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Abstract 
 

Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and 
contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These 
increased loads can contribute to impairment of streams in developed areas and ultimately to Lake 
Champlain. In this study we selected six watersheds that represent a range of road types (gravel and 
paved) and road densities (rural, suburban, and urban) present in Chittenden County, one of the most 
developed areas in Vermont. The location and density of road networks were characterized and quantified 
for each watershed using GIS analysis. Monitoring stations in each watershed were constructed and 
instrumented to measure discharge and water quality parameters continuously from spring through early 
winter. Storm event composite samples and monthly water chemistry grab samples were collected and 
analyzed for total nutrients, chloride, and total suspended sediments. Results from this study show that 
road type and road density are closely linked with the level of impairment in each watershed. Total 
phosphorus and total nitrogen from storm event composite samples and monthly grab samples 
significantly increased along a gradient of increasing road network density. Chloride concentrations 
increased several orders of magnitude along this same gradient. With the exception of Alder brook where 
total suspended sediment (TSS) concentrations tended to be high, there were no significant differences 
in TSS concentrations between rural and developed watersheds. The event TSS concentrations in the rural 
streams were slightly higher than we expected and the event and base TSS concentrations in the 
developed streams were somewhat lower than we expected, suggesting that the unpaved roads in the 
rural watersheds might contribute to stormwater runoff loads and that sediment control, at least, in the 
developed watersheds might be fairly effective. The overall results from this study show that local roads 
are significant source of impairment for streams in the Chittenden County area. Most of these roads are 
municipal roads that are not under to management of the Vermont Agency of Transportation. Thus, local 
actions will be necessary to control runoff from these roads. 
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Introduction  

Project Justification 

Numerous studies have been conducted that clearly describe the impact of urbanization at broad 
(catchment) to fine (parking lot) scales (as reviewed in Paul and Meyer 2001).  These studies have 
quantified and described myriad physical, biological, and chemical impacts to streams collectively known 
as the urban stream syndrome (Meyer et al. 2005).  Typically characterizations of impacts from 
development are based on the percentage of the watershed covered in impervious surfaces (%TIA), the 
most common variable used to estimate the level of development and associated impacts.  Population 
metrics are also used to describe development level and potential stream impacts.   

The effects of dense urbanization on watersheds are well studied.  Less research has been done for 
watersheds that are characterized by lower levels of urbanization (Wang et al. 2003). In studies of densely 
urbanized area it is not uncommon to consider 30-40% TIA to be a moderate level of development 
(Chadwick et al. 2006). By contrast, the level of development in smaller, less populous states like Vermont 
is lower; on the order of 10-20% TIA found in the most developed watersheds in Vermont. 

However, despite the lower level of overall development in Vermont’s urbanized areas (measured as TIA), 
roads still constitute an important fraction of the developed area and may be an important source of 
impairment to local streams. The specific impacts of roads are not often isolated in studies of urban and 
suburban development in moderately developed areas. Road network information is easily and publicly 
available and the close association with overall watershed development indicates that road networks may 
be a valuable tool to quickly estimate potential surface water impacts within a watershed.  Specifically, 
we reason that: 

 Road surfaces are major sources of runoff and stormwater pollutants.   

 Roads are frequently one of the largest sources of watershed imperviousness, especially in the 
low to moderate levels of development most commonly found in New England.   

 Roads are frequently associated with drainage infrastructure that provide direct or expedited 
pathways for runoff to enter streams.   

 Road networks are simple to map and can be consistently applied to a wide range of watershed 
development levels.   

Local Context 

In the Lake Champlain Basin and Chittenden County, sediment, nutrients, and road salt are the pollutants 
that most often are cause for management concern. Because the stormwater generated from impervious 
surfaces itself alters the hydrology and geomorphology of streams and rivers, the State of Vermont’s new 
stormwater control approach focuses first on controlling the discharge of water in developed watersheds 
(VT ANR 2005). The water as well as the sediments, nutrients, and other pollutants in stormwater alter 
habitat quality and the species composition of streams and rivers (e.g., Waters 1995, Jackson et al 2001, 
Stupenuck et al. 2002, Par and Mason 2003, Sullivan et al. 2006) but equally, the increased pollutant load 
moving downstream frequently leads to impaired receiving waters, as it the case for Lake Champlain 
(VTDEC and NYDEC 2003). To make good decisions about transportation futures, managers need 
information about the magnitude of these problems and how different road types and densities affect 
stream networks and receiving waters.   
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Project Goal, Objective and Hypotheses  

This project was a part of the University of Vermont Transportation Research Center Signature Project #1.  
The primary goal of this component of the overall project was to evaluate the effects of the transportation 
network on water quality and freshwater ecosystem integrity. The specific objective (5c) of this project 
within the Signature 1 framework was to evaluate the effects of road type and road density on water 
quality, stream stability, and the pollutant load exported to Lake Champlain. We hypothesized that:    

 Metrics generated from relatively simple spatial analysis of road networks and streams can be 
used to predict water quality impacts and stream conditions at a watershed scale. 

 Water quality indicators will decrease along a gradient of increasing road density. 

 Unpaved roads will generate proportionately more sediment loading than paved roads. 

Methods 

Study Area 

Chittenden County is located in northwestern Vermont and is closely connected to two of the most 
important aquatic resources within the state: Lake Champlain and the Winooski River. Stormwater runoff 
and water quality impacts on receiving waterbodies are a primary concern for residents and municipalities 
within the county. Chittenden County contains the highest density of development in Vermont. Despite 
the fact that these “urban” areas are less developed than other larger developed and commercial centers 
in the United States, segments of several of the streams the Chittenden County area have been listed by 
the state of Vermont as “impaired” by stormwater runoff. The state has developed total maximum daily 
load (TMDL) plans for some of these streams and is actively working to reduce the stressors that are 
causing the reported impairments. 

The watersheds selected for this study spanned the range of the road network density and road type 
found within Chittenden County. Watershed areas range from 13 to 53 km2 and stream order is 3rd or 4th.  
General watershed characteristics and land use summary are shown in Table 1 in order of increasing 
development and road network density (NOAA, 2006). A map of the study watersheds and monitoring 
station locations is shown in Figure 1.   
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Table 1. Watershed and landuse characteristics for the study area.  In this and subsequent tables the 
watersheds are organized from least to most developed. 

Watershed 
Size 

(km2) 
Order Towns Forest Agriculture Developed 

Water/ 
Wetland 

Snipe 13.1 4 
Richmond, Jericho, 

Bolton 
95.4% 1.8% 0.1% 1.6% 

Mill 29.8 3 Jericho, Bolton 88.0% 7.4% 2.1% 1.2% 

Allen 16.8 3 Williston 43.7% 41.1% 7.3% 4.6% 

Alder 25.5 4 Essex, Westford 44.2% 40.9% 10.4% 2.9% 

Muddy 53.3 4 
Williston, Shelburne, 

S. Burlington, St. George 
38.4% 40.7% 10.7% 7.2% 

Potash 18.2 3 S. Burlington, Burlington 16.9% 25.8% 54.3% 1.7% 

 

 The two rural watersheds (Mill Brook and Snipe Island Brook) are primarily forested and contain 
low densities of gravel and dirt roads. Both watersheds contain low densities of single-family 
homes and minimal agriculture. Both watersheds are steeper and the main stream channels are 
located in narrower valleys typically shared with roads.  

 Alder and Allen Brook drain primarily suburban watersheds with moderate forest and agricultural 
cover.  The lower portion of Alder Brook closely follows the circumferential highway (I-289).  Both 
watersheds drain areas of suburban residential development typical to Chittenden County.   

 Muddy Brook has the most variable land use in this study.  The upper watershed (southern) drains 
rural and suburban areas, the lower watershed (northern) drains dense commercial areas and has 
a high concentration of major roads (Rt. 2 and I-89) immediately upstream of the monitoring 
station.   

 Potash Brook is one of the most developed watersheds in Vermont and represents the highest 
degree of residential and commercial development in this study.  The entirety of I-189 and 
significant stretches of I-89, Rt. 2, Rt. 7, and Rt. 116 area located within the watershed.  
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Figure 1. Location of the monitoring stations and the portions of each watershed included in this study. 
Potash Brook drains directly to Lake Champlain; the remaining five watersheds drain to the Winooski 
River. 

Monitoring Station Location, Construction, and Instrumentation 

Locations for continuous monitoring stations were identified based on channel stability, substrate, 
protection from flooding, access, and security. Several potential sites were identified on each stream and 
landowners were identified using property maps.  Landowner permission was secured for all sites.    

Continuous monitoring stations were constructed in each watershed. Stations included ISCO 6712 auto-
samplers with ISCO 720 pressure transducers and YSI 6600 OMSv2 sondes with temperature, specific 
conductance, and optical dissolved Oxygen. Weather stations were installed near the monitoring stations 
and were instrumented with HOBO micro-stations, photosynthetically active radiation sensors (PAR), and 
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tipping rain buckets (0.2mm increment). ISCO auto-samplers were installed above the flood-prone 
elevation and were tethered and locked to trees. Pressure transducer and suction lines were housed in 
flexible plastic conduit and were staked to the bank with rebar and mounted to a PVC carrier staked to 
the stream bottom with 4’ rebar. YSI sondes were bolted in to heavy PVC holders that were staked to the 
stream bottom in the thalweg with 4’ rebar. Equipment was installed as early as flow levels allowed and 
remained in place until the onset of anchor ice in late December. Monitoring stations in all watersheds 
were operated from June-December 2008, April-December 2009, and April-December 2010.   

Continuous Monitoring and Maintenance 

Stream temperature, specific conductance, temperature, dissolved oxygen saturation, and stage height 
were measured continuously at a 5 minute interval.  YSI sondes required weekly maintenance for DO 
calibration and battery changes.  The sonde was wrapped in a wet towel and following temperature 
stabilization the DO saturation was calibrated using the current barometric pressure from a handheld 
digital barometer, following the manufacturers listed calibration methods.  Conductivity sensors were 
calibrated in the lab using 3 standards (1, 100, 1000 us/cm) at the beginning of each field season and 
checked for drift at the end of each season.   

Discharge Rating Curves  

Stage/Discharge rating curves were established for each stream using approximately 10-15 manual area-
velocity discharge measurements taken at a range from baseflow to highest wadeable flow levels.  
Discrete discharge measurements were collected with a Sontek Flowtracker 2D ADV.  Rating data were 
plotted in Microsoft Excel and fitted with single or two-part power curves following standard USGS stream 
rating methods (Turnipseed and Sauer 2010).   

Storm Event Sampling 

ISCO auto-samplers were programmed to collected stage triggered, time paced, single composite samples 
into a 9L plastic jug. Stage triggers were programmed before each storm event and a triggering threshold 
was selected based on current flow conditions and predicted storm forecast. Samplers collected 36, 200ml 
samples into the composite jug. We fully acknowledge that volume-weighted sampling would be 
preferable for the purposes of this study. However, in most cases we did not have good information about 
the discharge characteristics of these streams prior to study.  In addition, it has been our experience that 
it is logistically difficult to maintain good flow-weighted sampling, simultaneously, in several different 
streams. Thus, there is a high risk that samples and data will be lost at one or more sites during any given 
storm. Given that our primary objective was a comparative study of differently developed watersheds and 
not a quantitative study of area-specific loading from the study watersheds, we concluded that this 
tradeoff was acceptable. It is likely that by compositing samples taken over regular time intervals during 
storms, we have underestimated the true loads. Thus, the actual differences among our study watersheds 
may be larger than we have reported. Time pacing for the 200ml samples was programmed based on 
predicted storm intensity. We found that a 30 minute sampling interval was ideal for most storms and 
successfully captured the rising limb, peak, and most of the falling limb without over sampling any 
particular period of the storm. A total 15 to 25 storm events were successfully sampled each year.   

Monthly Grab Sampling 

Monthly water quality grab samples were collected for December 2008 through January 2011. These 
samples were collected using a clean 9 liter jug and were collected at low flows to characterize baseflow 
and season water quality conditions.   
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Water Sample Processing and Analysis 

Composite storm event and baseflow grab samples were split into sample bottles for each analyte and 
were stored at the Rubenstein Lab until analysis. 150ml plastic bottles were filled and frozen for Total 
Phosphorus. 50ml conical tubes were filled, acidified with HNO3, and refrigerated for Total Nitrogen.  
Chloride samples were collected in 10ml scintillation vials and refrigerated. TSS samples were collected 
from the 9 liter jugs immediately following vigorous shaking. Water was filtered through pre-combusted 
47mm Type 934-AH GF filter paper using a hand vacuum pump and Nalgene 500ml vacuum filter 
apparatus. Filtered sample volumes ranged from 30ml to 5,000ml depending on sediment load in samples. 
Filter papers were dried for at least 24 hours in pre combusted and weighed aluminum tins. Dried samples 
were allowed to cool in a dessicator and then reweighed. Samples were then combusted in a 5500C muffle 
furnace for 4 hours and re-weighed.    

Frozen total phosphorus (TP) samples were thawed in the refrigerator and were analyzed on the Lachat 
auto-analyzer using the Quick Chem Method 10-115-01-4-F, determination of total phosphorus by flow 
injection analysis colorimetry (acid persulfate digestion method). Total nitrogen (TN) samples were 
analyzed using Lachat Quick Chem method 10-107-04-4-A, determination of nitrate+nitrite in manual 
persulfate digests. Chloride samples were diluted so that all samples would range from 0-10 mg/l Cl.  
Dilutions were 1:3 for rural streams and up to 1:50 for urban streams. Dilutions were determined based 
on specific conductance readings at the time of sample collection. Chloride samples were analyzed by the 
University of Vermont Plant and Soil Testing Laboratory on an ion chromatograph.   

All TP and TN samples were run twice and a 10% replicate and standard were used. Any samples with 
greater than 10% difference were re-run automatically by the Lachat auto-analyzer. Replicates that were 
greater than 10% different from the original sample were re-run. Chloride samples included a 10% 
replicate. 

Benthic Macroinvertebrate Sampling 

Benthic macroinvertebrates (BMIs) were sampled at all sites during the late fall index period (September-
early October 2010) following the Vermont Department of Conservations (VTDEC) Biomonitoring 
protocols (VTDEC 2004). We partnered with the VTDEC Biomonitoring sampling to share in sampling effort 
and analysis costs. VTDEC collected annual samples at Potash Brook, Muddy Brook, and Alder Brook, and 
BMIs were picked and identified at the VTDEC lab. We collected and processed samples from Allen Brook, 
Mill Brook, and Snipe Island Brook and picked samples were analyzed by Rapid Watershed Associates 
(Schenectady, NY). BMI community composition was characterized through several metrics to describe 
diversity, pollution tolerance, and similarity to reference communities. 

Rapid Habitat Assessment 

Rapid Habitat assessments (RHA) were completed at all sites following the VTDEC guidelines (VTDEC 
2009). Each stream was assessed over an approximate 100m reach centered on the monitoring station.  
All categories were scored from 0 (worst) to 20 (reference) for each RHA category.   

GIS Analysis 

Watersheds for each study stream were delineated using the ArcHydro tool in ESRI ArcMap 9. All data 
layers were clipped to watershed boundaries. Road networks were characterized based on road surface 
type from the VTRANS TRANS_RDS database. Class 4 roads were manually classified based on ground 
observations and aerial imagery. Road networks were also characterized based on proximity to streams.  
Road crossings within each watershed were counted and road lengths were measured within 100m 
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buffers from the stream centerline. We selected a 100m buffer to best capture the portion of roads that 
directly impact neighboring streams as described by Schiff and Benoit (2007). 

We conducted a simple analysis of total impervious area and road impervious area in the study 
watersheds. Total percent impervious area (%TIA) was estimated for each watershed using the method 
describe by Fitzgerald (2007). Road impervious area was estimated for each watershed by manually 
measuring width for at least 50 manually selected road segments for each of the four AOT classes within 
each watershed (highway; paved and ditched; gravel and ditched; gravel/dirt no ditch). A mean width was 
determined for each surface type by watershed and was multiplied by total length of each road class to 
estimate total road area within each watershed. This calculation method indicated that road area 
represented over 90% of the total imperviousness within the Snipe Island Brook watershed. Due to the 
small size and low level of development we manually measured all non-road imperviousness (less than 
100 driveways and rooftops) within the watershed and adjusted the %TIA from 0.5% to 0.76% accordingly.  

Data Analysis 

Continuous data (5-minute) from ISCO and YSI sensors were converted to Microsoft Excel-readable 
formats and was compiled into annual master datasets.  All data were manually checked for errors. YSI 
files were trimmed by 1 to 2 readings on the start and end to remove data points influenced by sonde 
temperature changes due to downloading and calibration. Daily mean values were calculated for all 
continuous variables. Daily mean streamflow data were used to calculate flow duration curves and 
additional metrics for baseflow contribution and the flood-peak index (Hauer and Lamberti, 
2006).Additional metrics were calculated for stream temperature data (maximum daily mean, maximum 
7-day mean, and mean of the daily maxima for first 3 weeks of July) as described in Wang et al. (2003).  

All water quality data were summarized to generate mean concentrations for storm event and baseflow 
grab samples. Mean values were tested for significant differences between sites for baseflow and storm 
event samples, and for differences between baseflow and storm event concentrations within each 
watershed using ANOVA (α=0.05). A multivariate analysis with Spearman’s ρ correlation was selected to 
test the strength of road network variables as predictors for physical, biological, and chemical responses 
(α=0.05 and 0.1).  

Results 

GIS Results 

Road networks within each watershed were characterized by length within each major AOT category 
(highway; paved and ditched; gravel and ditched; gravel/dirt no ditch) (Table 2). The Potash Brook 
watershed contains the several major roads and highways (I-89, I-189, US 2, US 7, and VT 116) a high 
density of residential roads, and a very low density of unpaved roads. Muddy, Allen, and Alder Brooks all 
drain portions of highway and major roads, large networks of residential roads, and small to moderate 
densities of unpaved roads. Mill and Snipe Ireland Brooks drain predominantly gravel and dirt roads with 
only a small stretch of paved roads in the upper Mill watershed.  

 

          Table 2. Length of road (km) by type in each study watershed. 

Watershed Highway Paved 
Gravel 

w/ ditch 
Gravel/Dirt 

Paved 
Total 

Unpaved 
Total 
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Snipe Island 0.0 0.0 4.7 3.0 0.0 7.7 

Mill 0.0 1.4 29.2 2.9 1.4 32.1 

Allen 4.3 46.9 16.0 0.4 51.2 16.3 

Alder 8.7 30.9 5.3 0.0 39.6 5.3 

Muddy 10.2 81.5 25.6 1.0 91.7 26.6 

Potash 21.8 91.8 0.9 0.0 113.6 0.9 

 

Road network metrics and watershed impervious cover were calculated to quantify potential road and 
development impacts to streams as shown in Table 3. The number of intersections between road 
centerlines and the VHD stream centerline layer were identified to calculate the density of stream/road 
crossings in each watershed. The road density within 100m of the stream centerline indicates a higher 
proportion of roads in the rural watersheds closely follow streams. This is due to topographic constraints 
in the steeper watersheds that frequently restrict road construction to stream and river valleys. Total 
impervious area percentages characterize the overall development level for each watershed and show 
the elevated percentage of watershed imperviousness represented by roads in moderately developed 
watersheds with higher densities of major roads (Allen and Alder) and in low development rural 
watersheds (Snipe). 

 

Table 3. Characteristics of the road network in each study watershed. 

Watershed 
(Stream/Road 

Crossings) /km2 
Road Density 

(km/km2) 
Road Density within 100m 

stream buffer (km/km2) 
%TIA 

%TIA from 
roads 

Snipe Island 0.53 0.63 0.34 0.8 86.2 

Mill 0.74 0.99 0.49 1.6 33.1 

Alder 0.78 2.20 0.55 4.5 51.8 

Allen 1.31 2.56 0.60 4.1 59.6 

Muddy 1.33 2.22 0.57 6.0 30.3 

Potash 3.41 5.41 1.62 22.0 22.2 

Stream Flow  

Discharge estimates were collected across a wide range of wadeable flows for all six monitoring stations. 
We developed one-part or two-part rating curves to best fit discharge (y) to stage height (x) shown in 
Table 4. Changes in channel dimensions typically located near bankfull at five of the monitoring stations 
(Allen, Mill, Muddy, Potash, and Snipe) required the use of a lower and upper rating curve to best fit flows 
above and below bankfull (Figure 2). 

 

Table 4. Discharge rating curve equations. 

Watershed Low Curve R2 High Curve R2 Transition Stage (m) 



UVM TRC Report #14-013 
_____________________________________________________________________________________ 

12 
 

Snipe y=79.53x6.13 0.98 y=10.28x4.17 0.96 0.35 

Mill y=7.32x2.09 0.99 y=17.22x2.93 0.96 0.36 

Alder y=32.46x3.00 0.99 n/a  n/a 

Allen y=59.79x4.14 0.96 y=10.2x2.79 0.97 0.28 

Muddy y=16.08x3.50 0.98 y=9.0x2.93 0.99 0.36 

Potash y=0.341x0.232 0.98 y=0.399x0.495 0.99 0.30 

 

 

Figure 2. Two-part rating curve for Mill Brook 

 

Discharge above the extent of the rating curve measurements is estimated and there is increasing 
potential for error in the estimates at the highest flows. We calculated the total proportion of time each 
station was above the extent of our rating curves and these values ranged from 0.14% (Potash) to 2.4% 
(Snipe) with a mean of 1.4%.  

Flow duration curves based on area normalized hourly mean flows (m3/sec/km2) were calculated for each 
site to characterize changes in peak and base flows based on watershed imperviousness (Figure 3). We 
observed a large decrease in baseflow discharge in the three most developed watersheds as described in 
Booth and Jackson (1997) and CWP (2003). However, we did not observe increases in peak flow volumes 
in the developed watersheds. This discrepancy is likely due to runoff attenuation in stormwater retention 
structures throughout the developed watersheds. The undeveloped watersheds are also steeper, 
increasing peak discharge. Allen Brook was observed to have consistently lower mean discharge (Q50) 
and baseflow (Q90) than the other study watersheds. This is likely due to the well-drained sandy soils 
prevalent in much of the study watershed. The baseflow contribution metric (Q90/Q50) and the flood 
peak index both show a shift towards reduced baseflow and increased flood peaks relative to mean flows 
in the watersheds with higher road density and development (Table 5). 
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Figure 3. Flow duration curves based three-year hourly flow data.  

 

       Table 5. Flow duration analysis summary.  

Watershed Q10 
Q50 

Median 
Q90 

Baseflow 

Q90/Q50 
Baseflow 

Contribution 

Q10/Q50 
Flood Peak 

Index 

Snipe 0.018 0.006 0.0030 0.484 5.97 

Mill 0.030 0.010 0.0038 0.392 7.90 

Alder 0.024 0.006 0.0028 0.438 8.43 

Allen 0.019 0.002 0.0003 0.145 65.52 

Muddy 0.021 0.006 0.0012 0.225 16.94 

Potash 0.021 0.004 0.0012 0.300 17.67 

 

Continuous Water Quality Results 

The YSI multi-parameter sondes collected readings of water temperature, dissolved oxygen, and specific 
conductivity at a 5 minute interval. We collected approximately 140,000 sets of these readings at each 
monitoring station over the duration of the project. These continuous data allow for observation of 
interactions between numerous parameters over a discrete rainfall event, and the characterization of 
water quality data over longer periods of time. Figure 4 shows 10 days of continuous data from Potash 
Brook. Regular daily fluctuations in temperature and dissolved oxygen are observed until a moderate 
storm on 9/23/09. The storm event causes a small spike in water temperature as runoff is produced on 
hot surfaces (i.e. pavement and rooftops). Conductivity is very high Potash Brook throughout the summer 
as a result of high salt loading in groundwater which will be discussed later in this section. Conductivity 
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levels are highest at low discharges when the groundwater contribution is greatest. The conductivity 
drops during the storm event as rainwater and surface runoff increase discharge. 

 

Figure 4.  Typical water quality parameter values from continuous monitoring sondes with a moderate 
storm late on 9/23/09 

Water temperature and dissolved oxygen concentration data were analyzed for minimum and maximum 
values for discrete readings, daily means, and seven day means as described in Wang et al. (2003). We 
observed increased maximum temperatures, decreased dissolved oxygen concentration, and large 
increases in the daily ranges for both of these parameters (Table 6). 
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Table 6. Water temperature and dissolved oxygen concentration summary data. 

Watershed 
Max 

Temp ᵒC 
7-day Max 

Temp ᵒC 
Max Daily 

Range Temp ᵒC 
Min DO 
(mg/L) 

7-day Min 
DO (mg/L) 

Max Daily Range 
DO (mg/L) 

Snipe 22.0 20.0 6.7 8.4 8.8 1.8 

Mill 25.2 21.9 7.3 7.9 8.5 1.9 

Alder 27.5 23.0 7.7 5.9 7.6 5.8 

Allen 28.9 25.3 8.5 5.4 7.0 3.8 

Muddy 31.1 26.5 7.1 6.7 7.7 5.2 

Potash 27.4 23.8 6.2 6.2 8.0 6.0 

 

High temperatures and low dissolved oxygen concentrations are major stressors for aquatic life in 
developed watersheds. We observed increased maximum temperatures in the more developed streams; 
however this is strongly influenced by shading of the channel within the reach immediately upstream of 
the monitoring station. Dissolved oxygen concentrations are closely linked with temperature and 
biological activity within the stream. The more developed watersheds had lower minimum oxygen 
concentrations and much higher daily variation in concentration. The minimum concentrations we 
observed in these streams are at or near the requirements for sensitive fish and macroinvertebrate 
species (Meador et al. 2008).  

Baseflow and Storm Event Water Quality Results 
Baseflow grab samples were collected 2-4 times at each station in 2008 and then once a month at all 
stations from January 2009 through January 2011, for a total of 28-29 samples per watershed. Time-paced 
composite storm event samples were collected for 26 – 35 storms at each station. Baseflow 
concentrations of TP were lower than storm event concentrations at all sites and significant at Alder and 
Potash (Figure 5). Storm event concentrations were significantly higher at Alder and significantly lower at 
Mill compared to the remaining watersheds. Baseflow TP concentrations were significantly higher at 
Muddy and lower at Snipe, with an additional grouping of Muddy and Allen significantly higher than Mill 
and Snipe.  

Concentrations of total nitrogen in baseflow and storm event samples were generally similar for each site; 
Snipe had significantly higher storm event concentrations (Figure 6). Tukey-Kramer comparison of means 
for both baseflow and storm event samples had three significant groups: Potash was highest; Alder, Allen, 
and Muddy were moderate; and Mill and Snipe had the lowest concentrations.  
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Figure 5. Mean total phosphorus concentrations for storm event and baseflow grab samples (error bars 
represent +/1 1 SE) 

 

 

Figure 6. Mean total nitrogen concentrations for storm event and baseflow grab samples (error bars 
represent +/- 1 SE) 

Chloride concentrations were significantly higher in the watersheds with paved roads and higher 
development (Figure 7). Potash had significantly higher concentrations for baseflow and storm event 
samples. Muddy had significantly higher storm event concentrations than Alder and Allen, and Mill and 
Snipe had the lowest concentrations by over an order of magnitude. Baseflow concentrations produced 
the following Tukey-Kramer groupings in decreasing order: Potash, Muddy and Alder, Alder and Allen, and 
Mill and Snipe. Chloride concentrations were significantly higher in baseflow samples at Potash compared 
to storm event samples. The high concentrations of chloride in the watersheds with large networks of 
paved roads are directly linked to the extensive use of road salt during icing months. The highest chloride 
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concentration (795 mg/L) in Potash Brook was observed in February; however levels remained very high 
throughout the summer suggesting that groundwater contributions are a major source of chloride. Similar 
seasonal patterns were also observed in the remaining watersheds with paved roads. Concentrations in 
Mill and Snipe were consistent throughout the year indicating minimal contributions from road 
maintenance.  

 

 

Figure 7. Mean Chloride concentrations for storm event and baseflow grab samples (error bars 
represent +/- 1 SE) *Note logarithmic scale on y-axis 

Total suspended sediment concentrations were significantly higher during storm events for all watersheds 
(Figure 8). In contrast to the nutrient and chloride results, Alder Brook has significantly higher storm event 
sediment concentrations and Alder and Muddy have significantly higher baseflow concentrations to the 
other watersheds. The two rural watersheds with primarily dirt/gravel roads have statistically similar 
sediment concentrations to watersheds with much higher densities of roads and development. 
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Figure 8. Mean total suspended sediment concentrations for storm event and baseflow grab samples 
(error bars represent +/- 1 SE) *Note logarithmic scale on y-axis 

  

Macroinvertebrate Results 
The total number of unique macroinvertebrate species (richness) and the number of unique species from 
pollution sensitive Ephemeroptera, Plecoptera, and Trichoptera (EPT) families both decreased in the 
watersheds with higher road density and development (Table 7). The Index of Biotic Integrity (BI) 
summarizes the overall pollution tolerance of the BMI community and also followed the same pattern 
with scores increasing (more pollution tolerant) with increasing road density and development. PMA-O1 
is a comparison of the sampled BMI community to the reference community for a given stream type and 
was least similar in the most developed watersheds and most similar for Mill Brook.   

 

Table 7. Benthic macroinvertebrate community results. 

Watershed 
Species 

Richness 
EPT Richness BI PMA-O1 

Snipe 46 27.5 3.14 73.1 

Mill 47.5 29 2.80 89.2 

Alder 40 19 3.88 64.5 

Allen 42.5 19 4.02 73.2 

Muddy 41 16 4.52 63.7 

Potash 39 13 5.45 56.1 
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RHA Results 
The rapid habitat assessment results show a decrease in RHA rating and condition in the developed 
watersheds (Table 8). The RHA was conducted on the reach immediately upstream and downstream of 
the monitoring station, weighting the importance of the local condition.  Sediment deposition was a 
common impact in the developed streams with decreased riffle and pool variability and increased 
embeddedness. Bank stability impacts were important at several sites and are frequently a response to 
increased peak flows.  

 

Table 8. Rapid habitat assessment results 

Watershed RHA Rating RHA Condition Impacts 

Snipe 72.5 Good Substrate, Buffer 

Mill 89.0 Reference Deposition, Bank Stability 

Alder 68.5 Good Pools, Deposition, Bank Stability 

Allen 72.5 Good Pools, Channel Alteration, Buffer 

Muddy 53.5 Fair Substrate, Channel Alteration, Buffer 

Potash 60.5 Fair Substrate, Pools, Bank Stability 

 

 

Road Network/Water Quality Parameter Relationships 
We tested the strength of several road network metrics for predicting water quality, BMI characteristics, 
habitat quality, and the relationship with watershed imperviousness. Spearman’s ρ correlation results that 
are significant at α=0.10 are shown in gray, significant correlations are shown in black: * denotes p=0.05, 
** denotes p=0.01, and *** denotes p<0.001 (Tables 9-11). Total watershed imperviousness (%TIA) is a 
strong predictor of water quality, BMI, and habitat quality. This supports findings from numerous studies 
on urbanization and watershed impacts (multiple citations). Stream crossing density was the most 
powerful road network predictor of water quality, BMI, and stream habitat quality. Correlations with 
road/stream crossings were significant for 7-day maximum temperature, maximum dissolved oxygen 
range, event and baseflow concentrations of TN and Cl, baseflow TP concentration, and BMI biotic 
integrity, EPT richness (negative). As expected, the road network metrics and watershed imperviousness 
are all correlated, however the lower level of significance between imperviousness and road density 
within a 100m stream buffer highlights the potential for underestimating impacts of development in 
steeper watersheds where a large percentage of the imperviousness may be very close to the receiving 
waterbody. 
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Table 9. Road network metric correlation with water quality results 

 

 

Table 10. Road network metric correlation with BMI and habitat results 

 

 

Table 11. Road network and watershed imperviousness correlation 

 

 

Selected regression plots from the road network metric analysis are shown in Figures 9-11. These 
regressions show the significant positive correlations of stream/road crossing density with TN and Cl storm 
event and baseflow concentrations and the significant negative correlation with EPT richness.  

Predictor

Stream Crossings 0.83 * 0.83 * 0.83 * 1.00 *** 0.89 * 0.83 * 0.95 **

Road Density 0.77 0.77 0.77 0.94 ** 0.77 0.83 *

100m Road Density 0.77 0.77 0.77 0.94 ** 0.77 0.83 *

%TIA 0.94 ** 0.94 ** 0.94 ** 0.94 ** 0.94 ** 1.00 ***

%Road TIA -0.8 * 0.83 * 0.8 0.83 * 0.83 * 0.83 * 0.77

Min DO
Max 

Temp 7d

Max DO 

Range
TP TN Cl

Event Concentrations Baseflow Concentrations

TP TN Cl

Predictor

Stream Crossings -0.77 -0.93 ** 0.94 ** -0.75

Road Density -0.84 * 0.89 *

100m Road Density -0.84 * 0.89 *

%TIA -0.89 * -0.93 ** -0.83 * 0.89 * -0.84 *

%Road TIA -0.77 -0.75 0.77

EPT 

Richness

Species 

Richness PMA-O1 BI RHA

Predictor

Stream Crossings --

Road Density 0.94 ** --

100m Road Density 0.94 ** 1.00 *** --

%TIA 0.94 ** 0.83 * 0.83 *

%Road TIA 0.83 * 0.95 ** 0.95 **

Stream 

Crossings

Road 

Density

Road Density 

100m
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Figure 9. Regression of stream crossing density and TN concentrations 

 

 

 

 

Figure 10. Regression of stream crossing density and Cl concentrations 
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Figure 11. Regression of stream crossing density and EPT Richness 

Discussion 
Over the years, stormwater has become a politically charged issue in Vermont and throughout the 
country. Although stormwater is generated on all surfaces every time it rains or snows, the transportation 
network (roads, parking lots, and railways) represents a large percentage of the impervious surfaces 
across that landscape that can increase the peak flow and contribute significant quantities of pollution to 
surface waters (Eyles and Meriano 2010, Kang and Marston 2006). While important progress has been 
made to treat and reduce pollution from point sources, less progress has been made to address nonpoint 
sources of pollution, and for many streams, rivers, lakes and estuaries, this source of pollution is now 
responsible for the majority of the load (US EPA 2002, 2006). We calculated a series of road density 
metrics that can be used to easily and consistently quantify potential water quality impacts in a watershed. 
All of the road density metrics correlated with a range of observed impacts; however the density of 
stream/road crossings was the most successful predictor for impacts. This is in part due to the inherent 
proximity of road surfaces and drainage infrastructure located at or near every crossing. Drainage 
infrastructure such as culverts and ditches directly channels stormwater runoff to streams and has greater 
impact than other impervious surfaces in the watershed (Booth and Jackson 1997, Schiff and Benoit 2007, 
Wheeler et al. 2005). Undersized structures and associated channel alterations near these crossings can 
cause major physical impacts such as sediment transport interruption, bank erosion, buffer degradation, 
and deposition (Lane and Sheridan 2002, Wheeler et al. 2005).  

Concentrations of phosphorus and nitrogen increased along the gradient of development and road 
network density. These findings were consistent with numerous studies in urbanized watersheds 
(Cunningham et al. 2009, Noll and Magee 2009, Paul and Meyer 2001, and Wheeler et al. 2005). We also 
found large increases in chloride concentrations in baseflow and storm event samples. These findings are 
supported by studies in Vermont and other cold-weather regions where deicing chemicals are applied 
throughout the winter (Cunningham et al. 2009, Denner et al. 2009, and Kelly et al. 2008). 

Total suspended sediment concentrations were not correlated with development or road network 
density. The presence of unpaved roads in the rural watersheds increased suspended sediment 
concentrations to levels that were statistically similar to the most developed watersheds (Schoonover et 
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al. 2007). Major transport of sediment from unpaved roads has been described in several studies; 
however these watersheds primarily contained logging roads (Jordan and Martinez-Zavala 2008, Lane and 
Sheridan 2002, Sheridan and Noske 2007).  

We did not observe significant changes in the hydrologic regime in our watersheds, however decreased 
baseflow likely increases temperature and dissolved Oxygen impacts that were significantly correlated 
with road network metrics (Herb et al. 2008, Richter et al. 1996, and Wang et al. 2003). Riparian buffer 
degradation also contributes to the increased water temperature and daily ranges we observed 
(Angermeier et al. 2004, Schiff and Benoit 2007, Walsh et al. 2005). 

The levels of imperviousness and road network density in our six study watersheds are lower than levels 
previous studies have classified as “moderate”, however these watersheds are representative of the full 
range of developed areas of Vermont (Chadwick et al. 2006). The relatively low level of total 
imperviousness likely increases the proportional impact of roads within each watershed. Despite the 
relatively low level of development in our study watersheds, our results showed significant physical, 
chemical, and biological impacts associated with increasing watershed imperviousness and road network 
density metrics. Most of our findings closely follow the results of numerous studies that link watershed 
imperviousness to a suite of physical, chemical, and biological impacts known as the “urban stream 
syndrome” (Cunningham et al. 2009, Denner et al. 2009, Noll and Magee 2009, Paul and Meyer 2001, and 
Wheeler et al. 2005). These results suggest that additional safeguards are necessary to reduce the impacts 
of roads and associated development on streams in the Chittenden County area of Vermont. 
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