South Florida Freight Advanced Traveler Information System

Architecture and Implementation
As Built Documentation Report

www.its.dot.gov/index.htm
Final Report May 2015
FHWA-JPO-15-215
Notice

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The U.S. government is not endorsing any manufacturers, products, or services cited herein and any trade name that may appear in the work has been included only because it is essential to the contents of the work.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes for continuous quality improvement.
The primary purpose of the As Built Documentation is to provide a description of any modifications made to the original architecture along with justification as to why the architecture was changed. In addition, this documentation provides the following: software and hardware included in the South Florida FRATIS system (including versions, models); system usage (how was the system used); level of effort required to develop the system (staff hour estimates for design, development, etc.); system cost information (upfront costs and recurring costs); and scalability of the system (how can the system be expanded).
Table of Contents

1.0 Project Overview and Purpose of This Document..............................1
 1.1 OVERVIEW OF AS BUILT DOCUMENTATION ... 1
 1.2 OVERVIEW AND PURPOSE OF ARCHITECTURE AND IMPLEMENTATION OPTIONS SUMMARY REPORT .. 1

2.0 South Florida FRATIS Architecture Option 1 3
 2.1 DISPATCHER WEB SITE .. 3
 2.2 DRIVER ON-BOARD DEVICE ... 6
 2.3 EMERGENCY MANAGEMENT TOOL .. 7
 2.4 ASSESSMENT OF FRATIS ARCHITECTURE OPTION 1 9

3.0 South Florida FRATIS Architecture Option 2 11
 3.1 DISPATCHER WEB SITE ... 11
 3.2 DEPOTS AND TERMINAL WEB SITE FOR EQUIPMENT AVAILABILITY 11
 3.3 DRIVER ON-BOARD DEVICE ... 14
 3.4 ASSESSMENT OF FRATIS ARCHITECTURE OPTION 2 14

4.0 Evaluation of Architecture Options ... 16
 4.1 COST AND LEVEL OF EFFORT .. 16
 4.2 OPTION SELECTION .. 16

5.0 Technology Considerations, Standards, and Software Testing Procedures... 17
 5.1 TECHNOLOGY USED .. 17
 5.2 TEST SUPPORT AND PROCEDURES.. 20
 5.3 OPEN SOURCE PUBLICATION .. 21
 5.4 COMPLIANCE WITH DOT STANDARDS .. 22

6.0 South Florida FRATIS As-Built Documentation 23
 6.1 MODIFICATIONS FROM ORIGINAL ARCHITECTURE DOCUMENTATION 23
 6.2 SOFTWARE AND HARDWARE INCLUDED IN THE SOUTH FLORIDA FRATIS SYSTEM AND ASSOCIATED COSTS ... 26
 6.3 SYSTEM USAGE .. 29
 6.4 LEVEL OF EFFORT ... 30
 6.5 SCALABILITY OF FRATIS .. 31
List of Tables

Table 5-1. Technologies Selected for FRATIS Core Components 19
Table 5-2. FRATIS South Florida External Services and Data Feeds 19
Table 5-3. Software Development Test Procedures 20
Table 5-4. FRATIS South Florida System Validation Tests 21
Table 6-1. Changes to Architecture for Drayage Optimization Tool 23
Table 6-2. Drayage Optimization Tool’s Software and Hardware 27
Table 6-3. Emergency Management Smart Phone App’s Software and Hardware ... 28
Table 6-4. Level of Effort to Develop the Drayage Optimization Tool 30
Table 6-5. Level of Effort to Develop the Emergency Management Smart Phone App .. 30

List of Figures

Figure 2-1. South Florida FRATIS Architecture Option 1 Diagram 5
Figure 3-1. South Florida FRATIS Architecture Option 2 Diagram 13
Figure 5-1. South Florida FRATIS Web Infrastructure 18
Figure 6-1. Final South Florida FRATIS Architecture Option 1 Diagram 25
Figure 6-2. Using the Drayage Optimization Tool 29
1.0 Project Overview and Purpose of This Document

1.1 Overview of As Built Documentation

The South Florida Freight Advanced Traveler Information System Architecture and Implementation Options Summary Report has been updated to reflect ‘As Built’ conditions. This has been accomplished through the addition of Section 6 - South Florida FRATIS As-Built Documentation. The remainder of this document is unchanged from the original report.1

The primary purpose of the As Built Documentation is to provide a description of any modifications made to the original architecture along with justification as to why the architecture was changed. In addition, this documentation provides the following:

- Software and hardware included in the SFL FRATIS system (including versions, models);
- System usage (how was the system used);
- Level of effort required to develop the system (staff hour estimates for design, development, etc.);
- System cost information (upfront costs and recurring costs); and
- Scalability of the system (how can the system be expanded).

1.2 Overview and Purpose of Architecture and Implementation Options Summary Report

South Florida is home to over 4 million residents, is visited by over 20 million tourists annually, and is the international trade gateway to the Americas. The greater Miami area is the leading U.S. port of entry for perishables, including flowers and produce. The region is home to 2 of the State’s largest seaports that, combined, handle almost 2 million 20-foot equivalent units (TEU), over 6 million cruise passengers, and serves the petroleum needs of more than 9 counties – including the jet fuel for 3 major international airports. The region is home to an established intelligent transportation system (ITS) program, managed by multiple traffic management centers (TMC), consisting of cameras, message boards, detectors, and analytical capabilities to give real-time information on congestion, construction, weather, and incidents.

U.S. DOT is sponsoring cutting-edge research into freight ITS solutions in the South Florida region that can help alleviate congestion, pollution, and delays while promoting improved freight mobility in the nation’s major freight gateways. The purpose of this project is to develop a prototype of the Freight Advanced Traveler Information System (FRATIS) bundle of applications, and conduct a small-scale prototype demonstration for assessing the effectiveness and impacts of a regional-based FRATIS implementation. “Before” and “After” data will be collected from the small-scale demonstration to support the FRATIS assessment activities. A range of public- and private-sector partners in the South Florida region are participating in FRATIS.

The FRATIS in South Florida will integrate and augment existing regional ITS and private-sector traffic data sources to provide freight-centric, real-time information to support improved truck routing and dispatcher decision-making, encompassing significant improvements in pretrip planning and real-time options for dynamic routing around congestion; and leverage mobile and freight information technologies already being deployed by the private sector, through new applications that will directly improve intermodal freight movement efficiencies, such as reductions in turn times, terminal queue avoidance, and reductions in bobtail movements.

The South Florida FRATIS will also include an emergency management component unique to South Florida. This component will consist of an Android smartphone application (app) designed to facilitate the collection and dissemination of information related to port status, traffic conditions, road closures/openings, fuel availability, supply locations, railroad status, and other pertinent information to assist in pre-event planning and post event recovery. This app would facilitate collection of reconnaissance information in the field, which could be transmitted to emergency management personnel and traffic information systems; the app would also be able to receive data from these sources, allowing for rapid dissemination of critical information to users.

In order to meet these goals and objectives two system architecture options have been formulated. These alternate architectures are documented herein. The options are evaluated by their strengths and weaknesses in relation to the project goals, resources, and timeline. These criteria are then used to select one of the two options for implementation.
The structure of the South Florida FRATIS Integrated tool will have three major components, one for each key user. The three key users are the Dispatcher, the Driver, and Florida Emergency Management officials (including the state Division of Emergency Management, county Emergency Operations Centers (EOC), and FDOT emergency management officials). The system will consist mainly of a series of web interfaces for the different stakeholders and a third-party tool from TomTom Business Solutions. A more detailed description of the system is presented next. Figure 2-1 shows the detailed system architecture.

2.1 Dispatcher Web Site

The Dispatcher Web Site will be set up in such a way that once the Dispatcher has logged in, he can select which User Interface he would like to view based on the task at hand. To enter orders and generate daily itinerary plans for the company’s fleet, the Dispatcher will select the Drayage Optimization Tool. To view travel information, such as weather conditions, roadway and traffic information, railroad terminal waiting times, and fleet tracking and communication, the Dispatcher will select the Real-Time Traveler Information Tool.

The Drayage Optimization Tool will be composed of three basic modules. These modules will provide capability for order collection, data processing, and provide optimized daily itineraries for truck fleet operations. The Orders, Constraints, and Business Rules Entry Module will be populated manually with order data by the company’s Dispatcher, based upon all orders received and those necessary for scheduling.

The order data will include parameters like shipper and consignee locations, freight actions, stop time, time windows, due date, equipment details, and driver data, such as driving availability based on driver’s hours of service. These orders will then be processed by the Customized Optimization Algorithm Module. The Customized Optimization Algorithm Module will use distances and travel time information, including real-time traffic information, traffic incidents, and historical traffic information from Google Maps API and NAVTEQ. Additionally, the optimization algorithm will use the waiting times collected by Acyclica at the FEC Rail Road terminal, using special equipment that will read signals of any truck with active Bluetooth and WiFi cell phones. The waiting times will be collected and analyzed in order to estimate and forecast waiting times to be used by the algorithm when running orders for a given day and time.

The information delivered from these providers will be tied into the Customized Optimization Algorithm. The Customized Optimization Algorithm will recognize the locations and stops required in the order, so that the system can simulate and identify the most efficient routes available for the drayage truck fleet. The optimization algorithm will take into account the time of day and estimate the accompanying traffic levels and waiting times during those times.
windows using historical data. The tool will then provide a near-optimal itinerary for the truck fleet from the Fleet Itinerary Assignment and Review Module, factoring in all of the previously stated parameters.

Regarding truck queue times at the FEC terminal, wait times by time of day will be captured by the Acyclica system during the baseline period and throughout the deployment. By analyzing the collected queue waiting time at the terminal, an estimated average of waiting time at the terminal by time of the day can be determined, which can be used later by the algorithm while it is building the route. When the algorithm runs, it estimates the arrival time at the terminal, then uses the associated waiting time at the terminal gate and adds it to the total time of the route. Since the algorithm minimizes the total route time it will select the solution that has the least waiting time at the rail road considering all other operational constraints.

Data from the external services shown in Figure 2-1 will be used by both the Drayage Optimization Tool and the Real Time Data Traveler Information Tool. For example, Traffic Services (NAVTEQ in this case) will be used in the Roadway & Traffic Information Module, as well as in the calculation of the routes for the solution of the Optimization Algorithm. The Traveler Information Tool and the Drayage Optimization Tool are two independent but complementary components of the system that use the same data providers from the external services. For instance, the Real Time Data Traveler Information Tool will provide real-time information regarding weather, traffic (NAVTEQ), and current waiting times in the port (Acyclica); and the Drayage Optimization Tool will collect orders and provide a solution (itinerary for the fleet), taking into account the route’s historical traffic (from NAVTEQ too) and historical waiting times at the Terminal (collected from Acyclica).
Note: Solid lines represent components and connections of the FRATIS Integrated Tool. Dotted lines represent the Emergency Management app (a standalone system) and related future connections to the tool.

Figure 2-1. South Florida FRATIS Architecture Option 1 Diagram
(Source: Productivity Apex, Inc.)
The Dispatchers can share the Fleet Itinerary Assignment and Review Module with the Drivers by using the WebFleet Services (WebFleet Connect API). The Dispatcher will run the optimization algorithm once, usually in the afternoon, for execution of next-day orders after most of them are received and entered into the system. Additionally, the algorithm could be run more than once a day to update and recalculate the itinerary based on the orders that were completed, stop delays, and new locations of certain drivers; however, updating the algorithm is an additional task for Dispatchers since they need to keep track of orders’ status and the position of each truck and then update the driver with the new modifications in the itinerary.

The Real-Time Data Traveler Information Tool will provide the users with real-time information specific to freight operations, allowing stakeholders in the freight industry – particularly the Dispatcher – to better plan for their operations. This tool will be integrated by a Weather Condition Information Module that will display current weather condition information, warnings, and alerts on specific areas for freight operations. The Weather Condition Information Module will draw this relevant data from a weather information web service, which will provide the information for the aforementioned parties and areas of interest. A Roadway and Traffic Module will use data from regional sources, if available, and data from NAVTEQ web services to provide real-time traffic and accident information, allowing Dispatchers to better plan routes and redirect drivers in case of incidents. The FEC Terminal Information Module will display terminal queue time from third-party systems, such as Acyclica, deployed at FEC terminal. This queue time will be shown in real time, providing both dispatchers and drivers the ability to schedule and plan around both expected and unexpected terminal queues. The Real-Time Data Traveler Information Tool will provide all of this data and information, which will be drawn together through one central web site for ease of accessibility.

The TomTom WebFleet Web Site will allow Dispatchers to track vehicle positions, as well as manage all the addresses for the different customers, terminals, and depot locations. The system will receive the orders coming from the Drayage Optimization Tool and will allow dispatchers to send the orders to drivers through the Pro 7150 Truck Navigation Device. Also, WebFleet will provide the capability to exchange messages with drivers and receive warnings and notifications every time drivers reach their destination, accept orders, and even speed or perform harsh turns. Furthermore, WebFleet will provide detailed reports for the evaluation of driver’s itinerary execution, allowing for tracking of each action performed by the drivers in one minute intervals.

2.2 Driver On-Board Device

The Driver On-Board Device to use in Option 1 consists of the TomTom WebFleet Tracking and Navigation System integrated with the TomTom WebFleet Web Site, the TomTom Pro 7150 Truck Navigation Device, and TomTom Link 510 GPS Tracking Device. This system creates a seamless way to manage orders, communicate with Dispatchers, report positions, and provide dynamic routing all through the TomTom WebFleet Tracking and Navigation System.

The TomTom Pro 7150 Truck Navigation Device will be placed inside the vehicles and will receive the daily itinerary per truck coming from the Drayage Optimization Tool. The Pro 7150 Truck Navigation Device, in collaboration with the Link 510 GPS Tracking Device, will also receive messages from the Dispatcher through the WebFleet web service (WebFleet Connect API). These messages will provide drivers with their scheduled order itineraries, which they can accept and update as they are executed through the touchscreen on the Pro 7150 Truck Navigation Device. These updates will let the Dispatcher know whether or not the Driver has started a job, if the job is in progress, and when the job is completed. Dispatchers can also send and receive
unique messages and notifications through the WebFleet web site between themselves and the drivers. Once a Driver accepts a job order, the Pro 7150 will guide the Drivers to their destination using GPS technology. The device will also offer the capability of dynamic routing, rerouting the drivers in case there is an incident or traffic delay on the road, and will always take into consideration the best and fastest truck route to get to the final destination. The device will also be able to provide Drivers with weather information, provided through the TomTom web service. The TomTom Link 510 GPS Tracking Device and TomTom Pro 7150 Truck Navigation Device will be installed in every truck and will be used to collect data regarding vehicle position, speed, and idling time, which may allow for stop-time data collection at specific locations for algorithm input.

2.3 Emergency Management Tool

The emergency preparedness and response activities element will consist of an Android smartphone application (app) designed to facilitate the collection and dissemination of information related to traffic conditions, road closures, fuel availability, supply locations, and other information useful for emergency preparedness planning and recovery efforts.

The FRATIS app will have two basic capabilities: reporting of conditions and data dissemination (each are described below). It would feed recon information collected in the field by app users to emergency management personnel (e.g., emergency operations centers or EOC, GATOR system) and directly or indirectly to the region’s traffic information systems (e.g., 511/SunGuide). The app would then be fed by EOC status reports and 511 traffic updates, for dissemination to the wider group of users.

Note that the Emergency Management Tool will be a standalone app utilizing a cloud-based server or database to receive and disseminate information to a limited user group to be defined during the test. No integration with other agency systems or with the wider FRATIS system will occur during this test. Rather, the intent is to prove the concept and enable future development of such connections based on stakeholder interest. Testing of the Emergency Management app will consist of simulation exercises with key stakeholders in South Florida using pre-defined scenarios.

Reporting of Conditions

FRATIS users in the field will access the emergency management app through their Android smartphones. Users reporting post-event information would primarily include emergency management officials conducting reconnaissance who would upload information about conditions either using the app or through the app. In order to avoid potential issues with distracted driving, truck drivers will not participate in the uploading of condition information to the app. However, dispatchers will have an opportunity to upload relevant information based on communications with their drivers.

The app will contain preloaded features with drop-down menus and use GPS location information provided by the smartphone. Once a feature has been selected for reporting, any available reports for the same location will be reviewed and provided to the user in real time. Users then will be able to indicate if these conditions still hold true or if the situation has changed. In adding this level, multiple similar reports can be avoided and allow for an easy, consolidated look at conditions. As more reports come in, confirmation of previous reports can also show for how long the conditions existed and yield a better estimate of how long it takes for conditions to return to normal.
In addition, app users will have their GPS location feature turned on. The FRATIS database will ping or collect location information at predetermined intervals to help create “open” status information for all roadways traveled. Following an event, all roadways are classified as “unknown”; this will help update these unknown segments without any action by the users.

All user-generated information would be uploaded real-time (as networks allow) to a FRATIS cloud-connected database which would potentially be available through an open source portal to county, state, and Federal agencies responsible for recon and information dissemination following an event.

Dissemination of Information

The real-time database created and maintained as part of Level 1 (above) will be disseminated in two ways. First, the database will be available through an open source portal for integration with partner systems. Although actual integration with existing emergency management systems will not occur as part of the small-scale test, data summaries – illustrating a real-time database – will be generated to help partner agencies evaluate the potential impact of the system on EOC operations.

Second, the database will feed the app with real-time information that can be accessed and used by app users to navigate the transportation system. Use of GIS-based, color-coded maps will be explored to facilitate these dissemination activities. For trucking purposes, some of the most important and dynamic features that need to be included following an event consist of (but are not limited to):

- Roadway openings/closures;
- Port status;
- Gas station and fuel availability;
- Location and capacity of staging areas;
- Railroad status; and
- Status of key business openings.

This information would be provided to drivers through a push feed with no input required from drivers. Truck drivers using the app would therefore be able to make more informed routing decisions based on real-time road opening status. Dispatchers could also allocate truck resources more effectively if they know the operating status of ports (for instance, the tank farms at Port Everglades), railroads, and key staging areas. If dispatchers or drivers know a particular area is inaccessible altogether, they could avoid going there until conditions improve, focusing instead on affected areas that are accessible.

The emergency management app will receive and transmit data via a cloud-based web services platform. As developed for this project, it will not interact with the FRATIS system; however, such an interface could be developed in the future as a follow-on project or by an outside app developer.
Information Exchange Standards for the Emergency Management App

Where possible, traffic condition data reporting will occur using Traffic Management Data Dictionary (TMDD) standards, following Section 1201 Data Exchange Format Specification (DXFS) protocols. Similarly, if incident details are being reported to a Traffic Management Center (TMC), the app will use IEEE 1512 standard (the app will convert human-entered information to this standard prior to dissemination to the TMC). TMCs receiving information from the app would be responsible for converting into the appropriate format for wider dissemination, such as ATIS. Note that for purposes of simulation testing, regional TMCs would be provided with static reports showing road status and other information for assessing the usefulness of the data for their operations – no interface with TMC systems will occur for this project.

2.4 Assessment of FRATIS Architecture Option 1

The strengths, weaknesses, and short- and long-term implications of Option 1 are summarized below.

Strengths

- Dynamic routing capability by using the TomTom Pro 7150 Truck Navigation Device, which will reroute the vehicle in real-time based on the current traffic conditions and incidents on the road.
- The Tracking and Navigation system from TomTom is a well-established and reliable system.
- Reduced probability of system errors to provide near-optimum solutions for truck itineraries given the requirement of the user to enter all the necessary data parameters from the orders.
- Great capability for tracking and reporting truck status and plan executions.
- The optimization algorithm would use FEC terminal waiting times to calculate near-optimum route itineraries, scheduling more efficient orders based on historic terminal wait times.
- The optimization algorithm would use historical and real-time traffic provided by Google API (free) and NAVTEQ (proprietary) to help generate near-optimal itineraries.
- Seamless communication between driver and dispatcher through TomTom Devices by means of text messages.
- Emergency Management is integrated with the FRATIS Tool.

Weaknesses

- Entering the orders in the Drayage Optimization Tool could be time consuming.
- Considerable training is required for data entry and data collection.
• Route distances, incidents, and traffic data coming from Google API and NAVTEQ cannot be integrated with TomTom system, which implies that dispatcher and drivers may have access to different traffic information.

Short-Term Implications

• The system is developed around an already existing system like TomTom WebFleet, which, by providing a well-documented open API, expedites the development process of the FRATIS Integrated Tool.

• If there are any updates on the TomTom API, these need to be addressed in the FRATIS Integrated Tool to ensure project continuity.

Long-Term Implications

• Functionality of the system depends on the monthly subscription fee to TomTom for the use of the Tracking and Navigation System.

• Functionality of the system depends on the subscription fee to NAVTEQ for accessibility to traffic information.

• Third-party company (TomTom) takes care of the maintenance and guarantees operability of the system for continued functionality of the FRATIS Integrated Tool.
3.0 South Florida FRATIS Architecture Option 2

South Florida FRATIS Architecture Option 2 is in many ways similar to Option 1, but it will instead consist of two major components: the dispatcher web site and the driver’s on-board device. The main differences are:

- The company’s current Order Management System would be integrated with the proposed Data Entry Module for the Optimization Algorithm in the Dispatcher Web Site;
- A Depot and Terminal Web Site would be created to track equipment availability in order to be integrated into the Drayage Optimization Tool; and
- A Mobile Application for Android devices would be used to provide navigation and other on-board services to the drivers.

Figure 3-1 illustrates the architecture for Option 2.

3.1 Dispatcher Web Site

In Option 2, the company’s existing Order Management System will be directly integrated through a web service with the Orders, Constraints, and Business Rules Entry Module within the Drayage Optimization Tool. Assuming the orders from the company’s system contain all the necessary parameters to run the optimization algorithm, these orders will then be processed by the Customized Optimization Algorithm Module, which will use distances and travel time information provided through the Google Maps API and NAVTEQ. The tool will then provide a near-optimal itinerary for the truck fleet through the Fleet Itinerary Assignment and Review Module. Dispatchers can share this information with the drivers, track all the trucks in the fleet, and interact with the drivers by sending them orders from the Fleet Itinerary and Assignment and Review through a desktop user interface or by calling them on the phone.

3.2 Depots and Terminal Web Site for Equipment Availability

A web site for Depots and Terminals in the South Florida Area will be developed in order to capture and track equipment availability. Currently, drayage companies receive updated information about equipment pickups and drop-offs via phone call or email, which makes the planning process difficult. The new system will help capture in real time the accurate location and schedule for picking up and returning empty containers and chassis. This information would be available to dispatchers via the Dispatcher Web Site. Additionally, this information will be used by the Drayage Optimization Tool in order to determine the best location and time to pickup or return an empty box needed or used in an order.
Dispatcher Website

- Web Site Home
- Login Page
- Authentication
- User Interface Selector
- Orders Interface Selector
- Real-Time Data Traveler Information Tool
- Weather Conditions Information Module
- Weather Service
- Mapping Service
- Traffic Service
- FEC Terminal Waiting Times Service
- Depot and Terminal Equipment Availability
- Windows Server Dispatcher Database
- Existing Order Management System Database
- Driver Web Service (API)
 - Order / Job Management
 - Position Reporting
 - Messaging
 - Incidents & Alerts
- Driver On Board Device
 - Android Mobile Application
 - Orders Grid
 - Messages
 - Job Acceptance & ETA
 - Incidents & Alerts

External Services

- Drayage Optimization Tool
- Orders, Constraints & Business Rules Entry Module
- Customized Optimization Algorithm
- Fleet Itinerary Assignment and Review Module
- User Interface Selector
- Information
- Pass
- Weather Conditions Information Module
- Roadway & Traffic Information Module
- Terminal Information Module
- Vehicle Tracking and Communication Module
- Drayage Optimization Tool
- Failure
- Access Denied

Depot and Terminal Website

- Equipment Availability

The U.S. Department of Transportation, Office of the Assistant Secretary for Research and Technology
Intelligent Transportation Systems Joint Program Office

Figure 3-1. South Florida FRATIS Architecture Option 2 Diagram
(Source: Productivity Apex, Inc.)
3.3 Driver On-Board Device

The drivers will be provided with a Tracking and Communication system consisting of a mobile application installed on cell phones with the Android platform, which will capture the truck location and display messages. The mobile application will be installed on the truck drivers’ phones to carry with them on board the truck. It will need to be activated every time the drivers start their workday. The application would collect latitude and longitude location of the driver at any time while performing their labor through the cell phones’ built-in GPS. The application would also allow the drivers to receive their entire itineraries for the day, as well as messages by the dispatcher to communicate important information.

3.4 Assessment of FRATIS Architecture Option 2

The strengths, weaknesses, and short- and long-term implications of Option 2 are summarized below.

Strengths

- May reduce data entry time for data collection due to direct integration with company’s Order Management System.
- The optimization algorithm will use terminal waiting times to calculate near-optimum route itineraries, scheduling more efficient orders based on historic terminal wait times.
- The optimization algorithm would use historical and real-time traffic provided by Google API (free) and NAVTEQ (proprietary) to help generate near-optimal itineraries.
- The system will provide updated equipment availability at the Depots and Terminals to the dispatcher, and this information will also feed the algorithm.
- Seamless communication between driver and dispatcher.

Weaknesses

- Entering the orders in the Drayage Optimization Tool could be time-consuming if the company system does not provide all the necessary parameters per order for the algorithm to run properly.
- Access to the Company’s Order Management System API may not be available.
- It may generate double work for Depots and Terminals, given that it requires their commitment for using a new system in order to provide updates regarding equipment availability – or they may choose not to update the system at all.
- The Emergency Management component is not integrated with the FRATIS Tool.
- The Tracking and Communication system does not provide navigation or dynamic routing capability.
- System does not provide drivers with en-route incident and traffic information.
Limited capability for tracking and reporting truck status and plan executions.

Short-Term Implications

- Updates and bug fixes may have to be published regularly while the system is being used for testing.

Long-Term Implications

- Functionality of the system depends on the subscription fee to NAVTEQ for accessibility to traffic information.
- Once the concept is proved, a better tracking and communication system could be developed offering additional features like navigation and dynamic routing.
4.0 Evaluation of Architecture Options

4.1 Cost and Level of Effort

The following table shows an estimate of the level of effort in man-hours for the software development, testing, and debugging of the proposed architecture options. The below level of effort does not include any management, hardware, or installation.

<table>
<thead>
<tr>
<th>Options</th>
<th>Level of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Florida FRATIS Architecture Option 1</td>
<td>1,500 hours(^a)</td>
</tr>
<tr>
<td>South Florida FRATIS Architecture Option 2</td>
<td>1,900 hours</td>
</tr>
</tbody>
</table>

\(^a\) Does not include man-hours to develop the Emergency Management application – this effort will be more fully scoped once the approach is finalized and a technology developer is selected.

Source: Productivity Apex, Inc.

4.2 Option Selection

The South Florida FRATIS Architecture Option 1 meets all of the expectations stated for the project. Option 1 will deliver all the options and features of the FRATIS application that are stated in the ConOps and the functional requirements and is expected to be the most economical and the most feasible solution within the allotted time and budget. Option 1 also includes the Emergency Management element, which is a unique FRATIS application for the South Florida prototype test.
5.0 Technology Considerations, Standards, and Software Testing Procedures

5.1 Technology Used

Significant consideration has been given in the design of the FRATIS project infrastructure. Modern, secure, and flexible technologies have been selected based upon their time-tested reliability and ease of deployment, while giving strong consideration to maintainability due to future code or service modifications. Figure 5-1 shows the high-level web infrastructure architecture for the FRATIS tool in South Florida.
In designing and implementing the FRATIS Architecture, heavy use of Microsoft .NET technologies and methodologies are leveraged. All operating systems, database servers, web servers, and code utilize Microsoft technologies. External services are employed to provide functionality for traffic/incident reporting, marine terminal waiting times, emergency management functions, and weather conditions. Tables 5-1 and 5-2 illustrate the technologies/data feeds to be used for the FRATIS core and external services respectively.

Figure 5-1. South Florida FRATIS Web Infrastructure
(Source: Productivity Apex, Inc.)
Table 5-1. Technologies Selected for FRATIS Core Components

<table>
<thead>
<tr>
<th>Core System Component</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Site</td>
<td>Microsoft Server Operating System</td>
</tr>
<tr>
<td></td>
<td>Microsoft IIS 7 Web Server (Internet Information Services)</td>
</tr>
<tr>
<td></td>
<td>Microsoft .NET Framework v4.5</td>
</tr>
<tr>
<td></td>
<td>MVC Web Site (Model-View-Controller)</td>
</tr>
<tr>
<td>Object Persistence</td>
<td>Microsoft .NET Framework v4.5</td>
</tr>
<tr>
<td></td>
<td>Microsoft Entity Framework v5</td>
</tr>
<tr>
<td>Database/Repository</td>
<td>Microsoft SQL Server 2008 R2</td>
</tr>
<tr>
<td>Optimization Algorithm</td>
<td>Microsoft .NET Framework v4.5</td>
</tr>
</tbody>
</table>

Source: Productivity Apex, Inc.

Table 5-2. FRATIS South Florida External Services and Data Feeds

<table>
<thead>
<tr>
<th>External Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Reporting and Order</td>
<td>TomTom WebFleet Connect</td>
</tr>
<tr>
<td>Management</td>
<td>SOAP/REST External Service</td>
</tr>
<tr>
<td></td>
<td>• Vehicle reporting</td>
</tr>
<tr>
<td></td>
<td>• Order management</td>
</tr>
<tr>
<td></td>
<td>• Messaging and notifications</td>
</tr>
<tr>
<td></td>
<td>• Driver/route reporting</td>
</tr>
<tr>
<td>Mapping and Traffic Reporting</td>
<td>SOAP/REST External Service</td>
</tr>
<tr>
<td></td>
<td>• Estimated Time of Arrival Calculations</td>
</tr>
<tr>
<td></td>
<td>• Distance Calculations</td>
</tr>
<tr>
<td></td>
<td>• Incident Reporting</td>
</tr>
<tr>
<td>Terminal Waiting Times</td>
<td>SOAP/REST External Service</td>
</tr>
<tr>
<td></td>
<td>• Reporting of Predicted/Actual Waiting Time</td>
</tr>
<tr>
<td>Weather Conditions</td>
<td>SOAP/REST External Service</td>
</tr>
<tr>
<td></td>
<td>• Live Conditions</td>
</tr>
<tr>
<td></td>
<td>• Severe Weather Alerts</td>
</tr>
<tr>
<td></td>
<td>• Weather Forecast</td>
</tr>
<tr>
<td>Emergency Management</td>
<td>SOAP/REST External Service</td>
</tr>
<tr>
<td></td>
<td>• Roadway openings/closures</td>
</tr>
<tr>
<td></td>
<td>• Port status</td>
</tr>
<tr>
<td></td>
<td>• Railroad status</td>
</tr>
<tr>
<td></td>
<td>• Key business openings</td>
</tr>
<tr>
<td></td>
<td>• Location and capacity of staging areas</td>
</tr>
<tr>
<td></td>
<td>• Gas station and fuel availability and locations</td>
</tr>
</tbody>
</table>

Source: Productivity Apex, Inc. and Cambridge Systematics, Inc.
5.2 Test Support and Procedures

A series of tests will be performed over the different stages of the project, during development, predeployment, and postdeployment. This ensures the functionality of the system and demonstrates the effects associated with the system implementation. The acceptance criteria and data to be collected to ensure proper functionality of the system are further described in the Demonstration Plan.

A list of the core programming test procedures to be performed on the FRATIS System during the development stage is presented in Table 5-3.

Table 5-3. Software Development Test Procedures

<table>
<thead>
<tr>
<th>System</th>
<th>Elements</th>
<th>Test Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Tests</td>
<td>Calculation Tests</td>
<td>• Numeric conversions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Geo conversions: latitude/longitude, z/x/y, quadkey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Distance/Euclidean distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Taxicab tests</td>
</tr>
<tr>
<td></td>
<td>Optimization Algorithm</td>
<td>• Pheromone matrix tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Probability matrix tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node connection and timing tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Feasible route solution tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Statistic service tests</td>
</tr>
<tr>
<td>Integration Tests</td>
<td>Data and Database Integration</td>
<td>• Database interactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Entity framework</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can save to backend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can update records on backend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can delete record on backend</td>
</tr>
<tr>
<td></td>
<td>Optimization Algorithm</td>
<td>• Solution testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sample data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Test solution results</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Test for infeasible solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Test output with traffic logic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Test output without traffic logic unit tests</td>
</tr>
<tr>
<td>External Service Tests</td>
<td>Weather</td>
<td>• Can get weather for city</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can get critical advisories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can get wind conditions</td>
</tr>
<tr>
<td></td>
<td>Traffic</td>
<td>• Can get incidents within region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can get traffic image overlay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can estimate travel time with traffic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can fetch historical traffic data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can predict future traffic data</td>
</tr>
<tr>
<td></td>
<td>Location and Distance</td>
<td>• Can get distance between points</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can get travel time between points</td>
</tr>
<tr>
<td></td>
<td>Mapping</td>
<td>• Can plot multiple POI on map image</td>
</tr>
</tbody>
</table>

Source: Productivity Apex, Inc.
In addition to the above tests, a validation test will be performed to assess the impact of the system on current drayage operations in the region. The tests will primarily consist of collecting and comparing data during the pre- and postdeployment phases in order to validate the algorithm impact on scheduling and itinerary creation, as well as to evaluate the effect of using real-time information (e.g., traffic, weather, and terminal waiting time) in making prompt decisions regarding changes to the itinerary plan. An overview of the potential test procedures to execute during the project is presented in Table 5-4. In the predeployment stage, the results of these tests will allow for tweaking and bug fixes to improve the overall performance of the system; after deployment, they will continue to serve this function while also providing data to facilitate the Impacts Assessment.

Table 5-4. FRATIS South Florida System Validation Tests

<table>
<thead>
<tr>
<th>System</th>
<th>Elements</th>
<th>Test Hypothesis</th>
<th>Impacted Variables</th>
</tr>
</thead>
</table>
| Predeployment | Manual Plan versus Algorithm Plan | Validate algorithm performance | • Required fleet size to execute plan
• Bobtail miles
• Total miles
• Number of backhauls
• Driving time utilization
• Unproductive/productive moves ratio |
| | Manual Plan versus Execution | Capture deviation between plan and execution | • Bobtail miles
• Total miles |
| Postdeployment | Algorithm Plan versus Execution | Capture the effect of deploying the algorithm on the execution
Capture deviation between plan and execution
Improve planning process to enhance plan robustness | • Total time for execution
• Number of backhauls
• Driving time utilization |
| Predeployment Execution versus Postdeployment Execution | Measure the long-term impact of deploying the algorithm |
Average daily bobtail miles
Average number of orders per truck
Average number of backhauls
Average daily total miles
Unproductive/productive moves ratio |

Source: Productivity Apex, Inc.

5.3 Open Source Publication

All software developed within this task order will be released as open source through the OSADP, excluding proprietary code or commercial off-the-shelf (COTS) software used in the task order. Proprietary source code or COTS software that will not be published includes:
5.0 Technology Considerations, Standards, and Software Testing Procedures

- Source Code or API Documentation for TomTom WebFleet Connect;
- Nokia Maps API Documentation or Source Code;
- Weather API documentation or Source Code;
- Acyclica (Waiting time system) Source Code;
- Google Maps API or Source Code; and
- Any other third-party, proprietary system used during development.

5.4 Compliance with DOT Standards

All of the software and processes described within this document, to be developed in the system architecture Options 1 and 2, will comply with DOT data, security, and web standards. Security protocols will follow the standards provided in the U.S. DOT Secure Web Application Standards, published February 10, 2006. Since FRATIS will reside on networks not connected to the DOT’s own internal network and is not perceived to be an attractive target of opportunity, a risk rating of “Low” applies here.

Deliverables subject to 508 compliance are defined in the technical proposal. Additionally, the TomTom hardware, available for navigation inside trucks, offers the capability to have received messages read aloud by voice to prevent distracted driving issues.
6.0 South Florida FRATIS
As-Built Documentation

6.1 Modifications from Original Architecture Documentation

As the demonstration project was designed and tested, several changes to the original architecture were necessary to meet partner needs and accommodate real-world conditions. The changes are described below and the revised system architecture diagram is provided in Figure 6-1.

Drayage Optimization Tool

The original architecture for the Drayage Optimization Tool was partially implemented as planned. The following table summarizes the changes and related justifications.

Table 6-1. Changes to Architecture for Drayage Optimization Tool

<table>
<thead>
<tr>
<th>Change</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TomTom PRO 7150 onboard devices were not installed</td>
<td>• FEC Highway Services already had deployed Qualcomm Units and were undertaking a system update during the demonstration; there was an unwillingness to have drivers trained on two systems at once.</td>
</tr>
<tr>
<td>Webfleet Connect API was not used</td>
<td>• The API was not used due to the fact the TomTom PRO 7150 devices were not installed.</td>
</tr>
<tr>
<td>TomTom Webfleet Website was not used to actively dispatch or manage loads</td>
<td>• The Webfleet Website was not used to actively manage loads due to the fact the TomTom PRO 7150 devices were not installed. It was used to manage driver/vehicle profiles.</td>
</tr>
<tr>
<td>Queue detection system was not installed at FEC Hialeah’s gate complex</td>
<td>• FEC Highway Services was briefed on the queue detection system; while staff were interested in the functionality, existing delay/queue at the gates were reported to be insignificant resulting in no perceived benefit.</td>
</tr>
<tr>
<td>Loads were not manually entered into the Drayage Optimization Tool</td>
<td>• During the system design and customization, it was decided the demonstration would incorporate partial integration with FEC Highway Services’ legacy system. Loads were imported electronically into the Drayage Optimization Tool daily via an encrypted FTP server.</td>
</tr>
</tbody>
</table>
Note: Solid lines represent components and connections of the FRATIS Integrated Tool. Dotted lines represent the Emergency Management app (a standalone system) and related future connections to the tool.

Figure 6-1. Final South Florida FRATIS Architecture Option 1 Diagram
(Source: Productivity Apex, Inc. and Cambridge Systematics, Inc.)
Table 6-1. Changes to Architecture for Drayage Optimization Tool (continued)

<table>
<thead>
<tr>
<th>Change</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Time Data Traveler Information Tool was not fully developed</td>
<td>• Port and terminal queue information was not incorporated; port terminal operators were not willing to share delay information and as noted above FEC Highway Services reported insufficient delay to warrant collecting the data.</td>
</tr>
<tr>
<td></td>
<td>• Weather information provided within the system consisted of forecast information for the South Florida region.</td>
</tr>
<tr>
<td></td>
<td>• Roadway and traffic information was provided within the system via Nokia Maps.</td>
</tr>
<tr>
<td></td>
<td>• Weather and traffic data was available to the dispatcher upon query, but automated dissemination to drivers was not implemented due in part to the fact the TomTom PRO 7150 devices were not installed.</td>
</tr>
</tbody>
</table>

Source: Cambridge Systematics, Inc.

Emergency Management Smart Phone App

The original architecture for the Emergency Management Smart Phone App, as defined in the *South Florida Freight Advanced Traveler Information System: Architecture and Implementation Options Summary Report*, July 19, 2013, FHWA-JPO-14-181 (www.its.dot.gov/index.htm) referenced earlier, was implemented as planned.

6.2 Software and Hardware Included in the South Florida FRATIS System and Associated Costs

A variety of software and hardware components were used to develop and implement the SFL FRATIS demonstration. A listing of the software and hardware included in the SFL FRATIS deployment, including costs and any special considerations are provided below.

Drayage Optimization Tool

The software and hardware included and used in the Drayage Optimization Tool as part of the South Florida FRATIS deployment are listed in Table 6-2.
Table 6-2. Drayage Optimization Tool’s Software and Hardware

<table>
<thead>
<tr>
<th>System Component</th>
<th>Technology</th>
<th>Cost</th>
<th>Special Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drayage Optimization Web Site</td>
<td>• Microsoft Server Operating System</td>
<td>$300/month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Microsoft IIS 7 Web Server (Internet Information Services)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Microsoft .NET Framework v4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MVC Web Site (Model-View-Controller)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization Algorithm</td>
<td>• Microsoft .NET Framework v4.5</td>
<td>$40,000 to $80,000</td>
<td>Optimization Algorithm must be customized for each company; this estimate includes development associated with customization; costs are dependent on the complexity of customization.</td>
</tr>
<tr>
<td></td>
<td>• Real time traffic data (Nokia Here maps)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Weather Conditions (Yahoo Weather Services)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database/Repository</td>
<td>• Microsoft SQL Server 2008 R2</td>
<td>$400/month</td>
<td></td>
</tr>
<tr>
<td>Legacy System Data Integration</td>
<td>• .csv Files</td>
<td>$10,000 to $30,000</td>
<td>Integration with legacy system requires mapping, design, development and testing; costs are dependent on the type of integration (e.g., API or no API)</td>
</tr>
<tr>
<td></td>
<td>• Encrypted SSH File Transfer Protocol (SFTP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Webfleet Web Service</td>
<td>• TomTom Link 510</td>
<td>$50,000 including equipment purchase and monthly subscription</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TomTom WebFleet Connect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEC Highway Services Order</td>
<td>• TMW TL2000</td>
<td>$10,000 to $15,000</td>
<td>Participant legacy system was provided as part of test but required data mapping, system resources, and daily data feeds.</td>
</tr>
<tr>
<td>Management System</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Cambridge Systematics, Inc. and Productivity Apex, Inc.
Emergency Management Smart Phone App

The software and hardware included and used in the Emergency Management Smart Phone App as part of the South Florida FRATIS deployment are listed in Table 6-3.

Table 6-3. Emergency Management Smart Phone App’s Software and Hardware

<table>
<thead>
<tr>
<th>System Component</th>
<th>Description</th>
<th>Cost</th>
<th>Special Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Management Web Site</td>
<td>• Apache/PHP/MySQL Server</td>
<td>$650</td>
<td>• Project expansion will require a full server platform to handle the much larger communications and data processing requirements of a full implementation.</td>
</tr>
<tr>
<td></td>
<td>• Free, open source software</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Basic workstation as development server</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Google API’s (free)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Management Database</td>
<td>• MySQL</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Free, open source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Management Phone App</td>
<td>• Google API’s (free)</td>
<td>$0</td>
<td>• Google API’s have limitations (25,000 loads per day, 2,500 geocoding per day), certain types of apps are qualified for grants2.</td>
</tr>
<tr>
<td>Android Devices</td>
<td>• PC/Laptop/tablets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Android Mobile Devices (Galaxy 5S, LG Optimus, Samsung Galaxy Centura, ZTE Valet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Other Mobile Devices (iPhone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Primarily participants used existing equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Android phones purchased were Tracfone and Strait Talk (7 units at $49.99 to $79.99 plus minutes/data for $50 per month)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A variety of devices were used during the demonstration test; this complicated testing as not all devices performed the same.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Cambridge Systematics, Inc. and the University of Washington.

2 See: https://developers.google.com/maps/faq#usagelimits for details. This site states, in part “Applications deemed in the public interest (as determined by Google at its discretion) are not subject to these usage limits. For example, a disaster relief map is not subject to the usage limits even if it has been developed and/or is hosted by a commercial entity.”
6.3 System Usage

The two components of the SFL FRATIS deployment were used differently. A general description of the use of each component is provided below.

Drayage Optimization Tool

The Drayage Optimization Tool was used daily by FEC Highway Services dispatch staff. FEC Highway Service’s legacy system generated a file containing loads for the next day. These files were transmitted to Productivity Apex, Inc. via an encrypted FTP server where the data was imported directly into the Drayage Optimization Tool. FEC Highway Service’s dispatch staff then logged in to the Drayage Optimization Tool web interface to fix identified errors, select loads to optimize, select available drivers, run the Tool to generate an optimized solution, and modify the solution based on additional considerations. Loads were then assigned to the selected drivers through manual data entry into the legacy system. This process is illustrated in Figure 6-2 below.

![Figure 6-2. Using the Drayage Optimization Tool](Source: Cambridge Systematics, Inc.)
In addition to the daily load assignments, the Tool was used periodically to update driver information (new drivers, old drivers, driver endorsements). While endorsements and other key parameters were managed from within the Drayage Optimization Tool web interface, dispatch staff logged directly into the Webfleet Web site to add or remove drivers.

Emergency Management Smart Phone App

The Emergency Management Smart Phone App was used by a variety of public and private entities as part of app training and testing, and finally as part of multiple simulation testing activities. During the development phase, participants were provided hands on instruction and asked to practice using the app. As part of the demonstration activities, three days of tests were conducted where the participants engaged in traditional emergency management preparedness simulations. Participants representing emergency management staff, seaports, railroads, trucking companies, businesses, and the general public used the app throughout the day to generate reports on infrastructure condition, terminal open/close status, business status; and to use the app to receive and use status reports to make routing decisions.

System users accomplished these activities using Android mobile devices, and internet browsers via non-Android devices (smart phones, tablets, PCs, laptops).

6.4 Level of Effort

A general level of effort in hours to develop the SFL FRATIS demonstration project is provided below for both components in Tables 6-4 and 6-5. These hours are divided by the types of activities included in each test component. This takes in to account challenges encountered as part of the development, testing, and use of the systems.

Table 6-4. Level of Effort to Develop the Drayage Optimization Tool

<table>
<thead>
<tr>
<th>Staffing Categories</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager</td>
<td>864</td>
</tr>
<tr>
<td>Software Developer/System Designer</td>
<td>1,906</td>
</tr>
<tr>
<td>System Tester</td>
<td>637</td>
</tr>
<tr>
<td>System Users</td>
<td>450</td>
</tr>
<tr>
<td>Total</td>
<td>3,858</td>
</tr>
</tbody>
</table>

Source: Cambridge Systematics, Inc.

Table 6-5. Level of Effort to Develop the Emergency Management Smart Phone App

<table>
<thead>
<tr>
<th>Staffing Categories</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager</td>
<td>465</td>
</tr>
<tr>
<td>Software Developer/System Designer</td>
<td>1,048</td>
</tr>
<tr>
<td>System Tester</td>
<td>273</td>
</tr>
<tr>
<td>System Users/Stakeholders</td>
<td>512</td>
</tr>
<tr>
<td>Total</td>
<td>2,299</td>
</tr>
</tbody>
</table>

Source: Cambridge Systematics, Inc.
6.5 Scalability of FRATIS

A key element of this SFL FRATIS demonstration project is to identify the scalability of the components. A brief discussion is provided below for each component.

Drayage Optimization Tool

The Drayage Optimization Tool consists of an optimization algorithm that must be customized for each participating trucking company. This is critical because each company has its own load management system, database variables, area of geographic coverage, customer service requirements, and customer locations. All of these factors are considered confidential and must be used to develop a unique algorithm that will optimize a single company’s system.

The scalability of this tool is controlled by the number of companies that want to participate, and by the level of participation in each company. Regarding the number of companies, the unique interface described above will be necessary for each participant. There may be some economies of scale for companies located in the same geographic area regarding access to real time traffic data and terminal queue/delay data, but each company will require a customized interface and algorithm specific to their operation. Regarding level of participation, a larger trucking company with multiple locations can deploy the system in multiple locations and may be able to link their locations to better interface long haul movements, as appropriate.

Regarding the technical expansion requirements, the FRATIS prototype is hosted in the Amazon Web Services (AWS) cloud. Leveraging the power and benefits of Microsoft’s IIS Web Server, Microsoft SQL Server and the .NET Framework, the application must be hosted on Microsoft Server operating systems. As a virtualized hosting environment, it is simple to take a “snapshot”, or disk image, of the existing servers and redeploy them to alternate geographic locations, or to scale both horizontally and vertically. For horizontal scalability, and to provide a fault tolerant solution hosted in multiple availability zones, the Elastic Load Balancer (ELB) will be used. The use of a load balancer allows for incoming requests to be distributed among a cluster of IIS Web Servers, and for ongoing health checks to be performed against each server instance, removing unhealthy servers from the pool. Similarly, the MS SQL database server can be hosted using Amazon’s Relational Database Service (RDS), which offers out-of-box master/slave database configurations across multiple geographic regions. Finally, a distributed caching system can be implemented using the Elasticache service, which is powered by open source Memcached, to further improve service performance. These services are available as follows: http://aws.amazon.com/elasticache/ and http://memcached.org/.

Emergency Management Smart Phone App

The Emergency Management Smart Phone App was developed to allow for ongoing expansion and improvements, which makes it a scalable product. While the project’s initial intent was to build a single system App, it quickly became apparent that a more widely available system would be beneficial if the system were to be more widely adopted. Consequently, one of the main goals of the software development effort was to develop a system which uses mostly web based technologies because they are widely supported by most mobile, desktop and server devices. This allowed for the simplification of future developments for other types of devices and make a unified interface that can easily be expanded for prototyping purposes and ultimately as part of a permanent product.
This project relied on a “rapid-prototyping” approach to the design of the software. This was a good choice, in that the nature and functionality of the software changed multiple times during the project, and the development team was able to respond to the majority of those requested changes. At the same time, this “ever changing prototype” approach means that – given the final functionality – many of the early design decisions were not optimal. This is to be expected in the development of any prototype. Consequently, now that the project team has a better understanding of what the final product should look like, and what functions are desired by the users, future work should include rebuilding a large portion of the code from the ground up. A list of the major coding areas that should be revised to make the software fully operational and therefore scalable are listed below.

- **Alternate Map Source** – An important improvement would be to provide support for offline map caching so that the app would be completely usable offline.

- **Alternate Map Engine** – A map engine that is pseudo 3-dimensional that allows the map to tilt and pan with the device would greatly improve the user friendly factor for the app. Another improvement is that the Google Maps web APIs cannot be used offline but there are many other free solutions that do.

- **Map Drawing Revisit** – To fix the performance issues in regards to markers (both for reported events and for GPS vehicle speed points) it would be useful to revisit some of the core functions that are responsible for displaying data on the screen to find more CPU efficient ways to cache, process, and display these markers.

- **Improvements to Reports** – Report taking (e.g., submittal of RECON reports) is perhaps the most important feature of the system and currently works for the purposes which were described during the prototyping process, but two specific improvements should be made to make the reporting function easier to use and more comprehensive. These improvements are: the ability to select the report location on mobile devices by clicking on the map, and the ability to select an “Area” that is affected by the event being reported, so that issues like widespread damage or flooding can be more effectively reported.

- **Administrator Interface** – The system needs to have an Administrative Interface to be able to perform functions that were done manually in the prototype version of the app. The administrative functions need to include: User Management Functions; Report Editing; Change System Configuration Settings; and Edit/Delete Reports

- **Routing** – It would be nice if a basic routing function could be added that would take into consideration blocked roads and damaged/flooded areas. This feature would require extensive effort.

- **Google Play Services** – As noted earlier, the current system requires that the Android device have an up-to-date version of Google Play Services. When this did not occur, the software did not work, and many phones tested did not have up-to-date Google Play Services. Re-writing the software to use the built-in Android APIs, rather than Google Play Services would provide a more robust software outcome. Also, if the most widespread deployment of the system was desired, future work should consider developing low level APIs for other operating systems such as the iOS (Apple Devices), or the Windows Phone or Blackberry operating systems.