recorded 

in the operational manual.  By knowing array power and voltage, the charge produced by the 

array was calculated (i.e., array power/array voltage).  Experiments conducted under laboratory 

conditions showed negligible losses during power conversion (i.e., Power In ≅ Power Out).  

Hence, by knowing the charge current recorded by the software and the array power, charge 

voltage is calculated (i.e., array power/charge current).  Figure 5-33 shows recorded array 
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voltage and charge current as well as the calculated charge voltage and array current.  Figure 

5-33 shows the ability of the MPPT charge controller to increase the charge current to yield a 

greater efficiency in charging a battery.   

The MPPT LVR and LVD thresholds were set to 13.6 V and 11 V, respectively.  The targeted 

maximum battery voltage was set to 14 V.  During this evaluation, absorption period in the 

battery charging cycle was not included.  Hence, as soon as the targeted voltage of 14V was 

reached, the charge current supply to the battery was automatically disconnected from the charge 

controller.  The objective was to check if the power supply was going to resume once the battery 

voltage drops but before reaching the LVD.  Figure 5-34 shows the variation of battery voltage 

(V) and array voltage (V) during a typical day.  As shown in the figure, during the period A (2 

hours) and B (5.5 hours), the battery bank was not efficiently charged even if the array voltage 

was higher than the battery voltage.  Figure 5-35 shows a repeat of similar charge and discharge 

cycles during more than 4 consecutive days of operation.  The performance could have increased 

by including absorption period in the charging cycle as long as the array voltage remained at a 

value greater than the battery voltage (Figure 5-31 and Figure 5-32).   

As shown in Figure 5-35, the charge controller was not able to charge the battery bank to up to 

14 V.  The observed maximums were 13.78 V (July 1), 13.56 V (July 2), 13.59 V (July 3), and 

13.33 V (July 4).  The observed lower voltages were 11.61 V (July 1), 11.39 V (July 2), 11.27 V 

(July 3), and 11.16 V (July 4).  Even though it is not documented in the user manual, the data 

recorded during this evaluation shows that there is a relation between LVD and the restart of the 

battery charging cycle.  Because of these reasons, once the maximum battery voltage is reached, 

the charge controller does not charge batteries to keep at the maximum voltage even if adequate 

power is harvested by the panels.  

According to the data collected under specific site conditions with an average solar insolation of 

5.85 kWh/m2
 per day in the month of July, the total charge harvested by the 140 W array was 

50.8 A-hrs/day.  In addition to the solar array efficiency, the MPPT charge controller efficiency 

also contributed to yield a 50.8 A charge.  During the same period that the array was harvesting 

solar energy and charging the batteries; the load consumed was 30 A-hrs.  Hence, only 20 A-hrs 

were remaining to operate the load when the panel was not harvesting energy.  During that time, 
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the monitoring system (the load) consumed an average charge of 2.35 A.  Hence, without any 

losses, the maximum duration that the system can operate using the remaining 20 A-hrs is 8.5 hrs 

(20 A-hrs/2.35 A).  Hence, in order to continuously operate a system that draws 2.35A under 

varying exposure conditions during summer requires a larger solar array, an extended battery 

bank, and exploring the optimum settings of the MPPT charge controller to use solar energy 

efficiently.  In a nutshell, a solar power system needs to be designed based on the power demand, 

duration of monitoring, expected duration for power storage, time of the year, site location 

(latitude and longitude), and other site specific parameters that will reduce solar exposure on the 

panel.  Therefore, the time of year and site location are two critical parameters in the design of a 

solar power system.  As an example, the National Renewable Energy Laboratory (NREL 2014) 

presents the photovoltaic (PV) solar radiation data, and southwest Michigan receives solar 

radiation of about 2 kWh/m2/day during December and January while it is about 4.5 – 5.5 

kWh/m2/day during July and August.  Further, the ambient temperature during December/ 

January falls well below freezing.  Under such exposure conditions, battery power output drops 

to about 60% of its capacity.  Similarly, if the battery temperature is about 950F, battery service 

life is reduced by half.  Therefore, solar array capacity needs to be sized based on the solar 

radiation while the battery bank needs to be sized by considering the exposure condition in 

addition to all other requirements.   
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(a) Variation of array voltage and charge voltage during a charging period 

 
(b) Variation of array current and charge current during a charging period 

Figure 5-33.  Variation of array voltage, charge voltage, array current, and charge current during battery 
charging period 
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Figure 5-34.  Variation of battery voltage and array voltage during a typical day 

 
Figure 5-35.  Variation of battery voltage and array voltage during continuous operation of a load from June 

30 (12:21:38 hr) to July 5 (06:09:58 hr), 2014 
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5.4 SUMMARY 

The following conclusions can be derived from the AE data analysis, fatigue performance 

evaluation, and monitoring system performance evaluation presented in this chapter:  

• The data analysis methods presented in this section provides a sound basis for the use of 

acoustic emission (AE) for monitoring the condition of fatigue-sensitive details and/or 

retrofits.  With a large database generated from operating traffic, tools for identifying and 

separating fracture events from traffic and ambient noise with a high recognition rate are 

provided.  In addition, the associated theoretical basis is presented for providing the 

underlying concepts and assumptions.   

• Examination of the overall AE data provides a basis for adjustment of the data acquisition 

parameters such as gain and threshold.  While the PLB signals performed their role in 

confirming the source location capability, their oversaturation suggests that the gain can be 

reduced, and the threshold is adjusted accordingly to reduce the overall volume of the data. 

• The effective stress that was calculated using the fatigue truck based on WIM data and field 

measured strains shows a significant difference.  High stress ranges from the analytical 

calculations using the WIM data were obtained whereas the actual monitored stress ranges 

were much lower.  This finding highlights the need of developing a comprehensive 

monitoring program for evaluating performance of fatigue-sensitive details especially when 

major decisions such as costly repairs, retrofits, and load postings are to be made.  

• The monitoring system was subjected to outdoor environmental conditions during a period 

of more than a year.  During this period, one of the AE channels was malfunctioned and 

repaired.  A few software compatibility issues were encountered and resolved.  In general, 

the performance of the monitoring system and associated software has been satisfactory. 
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6 SUMMARY, CONCLUSIONS, AND IMPLEMENTATION 
RECOMMENDATIONS 

6.1 SUMMARY AND CONCLUSIONS 

Fatigue is one of the most critical problems for steel bridges as well as for any steel structures 

that needs to be considered during design and operation.  Fatigue cracking is developed at certain 

steel bridge details due to a direct result of the loads (load-induced fatigue) or a deformation that 

is not accounted for during design (distortion-induced fatigue).  The details that are prone to 

load-induced fatigue can be identified using the detail categories presented in the AASHTO 

LRFD (2013) specifications, Table 6.6.1.2.3-1.  Identifying the details that are prone to 

distortion-induced fatigue cracking requires a combined effort of utilizing information in bridge 

files, refined analysis, and experience.  Developing high-fidelity analysis models is vital to 

identify details that are susceptible to distortion-induced fatigue, evaluate the causes of cracking 

or potential for cracking, estimate remaining life of details that are prone to distortion-induced 

fatigue, and to develop guidelines for instrumentation and monitoring.   

MDOT performs inspections of over 200 bridges with fatigue-sensitive details, and was 

interested in identifying technology that can be implemented to evaluate performance of fatigue-

sensitive details and retrofits.  By considering MDOT monitoring needs and the vital role of 

refined analysis, this study was organized into five tasks.  While the outcome of the fifth task is 

presented in Section 6.2, the other four tasks and the findings are described below. 

(1) Review the state-of-the-art and practice literature to identify technologies for a structural 

health monitoring (SHM) system:  

Technology for fatigue-sensitive detail monitoring, technology implementation 

considerations, and retrofit methods for fatigue-sensitive details were reviewed.  After 

evaluating the needs and the state-of-the-art technology, an acoustic emission (AE) 

monitoring system with strain gages was recommended to be one of the most effective 

technology for fatigue event detection (i.e., crack initiation or crack growth monitoring).  AE 

has been successfully implemented in the field and evaluated for continuous monitoring of 

fatigue-sensitive details.  At this time, AE is the only technology that is capable of real-time 

monitoring of fatigue events and providing data for damage location detection.  In addition to 
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the AE sensors, strain gauges are required to evaluate the stress state to calculate the 

remaining fatigue life, and to support AE data analysis by developing a load matrix. 

(2) Select a bridge and perform structural analysis to identify details for monitoring: 

The bridge (S16 of 11015) that carries I-94 EB over Puetz Road, located in Stevensville, 

Michigan, was selected for system implementation and performance evaluation.  After 

reviewing MDOT biennial inspection reports and conducting a field visit to document bridge 

superstructure and substructure condition, the 54.5o skew and 56 ft - 6 in. long span was 

selected.  The span consists of category C’ fatigue-sensitive partial depth diaphragm details 

and a category E fatigue-sensitive welded cover plate detail.  A 3D finite element model of 

the bridge was developed, and hot spot stresses were calculated under Michigan legal loads 

and deck dead load.  Based on the analysis results, two web gap details that are located 

underneath the tuck lane were selected for instrumentation.  

(3) Procure an SHM system: 

As a commercially available implementation-ready SHM system, the TISEC SABRETM 

system comprising the Mistras Group Inc. Sensor HighwayTM II System instrumentation and a 

set of TISEC software post processing modules were selected as the basic AE system.  One 

web gap detail was instrumented with 4 AE sensors and a strain gage while the other detail 

was instrumented with strain gages to calculate hot spot stresses. 

(4) Install and calibrate the system, and analyze data: 

The SHM system was installed, calibrated using pencil lead break (PLB) signals, and 

operated by powering through a solar power system.  Many challenges are documented in the 

literature regarding AE data analysis and results interpretation.  The following steps were 

followed during this study to analyze and interpret the AE data collected by the monitoring 

system: 

• Selected an AE data set with signals exceeding a set threshold. 

• Performed nonlinear mapping (NLM) using one feature domain at a time in the time, 

power, phase, cepstral and auto-correlation domains to visually detect significant naturally 

forming data clusters.  (Note: During this study, out of the 5 domains, the spectral power 

domain produced three significant clusters.) 
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• Performed clustering with the same spectral power domain features.  (Note: Observed 

formation of three distinct clusters.  These clusters were well aligned with the visual 

presentation of the NLM result.  These observations confirmed the observations of NLM 

results.) 

• Separated the AE data set into three distinct clusters based on NLM and clustering 

analysis results.  

• Classified each cluster using statistical and neural network classification methods, and 

selected the data belonging to each class for further analysis. (Note: Use half of each 

cluster for training and the other half for testing the classification algorithms.  All the 

classifiers yielded very high classification rates.) 

• Observed waveform characteristics in time and frequency domains to identify the class of 

signals that resemble the characteristics of signals that emanate due to fatigue events (i.e., 

crack opening) as well as the signals due to structural resonance and background noise. 

• Developed conclusions based on observed signal characteristics, data presented in the 

source location plots, and experience.  

Even though a large number of AE data sets were recorded during monitoring, data analysis and 

interpretation process followed during this study confirmed the nonexistence of the fatigue 

cracks at the monitored detail.  With a large volume of data generated from operating traffic, 

tools for identifying and separating fracture events from traffic and ambient noise with a high 

recognition rate are provided; and the associated theoretical basis is presented.  The signal types 

belonging to each class can be identified by inspecting the waveform features.  Therefore, the 

data analysis capabilities presented during this study provides a sound basis for the use of AE for 

monitoring the performance of fatigue-sensitive details and elements or sections with retrofits.  

Fatigue performance of a welded web gap detail was evaluated using (a) hot spot stress 

calculated using a finite element model loaded with a fatigue truck and (b) strain data collected 

using instrumentation.  The gross weight of the fatigue truck was calculated as 57 kips using 

WIM data.  Hot spot stress was calculated using a refined finite element model as per the 

guidelines presented by the International Institute of Welding (IIW).  The maximum stress range 

at the weld toe was as high as 10.88 ksi.  When combined with the other load effects, the stress 

range well exceeded the constant-amplitude fatigue threshold (CAFT) indicating a finite fatigue 
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life for the detail.  The detail was instrumented with strain gages, and hot spot stress was 

calculated.  The maximum stress range of 1.6 ksi was calculated using measured strain under 

ambient traffic.  When combined with the effects of other loads, the maximum stress range 

barely reaches the CAFT indicating infinite fatigue life for the detail.   

The monitoring system’s ruggedness and reliability was evaluated by installing it on a bridge and 

subjecting it to severe outdoor exposure during a period of more than a year.  During this period, 

one of the channels in the AE board malfunctioned, and was repaired.  Minor issues were 

experienced with the real-time data display and software compatibility.  However, within the 

data acquisition, interpretation, and presentation stream, these issues were resolved for this 

application.  In general, the performance of the monitoring system and associated software is 

satisfactory. 

6.2 IMPLEMENTATION RECOMMENDATIONS 

After carefully evaluating the outcome of the four tasks, a two-tier implementation process is 

recommended as shown in Figure 6-1.  Tier I includes assessment of bridges with repaired 

details.  The first step is to identify the causes of cracking at the fatigue sensitive details through 

analysis and monitoring.  At the same time, the monitoring data and analysis techniques can be 

used to evaluate the performance of the repairs and to develop necessary modifications to the 

structure and the detail to enhance the fatigue performance.  Finally, the best performing retrofits 

can be identified for implementation in similar structures.  

Tier II includes grouping bridges with fatigue-sensitive details based on defined attributes, and 

selecting a representative bridge from each group.  Then, the fatigue serviceability index (Q) is 

calculated using refined analysis and a fatigue truck load.  If Q > 0.2, routine inspections is 

performed.  Otherwise, strains and fatigue events are monitored with two objectives: (1) to 

determine the presence of active fatigue cracks, and (2) to calculate Q using measured strains.  

The monitoring results are used to make repair, retrofit, or inspection decisions.   
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Figure 6-1.  Two-tier implementation process 

Additional recommendations to enhance the two-tier implementation process as well as for 

future research are listed below; 

1. With ICEPACK, AE data interpretation capability was demonstrated.  It is recommended that 

this interpretation capability be implemented in an on-line system with the real-time 

classifiers developed in this study in a prototype system using the remote communications 

capability deployed for this research project.  Software for transforming proprietary data 
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formats from commercial AE instrumentation suppliers is available and pattern classifiers 

can be deployed in real-time versions.  Such a system will provide reliable input with 

minimal interpretation requirements for inspection-based maintenance management.  

2. The project has established that crack signals can be differentiated and separated from the 

substantial noise background using the artificial intelligence/pattern recognition methods 

described in the report.  Hence, it is recommended to develop a fatigue cracking signal 

characteristic database using the typical steel and welds used in Michigan bridges.  This 

database will help further refine the capability of the proposed automated system.  Further, 

availability of signal characteristics to the AE monitoring system data analysts will help 

understanding the type of signals arise from the zones of interest. 

3. Select representative bridges following the recommended process for Tier II implementation 

shown in Figure 6-1.  Implement the AE monitoring system with the on-line signal 

classification system at a half dozen sites to gather data from typical fatigue-sensitive details 

to identify optimal settings and to optimize other deployment issues.  
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