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ABSTRACT 

i 

ABSTRACT 
 

This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set 
project sponsored by the Pennsylvania Department of Transportation (PennDOT). This project was 
solicited under Contract #355I01, Transportation Research, Education, and Technology Transfer 
ITQ, Category #05 – Environmental Research. The goal of this project is to develop a set of 
statewide predictive models to assist the planning of transportation projects. PennDOT is developing 
tools to streamline individual projects and facilitate Linking Planning and NEPA, a federal initiative 
requiring that NEPA activities be integrated into the planning phases for transportation projects. The 
purpose of Linking Planning and NEPA is to enhance the ability of planners to predict project 
schedules and budgets by providing better environmental and cultural resources data and analyses. 
To that end, PennDOT is sponsoring research to develop a statewide set of predictive models for 
archaeological resources to help project planners more accurately estimate the need for 
archaeological studies. 
 
The objective of Task 7 is to discuss the results of the project, expand on the methodology used, 
explore the results, and provide recommendations for model use and future directions. 
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EXECUTIVE SUMMARY 
 
This summary covers the Statewide Archaeological Predictive Model Set project sponsored by the 
Pennsylvania Department of Transportation (PennDOT). This project was solicited under Contract 
#355I01, Transportation Research, Education, and Technology Transfer ITQ, Category #05 – 
Environmental Research. The goal of this project is to develop a set of statewide predictive models to 
assist the planning of transportation projects. PennDOT is developing tools to streamline individual 
projects and facilitate Linking Planning and NEPA, a federal initiative requiring that NEPA activities 
be integrated into the planning phases for transportation projects. The purpose of Linking Planning 
and NEPA is to enhance the ability of planners to predict project schedules and budgets by providing 
better environmental and cultural resources data and analyses. To that end, PennDOT is sponsoring 
research to develop a statewide set of predictive models for archaeological resources to help project 
planners more accurately estimate the need for archaeological studies. 
 
The outcome of this project, contained in seven task-specific reports, documents the development of 
numerous statistical models created to assess the sensitivity of the landscape for the presence of 
Native American archaeological sites. The seven task reports of this project are organized as follows: 
Task 1, background literature review; Task 2, organization of study areas by physiography; Task 3, 
pilot model study; Task 4, models and results for Regions 1, 2, and 3; Task 5, models and results for 
Regions 4, 5, and 6; Task 6, models and results for Regions 7, 8, 9, and 10; and Task 7, final project 
synthesis. Each of Tasks 4, 5, and 6 document the bulk of this undertaking by describing the data 
preparation, model building process, and results for each of 10 regions that constitute the 
Commonwealth of Pennsylvania. The Task 7 report synthesizes the methodologies, illuminates the 
model building process, discusses model validation and findings, and offers possible avenues for 
future research. 
 
To achieve the goal of this project, statistical models were developed to analyze the landscape at 
known Native American archaeological sites in Pennsylvania and extrapolate identified patterns to 
all areas of the state. The model building process included the use of three statistical machine 
learning algorithms: backwards stepwise logistic regression based on the Akaike Information 
Criterion, Multivariate Adaptive Regression Splines, and the Random Forest algorithm. These 
algorithms were employed in a best-practices framework that included feature selection, cross-
validation for model parameterization and selection, and evaluation on independent samples. This 
process was repeated for each of 132 study areas that cover the extent of Pennsylvania. The final 
sensitivity layer derived from this process is a composite of predictions from the algorithm that best 
characterized that data for each area of the 132 study areas. In addition, the predictive output of each 
of the algorithms will be returned to PennDOT for use in future studies. 
 
The models that resulted from this project accurately describe the pattern, to the extent one exists, of 
the relationship between archaeological sites and the environmental variables used to model them in 
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each subarea. There is, of course, room for improvement in these models through new or refined 
archaeological site location data, different predictor variables, and refinements of the modeling 
methodology. As a first best-approximation, the results of this project are successful in identifying 
areas of the landscape with heightened sensitivity for Native American archaeological material. They 
are appropriate for use on a planning scale of approximately 1:24,000 to assess the relative sensitivity 
for Native American archaeological material when comparing transportation alternatives. 
Additionally, these models are useful in the development of field survey priorities over broad areas. 
The models and sensitivity layers that result from this project cannot and do not replace the need for 
actual archaeological field survey. Field testing of these models is critical in understanding the true 
false-negative error rate and in evaluating the utility within different environments. Finally, these 
models are not static or final assessments of archaeological sensitivity. These models should serve as 
a starting point for field testing and future iteration based on test results and improvements in 
statistical techniques and our understanding of the dynamics of archaeological settlement systems.  
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1 
INTRODUCTION 

 
The purpose of this project is to use the existing Pennsylvania Archaeological Site Survey (PASS) 
file database to produce a baseline model for the sensitivity of pre-contact and contact Native 
American site-presence throughout the entire Commonwealth using Archaeological Predictive 
Modeling (APM). The resulting assessments of archaeological sensitivity will be used by 
transportation, planning, and other cultural resources management (CRM) practitioners to make 
better-informed and more consistent assessments of prehistoric archaeological sensitivity, with the 
ultimate goal of saving time, money, and sparing cultural resources. 
 
Building from the previous tasks in this project—a review of APM literature (Task 1: Harris 2013a), 
designation of study regions (Task 2: Harris 2013b), the creation of a pilot model for central 
Pennsylvania (Task 3: Harris 2014), and modeling ten regions throughout Pennsylvania (Task 4: 
Harris et al. 2014a; Task 5: Harris et al. 2014b; Task 6: Harris et al. 2014c), this document is the final 
report summarizing the data, methods, findings, and conclusions of the project. This report builds off 
the content in the previous six reports and is designed to be a synopsis of the project and a summary 
of the modeling methodology that developed throughout. The previous task reports stand as 
individual volumes documenting more specific details of the project. Where relevant, the previous 
task reports are referenced in this report and, when needed, cogent concepts are reviewed for clarity. 
The full documentation of this project is contained within the seven-volume collection of all task 
reports.  
 
The major accomplishments of this study are: 1) a complete statewide raster layer of archaeological 
sensitivity aggregated from 132 spatial subareas and the output from 528 statistical models; 2) a 
semi-automated, scalable, and parallelized model-building process capable of reproducing this 
analysis or repeating this analysis with a wide variety of statistical model types; and 3) a major 
update to the practice and practical considerations of APM using modern statistical methods.  
 
To the first point, the final model sensitivity raster layer covers the roughly 46,000 square miles of 
the Commonwealth, with 1,065,669,566 (10.5 × 10.5-m) cells each coded as a 1, 2, or 3 for low, 
moderate, and high sensitivity, respectively. This layer is the mosaic of the 132 subarea models, each 
of which is a selection from the candidate models derived from the Logistic Regression (LR), 
Multivariate Adaptive Regression Splines (MARS), or Random Forest (RF) algorithms, or a 
proportionally weighted additive sum model created for each subarea. This mosaic represents an 
expression of the relationships between 18,226 known prehistoric site locations1 and a number of 

                                                            
1 A total of 18,265 archaeological sites with prehistoric components were recorded in the PASS data base as of 
October 2013, but only 18,226 of these were used in the modeling process (listed in Appendix A in the Task 2 
report). Sites that were either too small (less than a single raster cell) or too large (indicating that they were 
imprecisely drawn) were eliminated from the modeling pool because of the bias they would introduce. 
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environmental factors drawn from a pool of 93 total variables. The pattern in this layer is a direct 
reflection of the similarity of landforms at which we have recorded sites in the past and is therefore 
inductive. That is, the individual models that were aggregated to make the final layer were computed 
directly from known site locations and make few assumptions about where sites “should” 
 be versus where we have recorded them. For the intended purpose of planning for transportation and 
other infrastructure projects at the appropriate scale (approximately 1:24,000), this layer is a valid 
tool for qualifying and quantifying the general landscape trends in Native American pre-contact 
settlement patterns as expressed in the Pennsylvania Archaeological Site Survey (PASS) database. 
 
Second, the methodology that was created to carry out this project was specifically developed to be 
repeatable and reproducible. This is in opposition to many GIS and analytical tasks that rely on 
serialized manual processes with little documentation and lots of repetition with room for error. The 
codified process built for this project breaks the analysis into modular chunks that can be used and 
reused without reinvention. In this system, additions to the analysis such as new model types, 
variables, variable selection, etc., can be added into an existing framework. The components of this 
framework require minimal supervision once the correct parameters and data are set. The framework 
is efficient in that routines are optimized for faster data processing, and the model parameterization is 
parallelized to take full advantage of processor resources. Further, the code base is set up to be used 
on a remote server, such as Amazon AWS, with minimal adjustment.  
 
Third, the APM created for this project (Pennsylvania model) is one of the largest and most detailed 
ever published. The only other statewide model of this type is for Minnesota at roughly twice the size 
of Pennsylvania. The first number of model iterations for the Minnesota model (Mn/Model) used 30 
× 30 m as a base resolution as opposed to the approximately 10 × 10-m cells of this model. Even 
with half the land area, the Pennsylvania model contains more than twice the number of raster cells 
as the Phase III Mn/Model. The Phase IV Mn/Model is planned to also use 10-m resolution base data 
and recursive portioning algorithms (Oehlert and Shea 2007). The Pennsylvania and Minnesota 
models stand alone in the area covered and data density. The Pennsylvania model is among the first 
published use of both the MARS and RF (Märker and Heydari-Guran 2009; Heilen 2013:5; Menze 
and Ur 2013) algorithms in archaeology, and certainly the first on this scale. Aside from using new 
and interesting techniques, however, this project sought to create a bridge from more traditional 
methods, theories, and assumptions to the use of modern data mining and Machine Learning (ML) 
algorithms and associated tools such as cross-validation (CV), variables selection, and bootstrapping. 
Through the background literature research presented in the Task 1 report, the use of the more 
traditional logistic regression, and the reliance on many of the theoretical boundaries established in 
the seminal work of Judge and Sebastian (1988), this project is not simply a use of the latest 
technology to do what has been done before. Additionally, building from the more recent and 
statistically informed work of Verhagen, Kammermans, and Oehlert and Shea this project benefits 
from the trials and errors encountered throughout the development of APM. It is hoped that not only 
does this project result in a useful product, but also serves as an object for both critique and 
improvement to further the discussion of modeling in archaeology. 
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DATA QUALITY 
 
Of all the project components, site location data is by far the most important. Obviously, without 
knowing where sites are, it would be more than difficult to project where they could be. However, 
beyond the obvious, the characteristics of locational data for archaeological sites (drawn from the 
PASS database) governed the choices of methods and imposed numerous constraints on analysis. 
Simply, the data dictated the methods. Some of the most pressing characteristics of archaeological 
locational data are discussed below, in no particular order: 

Bias 

The majority of PASS sites (65%, n = 14,415) are reported voluntarily, from unsystematic survey, or 
from unknown sources, generally by amateur archaeologists or those with knowledge of where others 
have found artifacts. These reports range from highly specific to very general in terms of locational 
and attribute accuracy. The smaller number of PASS site locations (35%, n = 7,727) recorded by 
systematic survey, often by professional archaeologists through the environmental review process, 
are generally accepted to be more accurate on average, but still have quite a range of data 
completeness. One thing that is shared by all forms of site recordation is a general bias toward 
locating sites where sites are expected to be located, leading to a bias in site location. Attempting to 
limit this project’s analysis to only those sites derived from systematic survey would greatly diminish 
the available data, disregard nonsystematic site records that may be very accurate, and ignore the fact 
that systematic survey is not necessarily significantly less biased than judgmental survey. 
 
Neither professional nor nonprofessional archaeologists conduct archaeological surveys as pure 
random samples—doing such would go against many of the reasons to do what they do (e.g., 
recreation or project specific compliance). On the contrary, both sets of archaeologists often focus on 
landscapes that match their mental model for site preference. Further, environmental compliance 
surveys are often requested or required in areas considered to be high potential based on the same 
mental model. Often generalized to identify location near water, on level and dry ground, this mental 
model is developed through experience and training, and many archaeologists have a very keen sense 
of where a site may be given information about a landscape. Likely this mental model, which has 
been in some fashion always part of archaeological survey, often works because it can key into some 
portion of the true pattern of site location. However, these same archaeologists who have good “site 
radar” all know that sometimes a site can be found where least expected. 
 
This anecdotal situation outlines what is perhaps the greatest issue in inductive APM, that the model 
will reinforce the bias found in the data. This is a valid fear and is difficult to avoid for any method 
that is based on true observations—inductive, deductive, and otherwise. However, it is not a fatal 
flaw. Similar to the archaeologist’s experience, the methods used in APM seek to find the pattern in 
where we know sites are located and project that pattern to new areas. Further, these methods are 
able to analyze a much larger number of site locations and locational factors to derive an estimated 
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pattern based on likelihood to vast geographic areas, a task beyond human intuition. That the known 
pattern is a potentially biased representation of the true pattern is the reason that models are 
developed to be tools that aid in decision making, not to be the arbiter of decisions (Kamermans 
2008). However, the acceptance of bias as a fact of the data does not license the model builder to 
simply mimic what is already known. As will be discussed in the methods section of this report, the 
use of variance reducing methods that add to the decrease in generalization error are a way of finding 
a broader pattern with the site location data.  

Low Prevalence 

Prevalence is simply a measure of how common a given condition (site-presence) is within a larger 
population. When considering how common archaeological sites are within a geographic population 
that includes the entire area of the State of Pennsylvania, they have a very low prevalence. From the 
point of view of this project, prevalence is measured as the number of site-present cells (~10 × 10-m) 
within the universe of cells that compose the state. To quantify this, this project considered 2,024,242 
site-present cells from a population of 1,056,897,903 cells in the entire state for a prevalence of 
0.0019—a very low prevalence. A more realistic view of site prevalence can be gained by calculating 
the same, but for only sites within areas that have been surveyed through the environmental review 
process. This leads to 277,649 site-present cells within 27,841,595 surveyed cells, for a prevalence of 
0.01. Stated in another way, this means that 1% of surveyed areas are mapped as a prehistoric 
archaeological site or site component. If we are to assume that 0.01 is the true prevalence of 
prehistoric sites within the state, then we can model the probability of finding a site anywhere within 
an area requested for environmental review survey in the future as 0.045, or 4.5%. 
 
What all this equates to is that prehistoric archaeological sites are rare occurrences within 
Pennsylvania. This fact has large implications in the modeling process, the basics of which are that 
negative data can easily overwhelm the positive data if precautions are not taken. Fortunately, many 
other fields of study (e.g., medical screening, fraud detection, spam filtering, etc.) encounter this 
same issue and have developed methods to help address issues associated with highly imbalanced 
data. These methods include stratified resampling, down sampling, Synthetic Minority Over-
Sampling Technique (SMOTE) sampling, class probability weights, and others. The methods section 
of this report discusses the methods employed in this project, as does the Task 4 report (p. 78). In 
addition to more technical modeling issues, the fact of low prevalence also affects model 
interpretation. Essentially, a model predicting an occurrence of such low prevalence will tend to 
reveal a rather sparse estimate that may not be in line with expectations. In other words, for many 
purposes an archaeologist may feel uncomfortable with a model that predicts only 2% of a large area 
as highly sensitive for prehistoric archaeological sites. However, from a statistical perspective this 
may be a very generous assessment. In addition to some of the sampling solutions listed above, this 
project uses model probability thresholds that take prevalence into account. 
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Nonmechanistic and Noncontinuous 

Simply put, sites can exist anywhere and everywhere, and the reasons they are there are only partially 
known to archaeologists. Sites are nonmechanistic in that there is no underlying reducible 
mechanism that leads to sites at a given location. In reality there are likely a number of definable 
mechanisms, each composed of countless individual human thoughts and intentions, interlaced with 
even more numerous and unknowable stochastic processes that would need definition to begin to 
formalize a site settlement system. Surely, there are mathematical and statistical ways to approximate 
or simulate some fundamentals of such a system, but the simulation of past cultural dynamics “in 
silico” is not the goal of this project (see Kohler and van der Leeuw [2007] for examples of this 
approach). Further, archaeological sites are noncontinuous beyond a local scale such that, unlike 
many natural phenomena, site locations cannot be reasonably assumed to be spatially continuous. In 
other words, based on our limited knowledge of settlement systems, knowing a site is present does 
not necessarily increase the probability that another site is present; and if two sites are present, the 
probability of there being a site between them is not necessarily increased simply by their presence. 
In the context of the Pennsylvania model project, archaeology sites are discrete in this sense and have 
definite spatial boundaries and area. This is an extension of using discretely defined site location 
maps as the basis of analysis and can be contrasted with spatially continuous data such as rainfall, 
topographic slope, bedrock depth, water table depth, and, to a degree, tree or species distributions. 
These are variables that can be reasonably interpolated between measured points. These qualities 
lead to a dataset that cannot be reasonably interpolated between data points and are created through 
systems that we cannot reduce to understandable mechanisms. As such, the locations of 
archaeological sites are essentially treated as an environmental phenomenon. While created through 
cultural processes, archaeological sites currently exist within, are mostly controlled by, and in this 
project are measured relative to the environment. The practical implication of this from the modeling 
perspective is that assessing sensitivity becomes a matter of binary classification—modeling the 
probability that a set of environmental measures from a specific point belongs to the class of site-
present given what we know about site presence. Another practical implication is that many existing 
models applied to explicitly spatial contexts focus on continuous data and outcomes that can be 
interpolated. Further, other environmentally based methods focus on time-stepped mechanisms that 
cannot be reasonably assumed given what we know of agency and settlement system dynamics. As 
such, the methods to address archaeological site locations cannot be easily adopted from existing 
models, but the foundation of archaeological specific models can be constructed from components of 
its peers.  

Measurement Error  

The dataset of archaeological site locations is not measured directly from the environment. To model 
the spread of a variable such as groundwater contamination, direct measurements using some form of 
quantitative measuring device are taken as specific sampling locations. Conversely, under more ideal 
circumstances, archaeological sites are measured in reference to where artifacts are found either 
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through excavation, systematic testing, or surface collection, then inferred to be within a boundary 
measured with a GPS or GIS. In less than ideal circumstances, sites are recorded from verbal 
descriptions, hand-drawn maps, or memory. The large degree of variation in recordation techniques 
does not imply anything about the utility of the PASS files in environmental review. These 
voluntarily recorded locations (a sort of “crowd sourcing” in modern tech lingo) serve an invaluable 
purpose in recording the Commonwealth’s cultural resources and aiding in their protection. 
However, from a modeling perspective the life history of these locations needs to be understood. 
 
In the past, following the submittal of a site location to the PASS files, the location on the PASS 
recordation form would be hand transcribed onto a 1:24,000-scale USGS quadrangle map. When the 
PASS files were digitized, these locations were then transcribed via heads-up digitization or geo-
referencing into a GIS. More recent PASS form submissions were digitized directly into the GIS 
using either USGS or high resolution aerial base maps. Most recently, site locations were loaded 
directly from spatial data formats (e.g., a shapefile) (Table 1). Each step in this process, from the 
original definition in the field, to the PASS form, to the USGS quad, to the GIS multiplies 
measurement errors. Further, the use of circular buffers or simple ovals to define site boundaries 
contributes to site generalization. (It is important to note that these are just the facts of the data and 
do not imply anything about data collection methods.) 
 

Table 1 - Source of Site Location in PASS GIS Database 

Boundary Source Count 

Quad Sheet 12,237 

GIS Point Buffer 3,352 

Site Plan/Other Graphic Source 58 

Text Description 15 

Tax Parcel Data 2 

Other 1 

No Source Identified 2,600 

Total 18,265 
 
Based on the difficulties of defining site boundaries and the generalization errors associated with the 
recordation and digitization process, it must be assumed that many of the site boundaries used in this 
analysis do not contain the entirety of the original site and, conversely, may contain areas that were 
never part of the original site (if, that is, the concept of a “site” can be reasonable defined at all). The 
use of individual site cell, as opposed site center points or averages, assumes that most of the cells 
falling within a site boundary are truly in the “site” area. The marginal errors from the recordation 
process are assumed to be a minority of the cells, but are undoubtedly present. The most practical and 
pressing implication of the measurement error is in establishing a minimum scale as the limit of use 
for the final model. While the methods used here rely on intricate statistics and high resolution 
environmental data, no amount of manipulation can improve the data quality of the most basic unit, 
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the site location. For this reason, the scale of use of the site location becomes the approximate limit 
of use of the models derived from them. Being that the vast majority of sites were digitized from 
USGS quadrangle maps published at a scale of 1:24,000 (Table 1), this scale should serve as a 
minimum scale of use for the final model raster layers.  
 
The characteristics of archaeological site data described above are only a subset of the characteristics 
that make site data rather unique and have the greatest impact on modeling decisions. Other 
characteristics such as variable detectability, temporality, functionality, and fragility are other 
qualities that impose challenges in modeling. Theory and method within archaeology and related 
fields have developed to address, mitigate, or help handle these challenges. However, method and 
theory cannot fix everything, and these data characteristics must be extended beyond the methods 
and factored into our expectations and use of the results.  
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2 
STUDY AREAS 

 
STUDY REGION DELINEATION 
 
As described in the Task 2 report, the state was divided into 10 modeling regions to ensure uniform 
modeling within similar landscapes and to help manage the large datasets (Figure 1). The boundaries 
for the 10 regions are based on grouping similar physiographic sections into regions of very roughly 
equal size (with the exception of Regions 3 and 10). The methods used to delineate the 10 regions are 
described in detail in the Task 2 report (pp. 6–8). 
 

 
Figure 1 - Modeling regions for the Pennsylvania Model Set project. 
 
Each of the regions was divided into smaller analytical units described in the Task 2 report as physio-
sheds, which resulted from the merging of physiographic sections and Pennsylvania’s Department of 
Environmental Protection’s 104 State Water Plan Watersheds. These physio-sheds served as the 
primary modeling units. As described in the Task 4 report (p. 55), the nomenclature for dividing the 
state into modeling units was refined and implemented for all modeling areas. The terms used to 
describe the hierarchy are as follows, from largest to smallest: 
 

Region  Zone  Section  Subarea 
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Regions, of which there are 10, are the largest partition of the Commonwealth. Regions may be 
broken down into a small number of zones based on drainage basin boundaries within physiographic 
provinces. The use of zones is primarily for organizing the regions into more manageable sizes for 
the modeling effort, and not all regions required this subdivision. Region 1 was divided into an east, 
north, and west zone. Regions 2 and 3 were merged to create an area comparable in size to Region 1, 
and the resulting Region 2/3 did not require subdivision into zones. Regions 4 and 5 were merged, 
but later divided into a west and east zone equivalent to the original Regions 4 and 5, respectively. 
Regions 9 and 10 were merged (into Region 9/10), and were not divided into zones. Regions 6, 7, 
and 8 also did not require subdivision into zones. 
 
Regions or zones were further subdivided into units referred to as sections. Sections were defined 
based on watershed boundaries within physiographic sections. These were the same as the physio-
sheds described in the Task 2 report. The final division was into subareas, which is simply a section 
divided into riverine and upland areas. The process used to distinguish riverine from upland areas 
within each section is described in detail in the Task 4 report (pp. 59–64). Each subarea represents 
the study area for a single model, meaning that each subarea was run through the entire modeling 
process as an individual unit exclusive from the rest. Ultimately, the state was divided into 132 
subareas, as follows:  
 

 Region 1, 10 sections/20 subareas;  

 Region 2, 4 sections/8 subareas;  

 Region 3, 1 section/2 subareas; 

 Region 4, 6 sections/12 subareas; 

 Region 5, 7 sections/14 subareas; 

 Region 6, 5 sections/10 subareas; 

 Region 7, 9 sections/18 subareas; 

 Region 8, 9 sections/18 subareas; 

 Region 9, 14 sections/28 subareas; 

 Region 10, 1 sections/2 subareas.  
 
PREHISTORIC BACKGROUND 
 
The three prehistoric overviews presented in the reports for Regions 1–10 (Task 4, 5, and 6 reports) 
were intended to be appropriately detailed and focused on three areas of the state: broadly speaking, 
western (Task 4), central (Task 5), and eastern (Task 6) Pennsylvania. In an effort to build upon these 
detailed overviews and to gain another, different perspective on the data, this summary attempts to 
step back and consider the prehistory of Pennsylvania from a wider, whole-state point of view. The 
purpose is to provide a broader, more “gestalt” perspective that might elucidate adaptational patterns 
and cultural variability not explicated in the previous, more focused analyses; thus, where the 
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previous discussions focused on the three areas individually, this broader-brush approach will 
consider variability and commonalities across the three analytical areas as a whole.  
    
Viewed at large, the long prehistoric occupation of what is now Pennsylvania can be characterized as 
a dynamic, diverse period of time. For the most part, sociocultural development in the state generally 
followed that seen in surrounding regions. That said, though, prehistoric cultures in Pennsylvania did 
not simply move in unison with the rest of the prehistoric world. Rather, a great degree of cultural 
diversity may be observed through time and throughout Pennsylvania, much (or most) of which is the 
result of interaction, communication, and exchange of information between prehistoric groups across 
space; this notion is, in large measure, the sense of the term “dynamic,” as used above. Through time 
prehistoric people were not stagnant or immobile but moved about in their ranges and regions, 
formed and dissolved social and economic groups, and interacted with other groups both docile and 
hostile. The remainder of this discussion, then, will examine the Pennsylvania data largely from the 
cultural dynamic perspective explicated above.  
 
One important question/topic that will crop up from time to time is whether the cultural diversity 
observed in the archaeological record is the result of in situ cultural development, or rather from 
imported development brought in from elsewhere. 

Paleoindian through Early Archaic 

During the Pennsylvania Paleoindian-through-Early Archaic period, it has been generally accepted 
that Paleoindians exploited the ecological niches and resources newly revealed by the slow but 
inexorable retreat of the glacial ice (Mason 1962; Gardner 1974). A focused subsistence system(s) is 
in evidence, with small groups making use of the local foodstuffs at hand. In this scenario, modes of 
food and resource procurement likely varied across the region, depending on what kinds of resources 
were available, and where (McNett 1985).  
 
Throughout this period, it is commonly believed that Paleoindian groups continued a mobile, 
“wandering” lifestyle. A mobile lifestyle facilitates intersocietal relations, communication, and 
interaction between groups. In turn, this intergroup contact would eventually promote an overall 
degree of cultural consistency over space; that is, it would be expected that some or most of these 
formerly isolated social groups probably formed larger social units beyond the extended family or 
microband. Social bonding through marriage through time comes readily to mind. 
 
Thus, this kind of social aggregation would have fostered more efficient adaptations to the late-
Pleistocene/early Holocene environment, if for no other reason than by increasing the work force. 
Ongoing interaction and communication would have been pivotal to keep these hypothetical 
subsistence-settlement systems going, eventually coalescing into the larger social groups of the 
subsequent Middle and Late Archaic periods. 
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Middle to End Archaic 

The period of time following the earliest cultures can be combined into an overall Middle-Late-
Terminal Archaic period. That this is possible is due to the fact that sociocultural adaptations all 
across the state underwent dramatic, if gradual, transformations in tool manufacture and use, 
adaptations to the changing environment, and probably in the realm of social organization as well 
(Herbstritt 1980). But this is not to imply that all social groups across the region marched in lock-step 
with each other, somehow all evolving at the same time and across the same space.  
  
Prehistoric cultures underwent participation in a continent-wide cultural florescence by late Middle 
and Late Archaic times (Custer 1996). These developments are much better known than those that 
preceded them. Throughout the eastern seaboard and Appalachian Piedmont, from southern New 
England to Georgia, the Piedmont Tradition is the predominant cultural expression (Coe 1964; 
Herbstritt 1980). This very large, pan-regional manifestation is marked by lanceolate and broadspear 
projectile points and many other diagnostic artifacts, including carved soapstone bowls. Eastern 
Pennsylvania is no exception, and numerous sites date to this tradition.  
 
No one knows the precise origin and nature of the Piedmont Tradition. Some archaeologists maintain 
that the most likely locality would be in the neighborhood of the lower and middle Susquehanna 
River and upper Chesapeake Bay in Pennsylvania and Maryland. Diagnostic lithics occur in 
abundance in this area, as well as soapstone quarries. It is instructive to note the huge geographical 
spread of this tradition. Clearly, a substantial degree of social interaction was taking place along a 
northeast-to-southwest axis. These northeast-to-southwest connections are best indicated by the 
omnipresent stemmed and broadspear bifaces/projectile points found all up and down the Piedmont 
Province; steatite bowls have a more restrictive range, and far fewer numbers (Wittoft 1953; Stewart 
1998). In addition, many archaeologists have pointed out that lanceolate points and broadspears can 
occasionally be found well into the interior, presumably indicating cultural connections of some kind 
between/among the different regions. 
 
The Piedmont folk also contributed to the Late and Terminal Archaic cultural fluorescence. Sites 
become larger and more numerous, and large-scale (for the times) food processing begins to take 
place in the form of intensive fishing in many major river valleys. These collective fishing and fish-
processing activities, presumably undertaken by many related social groups, would have helped 
solidify social and cultural relationships between groups.  
 
A second prehistoric cultural entity can be found in Pennsylvania during the Late Archaic Period. 
Known as the Laurentian Tradition, the heartland of this manifestation lies to the north, principally in 
New York State and western New England (Kinsey 1977). Laurentian materials and sites also extend 
southward into Pennsylvania; Laurentian diagnostic artifacts, including notched projectile points and 
ground stone tools, can be found, usually sporadically, throughout the greater Mid-Atlantic region 
and westward across the state. Interestingly, the Laurentian culture demonstrates a probable intrusion 
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of people southward from a more northerly core area. This phenomenon may mirror that seen with 
the Piedmont Tradition, albeit writ smaller, in which social groups from a spatially extant home area 
moved elsewhere, whether en masse or in irregular small movements, for reasons yet unclear. The 
point to be made here is that, viewed from a distance, the Laurentian and, especially, Piedmont 
Traditions appear to represent purposeful movements of people across the landscape with specific 
intent; given the very large areas involved, these cases appear attributable to something more than 
some kind of nebulous cultural “diffusion.” 

Early and Middle Woodland 

For a long time, Mid-Atlantic archaeologists have lumped the Early-through-Middle Woodland 
periods together, which is a reflection of the considerable degree of cultural continuity evident during 
this lengthy interval. A clear separation between Early and Middle Woodland cultures, such as that 
seen further westward with the sequential Adena and Hopewell cultures, is not in evidence in 
Pennsylvania. Rather, the sparse data reflect continuity in subsistence practices, artifact styles, and 
life in general during this time. Part of the reason for this lacuna of relevant data is the simple result 
of fewer people being around during this period. 
 
At the beginning of the Early Woodland, a dramatic population decline is observable all across the 
eastern United States and beyond (Hummer 1994; Stewart 2003). A general dearth of sites, artifacts, 
and populations testify to some kind of cultural contraction after the Late-Terminal Archaic period. 
Where the Archaic was a dynamic time, the subsequent period was not. 
 
Not all archaeologists agree that the Early-Middle Woodland period population crash actually 
happened; many appeal to sampling error and uneven survey coverage to account for the apparent 
population slump. Alluvial burying of artifacts and sites might account for this apparent demographic 
decline to some extent, as well as ambiguous lithic artifact temporal assignments (e.g., presumed 
“Late Woodland” triangular projectile points dating to earlier periods, and stemmed “Late Archaic” 
points dating later, thus leading to false temporal assessments). One might also make a case that 
archaeologists have been working in Pennsylvania far too long to have consistently missed the 
remains of an entire temporal period. Whatever the case, and for reasons yet uncertain, the Early 
Woodland period has produced fewer artifacts and sites than the preceding or succeeding periods.  
 
Any review of cultural dynamics in Pennsylvania cannot fail to mention the scant but undisputable 
evidence for various Adena-related artifacts and/or groups having been present in the state and 
surrounding areas during the Early Woodland time frame (e.g., Stewart 2003; Gardner 1982). 
Diagnostic artifacts have been recovered, typically in small quantities, in the Delaware Valley, 
central Delaware, and well into New England. Clearly, a wholesale population in-movement is not in 
evidence here; the small numbers of artifacts at the small numbers of sites suggest that small 
incursions of Adena people took place from time to time. The purpose of these treks is not known. 
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Two Middle Woodland populations can be discerned in greater northeastern and north-central 
Pennsylvania. These are referred to as the Fox Creek and Bushkill complexes and remain rather 
ephemeral and poorly known (e.g., Cavallo 1987). Bushkill is marked by distinctive ceramic wares 
and triangular projectile points and appears to be oriented toward the Middle and Upper Delaware 
valley. Distinctive Fox Creek wide-bladed, lanceolate points and shell-tempered Mockley ceramics 
are found over a wide portion of northern Pennsylvania, suggesting a substantial spatial extent for 
Fox Creek groups; further, Fox Creek artifacts are also common to the northeast, into northern New 
Jersey, Long Island, and adjacent New York State. Of importance here is that neither of these 
complexes appear to represent intensive, resident occupations in Pennsylvania; rather, these 
complexes appear to be ephemeral intruders originating from elsewhere.  
 
Standing in stark contrast to the foregoing, the Abbott Farm locality on the Delaware River in New 
Jersey represents a vigorous, substantial occupation of this area during the Middle Woodland 
temporal span (e.g., Cavallo 1987). Heavily decorated, highly distinctive Abbott Farm ceramic types 
and other artifacts are found in considerable numbers, leading some archaeologists to suggest that 
population aggregations, possibly of a ceremonial or otherwise “special” nature, may have gone on 
here. Whatever the case, the extant data do not point to any sort of far-off “heartland” from which the 
Abbott Farm population might have derived. Rather, the Abbott Farm complex seems to appear 
abruptly and fully developed in west-central New Jersey. 

Late Woodland 

The Late Woodland period represents the pinnacle of prehistoric cultural development in 
Pennsylvania. Through the northeastern quarter and north-south center of the state, the Susquehanna 
River valley and upper Delaware valley were home to vigorous cultural developments on the Late 
Woodland time-line. In the Delaware, cultures known as Pahaquarra and Minisink succeed earlier 
occupants that are known as Overpeck (e.g., Custer 1989). A robust occupation of the valley 
floodplains is known, and large floodplain sites with storage pits and cooking facilities indicate a 
well-developed system in this locality.  
 
The Clemson Island culture was an agricultural society occupying the Susquehanna River 
floodplains. Following Clemson Island is the Shenk’s Ferry culture. During this time Shenk’s Ferry 
people lived in villages and practiced maize agriculture; in the latter portions of this occupation, 
wooden stockades surrounded many villages, interpreted as indicating enmity of some sort between 
Shenk’s Ferry and other groups. Regarding origins, some archaeologists have suggested that Shenk’s 
Ferry entered the Susquehanna Valley from Maryland and Virginia to the south; others argue that 
Shenk’s Ferry clearly represents an in situ development out of an extant Clemson Island base. 
Whatever the case, Shenk’s Ferry was a complex society composed of principally sedentary village 
dwellers, agriculturalists with an eye toward social self-protection. In spite of the latter, Shenk’s 
Ferry was ultimately subjugated by the Susquehannock on a late prehistoric to early historic time 
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frame. The Susquehannock are known to have entered the state from the north, mostly following the 
major river valleys south.  
 
Throughout the western portion of the state, the Monongahela culture can be said to have been the 
“dominant” or most complex culture in the region. Monongahela folk were agriculturalists who lived 
in large villages. Monongahela as a whole was loosely subdivided into different geographically 
extant phases. Of interest here, the McFate phase, located in the north and northwestern part of 
Pennsylvania, displays considerable Iroquoian influence throughout their territory near the beginning 
of the historic period; clearly societal contact and interaction were in play here. 
 
Finally, the Minguannan culture is found in the southeast part of Pennsylvania and in the adjacent 
Delmarva Peninsula (Custer 1989). Minguannan is an imperfectly understood system and contrasts 
notably with most of its contemporaries. Large (or small) villages are not in evidence here. Rather, 
patterns seen in the preceding Middle Woodland period seem to persist, consisting of small base 
camps and smaller procurement camps. Also, where mature agriculture supported most other 
contemporary Late Woodland cultures in the region, the Minguannan seem to have never adopted the 
practice. The reason for this is not known, though the riverine environment of the lower Delaware 
would seem to be as amenable to agriculture as the middle and upper valleys, where more complex 
agricultural systems are known.  

Summary 

This brief discussion has attempted to touch on the myriad examples (and potential examples) of 
population movement, contact, and interaction across prehistoric Pennsylvania. As stated at the 
outset, an explicit dynamic perspective on the data was adopted as a focus of analysis. These few 
pages are not the only attempt to examine cultural dynamics in the state of course, and it is hoped 
that some of these ideas may be put to the test through further study. One fact stands out: pointing 
out cases of potential prehistoric cultural dynamics is considerably easier than explaining such 
potential cases.  
 
It is believed that many more cases of potential population movement occurred in the past than are 
acknowledged or recognized today. It is interesting that, if one appeals to the ethnohistoric literature, 
one can see omnipresent examples of Native American groups moving about the landscape, 
sometimes impressive distances, for reasons many and varied. Are there reasons why such population 
movements cannot be projected backward into the prehistoric past? To this end, some archaeologists 
have pointed to the European fur trade as the principal disruptor of native cultures’ traditional 
lifeways in the East, precipitating population upheaval, movement, and sometimes confrontation. It is 
suggested here that many such “disruptors” can and did occur in prehistory, and the Native 
Americans’ reaction was likely similar.  
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Examples of potential intrusions into/within Pennsylvania include Paleoindians, Piedmont Tradition 
Archaic, Laurentian Archaic, Adena Early Woodland, Bushkill/Fox Creek Middle Woodland, and 
Susquehannock and Iroquois Late Woodland. Cultural developments seemingly unrelated to 
population movement include the Abbott Farm Middle Woodland, Clemson Island/Shenk’s Ferry 
Late Woodland, and Monongahela, Minisink/Pahaquarra, and Minguannan Late Woodland.  
 
In any case, a final point to be made here is that taking an explicit, dynamic approach to 
archaeological data can broaden the scope of an archaeological investigation in important ways. A 
dynamic perspective can lead to insights and conclusions previously unanticipated. The more 
common, complementary approach would entail a static, in situ approach that focuses down on site-
specific and/or local analyses. Both approaches are fine, but the integration of site/locality and 
cultural dynamic perspectives can lead to new avenues of analysis and research heretofore 
unrecognized. One such principal avenue, as stated at the outset, is whether the cultural diversity 
observed in the Pennsylvania archeological record is the result of in situ cultural development, or 
imported development brought in from elsewhere. 
 
ARCHAEOLOGICAL SITES IN PENNSYLVANIA 
 
A total of 18,265 archaeological sites with prehistoric components are recorded in the PASS data 
base as of October 2013, 18,226 of which were used as the basis of the modeling process for 
Pennsylvania’s Archaeological Predictive Model Set. While sites that were either too small (less than 
a single raster cell) or too large (indicating that they were imprecisely drawn) were eliminated from 
the modeling pool because of the bias they would introduce, they were included in the analyses of 
site types by landform and time period that appeared in each of the reports (Tasks 4, 5, and 6) for the 
10 modeling regions. A statewide overview of the frequency of site types and the landforms with 
which they are associated is presented here (Table 2).  
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Table 2 - Pennsylvania Site Types by Landform 
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Burial Mound 
0 22 2 0 15 19 2 0 8 2 1 9 3 1 2 5 91 

Cemetery 
1 5 1 0 2 12 0 2 4 2 0 1 1 0 0 0 31 

Earthwork 
0 5 1 0 6 13 1 0 2 0 0 2 1 0 0 4 35 

Isolated Find 
0 29 1 0 26 47 10 9 9 2 12 4 5 11 3 2 170 

Lithic Reduction 1 72 11 0 67 124 12 23 22 55 13 31 19 41 11 142 644 

Open Habitation, 
Prehistoric 

24 2693 100 46 2125 2178 822 325 250 104 83 155 193 428 75 327 9928 

Open Prehistoric Site, 
Unknown Function 

7 535 63 11 374 634 161 134 106 173 118 96 101 143 87 142 2885 

Other Specialized 
Aboriginal Site 

2 27 1 0 17 24 5 8 1 4 2 2 0 3 1 10 107 

Paleontological Site 
0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 5 

Path 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 

Petroglyph/Pictograph 
1 5 1 5 3 5 0 6 0 3 2   1 1 2 1 36 

Quarry 
0 8 0 0 43 13 21 20 3 4 5 6 1 5 4 18 151 

Rock Shelter/Cave 
0 19 5 1 65 42 17 271 21 67 120 23 7 10 134 67 869 

Shell Midden 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 

Unknown Function 
Open Site Greater 
than 20 m Radius 

7 154 14 0 79 149 25 35 28 11 15 3 11 16 5 9 561 

Unknown Function 
Surface Scatter Less 
than 20 m Radius 

4 154 15 0 67 245 44 4 20 26 7 12 21 24 5 34 682 

Village 
1 136 11 0 13 89 26 4 39 3 2 36 28 9 2 3 402 

(blank) 
16 380 17 8 234 300 38 53 47 75 55 37 43 106 18 238 1665 

Total 
64 4248 243 71 3136 3895 1185 896 560 531 435 417 435 798 349 1002 18265 

 
The most commonly occurring site type within the PASS data files is the Open habitation, prehistoric 
type, with 9,928 occurrences in the data base, representing over half of all recorded sites. The next 
most common site types, in descending order, are: Open prehistoric site, unknown function (2,885 
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sites), blank (1,665 sites—this number includes both sites where the site is identified as a type of 
historic site with a prehistoric component, and sites without a site type identified in the PASS data), 
Rockshelter/cave (869 sites), and Unknown function surface scatter less than 20m radius (682 sites). 
The site types in the PASS database that are the most rarely documented include Shell midden (1 
site), Path (2 sites), and Paleontological site (5 sites). Open habitation, prehistoric sites are the most 
commonly occurring sites associated with the following landforms: 
 

 Beach 

 Floodplain 

 Rise on floodplain 

 Island 

 Stream bench 

 Terrace 

 Hill ridge/toe 

 Hillslope 

 Hilltop 

 Ridgetop 

 Saddle 

 Upland flats 

 Blank 
 
The most commonly occurring site on the lower slopes landform is the Open prehistoric site, 
unknown function. Rockshelter/cave sites are the most common site types found in middle slopes and 
upper slopes settings.  
 
The landforms recorded with the most site types occurring include in descending order: floodplain 
(4,248 sites), terrace (3,895 sites), stream bench (3,136), hill ridge/toe (1,185), and blank (1,002). 
The landform types with the least numbers of sites are the beach and island types, with less than 100 
sites occurring on either of those landforms. Floodplain settings are where the following site types 
are most commonly found:  
 

 Burial mound 

 Open prehistoric, habitation 

 Other specialized aboriginal site 

 Paleontological site 

 Unknown function open site greater than 20 m radius 

 Village 

 Blank 
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The terrace setting was the most common setting for the following site types:  
 

 Cemetery 

 Earthwork 

 Isolated find 

 Lithic reduction 

 Open prehistoric site, unknown function 

 Shell midden 

 Unknown function surface scatter less than 20 m radius  
 
The Quarry site type was most commonly found in the stream bench setting. Hillslopes account for 
the highest numbers of Petroglyph/pictogram and Rockshelter/cave site types. The Path site type, 
with only two sites in the PASS database, was split between hill ridge/toe and hillslope settings.  
 
In general, sites across the state of Pennsylvania are predominately associated with lowland settings. 
A total of 63.8% of all sites occur in lowland settings (n = 11,657), while 30.7% of all sites are found 
in upland settings. The remaining 5.5% of sites did not have landforms identified in the PASS 
database. Only two site types were more commonly found in upland settings than in lowland settings: 
Rockshelter/cave and Path. 
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3 
MODEL METHODOLOGY 

 

INTRODUCTION 
 
The development of the Pennsylvania predictive model set followed a series of procedures that 
allowed for consistent and reproducible results with a bias toward transparency at all levels. The 
framework within which this methodology is built follows the standards and best practices of 
technical communities such as machine learning, data science, and statistical modeling. The 
framework is not specific to any one type of modeling or data set, but generalized to provide all types 
of modeling and analysis with guidelines for addressing sampling, variable selection, model testing, 
model validation, and seeking to optimize the bias/variance tradeoff. Issues associated with these 
topics need to be addressed for any modeling situation, be it archaeology, ecology, medical, security, 
or anything else. It is within this framework that specific solutions to more the explicit archaeological 
problems were addressed. These include addressing the bias of location and recordation of 
archaeological sites, the high correlation of environmentally based variables, the types of models and 
parameters that best address the noise inherent in archaeological locational data, differences in 
archaeological site types/functions, and numerous additional hurdles. Further, this methodology was 
tailored to deliver the best results while efficiently handling the vast quantity of data necessary to 
complete a series of models each covering 40,000 square miles within a project timeframe of 
approximately 18 months. As is the case in any time sensitive project, the consideration of 
development time versus benefit guided many methodological decisions. This included the use of 
well-documented and tested model algorithms such as LR, MARS, and RF, but also limitations on 
the depth of parameterization and other computationally intensive procedures. While finding the 
appropriate cost/benefit balance was necessary, within the confines of the overall project schedule 
the short-term cost of time and development were secondary to the benefit of finding justifiable and 
appropriate means of analysis and modeling.  
 
The narrative below chronicles the development of the modeling framework, establishment of 
methods, and the intricacies of archaeological data from which methodological decisions are made. 
The general progression of the modeling methods is common to any field of learning that seeks to 
use relationships between variables to understand and predict an outcome. Figure 2 gives a 
generalized overview of the flow of information in this process; the specifics of each step will be 
explained in further detail. The process begins by gaining an understanding of the data, variables, and 
what correlations exist and seem worthwhile. This involves a lot of interactive manipulation of the 
data, cleaning, and visualization. This step is often referred to as Exploratory Data Analysis (EDA). 
Following the EDA, the pool of potential variables is selected and tested against numerous 
background samples to establish potential relationships that serve to separate site locations from the 
environmental background. The model building stage uses the variables to construct various 
statistical models that formalize the relationship between them and the locations of sites. The models, 
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in various ways, use these relationships to assess new data to estimate the probability of it being 
more like a site or more like the general background. The construction or “fitting” of the models is 
conducted within a framework designed to make the most use of limited data, address pitfalls such as 
over- or under-fitting, establish error estimates, and be repeatable. This framework incorporates k-
fold CV, boot strap sampling, and parameterization based on minimizing error rates. The logic of 
each of these steps is documented below through the use of “pseudo-code.” This code can be used to 
recreate the entire framework of the model building and predicting process. In addition to the 
archaeological literature cited in the next section, the majority of the concepts and statistics discussed 
throughout are covered in detail in Hastie et al. (2009), and James et al. (2014). 
 

 
Figure 2 - General organization of entire model building process. 
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PREVIOUS STUDIES IN APM 
 
The methods and models reported on here are built from the works of many people and many 
previous studies. The Task 1 report was dedicated to giving an overview of the scope of and 
examples from previous APM studies within Pennsylvania. The findings from this review are: 1) the 
history of APM in Pennsylvania follows the historical trends in the broader APM research field; 2) 
most models are ad hoc and most often based on judgmentally weighted linear combination models 
(e.g., they make educated guesses of where sites should be relative to a few variables, create weights, 
add them up for each variable, and conclude the highest value is the most sensitive); 3) reporting of 
methods and findings is generally poor; and 4) implementation of statistical methods is rare. 
 
These findings are not likely to be unique to Pennsylvania. From a broader perspective, the study of 
APM has waxed and waned for over 40 years, but the clear heyday was in the mid-1980s during a 
time of overlap between the end of the quantitatively focused “New Archaeology” era and the 
beginning of the personal computer age. Figure 3 shows the number of occurrences for the terms 
“predictive” and “predictive model” within the titles and abstracts of articles in the journal American 
Antiquity, the most prestigious journal for North American archaeology. As evident in this graphic, 
the vast majority of major articles on the topic of APM occurred between 1980 and 1990. Following 
1995, the publication of APM articles fell to a steady trickle and then dropped off to zero. 
 

 
Figure 3 - Occurrences of search terms in titles and abstracts of articles in the journal American 
Antiquity. 
 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 7: FINAL REPORT 

 

 

3 • MODEL METHODOLOGY 

24 

The body of research generated from this time was full of promise and interesting ideas. The pinnacle 
of this early research was the 1988 volume edited by James W. Judge and Lynne Sebastian entitled 
Qualifying the Present and Predicting the Past: Theory, Method, and Application of Archaeological 
Predictive Modeling (Judge and Sebastian 1988). Despite this, the advancement of APM was 
hampered by many factors including the unique challenges of archaeological data, lack of 
quantitative training in anthropological departments, rebuttal from the developing “Post-Processual” 
theoretical perspective, disillusionment from lackluster results, and, perhaps most importantly, the 
lack of any unified or widely successful approach. While many models were successfully applied to 
specific study areas, and numerous advances in theory and methods were achieved, few attempts 
were made by the profession to sustain a dialog or derive a generalized framework for the 
advancement of APM. As a corollary, other fields of study that had followed a similar trajectory such 
as geography, biology, ecology, and social sciences all developed strong quantitative branches that 
use models and develop methods to fit the character of their field’s data. While there is a notion in 
archaeology that the complexity of time and culture preclude quantification, there is no reason that 
sound and well-explored models and methods cannot be developed and add to our ability to interpret 
the past. 
 
A revival of APM studies occurred in the 2000s, led by scholars at Leiden University in the 
Netherlands including Hans Kamermans and Philip Verhagen. With a series of publications including 
van Leusen and Kamermans (2005), Verhagen (2007), and Kamermans et al. (2009), this group 
explored new theories and introduced a number of sound statistical methods into the floundering 
practice of APM. These publications set a new tone for the conceptualization of predictive models 
and the development of best-practices—perhaps the first step to a field-wide framework. Further, the 
articles in these volumes looked beyond current methods and investigated new types of models and 
possibilities. 
 
It the United States at approximately the same time, the Minnesota Department of Transportation 
(MnDOT) was making use of the third phase of a statewide APM and preparing to develop the fourth 
phase. Prior to the Pennsylvania model project, the MnDOT statewide model, referred to as the 
Mn/Model, was the only successfully completed statewide APM. Initiated in 1995, the Mn/Model 
was visionary in its scope, methods, and detailed reporting. Within the first five years of the project, 
the Mn/Model had developed from a pilot model (Phase 1) to full implementation into the State 
Historic Preservation Office and Department of Transportation practice (Phase 3). After nearly a 
decade of use, the MnDOT initiated the fourth phase of the model by reviewing the statistics and 
methods of the previous model and establishing a direction forward. The authors of this study 
Oehlert and Shea (2007) had four objectives: 1) find the best prediction methods that can be 
reasonably implemented with GIS; 2) produce S-Plus software (the precursor to R statistical 
language) to implement the predictive method; 3) provide MnDOT with advice on model evaluation; 
and 4) train the MnDOT users on the new methods. The report produced by the Oehlert and Shea 
team focuses almost solely on the first objective and is a detailed look at APM from the perspective 
of professional statisticians using up-to-date methods. Oehlert and Shea’s report was the first time, 
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perhaps arguably, that archaeological data was modeled using penalization methods such as Bayesian 
Information Criteria (BIC), recursive portioning methods such as bagging and boosting trees, and the 
first time the results were evaluated with techniques such as Receiver Operator Characteristics 
(ROC) curves and k-folds CV—all techniques used or referenced throughout this project. 
 
The cumulative effect of this history is that the study of APM soldiers on despite many challenges. 
This is not only because the allure of predicting archaeological site locations is strong (albeit often 
with impractical expectations), but because there is a substantial base of theory and practice to show 
that assessments of archaeological site sensitivity using these methods are useful in planning and 
survey applications. The way forwards is to find the right mix of assumptions, expert knowledge, and 
statistical methods that allow us to apply these techniques on various scales and geographies with 
clarity, repeatability, and management of risk. The body of publications from the 1970s and 1980s 
help establish the basic theories, hurdles, and methods faced when quantifying spatial archaeological 
data. The numerous examples of APM practiced for cultural resources management and regional 
survey studies since the 1980s, such as those reviewed in Task 1, demonstrate the wide range and 
quality of solutions found to address the issues of specific project area. Finally, the principles, 
techniques, and statistical models discussed by Oehlert and Shea (2007) and the Leiden University 
team offer rigor, substance, and direction to the study of APM. The Pennsylvania project builds on 
this foundation with the theoretical guidance of earlier researchers, the missteps of past projects, and 
the insights of modern approaches to predictive problems from within archaeology and any other 
field of study that deals with similar problems. It is hoped that this project helps bridge the gap 
between where APM faltered and where Oehlert and Shea (2007) recommended we go, and beyond 
to where other fields of environmental and humanities disciplines have gone—to a quantitative study 
of models that illuminate the systems and dynamics described by archaeological data. 
 
SOFTWARE PLATFORM 
 
The platform used to create the Pennsylvania statewide predictive model is a combination of 
software packages including ArcGIS (www.esri.com/), Python (www.python.org/), and the R Project 
for Statistical Computing (R) (www.r-project.org/) (Figure 4). ArcGIS is a geographic information 
system (GIS) created by the company ESRI. This program contains all components necessary for a 
GIS including map visualization, database capabilities, and tools for analysis. Python is a fully 
functional programming language that is integrated into ArcGIS. Through a code library called 
“ArcPy,” much of the functionality of ArcGIS can be accessed through the Python language allowing 
for a greater degree of control, flexibility, and automation of GIS tasks. Finally, R is a free and open 
source scripting language that is strongly geared toward statistical computation and visualization. 
The vast majority of the computation for this project is done in the R statistical programming 
language. Similar in capabilities to Python, R provides significant advantages over conducting 
modeling of this nature in a program such as ArcGIS. The use of R allows for the creation of scripted 
code to handle various aspects of the modeling process, the creation of multiuse functions that can be 
reused throughout the analysis, the availability of a vast array of statistical methods supported by a 
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large population of users, the ability to access parallel processing capabilities, and the availability of 
a server-based version that allows these analyses to be run across numerous cloud-based servers. 
Together these three programs create a platform that is capable of everything from basic GIS 
functions to interactive data manipulation, programmatic statistical analysis, and automation. In 
general, the use of each program can be characterized as follows: 1) ArcGIS for preparation of the 
study areas, building Digital Elevation Models (DEM), and review of PASS data; 2) Python for the 
creation of raster layers of environmental variables; 3) R to extract raster and PASS site data, test 
variables, and fit, validate, and predict models to new raster layers; and 4) ArcGIS to view prediction 
raster layers, select final models, and produce maps for reporting. The following discussion of project 
methodology will be generally organized by the three programs discussed above. 
 

 

Figure 4 - Software workflow. 
 

   

 

 

Data review 
DEM creation 

Study Area creation 
PASS site cleaning 

Final model selection 
Model mosaic 

Map production 

ArcGIS 

 
Raster variable 

creation

Python 

 

Data Preparation
Raster conversion 

PASS data extraction 
Background data extraction 

Variable Selection 
K-S testing 

Primary selection 
Model Fitting 

Splitting 
Parameterization 

Fitting 
Error estimation 

Prediction 
Raster prediction 

Performance estimation

R 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 7: FINAL REPORT 

 

 

3 • MODEL METHODOLOGY 

27 

A Note on Pseudo-Code 

In the following sections, the narrative description of modeling methods is supplemented with text 
boxes that contain “pseudo-code.” Pseudo-code is a simple way to present complex programming 
code by using plain language and distilling the major operations into concise statements. The pseudo-
code provides a bridge between narrative and the actual interworkings of the scripts without 
requiring the reader to understand code. The component of the pseudo-code that requires a bit of new 
understanding is that it is arranged in the same nested logic as computer code. In computer code there 
are a series of control structures that guide how the code is run. These include loops, nested loops, 
“if” and “else” statements, and “do while” loops, as the more common examples. The pseudo-code 
chunks also include line numbers to help tie the narrative to the code. 
 
Simply put, a loop repeats a chunk of code while a given condition is true. For example, a loop that 
prints the numbers 1–10 will cycle 10 times, until the condition “less than 10” is no longer true. 
Loops such as this can be nested so that a routine runs within another. “While” loops are similar, but 
will run while a condition is true with no set ending. For example, a “while” loop may run while a 
random number generator selects numbers less than 6 out of a range of 1–10. It may stop after the 
first random pick (i.e., if it is greater than 6), but chances are it will run for a few draws before 
stopping. “If” statements run only if a condition is true. For example, if the random number picker 
selects the number 10, then execute this code; if it selects anything else, the code is not executed. The 
“else” statement offers an alternative to the “if” statement if the condition is not true. A deep 
understanding of these control structures is not needed to understand the pseudo-code, only the 
knowledge that such structures exist and that the pseudo-code reflects these structures through action 
words and indents. 
 
In the example below (Figure 5), the action words are bolded caps for emphasis, the lines are 
indented to show nesting, and the end of each loop is signified by an italicized end. Comments are 
prefixed by a hash sign (#). Line 1 has the action word CREATE to show the creation of an empty 
list to contain results of the following loops. These words can be a number of actions including FOR 
loops, ASSIGN, EXTRACT, SAMPLE, TEST, PREDICT, etc. These are plain English words that 
describe computational functions. The description of the action becomes apparent in the context of 
the pseudo-code and associated narrative. The indents in the pseudo-code show what actions happen 
within loops or other control structures. In the example above, there is a single FOR loop (lines 4–7) 
that cycles 10 times, each time it SELECTS (line 5) a random number from 1 to 100 and INSERTS 
(line 6) it in the empty list. The result of this loop is a list of 10 random numbers from 1 to 100. The 
IF/ELSE statement (lines 10–14) that follows acts on the results of the FOR loop if a condition is 
true. For example, the IF statement (line 10) executes the PRINT command (line 12) if and only if 
the list of 10 randomly selected numbers contains the number 67. The ELSE statement (line 12) 
executes the PRINT command (line 13) if and only if the IF condition (line 10) is false; i.e., the 
number 67 was not selected at random. 
 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 7: FINAL REPORT 

 

 

3 • MODEL METHODOLOGY 

28 

 

Figure 5 - Example of pseudo-code. 
 
The nested FOR loop (lines 17–22) show a similar sequence, but with a loop inside of a loop. The 
outer FOR loop (lines 17–22) directs the program to SELECT (line 18) a random number between 1 
and 100. The inner FOR loop (lines 19–21) takes the results of the outer loop and runs them through 
a loop. In this example, the randomly selected number (line 18) is sent to the PRINT command (line 
20) for each iteration of the letters A–Z. The result is the random number joined and printed with 
each letter in the alphabet. Following this, the inner loop is exited (line 21) and the outer loop iterates 
again with the next random selection. A nest loop can have one or many sub-loops, but it gets 
quickly out of hand if too many loops are involved. The nested loop structure is used often 
throughout this project because of the nested structure of the study areas. Within a region, all the 
code chunks are run for each subarea. Typically, this leads to each chunk of code beginning with a 
FOR loop that iterates over each subarea in the region. The narrative description of the pseudo-code 
below will use the same process of line numbers and action words to tie into the code. However, each 
logical step of each loop will not be described in as much detail as in this illustrative example; the 
pseudo-code intends to clearly convey the logical hierarchy without further explanation. Further, the 
action words will not be bolded in the text, but will in the code. 
 
STUDY AREA DELINEATION AND PRIMARY VARIABLE CREATION 
 
As discussed in Chapter 2, the initial portion of the project workflow involved the creation of study 
areas for each model. The subarea is the smallest geographic unit of analysis for which a model is 
created. In total, the project divided the state into 132 separate subareas, each one being modeled as 

01 CREATE an empty list to hold random numbers results 
02 
03 # This is a single loop 
04 FOR each number from 1 to 10 
05    SELECT a random number from 1 to 100 
06    INSERT that number into the results list 
07 end 
08 
09 # This is an IF and ELSE statement 
10 IF the list contains the number 67 
11    PRINT "There is a 67 in this list!" 
12 ELSE 
13    PRINT "Sorry, no value of 67 selected." 
14 end 
15 
16 # This is a nested loop 
17 FOR each number from 1 to 10 
18    SELECT a random number from 1 to 100 # e.g. 4 
19    FOR each letter A to Z 
20        PRINT the random number and letter # e.g. “4A”, “4B”, “4C”, etc… 
21    end 
22 end 
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an individual project area. Each subarea consists of either upland or riverine setting extending within 
a small number of watersheds all within the same physiographic section. These subareas were 
subsumed into a nested structure of ever-larger geographical units (i.e., region, zone, section), but it 
is only the boundaries of the subarea that have bearing on the model results. While the geographic 
division of region was divided along physiographic province boundaries, these boundaries do not 
have any effect on the model results. The two purposes of the larger geographic groupings are: 1) to 
organize the progress of the modeling effort into geographic areas for the ease and consistency of 
reporting environmental and cultural-historical backgrounds; and 2) group subareas into lots that 
form a manageable size for computation and data storage. 
 
Building on the second purpose, since the Python and R programs are formatted to facilitate the 
modeling of each region, the amount of data in any one region had to be commensurate with the data 
storage and processing capabilities of the computer. Attempting to run the entire state as a single 
region of 132 subareas would require loading tremendous amounts of data into the computer and 
require very significant computer time to produce the results. This undertaking would require large 
amounts of computer memory, be prone to crashes and loss of data, and take a very long time. 
Alternatively, dividing the state into 132 regions, one for each subarea, would require much less 
computer resources at any one time, but require much more data management, a greater number of 
computers, produce many more files of results, and require a large amount of time for overhead 
management. The method used in this project sought to balance those two extremes by creating ten 
regions based on physiographic province boundaries and then creating subareas from those regions 
based on physiographic section boundaries, watershed boundaries, and site distributions. In the 
modeling process, the balance of data size and time was maintained by lumping regions if they were 
small enough or splitting regions into zones if they were too large. Regardless of the way in which 
they were lumped or split, the subarea boundaries based on grouping like environments was 
maintained and served as the unit of analysis. ArcGIS was used for this task because it allowed for 
interactive viewing at a range of scale, easy viewing of associated data, and the effortless overlay of 
additional information such as PASS site locations, drainages, geology, and physiography. 
 
In addition to preparing the study areas for the modeling project, ArcGIS was also used to prepare 
the base data for the creation of environmental variables. These base data include 1/3rd Arc second 
DEMs, National Wetland Inventory (NWI) streams, wetlands, and water bodies, and United States 
Department of Agriculture (USDA) soils data. These features were then analyzed to create a number 
of additional features that included streams of various order, wetlands of various types, stream 
confluences, stream headlands, and mosaics of various soil characteristics. Python and ArcPy were 
used to automate the creation of the environmental variables used in the modeling process following 
the creation of the vector features and DEM mosaics. Since the secondary variable raster layers are 
generally a function of distance, cost, or mathematical manipulation of one or more inputs, 
automation through Python saves considerable time over manual analysis in ArcGIS. A series of 
scripts was created in Python integrating ArcGIS through ArcPy to process the DEMs and vector 
data into the final 93 secondary environmental variables used in the modeling process. 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 7: FINAL REPORT 

 

 

3 • MODEL METHODOLOGY 

30 

SECONDARY VARIABLE CREATION 
 
Secondary variables are those that are created from manipulating more elemental data through 
statistical means. Of the 93 total variables used in this project, 91 variables are secondary derivation 
of elevation, hydrology, soils, or historical data. The basic DEM and a sink-filled DEM are counted 
in the total of 93 variables, but never used directly in model prediction. The derivation of the 91 
secondary variables is done as either a function of Euclidian distance, cost distance, vertical distance, 
flow direction, flow accumulation, soil qualities, or a statistical manipulation of slope. The intention 
of this pool is to create a large number of variables representing the environmental features that may 
correlate to site locations. Ideally this correlation represents some environment-based component of 
past decision making processes, with the understanding that there are many more non-environment 
based decision components that cannot be correlated in this fashion. In addition to having some 
conceivable relevance to the environments of the past, these variables had to be available statewide at 
a consistent data quality and scale compatible with the scale of this analysis. Because of these 
restrictions, coverage such as bedrock geology (intended for a use at a scale no finer than 1:125,000), 
many soils attributes (inconsistent coding by county and required aggregation within map units), and 
features such as quarries or historically accounted villages (inconsistent coverage and data quality) 
were excluded from this analysis. 
 
The table in Appendix B lists each of the variable used in this analysis, the type of measurement 
used, and a narrative description. The Euclidian distance function was applied primarily to 
hydrologic features such as streams, wetlands, water bodies, and combinations thereof, as well as 
stream confluences and headwaters. This function was also applied to historically mapped Native 
American trails (Wallace 1965). Cost distance was applied to the same set of variables. The cost 
distance function computed the linear distance to a feature and then applied weights based on a 
“cost” factor; in this case the cost is slope. Based on this, the cost distance to a stream, for example, 
is less along more level train, but most costly as the terrain becomes steeper. The assumption is that 
areas along least-cost-paths to water resources may be more preferable. The function of vertical 
distance is computed for streams, confluences, and drainage heads. This function simply computes 
the vertical difference in feet from every cell to the nearest stream, confluence, or drainage head 
resulting in separate variables for each. The four soils variables in Appendix B are derived from the 
USDA soils aggregate table as described in the Task 5 report (p. 55). These variables were chosen as 
they were mapped consistently from county to county, show a greater range of variability, and can be 
argued to have a potential correlation to site location preference. These variables are the only 
nominal scale variables in this pool. Another avenue to incorporating soils may be to calculate a 
Euclidian distance to soils with potentially favorable conditions. This would eliminate the issues 
associated with incorporating nominal scale data, but also requires a more heavily weighted 
assumption of which soils factors are more favorable to site locations. 
 
The remaining variables covered in Appendix B are derived as various functions of slope and 
topography. Within this group of variables, each of the raster cells is computed as a function of the 
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cells within a specified neighborhood. The variables for aspect, flow direction, and slope (as degree 
and percentage) are all computed using the basic ArcGIS functions. Each of these functions 
computes the value of each cell by considering values of the eight cells that surround it (N, NW, W, 
SW, S, SE, E, NE)—called a Moore neighborhood. The remaining variables, prefixed in Appendix B 
with either eldrop (elevation drop), rel (relative topographic position), rng (elevation range), splvr 
(slope variation), std (standard deviation of slope), tpi (topographic position index), tpi_cls 
(classification of tpi), tpi_sd (standard deviation of tpi), tri (topographic relief index), twi 
(topographic wetness index), or vrf (vector roughness factor) are calculated as functions of 
neighborhoods of various sizes. Each of these variables uses slope and elevation in various ways to 
derive different measures of terrain, landforms, or landscape position. By using various 
neighborhood sizes (listed in the fourth column of the table in Appendix B) these measures are 
allowed to explore the different landscapes encountered throughout the state. For example, the range 
in elevation over a neighborhood composed of eight cells extending from the cell being computed for 
will be much different in the rugged hills of north central Pennsylvania than in the gently sloped 
southeastern portion of the state. The different neighborhood sizes allow for variation in the scale at 
which these measurements may be meaningful given different landscapes. Further, they allow for the 
variation in which the scale of the landscape may be meaningful to archaeological site locations. 
Each of the variables in Appendix B with the suffix #c was calculated for the range or neighborhood 
cell sizes listed in the “Neighborhood Cell Sizes” column and then used as a separate variable for the 
rest of the project. The process of looping through the calculation of each variable for each 
neighborhood size is automated using Python and the ArcPy library. Once the full range of variables 
is created and the study areas are established, these data are imported into R for the next step in the 
process. 
 
VARIABLE DISCRIMINATION AND PREDICTION 
 
The purpose of creating a large pool of variables that define numerous elements of the environment 
is to try and find measurements that are able to discriminate site location settings from the general 
environmental background. Further, the purpose of creating variables related to distance to 
hydrography, soils, measures of terrain, and landform definition are because we believe these are 
variables that, if correlated to site presence, are not spurious. However, the identification of a 
variable that does correlate to site location is not assumed to, in itself, be causal, but instead simply 
be an indicator of an unquantified variable that influenced site setting selection. While causality may 
be inferred from a simple variable such as distance to a stream, this analysis does not imply such a 
direct connection. 
 
For the purpose of prediction, an appropriate variable is one that has a systemic relationship to the 
categories being predicted (site presence vs. absence) and is able to discriminate between those 
categories. The systemic relationship is described above and is admittedly tenuous because of the 
unknowable system of Native American site selection that led to known site locations and the 
dynamic nature of the environment throughout time. However, even though the true relationship 
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between these variables and site locations cannot be known, they have been used in one capacity or 
another throughout the history of archaeological survey with success; they form the basis of much of 
our understanding of settlement system dynamics; and they are the best source of continuous and 
consistent data to use.  
 
The second quality of a useful variable, discrimination, is easier to quantify. A variable that 
discriminates well can be relatively easily split into separate ranges for each class represented. Figure 
6 is a simple example of this concept. The red area is a plot of the density of background 
measurements for the slpvr_16c (slope variation within a 16-cell neighborhood) variable within a 
subarea. This distribution is very roughly normal with a mean around 40 and generally a consistent 
density on either side of that (albeit with a second small peak between zero and five). If sites were 
randomly distributed relative to this variable, the blue area (measures from known site locations) 
would follow roughly the same distribution. However, it is very clear that the blue area of site 
locations is distributed quite differently. The site density curve shows a bimodal distribution with a 
sharp main peak from zero to ten and a second peak around 20. The subarea this is generated from is 
a riverine area, so the low values are likely areas of flat and large floodplain. The secondary peak in 
the site density curve (around a value of 20) occupies the lower relief portions of the subarea 
landscape and at a greater proportion (measured as density) than what is present in the general 
environment. This figure shows the ability of the slpvr_16c variable to discriminate site locations 
from background values for areas of lower slope variation. A simple predictive model could easily be 
made for this single variable by drawing a decision boundary where the two densities cross around a 
value of 30 on the x-axis. Based on this decision boundary, an area with a slpvr_16c of less than 30 
would be considered sensitive for sites and any value over 30 would be considered not-sensitive. 
This would not be a very powerful model, but indeed it would be able to tease out known site 
locations better than chance alone. This simple illustration underpins the general principle of what 
prediction is achieving: to find systemically related variables that are able to differentiate classes, 
understand their relationship, and extrapolate to new data. 
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Figure 6 - Example of variable discrimination; red area is background and blue area is site 
locations. 
 
A second visualization of a variable’s ability to discriminate is presented in Figure 7. This example 
uses the measurement of the tpi_10c (topographic position index in a 10-cell neighborhood) variable 
measured for every cell within each of 50 known sites in a subarea (the colored boxplots) and the 
entire background population (white boxplot at right). The boxplots show the distribution of all 
measures of the tpi_10c variable for every ~10 × 10-m cell within that site: the taller the boxplot, the 
greater the range of values within that site. The stems and dots above and below the boxplot show the 
more extreme values and outliers. The bar across the boxplot is the distribution median and the red 
dot is the mean. It is evident that the majority of sites have a mean and median at approximately zero 
tpi_10c, but a few at the left have lower values and generally wider distributions. The general 
background has a median value of approximately -10 and a range that goes well beyond any known 
site location. As in the example above, a decision boundary could be drawn on this figure to help 
differentiate area of sensitivity. For example, if a line was drawn horizontally from the top of the 
white box in the background boxplot (the 75th percentile of the background distribution) it would 
meet the y-axis at approximately negative five. If the area above this decision boundary were 
considered sensitive it would contain roughly 38 of the 50 displayed sites (76%) and approximately 
25% of the background area. This would not be the most accurate or sophisticated model possible, 
but it illustrates the concept of discriminate variables. The exercise of identifying discriminant 
variables is accomplished through the use of the Kolmogorov-Smirnov (K-S and Mann-Whitney 
(MW) U tests and is described in the section below. 
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Figure 7 - Boxplots of variable measurements at known sites (colored boxes) and in the background 
environment (white box). 

 
DATA EXTRACTION AND VARIABLE TESTING 
 
Following the creation of study areas and variables, the next steps in the modeling methodology 
includes extracting measurements of each variable for site and background locations, and then using 
that data to test the ability of each variable to discriminate site locations. This process involves the 
steps of extracting a measurement of each variable within each ~10 x 10-m grid cell within a known 
prehistoric site (i.e., site-present cell), thereby creating a large database of each variable for each cell 
on each known site; extracting the value of each variable for up to 500,000 (or the maximum number 
of cells if less than 500,000) background cells in each subarea; and running a cycle of statistical tests 
comparing the measurements of each variable between known sites and the environmental 
background. The results of these procedures are a database of all variables for each site-present cell, 
a database of up to 500,000 background cells with each variable measured within each subarea, and 
the results of statistical tests indicating which variables are more likely to discriminate known site 
locations from the environmental background within each subarea. All of these procedures are 
operationalized in R. 
 
The database of variables measured at each site is referred to during the modeling process (and in the 
R code) as “big_df.” The suffix of “df” is used because the particular data type for a matrix that holds 
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values of various types (e.g., numbers, characters, dates, nominal factors) is called a data frame. This 
is different from a simple matrix data type because a matrix can only contain a single class of data 
(e.g., only numbers or only characters). The term “big” is used because these data frames contain 
information on every site-present cell within an entire region and measures for all variables and 
descriptive information for each site-present cell, resulting in a dimension of 125 columns by 
upwards of 1,000,000 rows for each region. In total, the combined region-specific big_df data frames 
form a database of 125 columns by 2,692,082 rows representing all of the site-present cells used in 
this analysis. 
 

 
Figure 8 - Pseudo-code for creating data frame of site-present values for environmental variables; 
referred to as big_df. 
 
The creation of the big_df is simply a process of building an empty data frame for each site that 
contains the number of rows for each ~10 x 10-m cell in the site and a column for each variable 
Figure 8. For each variable raster, the raster’s value is extracted at the center coordinates of each site-
present cell and applied to the specified column in the database. Once each variable has been 
extracted from each site-present cell for each site, the data frames are joined into a single data frame 
that represents that region. While conceptually simple, this process is very time consuming because 
of the repeated extraction of values from each raster. 
 
The next step in this process is to test the ability of each variable to separate site-present cells from 
the environmental background for each subarea (Figure 9). To do so, within each subarea (line 2) and 
for each variable (line 4) the entire population of measures for that variable (a value for every ~10 x 
10-m cell in the subarea) is extracted (line 5) into a vector (i.e., a string of numbers in computer 
memory). Additionally, all of the measures for the same variable for all site-present cells in that 
subarea are drawn from the big_df into a vector (line 6). The statistical testing of this procedure is 
accomplished by comparing these two vectors numerous times. For each of 100 repeats (lines 7 to 
11), a random sample of background values is drawn (line 8) from the vector. The size of this 
random sample is 50,000. However, since a single random sample of the background is not likely to 
be entirely representative of the entire background, the process is repeated 100 times. For example, if 
the subarea contains 10,000 site-present cells, then the first pass of the statistical tests will draw 
50,000 random background samples and compute the test statistics. On the second pass, a new set of 

01 CREATE empty dataframe: rows = site-present cells, columns = variables 
02 FOR each site in Region 
03    COMPUTE center coordinates for each 10x10-meter site present cell 
04        FOR each background variable 
05            EXTRACT variable measure at each center coordinate 
06            INSERT extracted values into dataframe column 
07        end 
08    JOIN dataframe of extracted values for each site 
09 end 
10 JOIN extracted values for all sites with site descriptive data 
11 SAVE as big_df 
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50,000 random background samples will be drawn. This sample is done without-replacement within 
samples, and with-replacement between samples, meaning that a single background cell can only be 
pulled once per sample, but can be pulled multiple times throughout the 100 samples. In this 
example, after 100 passes, the total background population subjected to statistical comparison is 
50,000 x 100 = 5,000,000. For each of the 100 passes, the statistical test scores are collected and then 
averaged (line 11). The reporting of the test statistics includes the mean test statistic, the mean p-
value, and the standard deviation of both values to identify any large swings in values between the 
repeated tests. These values are joined (line 12) to the data frame (line 1) and saved for future use. 
 

 

Figure 9 - Pseudo-code for repeated K-S and MW tests for variable discrimination. 
 
The actual statistical tests performed in this routine are the Kolmogorov-Smirnov (K-S) test (line 9) 
(reporting the D statistic) and the Mann-Whitney (MW) test (line 10) (reporting the U statistic). 
Generally speaking, both are non-parametric tests that measure the dissimilarity of two distributions; 
in this case the distributions are environmental variables measured at known site locations and those 
randomly picked from the background. There are specific differences in each test that contribute 
information valuable to understanding the way in which the two samples are different. The K-S test 
was the primary test used in estimating the dissimilarity between site-present and background 
samples. The MW test was used to support the K-S test results and show a different aspect of the 
distributional differences. Simply stated, the K-S test D statistic quantifies the maximum distance 
between two distributions. First, the K-S test computes a cumulative distribution, called the 
Empirical Cumulative Distribution Function (ECDF), for each background sample and the site-
present sample. Second, the test compares the distance between the two ECDFs and isolates the 
maximum distance (measured as the maximum vertical deviation between the two curves) as the D 
statistic. Figure 10 visualizes the results of a K-S test using the rng_32c (range of elevation within a 
32-cell neighborhood) variable. The distance measured by the D statistic can be seen in Figure 10 as 
the vertical red line annotated with “D” spanning the maximum distance between the two ECDFs. 
Finally, the p-value for the test is derived by estimating the probability that the D statistic would be 

01 CREATE empty dataframe: rows = variables, columns = statistics results 
02 FOR each subarea 
03    ASSIGN variable measures for just this subarea to a new dataframe 
04        FOR each background variable 
05            EXTRACT total population of background values 
06            EXTRACT total population of site-present values from big_df 
07                REPEAT 100 times 
08                    SAMPLE from background value population: n = 50,000 
09                    TEST: Kolmogorov-Smirnov (site-present vs. background sample) 
10                    TEST: Mann-Whitney (site-present vs. background sample) 
11                COMPUTE mean D, U, and p-value statistics for all repeats 
12            JOIN mean statistic values to dataframe row 
13        end 
14    SAVE results dataframe for each subarea 
15 end 
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as large if the samples were drawn from the same parent population. Therefore, a small p-value (p ≤ 
0.05) suggests that it is unlikely that the measures of a particular environmental variable for known 
site locations would be drawn at random from the overall background; the use of a random value 
raster as a variable tests this assumption. In this sense, this is a use of a one-sample K-S test in which 
the background ECDF is the reference probability distribution. The result of the K-S and MW tests 
are computed for each variable within a subarea and saved to a spreadsheet file. 
 

 
Figure 10 - Example of K-S test and associated D statistic. 

 
PRIMARY VARIABLE SELECTION 
 
Following the creation, value extraction, and testing of the 93 variables, a primary variable selection 
process is undertaken to trim the pool of variables to remove variables with known bias, high 
correlation, and the random variable. Figure 11 outlines this selection process. The initial stage of the 
selection begins by retrieving the K-S test results discussed above. For each subarea (line 1), the list 
of variables and K-S D statistic is loaded (line 2) and sorted (line 3) in descending order by the D 
statistic. The first selection (line 4) involves removing all the variables with a D statistic below the 
mean of all D statistics for that subarea. This removes roughly half of the variables with the lowest 
discrimination between site-present cells and the general background. 
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Figure 11 - Pseudo-code for primary variable selection process. 
 
A note of caution here is that there is danger in “cherry picking” only those variables that best 
differentiate the known site sample, which may lead to models with overestimated accuracy. This can 
result from picking only the few best variables for your dataset that may not reflect the important 
variables of what you are trying to predict. The initial selection described above is not seen as cherry 
picking in that the remaining half of variables still cover a wide variety of environmental measures 
and has a range of D statistics (discrimination) represented. Further, the initial selection often does 
not remove whole classes of variables (but rather the neighborhood sizes of variables that don’t 
discriminate), and finally there was a consistent lot of variables removed that simply do not help to 

01 FOR each subarea 
02    LOAD KS test results 
03    SORT based on KS D statistic 
04    CREATE list of variable with D statistic above mean D statistic 
05    FROM the list of variables with D statistics greater than the mean 
06        REMOVE variables for dem, 1c neighborhood, random, buf, rel 
07        SELECT first of degree or percent for slope 
08        SELECT first of Euclidian or cost distance for: trail_dist, drnh,  
09            h1, h2, h3, h4, h5, h6, h7, hyd_min, hyd_min_wt, conf 
10        SELECT first of neighborhood size for: vrf, twi, tri, tpi_sd, 
11            tpi_cls, tpi, std, slpvr, rng, rel, eldrop 
12        SELECT first of h1 or h2 
13        SELECT combination of distance to stream variables as: 
14            IF h1, h6, and h7  
15                SELECT h1 and h6 
16            ELSE IF h6 and h7 
17                SELECT first 
18            ELSE 
19                SELECT none, as there were no h1, h6, or h7 
20            ELSE  
21                SELECT h1, h6, or h7 as there was only one of this group 
22            ELSE 
23                SELECT the remaining combination of h1 and h6 
24        SELECT combination of distance to wetland/water body variables as: 
25            IF h3, h4, h5 
26                SELECT h4 and h5 
27            ELSE IF h3 and h5 
28                Select first 
29            ELSE  
30                SELECT none, as there were no h3, h4, or h5 
31            ELSE  
32                SELECT h3, h4, or h5 as there was only one of this group 
33            ELSE 
34                SELECT the remaining combination of h3 and h4 
35            ELSE 
36                SELECT the remaining combination of h4 and h5 
37        SELECT first of minimum distance for: hyd_min and hyd_min_wt 
38        SELECT all of aws050, drcdry, drcwet, niccdcd 
39    end 
40    SAVE list of selected variables 
41 end 
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discriminate site locations in any environmental setting. Additionally, the stepwise logistic 
regression, MARS, and RF tests each have mechanisms for variables selection. 
 
Following the removal of those variables below the mean D statistic value, the next selection (line 6) 
is the removal of variables that are not needed in the remainder of the modeling sequence; these 
include the DEM (dem), the sink-filled DEM (buf), all the variables with a 1-cell neighborhood (1c), 
and relative slope position variables (rel).2 The DEMs are required to create many of the secondary 
variables, but because of the obvious trend in elevation they can greatly exaggerate survey bias. The 
random variable is used in the K-S testing, but is not needed in modeling. Finally, the 1c variables 
and rel variables fail to capture any measure of the landscape that is not captured in other variables; 
ideally these variables would have been left out entirely, but were retained for consistency.  
 

The set of selection procedures that follow this all compare the D statistic of a set of variables and 
select the variable with the highest D statistic, that which occurs first in the descending ordered list. 
The first of these selections (line 7) is to choose between slope measured as a percent or as degrees. 
Clearly, these variables measure the same thing, but with two different measurement systems. The 
next selection (line 8) compares between variables with both Euclidian and cost distance calculations 
to select which measure best discriminates each variable for that subarea. The next two selection 
procedures select sets of hydrology variables so as to minimize the overlap (e.g., correlation) in what 
they represent. The first hydrology selection (line 12) chooses between historic streams (h1) and 
NHD high-resolution streams (h2). Following this, various combinations of the distance to stream 
variables (h6 = fourth-order stream; h7 = third-order streams) are selected (lines 14–23) to reduce 
correlation. The same process is repeated (lines 24–36) for variables NHD water bodies (h3), NWI 
wetlands (h4), and NWI water bodies (h5), representing the distance to water bodies and wetlands. 
The final hydrology selection (line 37) choses between two measures of the minimum distance to a 
hydrologic feature; one includes wetlands (hyd_min_wt) and the other does not (hyd_min). The last 
selection in this variable selection process (line 38) simply selects all of the soil variables. Following 
this, a list of the resulting selected variables is saved (line 40). 
 
CREATION OF REGRESSION/CLASSIFICATION DATA 
 
The K-S testing procedure for variable discrimination used above pulled large samples of 
background values at random. This procedure does not require the background samples to be tied to 
known geographic locations (provided all sampling occurs within the same subarea). Mapping 
coordinates were not required because the routine was testing the general background distribution 
against the site-present distribution. However, for the modeling of these data, the known 
geographical location of each background cell is required. This is because the 

                                                            
2 Note that many other slope-related variables were used, as will be discussed in the Variable Importance section of 
Chapter 4, Findings and Results. 
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regression/classification procedures compare all of the environmental measures for selected variables 
at a single point on the landscape against the same measures for known site-present cells. 
 
The pseudo-code presented in Figure 12 shows the process for sampling each subarea for up to 
500,000 coordinate pairs (line 3), extracting the value for each of the selected background variables 
(line 6), and joining these values into a table (line 7) of point specific measures. Following the 
creation and saving (line 9) of the background value table, the subareas are looped over again (lines 
10–14) and each big_df (site-present cell variable measures) is combined (line 11) with the 
background measures of the same variables. Finally, a new column is added (line 12) and coded with 
either “present” or “absent” denoting whether the measures in that row are from a known site or not. 
 

 

Figure 12 - Pseudo-code for extracting a sample of point-specific background values for selected 
variables and joining site-present data. 
 
The table resulting from the primary variable selection and this procedure captures the measures of 
the environment for discriminatory variables for each cell on a known site and up to 500,000 
background cells. The statistical procedures used to predict site locations use these tables as the 
reference data with the background values as the explanatory variables and the column of presence or 
absence as the response variable. 
 
FITTING OF STATISTICAL MODELS: DISCUSSION 
 
Up to this point, the focus of the methodology was on data testing and preparation. The objective of 
the previous steps is to result in the regression_data table described in Figure 12: a single table of 
background values for discriminant variables at all known site-present cells and a large sample of 
background locations. From these data the predictive models parameterized, trained, and tested the 
data and results. Figure 13 illustrates the general organization of processes that are discussed below. 
 

01 FOR each subarea 
02    CREATE dataframe to hold results: rows = 500000, columns = variables, x, y 
03    EXTRACT 500000 random (X,Y) coordinate pairs or max cell count of subarea 
04    INSERT (X,Y) coordinate pairs into dataframe  
05    FOR each environmental variable selected 
06        EXTRACT background value from each (X,Y) coordinate pair 
07        JOIN dataframe of extracted values for each (X,Y) pair 
08    end 
09    SAVE results dataframe for each subarea 
10 FOR each subarea 
11    COMBINE random (X,Y) dataframe and big_df dataframe 
12    ADD column indicating if row is a site-present or background cell 
13    SAVE results dataframe as "regression_data" for each subarea 
14 end 
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Figure 13 - General organization of model fitting and prediction process. 

Model Complexity, Training Error, and the Bias/Variance Tradeoff 

Creating an effective predictive model requires an adherence to a repeatable method and proper use 
of statistical tests, but also a great deal of subjective decision making and interpretation and an 
understanding of the statistical limitations of any given model. Creating an effective predictive model 
is not accomplished by feeding the regression data into a black-box model and mapping the output. 
The models for any predictive endeavor are more akin to indiscriminate machines indifferent to your 
intentions than they are to crystal balls or fortune tellers. While these machines will accept any 
properly formatted data and output a response, correct or otherwise, they offer little reassurance or 
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understanding when they are not properly tuned. However, the act of tuning is as much an act of art 
as it is science and requires consideration of the uniqueness of the data and model intention as much 
as it does the hard numbers of error rates and precision. For these reasons, the discussion of model 
tuning will require a broader discussion of model balance, described as the bias/variance tradeoff. 
 
The bias/variance tradeoff, or dilemma as it is sometimes referred to, is an ever present issue in all 
forms of predictive modeling, archaeological and otherwise. Generally stated, the dilemma is that 
there are essentially two sources of reducible error in a prediction, the bias and the variance, and 
these errors are inversely proportional. As one source of error is reduced the other is often increased. 
This is why it is referred to as a tradeoff, and the goal is to find a model that achieves an optimum 
balance of the two. Consideration of the bias/variance tradeoff is critical in creating and 
understanding predictive models. If this tradeoff is not considered, the modeler may have no way of 
diagnosing an under-fit (i.e., consistently poor predictions) or over-fit model (i.e., variably poor 
predictions). The text below will discuss the tradeoff and techniques used in Pennsylvania’s 
Archaeological Predictive Model Set project to find the proper balance (but see Hastie et al. [2009] 
for a more quantitative description of the bias/variance tradeoff). 
 
The Components of Prediction Error. 

Throughout the project the Root Mean Squared Error (RMSE) is used as an assessment of prediction 
accuracy. Defined below, the RMSE is simply the square-root of the average squared error where 	 

is the true value of the jth grid cell and  is the predicted value for the same cell. In this case the 

squared error is simply the actual value of each cell (i.e., one for site-present or zero for site-absent) 
minus the predicted value (a value from zero to one) for each cell squared. Squaring the error turns 
any negative errors into a positive error. Add up each cell’s squared errors and divide by the number 
of cells to get the Mean Squared Error (MSE), and then take the square root of that for the RMSE. 
 

	
1
	 	 	 		

 
The RMSE can be decomposed into the sources of error with the assumptions that the data points are 
independent, the errors between the model and data have a mean of zero, and the variance in the 
irreducible error is constant (Kuhn and Johnson 2014:97). While these assumptions are idealized, 
they offer a situation by which to understand the nature of the bias and variance errors. 
 

	 	 	

 
The equation above shows the relationship between the three forms of error contributing to the 
RMSE:  (pronounced sigma squared) plus the bias squared plus the variance equals the expected 
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value of the RMSE error. In this equation, the  is the irreducible error. This is the noise inherent in 
the true data that cannot be removed by the modeling process. Of interest here are the two forms of 
reducible error, the bias and variance. Bias is the amount by which the prediction mean differs from 
the true mean (how far off the prediction is, on average, from the actual values), while variance is the 
amount of variability in a prediction given a new set of data. 
 
Concept of Bias and Variance 

The targets in Figure 14 are a common method of depicting the schematic difference between bias 
and variance. The lower left target is an example of high bias and low variance: the model is not on 
the mark, but it is consistent in how far off it is. This is a model that generates consistent predictions 
given different datasets, but is not very accurate. Conversely, a high variance model such as that 
illustrated in the upper right-hand target is close to the mark, but varies greatly. This is a model that 
predicts well with some datasets, but poorly with others. The upper left-hand target is a model that 
predicts accurately and precisely; this is the preferred optimization of the bias/variance tradeoff. The 
lower right-hand target is a high bias and high variance model. This is just a poor model and is likely 
to be evident early in the process. 
 

 

Figure 14 - Graphical illustration of bias and variance. 
 
In terms of a model’s fit, an extremely high bias model will not fit any of the data points perfectly, 
but will find the general trend in the data points (Figure 15, left pane). If this model was reapplied to 
a new set of data points generated by the same underlying process, the fit (blue line) would change 
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little and would maintain a consistent and relatively high degree of error—a bias. This is called an 
under-fit model. Conversely, an extremely high variance model will fit the data points of a particular 
dataset very well, perhaps perfectly (Figure 15, right pane). However, if this model was reapplied to 
a new set of data points generated by the same underlying process, the fit (blue line) would change 
drastically and maintain a low degree of error, but a high degree of variance in errors across all sets 
of data points. This is called an over-fit model. 

 

 

Figure 15 - Schematic of high bias and high variance model fits. 
 
Another way to think of this is in terms of the signal and the noise around the signal. In a study, the 
signal is seen as the true relationship that the model is trying to approximate and the noise is the 
obfuscation of the signal through measurement error, imperfect predictor variables, and other 
processes. A model with high bias may be able to find the general shape of the signal and avoid the 
noise. However, since the approximation of the signal is only very general, the predictions can often 
be incorrect. On the other hand, a model with high variance finds the general shape of the signal by 
mapping very accurately to the noise around it. However, since the approximation of the signal is 
very specific to the noise around the signal, the predictions can often be incorrect. A model 
optimized to balance the errors of bias and variance will ideally achieve a close approximation of the 
signal while avoiding the influence of the noise. Of course, the strength of signal and amount of noise 
in any given dataset need to be considered in achieving the ideal balance. 
 

Interaction of Bias and Variance over Model Complexity 

 
The above examples are good schematics of the principals of bias and variance, but do not fully 
capture the tradeoff associated with bias and variance and their relationship to model complexity and 
prediction error. Putting this in more specific modeling terms, Figure 16 depicts how bias and 
variance relate to error and model complexity and overall prediction error. As shown here, the errors 
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of bias and variance respond in opposite directions as complexity increases (Hastie et al. 2009:223). 
A simple model will typically have a high bias and low variance, whereas a complex model will have 
high variance and low bias. Here, model complexity can be measured in a number of different ways 
including the number of tuning parameters, explanatory variables, or overall degrees of freedom. As 
the complexity of the model increases, the greater number of parameters or degrees of freedom 
allows the fit of a model to be more flexible and therefore more able to fit the points of a given data 
set. As shown back in Figure 15, the flexibility of the fit (blue line) has a direct effect on the degree 
of bias and variance. A simple model with an inflexible fit can only find the general trend, whereas a 
flexible fit can find specific noise. As show here in Figure 16, the simple model would appear toward 
the left hand side of the graph and have a high bias and low variance. A complex model toward the 
right hand side of the graphs would have low bias and high variance. The optimum model, found by 
optimizing model complexity and minimizing total error is found at the balance of low bias and low 
variance. 
 

 

Figure 16 - Bias and variance tradeoff for model complexity. 
 

Total Error—In-Sample and Out-of-Sample Errors 

 
The conclusion to this train of logic is that by selecting appropriate model types and using various 
modeling techniques to optimize for total error, we are able to find a balance between the errors of 
bias and variance. The final piece to understanding this conclusion is the difference between in-
sample and out-of-sample errors. Simply, in-sample errors are those calculated by predicting the data 
set that the model was fit on (called training sample) and out-of-sample errors are those from 
predicting a new data set that the model has not yet seen (called a test sample). In-sample prediction 
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error estimates are over optimistic because the model is fit to the same data. Out-of-sample errors are 
more realistic because they are independent and unbiased by the model building process. Out-of-
sample error rates will always be higher than in-sample error rates. 
 
The relationship between error rates for in- and out-of-sample predictions to model complexity, bias, 
and variance is shown in Figure 17. Like Figure 16, model complexity increases to the right, error 
increases up the y-axis, and bias/variance errors are in opposition. As model complexity increases, 
the fit to the training sample (blue line) will improve and lead to an ever lower in-sample prediction 
error. However, increased model complexity on the independent test sample (red line) will only 
decrease the out-of-sample prediction error to a certain point and then it will begin to increase. This 
is because a low complexity model will under fit the true signal with a high bias error and not predict 
well on independent data. A high complexity model will over fit the noise of the training data sample 
with high variance and not predict well on independent data. The model that predicts with the lowest 
error rate on independent out-of-sample data will be a balance of complexity, bias, and variance. 
Finding this balance requires knowledge of your data set, useful explanatory variables, and 
methodological considerations such as adequate variable selection, variance reduction methods, CV, 
sample splitting, and parameterization, to be discussed below. 
 
 

 

Figure 17 - Sample error and model complexity. 
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A final note on the topic of bias and variance tradeoff is to recognize the asymmetry of the error rates 
to model complexity. In Figure 16, it appears as if bias and variance errors are weighted equally and 
respond in kind to model complexity. However, in Figure 17 this symmetry is gone and we see that 
the training sample or in-sample errors steadily decrease toward model complexity and high 
variance. In an age when statistics and computer technology make it easy to add complexity to a 
model, the modeler’s biggest challenge is most often to decrease variance as opposed to decreasing 
bias. It is relatively easy to slide down the slopes of decreasing training and test sample errors on the 
left side of Figure 17, but more difficult to stop before sliding down to unnecessary model 
complexity. 

Tools for Addressing Bias and Variance 

Proper model fitting requires the balance of model complexity and error rates. There are a number of 
techniques to achieve this goal, not the least of which being a good understanding of the 
characteristics of your data and an expectation of model outcomes. From a methodological point of 
view, tools for finding an appropriate model fit include sample splitting, k-folds CV, and 
parameterization. These methods were discussed in Chapter 5 (conceptually) and Chapter 6 (in 
practice) in the Task 3 report. The text here will not retrace all of that ground, but will provide 
working knowledge of these methods. 
 
As depicted in Figure 18, the parameter optimization and fitting sequence is: 1) split data set into a 
training and testing sample; 2) establish a range of possible model parameters and fit a model using 
k-folds CV to find the parameter with the lowest average error; 3) using the optimized parameters, fit 
the model using the entire training sample; and 4) derive the out-of-sample prediction error rate by 
predicting the testing sample with the fit model. The first step of splitting the data allows for the 
models to be built and optimized using a training data sample and independently tested using the 
testing sample. The proportion of the split is relatively arbitrary and depends on the amount of data 
available. In most modeling applications, data are scarce and leaving any out may affect the 
representativeness of the sample or miss important features. However, having no testing sample is a 
worse outcome. Typically, splitting the training to testing samples on the order of 60/40, 75/25, or 
80/20 is adequate, but the purpose of the model and characteristics of the data will influence the split. 
 
The second step in this process is the establishment of possible parameters and the optimization of 
them through k-folds CV. Different types of statistical models have different types of tuning 
parameters. These parameters can be thought of as adjustment knobs that finely tune the predictor to 
best suit the given data set. In RF, the basic parameters are the number of trees in the ensemble 
(ntree) and the number of randomly selected variables to try at each split (mtry) (discussed in Task 3 
report, pp. 52–55; Task 4 report, pp. 81–82). For the MARS algorithm the basic parameter is the 
number of final model terms after pruning (nprune) (discussed in Task 4 report, p. 61). The meanings 
of these parameters have been discussed in previous reports and the technical glossary, but we will 
use mtry as an example here. By default, the value of mtry used for the RF algorithm for 
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classification is ; where p is the total number of predictor variables. If we have 15 predictor 

variables, mtry is by default set to four (√15 = 3.873). If we wanted to run the model for a range of 
three parameter values, we could select them to be two, four, and eight. Or we could disregard the 
default and select a purely arbitrary range of two, six, and ten. If we were to test the model against 10 
parameter values, the range could be any sequence of 10 values between one and p (the total number 
of variables). The selection of how wide a range of parameter values and the values themselves are 
arbitrary choices, but they are influenced by the data and computer resources. For every additional 
model parameter tested, a series of 10 additional models must be computed. Additionally, one could 
optimize over multiple parameters, such as mtry and ntree. This would increase the number of 
models to compute exponentially. This project chose to optimize for only a single parameter per 
model and used a range of 3–5 different parameter values chosen by bracketing the default value 

of	 . 

 

 

Figure 18 - Schematic diagram of model parameter optimization and fitting sequence. 
 
The method used to select the optimized parameter value is through k-folds CV error estimation. The 
mechanics of CV have been covered in previous reports, but will be reviewed here because of its 
importance and simple concept. Basically, CV is a method by which the training data is randomly 
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split into a number of equally sized groups called folds. The number of folds you split the data into is 
referred to as “k,” thus k-folds. The quantity of k can be any number, but the values of 5 or 10 are 
most commonly selected (Hastie et al. 2009:243). Figure 19 depicts how CV works in the case of a 
10-folds split. For each k folds of the data, a single model is fit to k – 1 groups of data, and, once fit, 
this model uses the remaining data as a testing set to derive an error estimation. In the example 
below, the data are randomly split into 10 roughly equal groups and in the first iteration, fold 1 is left 
out and a model is fit using folds 2–10 as a combined data set. This model is then used to predict the 
values in fold 1 and derive an error estimate. In the second iteration, fold 2 will be used as a testing 
set and the model will be fit on the combined fold 1 and folds 3–10. This process repeats until all 10 
folds have been used as a testing sample, resulting in 10 separate independent error estimates that can 
be averaged. As such, the CV mechanism was able to utilize a single data set to derive a relatively 
unbiased average estimate of prediction error for that model. In our methods, this process is repeated 
for each parameter value in the range of parameter values to choose the value that minimizes the 
average CV prediction error. 
 

 

Figure 19 - Schematic of k-folds cross validation technique. 
 
 
Following the repetition of the CV process we have an average error estimate for each of the range of 
parameter values from which we can select the parameter value that minimizes this error. Figure 20 
is an example of a plot showing the average CV error for each of a range of 10 candidate parameter 
values. In this example the CV error is a function of RMSE and the parameter of interest is mtry for 
an RF model. From this plot it is clear that an mtry value of eight achieved the lowest average RMSE 
computed from each of 10 CV hold-out samples. Parameter values above and below mtry = 8 have 
higher, and in some cases much higher, CV error rates. These parameter values led to models that 
either over- or under-fit the data; decomposition of the RMSE could indicate which error (bias or 
variance) is most prevalent. This roughly U-shaped curve represents the black line of total error from 

Repeat for n model parameters
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Figure 16 and approximates the red line for out-of-sample error from Figure 17. Based on this 
information, we would select an mtry value of eight as the optimized parameter value and use it to fit 
the final model. 
 

 

Figure 20 - Example of plotting 10-fold CV error. 
 
The final model, chosen through the CV process above, is fit to the entire training data set to make 
the best use of the available training data. In the final step of the process depicted in Figure 18, the 
final model is used to predict the held-out testing data to derive the out-of-sample error. Provided 
there is no major discrepancy between CV error rate and the testing data error rate, this is the model 
that will be used to predict the raster layer of site sensitivity. The entire process outlined above is 
repeated for each of the LR, MARS, and RF models using the parameters of number of variables (p), 
number of final model terms (nprune), and number of variables to try at each split (mtry), 
respectively. 
 
FITTING OF STATISTICAL MODELS: PENNSYLVANIA MODEL PROJECT 
 
The section above discussed the theoretical and practical concerns of over- and under-fitting models 
and how to use data splitting, CV, and parameterization to find the optimum balance. The 
methodology presented above is general and could be applied to any modeling situation, although 
examples from the current project were included. The text and pseudo-code (Figure 21) below 
describe how the process of parameterization and error estimation were used in this project. 
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Figure 21 - Pseudo-code for model parameterization and error estimation. 
 
The above pseudo-code outlines the process of parameterization used here. This process is nearly 
identical to that described in the previous section, but structured to be run for each subarea (line 1) 
and for each of the three models (line 5). While looping over each subarea, the routine first loads the 
regression data (line 2) created by the process in Figure 12. The regression data are a data frame that 
contains measures of each selected variable for every site-present cell and up to 500,000 background 
cells. A column called “presence” contains either a 1 if the row is measured from a site-present cell 
or a 0 if it is a background cell. The presence column and its values serve as the response variable to 
be predicted for. 
 
The first alteration to these data is to add a degree of balance to the data (line 3). This is required 
because the data set has a very high degree of imbalance when comparing site-present cells versus 
background cells. Clearly, there are multitudes more places in a subarea that do not contain sites than 
areas that do. The topic of imbalanced data sets and their ramifications are well covered in the Task 3 
report (pp. 35–37). The take-away from that discussion is that having seriously unbalanced data 
makes it very easy for the algorithms to ignore the rare case (i.e., site presence) and overestimate the 
common case (site absence). The more imbalanced the data, the more the models will overestimate. 
Conversely, if the data set is balanced to 1:1, when in reality it is more like 10,000:1, the rare case 
will be overestimated, which in our case is not a terrible thing. For this project, the data sets were 
balanced at a 3:1 background to site-present ratio to address the severe class imbalance. 
 
The second alteration to the data set is to split it into testing and training samples (line 4). From the 
available data, 75% is randomly split out to serve as the training data to parameterize and fit the 
models. The remaining 25% is held-out to be predicted by the fitted model and used to derive the 

01 FOR each subarea 
02    LOAD regression_data dataframe 
03    PREPARE data: balance background to site-present as 3:1 
04    PREPARE data: split data (training sample = 75%, testing sample = 25%) 
05    FOR each model type: Logistic regression, MARS, Random Forest 
06        FOR each parameter in range of parameter estimates (n = 5) 
07            FOR each iteration in K-folds cross validation (K = 10) 
08                HOLD-OUT one fold from testing data 
09                FIT model on remaining folds (K - 1) 
10                PREDICT response for hold-out sample data 
11            end 
12            COMPUTE average performance across hold-out sample predictions 
13        end 
14        COMPUTE optimal parameterization based on performance 
15        FIT final model on all training data using optimal parameters 
16        PREDICT response for testing sample data 
17        COMPUTE performance for testing sample data predictions 
18        SAVE model and results 
19    end 
20 end 
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out-of-sample prediction error rate. The choice of a 75/25 split is arbitrary, but was chosen to allow 
for most of the data to be used for fitting given the rarity of sites in many areas. A 25% sample for 
testing is still adequate. The random assignment of the splitting is stratified by the “presence” 
column, which contains the response variable for site presence or absence. 
 
Once rebalanced and split into training and testing samples, the data looped through each model type 
(lines 5–19) to be parameterized, fit, and predicted on the test set to estimate error rates. The process 
undertaken in this loop mirrors the parameterization, fitting, and test set predicting described in the 
above section (Figure 18). A range of five values for the RF mtry and MARS nprune parameter were 
selected for those models bracketing the default value selected by the algorithm. The LR model does 
not require a parameter range in the way that MARS and RF do. The optimum LR model is selected 
through backwards stepwise feature selection based on the AIC criteria; this form of parameterization 
takes place in the same loop (line 7) as the MARS and RF, but does not require a value range. The k-
folds CV loop (line 7) is integrated over either the range of parameter values for RF and MARS or 
the combinations of different predictor variables for LR. In each iteration of the CV (lines 7–11), one 
of the 10 folds of data is held-out (line 8), a model is fit on the remaining nine folds (line 9), and an 
error rate is predicted on the one held-out fold (line 10). This is repeated and the error rate is 
averaged across all 10 hold-out folds and associated with that parameter value (MARS and RF) or 
combination of variables (LR) (line 12). After all of the parameter values or variable combinations 
are subjected to the CV routine, the parameter value or combination of variables that produced the 
lowest error rate is selected as the optimum value (line 14). The final model is fit on the entire 
training set (i.e., all 10 folds of data) using the optimized parameters or combination of variables for 
LR (line 15). This model is then used to predict the outcome of the training data set (line 16) and a 
final error rate is derived (line 17). Finally, the model is saved (line 18) so that it can be reused in the 
next step to predict the raster layers to create the final sensitivity raster for each subarea. 
 
FINAL SENSITIVITY LAYER PREDICTION AND THRESHOLDS 
 
The final step in this process is the creation of the raster layer for each subarea that displays the 
sensitivity for archaeological sites based on the model predictions, and then threshold this into low, 
moderate, and high sensitivity areas. The process of creating the prediction raster is relatively 
straightforward as all of the hard work was done in the previous steps of data preparation, variable 
selection, and model fitting. However, the process of raster prediction can be very time consuming 
and demands a great deal of computer resources. The basic approach to this step is to create a “stack” 
of the raster layers that represents each variable used in a given subarea’s model and then feed the 
values of the variables from each cell through the model created above. This process is diagrammed 
in Figure 22. Following this, the establishment of thresholds between the three sensitivity classes is 
performed. 
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Figure 22 - Pseudo-code for preparing raster layers and predicting sensitivity. 
 
The first loop (lines 1–9) loads each raster file that represents each of the predictor variables for each 
subarea and crops them down to the size of the subarea. If for example, there are 10 variables used in 
the model for a given subarea, this loop loads each of the 15 raster files for the entire region, crops 
them down to the subarea, and saves them. This process is not completed earlier because of the very 
large memory and time commitment that would be required to preemptively crop and save all 93 
raster files for each subarea. 
 
The second loop (lines 10–26) does the bulk of the predicting work. For each subarea (line 10) and 
each model type (line 11), the fitted model (Figure 21, line 18) is loaded and all of the cropped 
background rasters from the first loop (lines 1–9) are loaded. All of the rasters are loaded (line 13) 
into a “stack” where each cell of each layer is perfectly aligned and overlain, and all values from the 
first cell of each raster (line 16) is extracted (line 17). If for example, there are 10 variables in the 
model, the raster stack will contain the 10 corresponding raster layers and one value from each layer 
will be extracted from the same cell (i.e., the same X,Y coordinate). This resulting list of 10 values 
will be fed into the model (line 19) and the sensitivity of that cell is predicted. Once the predicted 
value is obtained for that cell, it is inserted (line 20) into a blank raster layer of the same dimensions 
as the predictor layers. For each of the millions of cells in each subarea, this process is repeated (lines 
15–21). Once all the cells are predicted, the raster layer containing the predicted values is saved (line 
22). The same layer is also transformed (line 23) by taking the square root of each predicted value to 

01 FOR each subarea 
02    FOR each environmental variable used in models 
03        LOAD background raster 
04        COMBINE rasters into a raster stack 
05    end 
06    MASK all rasters in stack to outline of subarea 
07    CROP all rasters in stack to dimensions of subarea 
08    SAVE all background rasters clipped to subarea 
09 end 
10 FOR each subarea 
11    FOR each model type: Logistic regression, MARS, Random Forest 
12        LOAD model 
13        LOAD background rasters clipped to subarea 
14        CREATE empty raster clipped to subarea 
15        FOR each cell in subarea 
16            FOR each background variable raster 
17                EXTRACT background value 
18            end 
19            PREDICT response based on background variable values 
20            INSERT predicted probability into empty raster at cell location 
21        end 
22        SAVE raster of predicted response values 
23        COMPUTE square root transformation of predicted response values 
24        COMPUTE confusion matrix and metrics from transformed predictions 
25    end 
26 end 
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lessen the degree of right skewness. From this transformed raster, the confusion matrix and final 
predictive metrics (e.g., Kg, Accuracy, PPV, etc.) are calculated (line 24). At this point, the 
prediction process is complete. 

Sensitivity Class Thresholds 

The process and rationale behind model thresholding was covered in depth within the Task 4 report 
(pp. 72–77, 92–97). The Task 4 report should be consulted to understand the issues associated with 
threshold selection and how the purpose of the model is the ultimate arbiter. A number of different 
threshold statistics were calculated for each model, including maximizing the Kappa and Kvamme 
gain (Kg) statistics, balancing sensitivity and specificity, adjusting for a specific sensitivity or 
specificity, and prevalence based methods. From these statistics, two thresholds were selected to 
represent the breaks between low to moderate sensitivity and moderate to high sensitivity. 
Respectively, these threshold statistics are a specificity of 0.67 and predicting for a prevalence of 0.1. 
 
For the boundary between low and moderate sensitivity, the threshold seeks to set the resulting 
model to a specificity of 0.67. Specificity is a statistical measure of performance that relates the True 
Negative Rate (TNR) of a classification, such that: 
 

	
	 	 	 	

 

 
The true negative and false positive values are derived from the confusion matrix calculated for the 
final model of each type; LR, MARS, and RF. As such, specificity (or TNR) is the probability of a 
cell being predicted a negative (i.e., site-unlikely) given that it actually is negative (background). In 
essence, this threshold seeks to find the sensitivity value that sets approximately 67% of the subarea 
to site-unlikely with the remaining 33% to be site-likely. Specificity estimates geographical area in 
this case because site locations make up such a small fraction of total area (i.e., low prevalence). The 
rationale behind this threshold is to set a bound to the maximization of specificity as suggested by 
Oehlert and Shea (2007). As discussed in Task 4, reducing the TNR, thereby reducing the 
geographical area of the model classified as moderate or high sensitivity, is not as difficult with 
flexible low bias models such as MARS and RF. However, ultimately this threshold selection is 
arbitrary and should be adjusted based on project goals. 
 
For the boundary between moderate and high sensitivity areas, the threshold seeks to predict site-
likely area equal to having an observed site prevalence of 0.1. Currently, the 18,226 known 
prehistoric sites used for this project occupy 2,309,463 cells (~10 × 10 m) out of the 1,065,669,566 
cells that constitute the entire state, for a prevalence of 0.002 or 0.22% of the state’s total area. 
Considering the known sites that intersect Section 106 survey areas (derived from the PHMC 
Environmental Review survey shapefile), the prevalence becomes 0.01 or 1% of surveyed areas. 
Given this very low prevalence, a threshold that predicts for a site prevalence of 0.1 is reasonable—a 
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10-fold increase. In many cases, this equates to a geographic area of approximately 9–11% of a 
subarea. As with the previous threshold, the use of a prevalence of 0.1 is subjective, but grounded in 
the potential use of these sensitivity layers. As discussed in the Task 4 report, there are many other 
potential threshold measures to use, but the choice of one should reflect the intended use and 
limitations of the results. This is one of the most important decisions to be made in the modeling 
process. 
 
After the high and moderate threshold points are calculated for each subarea, the prediction layer is 
classified using these values. The raster layers, now classified into high, moderate, and low 
sensitivity strata are saved in the GeoTiff format for manipulation within ArcGIS. 
 

FINAL MODEL SELECTION 
 
Once the model fitting (Figure 21) and prediction (Figure 22) routines are complete, the results are 
three raster layers assessing the sensitivity for archaeological site presence; one for each LR, MARS, 
and RF models. For each subarea a single model from one of the three statistical models must be 
selected to represent the sensitivity. As will be discussed in the next section, from a functional 
perspective each model type relies on different assumptions, addresses the relationship between 
predictor variables in different ways, selects variables differently, and has different ways to fine tune 
the results. Because of this, the same sets of predictor values being fed into each model will derive 
varying predicted probabilities, but hopefully all consistently high or low. However, from a 
contextual perspective the three model types also work differently based on the amount of spatial 
autocorrelation inherent in the samples, the representativeness of the known site sample for true site 
locations, and the qualities of the original settlement system, if any, expressed through the 
documented settlement pattern. The functional differences in models types will lead to a bias that is 
identifiable and to a degree controllable, but differences derived from the contextual perspectives are 
much more qualitative. For this reason, the final model selection is not based simply on the metrics 
of the model fit or validation, but by a subjective consideration of the metrics combined with a visual 
review of each final model raster within the context of the subarea environment, predictor variables, 
and site sample locations. As such, future analysis of prediction error based on new sites should 
consider the model type used within each subarea and compare accordingly. The final model 
selection was accomplished using ArcGIS software for the ease of interactive panning and layers. 
This platform allowed for a more complete contextual understanding of the models’ prediction of 
sensitivity than looking at the numbers alone. 
 
The model that achieves the best balance of accuracy metrics, distribution of high and moderate 
sensitivity classes in respect to the quantity of sites correctly predicted (measures such as the Kg), 
and avoidance of obvious issues related to unrepresentative sampling and correlation was selected 
from the LR, MARS, and RF raster layers. The layers selected to represent each subarea are 
mosaicked together for an entire region. The resulting raster is the mosaic of all classified sensitivity 
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raster layers for all of the subareas and constitutes the final model representation. From this, the final 
confusion matrix of classifications is computed; this is the final graphic in each of the previous task 
reports for Regions 1–10. This concludes the model building and predicting process. 
 
STATISTICAL MODELS: STEPWISE LR, MARS, AND RF 
 
Three statistical models were chosen for use in this project; Stepwise LR (Logistic Regression), 
MARS (Multivariate Adaptive Regression Splines), and RF (Random Forest). While there are many 
hundreds of different types of statistical models that could be used to predict a response from 
explanatory variables, these three cover a range of complexity and flexibility and are likely to be able 
to capture the various patterns in our data. The Task 3 report and the glossary present a fuller 
discussion of the underpinnings of each model and a comparison (pp. 14–19), as well as an example 
of how each works (pp. 44–55). The discussion below will forgo much of the information presented 
in Task 3 and be more directed at the general approach, strength/weaknesses, and why each model 
was chosen for this project. 
 
There is no one statistical model or algorithm that is universally better than others. There are 
hundreds of existing algorithms that could be applied to this project, but each model has different 
strengths and weaknesses with different types of data, amount of noise, types of variables, and 
numerous additional characteristics that set each apart. There are algorithms that work well out-of-
the-box, those that require some tuning, and those that can be used in a hierarchy of models. 
Additionally, there is room for novel algorithms made to fit the peculiarities of archaeological data. 
Acknowledging that 1) archaeological data is unlike any other data set; 2) that the quality and 
quantity of the data are highly variable across the state; 3) that there are limited archaeological 
examples of algorithms beyond LR and ad hoc weighted linear combination models to study; and 4) 
that the project requires scalable, robust, and well-researched methods, a total of five models was 
chosen to represent the data. Two of the five models are weighted linear combination models referred 
to in previous reports as Model 1 and Model 2. Described in in the Task 3 report (pp. 9–12), these 
models are intended to be used when data quality is very poor. Model 1 was never employed in this 
project and Model 2 was used in only 5 subareas. The three remaining models are all higher-level 
statistical models (LR, MARS, and RF) and the subject of the following discussion. These models 
were chosen because LR has a long history of use in APM studies and offers a good baseline derived 
from a relatively noncomplex algorithm, MARS because it is a robust version of the same class as 
LR (Generalized Linear Model [GLM]) with dimension reduction and well-handled non-linearity, 
and finally RF because it requires little parameterization, is good with noisy data, includes variable 
selection and bootstrap aggregation (bagging), and is very well researched. 
 
The three statistical models share the ability to conduct binary classification (e.g., site-present or site-
absent), model nonparametric error distributions (e.g., binomial), and provide some form of variable 
selection and dimension reduction; these qualities will be explained below. Some of the main points 
of diversion between these models include the way in which they address non-linearity, tuning 
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parameters, variance reduction, and overall model complexity in terms of degrees of freedom. This is 
a rather simplified view of the rather complex statistics that occur within these models, but the 
presentation below will provide enough detail to evaluate how they fit into this project and the 
characteristics of their output. Further, each of these three models is well researched and 
documented, and numerous text and internet sources can provide information at all levels. 

Logistic Regression 

LR or, more specifically, backwards stepwise LR based on Akaike Information Criteria (AIC), was 
selected as one of the three statistical models for this project. The LR model is similar to classical 
linear regression, but applies a binomial error distribution to the data and uses a different loss 
function to fit an S-shaped curve that transforms the effects of the predictor variables on the 
dichotomous response. The point of this approach is to bound the predicted response to between zero 
and one; or in this case site presence and site absence. Figure 23 is a simple depiction of how the LR 
model differs from linear regression. The blue line in this figure represents a traditional linear 
regression line. If a linear regression is fit to a response variable ( ) that contains dichotomous values 
(e.g., zero or one), then the blue line will predict values greater than one and less than zero. This is 
clearly a problem. The LR model (orange line in Figure 23) solves the problem of unbounded linear 
predictions by replacing the linear relationship with the logit function. This occurs by applying the 
logit transformation to the response variable ( ) and using the predictors ( ) to predict the logit, or 
log odds, of . By linearizing the inherently non-linear relationship between  and , the logit 
transformation function of the logistic model allows for the prediction of bounded probabilities for a 
dichotomous response, such as site presence vs. site absence. 

 

Figure 23 - Schematic example comparing linear to logistic regression. 
 
Within this project, the basic LR model was used in a larger framework of backwards stepwise 
feature selection. Backwards stepwise feature is designed to make the most complicated model 
possible given all the variables available, which is called the saturated model. It is assumed that the 
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saturated model is not likely to be the best model, due to over-fitting and undue complexity. The 
stepwise routine begins with the saturated model, calculates the AIC for that model, and then begins 
to remove variables one and at time (hence the name “backwards”). The AIC is a metric that 
represents the relative quality of a model given the particular data set. The AIC balances the 
likelihood of a model against a penalty for the number of predictors used in that model (see Akaike 
1974). At each step the stepwise procedure removes the variable that contributes the least to reducing 
the AIC metric until the model only contains variables that have the positive effect of significantly 
reducing the model error. 
 
The benefits of using this model in this project are that it has a long history of use in archaeology, it 
is low in complexity in terms of parameters, and the coefficients of the model are relatively 
interpretable. With the lower complexity of this model it is likely to lead to predictions with higher 
bias, but lower variance. This creates a sensitivity raster that is generalized across the landscape and 
not likely to over-fit known site locations. At the same time, the higher bias contributes to a model 
that is potentially balanced more toward increasing site-likely area at the expense of accuracy. Also, 
the LR model is more susceptible to the error derived from spatial autocorrelation within the site-
present samples and correlation between predictor variables. 

Multivariate Adaptive Regression Splines 

The MARS algorithm is better thought of as a model system that performs model fitting, dimension 
reduction, variable selection, and error estimation all in one package. An outline of this system 
includes 1) a first pass that fits a very high variance and over-fit model to the data; 2) a second pass 
that prunes that model to remove unnecessary complexity and reduced variance; 3) calculation of 
error rates in the second pass using the Generalized Cross-Validation (GCV) metric; and 4) variable 
selection performed automatically via pruning of unproductive terms. This sequence leads to a 
flexible and robust model that is better at adapting to noisy data and has built-in variance and 
dimension reduction capabilities as compared to LR. 
 
The central function of the MARS algorithm is within the same model family as LR (GLM), but does 
not use a transformation to address non-linearity and interactions. Instead the MARS algorithm 
automatically models non-linearity and relationships by fitting a number of piecewise continuous 
linear splines connected by hinge functions to approximate non-linear relationships. In this way, the 
linear splines and hinges that connect them, referred to jointly as basis functions, can approximate a 
non-linearity with a series of basic linear functions applied to sub-regions of the data. Typically, to fit 
the same non-linearity with a polynomial would require a more complex model in terms of degrees 
of freedom. Figure 24 is an illustration of the first pass of the MARS model in which a high variance 
fit of many linear splines is built. This step purposely over-fits the data and is considered a “greedy” 
algorithm because at each step it tries to reduce as much error as possible at the expense of 
complexity and variance. 
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Figure 24 - Schematic of first pass, over-fit linear terms and hinge functions of 
MARS model. 

 
The second pass of the MARS algorithm is where much of the work is done. This pass is referred to 
as “pruning” because it removes many of the over-fit linear spline terms to reduce the model to a 
more manageable and variance reduced fit (Figure 25). This second pass is not backwards or 
stepwise as it was in the LR model, but is selective across all the linear terms. The pruning process is 
conditional on the GCV metric and constrained by the nprune parameter. The GCV is similar in the 
AIC discussed above in that it is a regularization function that tries to balance model quality to model 
complexity as measured by the number of terms left after pruning. This is analogous to how AIC 
penalizes a model for the number of predictors. The pruning pass begins by calculating the GCV of 
the first pass and then removes linear terms that do not contribute significantly to the reduction of 
error. Note that the GCV contains the terms “cross-validation” in the name, but does not conduct k-
folds CV. Instead, the GCV estimates an out-of-sample error rate by using the in-sample error rate 
and adding a penalty for the number of terms in the model. The pruning pass continues to reduce the 
GCV and remove terms until the number of terms is equal to or less than the maximum number of 
terms predefined by the nprune parameter. At this point the pruning is complete and the model is fit. 
From the pruning pass, an estimate of out-of-sample error is presented by the final GCV metric and 
variables that did not contribute to the overall goodness-of-fit are removed. 
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Figure 25 - Schematic example of pruned linear terms and hinge functions of MARS model. 
 
The benefits of the MARS model are that it provides a model that is more flexible, lower bias, and 
regularized as compared to LR and more interpretable, lower complexity, and potentially lower 
variance than RF. The MARS model was selected for this project because of those benefits and 
because it is a very good middle ground between LR and RF. The inclusion of inherent variable 
selection, error estimation through GCV, dimension reduction, ability to handle data at various 
scales, handle both continuous and categorical data, and scalability all support the applicability of 
this model. Finally, while the MARS model does perform feature selection, it may still be affected by 
correlated variables and site-present sample locations in a similar manner as LR. 
 
RANDOM FOREST 
 
The final model selected for use in this project is RF. RF is unlike MARS or LR in that it is not of the 
GLM family, but instead is a form of recursive partitioning. The models in the GLM family result in 
a formula that allows for new predictions to be made based on coefficient values derived from the 
model fitting. Recursive partitioning models do not result in a formula, but instead result in a 
decision tree that is characterized by a set of rules that help predict what class a new observation falls 
into. More specifically, RF is an algorithm that uses many decision trees to create an ensemble of 
models based on randomized splits in the training data (i.e., bagging) and predicts based on 
agreement between all the models. Additional features of RF include variable importance, variance 
reduction, and out-of-sample error estimation, to be discussed below. RF was chosen for this project 
because it is very good at handling noisy data, can handle data measurements on a variety of scales as 
well as categorical data, and is a widely used and adopted model. A recent study by Fernandez-
Delgado et al. (2014:3175) tested 179 machine learning classifiers to 121 different data sets and 
concluded that in most situations, RF will be the most accurate or among the most accurate 
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classifiers. It is a very robust method with many advantages, but it can over-fit data if precautions are 
not taken. 
 
Additional support for the use of the RF algorithm comes from the statistical study of the Mn/Model 
by Oehlert and Shea (2007), described earlier in this chapter and cited throughout the task reports. 
Oehlert and Shea (2007) recommended that the fourth phase of the Mn/Model should use a model 
similar to RF. Specifically, Oehlert and Shea tested four “perturb and aggregate methods,” namely 
“bumped” trees, “bagged” trees, “double bagged” trees, and “boosted” trees. While the RF algorithm 
was developed a few years prior to Oehlert and Shea’s study, there may not have been a readily 
available implementation of it for them to use. However, the models they did test are very similar to 
RF and can be seen as precursors to RF. The description of “perturb and aggregate methods” used by 
Oehlert and Shea directly describes aspects of RF. “Perturb” refers to the random reshuffling of data 
accomplished through bagging (i.e., bootstrap aggregation) and “aggregate” refers to the combination 
of many trees into an ensemble, both features of RF. In addition, RF has another data permutation 
feature in the random selection of variables tested at each split in the tree; these features will be 
discussed below. From the models tested by Oehlert and Shea, the most similar to RF is likely the 
bagged trees, but RF is much more powerful. Of the other methods of double bagged and boosted 
trees, the performance noted by Oehlert and Shea was similar, with boosted trees slightly 
outperforming bagged and double-bagged trees. Bumped trees were poor performers. Oehlert and 
Shea (2007:42) recommended that the best compromise of performance and computational 
complexity is bagging with 10 trees. Setting aside the technicalities of double bagging and boosting, 
suffice it to say that RF is a more advanced implementation of the methods tested by Oehlert and 
Shea and most closely resembles bagging. A further recommendation was that the more trees in the 
ensemble, the better. Whereas Oehlert and Shea used 10 trees, Pennsylvania’s Predictive Model Set 
project used forests of 500 trees thanks to advances in processing speed and parallelization. Finally, 
the Oehlert and Shea study recommended k-fold CV, which is employed here. The Oehlert and Shea 
study was a well done and quite ground-breaking use of modern predictive algorithms applied to 
archaeological data. 
 
As described above, the RF algorithm is an ensemble of many individual decision tree models. A 
decision tree operates just as the name implies, as a series of branches that guide an observation to a 
final decision or, in this case, classification. A very simple example would be deciding if an animal is 
a cat or a dog and the available predictor variable (decision criterion) is weight. The first and only 
branching node of this tree would divide the continuous variable of weight at a point that best divides 
cats and dogs, perhaps around 15 pounds. As a new observation enters the tree it will be split into 
greater-than 15 pounds to the right and less-than 15 pounds to the left. The leaf node (final node) to 
the left will contain mainly cats as it includes only observations less than 15 pounds, but a number of 
small dogs may be falsely categorized there. The right node for observations above 15 pounds will be 
almost entirely dogs, but also a small number of really big cats. If classifying dogs was more 
important, then this model might work sufficiently. If it was more important to classify cats or both 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 7: FINAL REPORT 

 

 

3 • MODEL METHODOLOGY 

62 

classes equally, then the model could use another variable that adds a layer of branching nodes and 
splitting points. 
 
Moving to an archaeological example, Figure 26 illustrates a simple decision tree that could be used 
to classify a location as an archaeological site or not. This tree has three layers of decision as opposed 
to the single layer described above. The branching node labeled as “1” is where all observations enter 
the tree and are split according to a variable (V1). If this variable were perhaps the distance to a 
stream, then a split point of 200 m might be appropriate to distinguish site sensitive locations from 
non-sensitive locations (as will be explained, RF uses statistical measures to decide on the variable 
and thresholds to be used). In the example below, an observation will be split to node 2 or 3 based on 
the distance to water. If this split perfectly distinguished sites and non-sites in the training data, we 
could stop there, but there are still many sites further than 200 feet from a stream. The next layer of 
decisions at nodes 2 and 3 will use two new variables (V2 and V3), perhaps slope and a soil metric, 
to further split the observations into site-present and background classes. This process continues 
using different thresholds of different variables until the leaf nodes (in green) contain all the training 
observations. A prediction of a new observation based on this tree simply starts at node 1 and splits 
through each variable until it lands in a leaf node. Upon arrival at a leaf node, the observation is 
assigned to whichever class makes up the majority of the training data in that node. 
 

 

Figure 26 - Diagram of single decision tree. 
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The process of assigning a variable to each splitting node and establishing the value threshold to split 
on is automated within the RF algorithm. Figure 27 is pseudo-code for the logic behind building a 
single tree in RF. The creation of a tree (lines 2–16) begins with taking a bootstrapped sample (line 
2) of the training data. This sample typically constitutes approximately two-thirds of the training 
data, while the remaining one-third is held out as a testing sample (referred to as the out-of-bag 
[OOB] sample [James et al. 2014:317]). With the bootstrap sample, the observations are sent to the 
first node for splitting. At this node, a number of the available predictor variables are selected at 
random (line 4). The actual number of variables to be selected at each node is governed by the mtry 
parameter. For classification problems the default mtry is the square-root of the number of variables 

available ( 	 √ ). In this project the value of mtry is selected from five possible values based 

on 10-folds CV. The value that produces the lowest OOB error rate is used in the final model. 
Selecting a random set of variables to test at each split helps to perturb each tree and de-correlate 
variables (Kuhn and Johnson 2014:199). From the randomly selected variables, the one that creates 
the best split (line 5) in the data is assigned to that node. The best split can be defined in a number of 
ways, but typically it is the variable that leads to the biggest distinction between classes in the 
resulting nodes (line 6). This process occurs at each node (lines 3–7) until an ending criterion is met. 
This criterion could be a predefined tree depth, or that each observation rests in a single leaf node 
(fully grown tree), or a certain tree depth, or that each leaf node contains a certain number of 
observations. In this project, the stopping criterion was 15 observations per leaf node. 
 

 

Figure 27 - Pseudo-code showing the general logic of the Random Forest algorithm. 
 
Figure 27 contains the logic for two additional features of the RF algorithm: OOB error estimation 
(line 9) and variable importance (lines 11–16). The OOB error estimation simply uses the 
approximately one-third of the training sample held out from the bootstrapped split (line 2) and 
predicts it using the tree it just built. The error rate of the prediction is recorded for each observation. 

01 FOR each tree in the number of trees (ntree) 
02    SAMPLE a bootstrap sample from training data 
03    FOR each split in the tree 
04        SELECT k variables at random (k = mtry) 
05        SELECT best variable among the k variables based on criteria 
06        SPLIT data based on variable and threshold 
07    end 
08    STOP tree at n samples per node (n = 15) 
09    PREDICT OOB sample to derive error estimate 
10    PERMUTE OOB sample randomly 
11    FOR each node in tree 
12        SPLIT data based on variable and threshold 
13        RECORD decrease in node purity 
14        COMPARE purity decrease to original OOB Data 
15        DERIVE variable importance 
16    end 
17 end 
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The estimation of variable importance also uses the OOB sample, but permutes it randomly (line 10) 
so that it does not resemble the data that were just predicted (line 10). Using the randomized OOB 
data, at each node (lines 11–15) they are split (line 12) based on the thresholds established for the 
training data (line 6). The outcome of the split is recorded (line 13) and compared (line 14) to the 
classification of the original OOB data. Simply put, if a variable at a given node leads to a prediction 
of real data that is not significantly better than random data, then the variable is not very important. 
On the other hand, if a variable leads to a good prediction on real data and a significantly worse 
prediction on random data, then it is doing its job and is important. The level of importance is tracked 
across all trees and reported in aggregate. 
 
Finally, the RF algorithm is described as an ensemble because it uses a large number of individual 
trees (as described above) that are randomized through the bootstrap sampling (Figure 27, line 2) and 
random variable selection (Figure 27, line 4). In this way, the RF method computes a large number of 
high variance and low bias individual trees. When these high variance trees are combines into the 
“forest” for prediction, each tree contributes a vote, thereby reducing the variance and retaining the 
low bias (Hastie et al. 2009:587). Figure 28 gives a schematic representation of how the ensemble 
method works. This example shows three grown trees (1 through ), but the forest can have as many 
trees as computer resources allow. The number of trees is a tuning parameter of the RF algorithm and 
referred to as ntree. In this project this parameter was set to between 250 to 500 trees depending on 
the size of the data set. As trees are added to the forest (increased ntree) the variance and error rate 
are reduced. This is true to a point of dimensioning returns, but increasing the number of trees 
beyond this point typically does not lead to over-fitting (James et al. 2014:321). 

 

 
 

Figure 28 - Schematic of prediction based on decision tree ensemble.  
 
The small forest represented in Figure 28 shows how a prediction can be made through majority vote. 
As a new observation ( ) is sent though each tree, it is split at each node according to the splitting 

   …   
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criterion established when the tree was fit to training data. This follows the track of the bolded 
branches and nodes depicted in Figure 28. Even though the data of observation  is the same, each 
tree sends it along a different path because each tree was built with a bootstrapped sample and 
randomly selected variables at each node. For each tree, the observation is split until it reaches a 
terminal node (referred to as a leaf node) and is then predicted to the class that is represented by that 

node. This can be represented as  where C-hat is the predicted class of  for the bth tree. In 
Figure 28, we use the cat and dog example again to show that trees one and two predicted that 
observation  is a cat, whereas the final tree predicts it is a dog. The final prediction, represented as 

, is simply the class that the majority of trees agree on, in this case two out of three trees 

predicted that  is a cat. In addition, the algorithm can also provide the probability that observation  
belongs to a certain class, or the probability of classification to a certain class across all trees given 

the observation  expressed as 	|	 . The assessment of site-likely and background classes 

operates in the same way as demonstrated here. For the final prediction of a sensitivity raster layer, 
each cell is sent through each tree in the forest and the final value is derived as the probability of 
belonging to the class site-present. 
 
COMPUTATIONAL REQUIREMENTS 
 
A final note—the creation of these models is a very computationally demanding task. Each step of 
the process from the creation of variables, to testing variable discrimination, extracting background 
values, model parameterization, and predicting each incur specific demands on computer hardware. 
While facets of the methodology used here are shaped by computational constraints, such as the 
number of bootstrap samples, depth of parameter search, and model iterations, a number of 
efficiencies were built into the process to lessen these issues. However, it can be understated that the 
routines and computations described below on data of this volume take a very long time and cannot 
be adequately run on an office desktop without upgrades. Future implementations of these methods 
need to consider this as a potential limitation.  
 
This analysis was carried out on three computers and a series of internet based or “cloud” servers. 
These machines represent a range of computing resources in terms of processor cores, Random 
Access Memory (RAM), and operating systems. The smallest office computer used was a laptop 
computer with 16 Gb of RAM and 4 processor cores, the other two were a desktop with 24 Gb of 
RAM and 4 cores, and 64 Gb of RAM with 8 cores. The internet servers that carried out much of the 
model parameterization are hosted by Amazon Web Services (AWS) and run on their EC2 virtual 
machines. These virtual machine instances ranged in size from 30 Gb of RAM and 16 cores to 60 Gb 
of RAM and 32 cores. These instances were configured with Ubuntu Linux operating system and R 
Studio Server. The laptop and smaller of the two desktops were adequate for the creation of 
background variables, ArcGIS interactive viewing, and data preparation, but the larger desktop and 
EC2 instances were needed for model parameterization, fitting, and raster prediction. 
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On the more powerful machines, it is not unusual for a single model fit or prediction within a single 
subarea to require 5 to over 20 hours of time to process; with additional steps such as raster cropping 
or value extraction requiring 1–5 hours per subarea. On average, each of the 10 regions required a 
total of approximately 350 computer hours to run. This does not include the intermittent errors, 
crashes, and loading of new scripts. The total project therefore required approximately 3,500 
computer hours (21 weeks or 87.5 business weeks) to run if no errors occurred or models needed to 
be re-run. Many errors occurred and many models needed to be re-run. Fortunately, a few time-
saving adaptations allowed for these models to be completed within the project time frame. First was 
the general optimization of the code that produces many of the model components. This required an 
iterative process of development and optimization that took place throughout the project. Second was 
the use of parallel processing that took full advantage of all available processing cores for particular 
tasks. While some tasks, such as computations that rely on the result from other computations, are 
not great candidates for parallel processing, other tasks such as ensemble modeling (e.g., RF) are 
very well suited for it. Where it was useful, such as in model parameterization and fitting, the code 
took advantage of parallel processing to reduce modeling time. Third, and perhaps most important, 
was the adaption of the modeling process to run on cloud-based AWS EC2 servers. Using this 
technology a number of high powered server instances could be recruited to take on the most arduous 
tasks of model parameterization and fitting. These servers are optimized to this type of computation, 
can be scaled up or down to fit the data needs, and are accessible from any internet connection. 
Therefore, broken modeling processes did not have to wait until Monday morning to be discovered.  
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4 
FINDINGS AND RESULTS 

 
This project resulted in a single statewide coverage demonstrating the results of a statistical 
sensitivity model for the presence of pre-contact archaeological material. This coverage, in the form 
of a raster layer, is a mosaic of four individual statewide raster layers representing each of four 
different statistical model algorithms. Each of these four algorithms was applied to 132 subareas that 
define the analytical units composing the statewide coverage. Each subarea represents either a 
riverine or upland subarea within the same geography. As such, there are 66 upland subareas and 66 
riverine subareas. Table 3 illustrates the dimensions of this project. 
 

Table 3 - Quantities of Model Project Attributes 

Attribute Quantity 

Total model area (sq. mi)  45,293  

Total model cells (~10.5 x 10.5 meters)  1,058,897,903 

Site-present cells  2,024,242  

Archaeological sites  18,226  
Archaeological sites after being unioned 
with subareas  22,144  

Subareas models  132  

Individual models  528  

Environmental variables  93  
Processed cells (models + variables) 102,519,096,591 

 
The total number of prehistoric archaeological sites or site components used in this study was 18,226. 
Table 4 breaks down, for each region, the number of subareas, the area in square miles, the number 
of sites intersecting the region, and the density of sites per square mile. For this project, these sites 
were unioned with the subareas, meaning that the polygon areas representing PASS archaeological 
sites was overlain on the polygons representing each of the subareas, and any site spanning a subarea 
boundary was split into two. If a site overlapped the intersection of three subareas, it would then be 
split into three sites along the subarea boundaries. After this process, the total number of site areas 
used in this study was 22,144.  
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Table 4 - Area, Archaeological Site Count, and Site Density per Region 

Region 
Subarea 
Count 

Square 
Miles Site Count 

Sites per 
Sq Mile 

1 20  12,338   7,381  0.598 

2 8  5,102   2,035  0.399 

3 2  240   170  0.708 

4 12  4,612   1,315  0.285 

5 14  4,051   1,518  0.375 

6 10  5,234   422  0.081 

7 18  5,265   1,239  0.235 

8 18  3,669   3,336  0.909 

9 28  4,553   4,701  1.033 

10 2  229   27  0.118 

Total 132  45,293   22,144  0.489 
 
The four modeling algorithms were applied to each of the 132 subareas for a total of 528 individual 
models fitted for this study. For each subarea, one of the four model types was chosen to represent it 
based on internal model metrics, hold-out sample error rates, KG statistics, and a subjective 
assessment of fit based on the distribution of sensitivity classes. This process is discussed in Chapter 
3. Table 5 documents the area, count, and number of unioned sites incorporated into each of the four 
model types. Additionally, Table 5 lists the same statistics broken down by upland subareas and 
riverine subareas. As evident in this table, the vast majority of subareas, area, and sites were modeled 
by the RF algorithm for both riverine and upland areas. The MARS algorithm comes in a distant 
second, followed by LR, and finally Model 2 (i.e., proportionally weighted linear combination 
model). Model 2, the most generalized model, was only used in areas that had very few known sites 
and therefore not enough evidence to discern a pattern. Figure 29 graphically represents the 
percentage of each model type that was chosen to represent the subareas of each region.  
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Table 5 - Quantification of Model Types by Landscape Position 

Total 

Model  sq Miles Subareas Site Count 

Model 2 3394 5 59

LR 2545 6 332

MARS 4498 24 2138

RF 34856 97 19615

total 45293 132 22144

Upland 

Model  sq Miles Subareas Site Count 

Model 2 3362 4 50

LR 2320 3 128

MARS 3592 6 267

RF 31681 53 11958

total 40955 66 12403

Riverine 

Model  sq Miles Subareas Site Count 

Model 2 32 1 9

LR 225 3 204

MARS 906 18 1871

RF 3175 44 7657

total 4338 66 9741
 

Region 6 required the most diverse selection of model types to represent the final sensitivity 
assessment. As documented in Table 4, the density of known sites within Region 6 is by far the 
lowest in the state. The only rival is Region 10, which conforms to the outline of Philadelphia 
County. Region 6 had numerous subareas with very few sites and therefore little pattern to identify. 
The use of LR and the proportionally weighted Model 2 reflect this fact. Similarly, the lower site 
densities of Regions 4 and 5 also required the use of less complex models such as MARS. This is not 
to say that areas with lower site densities cannot be modeled by RF, but that the areas of low site 
density often have site samples that are clearly not representative of the population.  
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Figure 29 - Percentage of model types selected for the subareas of each region. 
 

 
CLASSIFICATION ERRORS AND PERFORMANCE  
 
A mosaic of the 132 models enumerated in Table 5 were classified based on specified thresholds into 
high, moderate, and low sensitivity, then mosaicked together to form the final sensitivity layer. Table 
6 is a summation of the final model error rates and performance. Tables such as this, termed a 
“confusion matrix,” are presented at the end of each the Task 4, 5, and 6 reports. This table groups 
the high and moderate sensitivity classes of the sensitivity layer into a category for site presence and 
the low sensitivity class into site absent. This is in effect classifying high and moderate as areas 
where sites are likely and low as an area where sites are unlikely. Using binary classes (i.e., present 
and absent) allows for the construction of this confusion matrix and the derivation of the performance 
metrics listed below it. These metrics are discussed in the Task 3 report (pp. 67–68) and defined in 
the glossary, but the schematic table explaining these terms is reproduced here (Table 7). ). In total, 
the final sensitivity model correctly classifies 98.4% of known site-present cells within an area equal 
to 29.2% of the state, a Kg of 0.701. 
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Table 6 - Confusion Matrix and Performance Metrics for Statewide Mosaicked Model 

ALL REGIONS 
Known Sites 

Present Absent 

Model 
Prediction

Present 1,992,770 309,213,157 311,205,927 

Absent 31,472 747,684,746 747,716,218 

2,024,242 1,056,897,903 1,058,922,145 

Sensitivity / TPR = 0.984 
Specificity / TNR = 0.707 

Prevalence = 0.0019  
Kvamme Gain (Kg) = 0.701 

Accuracy = 0.708 
Positive Prediction Value (PPV) = 0.006 

Negative Prediction Value (NPV) = 1.000 
Unexpected Discovery Rate (UDR) = 0.000 

Detection Rate = 0.002 
Positive Prediction Gain (PPG) = 3.350 

Negative Prediction Gain (NPG) = 0.022 
False Negative Rate (FNR) = 0.016 

Detection Prevalence = 0.294 
 

Important observations from this table include the balance of higher sensitivity at the expense of 
specificity. The sensitivity, or true positive rate (TPR), is the accuracy within the class being 
predicted for, that is, archaeological sites. A high sensitivity demonstrates that a high proportion of 
known sites is included within high and moderate areas. Alternatively, specificity is the true negative 
rate (TNR), or one minus the false negative rate (FPR); the higher the FPR, the lower the 
specificity/TNR. In a model such as this, a false positive error is incurred when an area without a 
known site is predicted to be likely to contain a site. On the other hand, a false negative error is when 
a known site is predicted to be in a low/site-unlikely sensitivity area. It is clear that a false negative 
(i.e., misclassifying a known site) is a much more egregious error than classifying a background cell 
as likely to contain a site. The former stems from the model missing known site locations because of 
a bias error, whereas the latter is a product of the model projecting sensitivity into areas that have not 
been surveyed. Because the point of this model is to project into unsurveyed areas, a moderate 
number of false negatives, and thereby a moderate FNR, is necessary because this is the area with a 
higher sensitivity for finding sites. The approach taken by this project was to maximize the TPR (rate 
of correct predictions) while maintaining a moderate FNR so that a comfortable portion of the 
landscape remains as high and moderate sensitivity. In this case, it equates to approximately 30% of 
each subarea on average.  
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Table 7 - Schematic of Confusion Matrix and Performance Metrics 

Known Sites 

Present Absent 

Present True Positive (A) False Positive (B) 
Total Predicted 

Sites (A+B) 

Absent False Negative (C) True Negative (D) 
Total Predicted 

Non-sites (A+B) 

 
Total Sites (A+C) 

Total Background 
(B+D) 

Total 

Sensitivity / TPR = A/(A+C) 
Specificity / TNR = D/(B+D) 

Prevalence =  (A+C)/(A+B+C+D)  

Kvamme Gain (Kg) = 
1-( (A+B)/(A+B+C+D) / (A/(A+C)) ) or 1 - 
(Detection Prev / sensitivity) 

Accuracy = (A+D)/(A+B+C+D) 

Positive Prediction Value (PPV) = 
(Sensitivity * Prevalence)/((Sensitivity*Prevalence) + 
((1-Specificity)*(1-Prevalence))) 

Negative Prediction Value (NPV) = 

(Specificity * (1-Prevalence))/(((1-
Sensitivity)*Prevalence) + ((Specificity)*(1-
Prevalence))) 

Unexpected Discovery Rate (UDR) = 1 - NPV 
Detection Rate = A/(A+B+C+D) 

Positive Prediction Gain (PPG) = PPV/Prevalence 
Negative Prediction Gain (NPG) = UDR/Prevalence 

False Negative Rate (FNR) = C/(A+C) 
Detection Prevalence = (A+B)/(A+B+C+D) 

  

The performance metric below the confusion matrix in Table 6 depicts various dimensions of the 
model’s classification ability and errors. While there are numerous metrics presented here, there are 
equally as many ways in which a simple 2 × 2 table of classification results can interpreted. With the 
exception of the Kg statistic, the rest are commonly used in the fields practicing machine learning 
and classification. The terms used here are defined within this report’s glossary. A few of these 
metrics, including PPV, NPV, and UDR, are not particularly useful in themselves because in this 
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context the very low prevalence of site cells skews the result. However, other metrics such as PPG 
and NPG build off of these by incorporating prevalence and leading to a more meaningful value. 
Along with sensitivity, specificity, and the Kg, the PPG metric is perhaps the most important for 
understanding these results. The PPG is discussed by Oehlert and Shea (2007:6–10) and is essentially 
a measure of how much more likely one is to find a site in a high or moderate sensitivity area given 
this model versus survey at random. The PPG is composed of known site prevalence, which is the 
probability that any randomly selected cell contains a site, and the PPV, which is the probability that 
a location classified as a site actually contains a site. Therefore the PPG, which is PPV divided by 
prevalence, divides the model’s ability to correctly classify known sites with the probability of 
finding a site anywhere. The resulting value is an assessment of how many times more likely it is to 
find a site in a high or moderate area using this model than survey at random; in this case, 3.350 
times more likely.  
 
MODEL BENCHMARKS 
 
An important way to determine the value of a model is to compare it against the standards of the field 
or metrics of similar models. In archaeology, it would be difficult to identify any particular 
benchmarks or reference models to use for comparison. This has as much to do with the regional 
variation and intent of different models as much as it does with lack of a consistent and agreed upon 
modeling approach within our discipline. However, in lieu of such a benchmark, there are other 
standards that can serve as a basis for comparison: 1) random chance, 2) peer models, 3) the best 
current model, and 4) the best possible model. The result of each of these comparisons shows that the 
Pennsylvania model performs better than its peers given the current data. Beyond these benchmarks, 
the best test of this model will be time and the recordation of new prehistoric archaeological sites.  

Random Model 

Comparing the Pennsylvania model against a random model is a way to assess the minimum hurdle a 
model would have to pass to be useful. Clearly a model that predicted on par or worse than randomly 
surveying the landscape is a poor choice and will not likely serve the goals of the project. With this 
project, we have already compared the model against random survey in the previous section. Two of 
the metrics provided in Table 6 provide insight into how the model functions relative to the random 
model. These metrics are the Kg and PPG. As discussed above, the PPG of the statewide model is 
3.350. This demonstrates that the model is more than 3 times more effective than survey at random. 
While this number is useful at assessing the relative utility of a model, it is a little hard to interpret its 
true implications. This number is most effective in comparing candidate models. The Kg is discussed 
in detail in Appendix A of the Task 1 report and in numerous other locations in subsequent reports. 
The important point of comparison is that a Kg of 0.0 is essentially random survey and a Kg of 1 is a 
perfect model fit (and potentially over-fit). The Kg of this model is 0.701, well above random. 
However, being that the Kg incorporates the FPR, a necessary error within any model of this type, 
attempting to maximize the Kg will only reduce the area in which new sites are projected to exist. A 
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model that simply does better than random chance does not necessarily provide a great deal of 
confidence in the model, but it does show that the model is at least minimally predictive.  

Peer Models 

The next level of comparison is to judge a model against its peers. In the Task 1 report of this project, 
32 reports were assessed to set the foundation for this model. Of these reports, 9 included one or 
more models that could be quantified totaling 13 individual model assessments. Table 8 lists the Kg 
and FNR of these 13 models to serve as a basis of comparison. The Kg is chosen because it is a 
common metric that is used throughout these reports and is a relative measure of a model’s precision. 
Additionally, the FNR is chosen because it is a direct measure of a model’s misclassification of 
archaeological sites—a measure of accuracy. As discussed above, a false negative error is considered 
much more costly in this context than a false positive error, and is therefore an important metric.  
 
The final rows of Table 8 show that the average Kg of these models is 0.432 with a standard 
deviation of 0.170. The FNR has an average of 0.191 (or 19% misclassification of sites) and a 
standard deviation of 0.085. The Kg of 0.432 is not necessarily high compared to what it represents 
or what would generally be considered a desirable model, but it is still useful. Essentially, to achieve 
a Kg such as this, the percentage of sites correctly classified would have be a little under twice the 
percentage of total area predicted to contain sites. For example, a model that correctly classifies 80% 
of sites in an area that takes up 45% of the study area would achieve a gain of 0.437. Similarly, a 
model that predicts 35% of sites in 20% of the study area would achieve a gain of 0.428. These 
models are quite different, but have the same ratio of approximately 1.7:1 of percent predicted sites 
to percent predicted site-likely area, an average that could use some improvement. However, with a 
high Kg of 0.631 to a low of 0.150, there is quite a range. Conversely, the range or FNR is relatively 
narrow except for an outlier of 0.40. At an average FNR of 0.191, these values are perhaps more in 
line with model expectations than their corresponding Kg values. An average misclassification rate 
of 19% of known sites is not detrimental depending on the purpose and generality of the model. The 
general trend of a respectable to moderate FNR paired to a moderate to poor Kg indicates that these 
models account for a decent number of known sites, but have to expand the site-likely area (high and 
moderate sensitivity levels) to a relatively large portion of the study area.  
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Table 8 - Kg and FNR Metrics of Models Evaluated in the Task 1 Report 

Model Date Kg FNR 

1989 0.203 0.40

1989 0.200 0.17

1994 0.536 0.27

1994 0.606 0.19

1996 0.588 0.18

1996 0.593 0.17

1996 0.532 0.25

1996 0.631 0.18

1996 0.308 0.18

1996 0.382 0.18

2002 0.484 0.13

2002 0.402 0.03

2002 0.150 0.15

Mean 0.432 0.191

Std Dev. 0.170 0.085
 

The Pennsylvania model has a Kg of 0.701 and a FNR of 0.016—a substantial improvement from the 
average of the reference models. Figure 30 shows the distribution of Kg and FNR metrics for each of 
the reference models (red dots) and Pennsylvania model (black triangle). Within the wide range of 
Kg values, the Pennsylvania model is comfortably above the reference models. At this Kg value, the 
model has a ratio of 3.4:1 of percent correctly predicted sites to percent predicted site-likely area, a 
two-fold improvement on the mean of the reference models. Similarly, the FNR of 0.016 is a much 
lower error rate than the average of the reference models. Only a single model was close in error rate 
(0.03) but was paired with a much lower Kg (0.402), indicating it had to cover a large portion of the 
study area to achieve the low FNR. In other words, it was quite accurate (low FNR), but not very 
precise (low Kg). 
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Figure 30 - Boxplots of Kg and FNR metrics for reference models and Pennsylvania model. 
 
A bivariate scatterplot of these metrics is presented in Figure 31 for comparison. The reference 
models (red dots) and the Pennsylvania model (black triangle) are plotted along the axes of Kg and 
FNR. The Pennsylvania model achieves a separation from the reference models on both axes. To 
further add to the interpretation of this figure, base lines are added at subjective X-axis and Y-axis 
values to create quadrants corresponding to model error characteristics. Along the Y-axis of Kg, a 
boundary is drawn at 0.5 to separate models that are above and below a site-to-background percent 
ratio of 1:1. Models below this boundary would typically be poor and models above generally 
acceptable. On the X-axis of FNR, a line is drawn at 0.15, or a misclassification rate for sites of 15%. 
Models to the right of this would have a relatively poor misclassification rate and models to the left 
would have generally acceptable misclassification rates. Based on these boundaries, four quadrants 
are formed. The upper-left quadrant has acceptably high Kg and low FNR signifying models that 
have acceptable accuracy and precision. The upper-right quadrant has a higher Kg, but also high 
FNR signifying a model with precision, but little accuracy. Conversely, the lower-left quadrant has a 
low Kg and low FNR, signifying models with accuracy, but poor precision. Finally, the lower-right 
quadrant has model with low Kg and high FNR. These models are not particularly accurate or 
precise. The reference models are scattered about quadrants two, three, and four, but only the 
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Pennsylvania model is found in quadrant one (both accurate and precise). The Pennsylvania model 
appears to better its peers in both accuracy and precision.  
 

 

Figure 31 - Scatterplot of Kg and FNR metrics for reference models and Pennsylvania model. 

Best Current Model 

Identifying the best current model is problematic because no current model exists. However, the 
current state of archaeological survey in Pennsylvania provides a useful proxy. Given a series of 
assumptions, the data for site and survey locations can be combined into a confusion matrix for 
comparison purposes. This method of comparison is only for a general reference because of the 
methods by which sites are recorded and surveys are conducted. However, the values that can be 
reasonably justified are presented here for reference. 
 
The following comparisons use the current environmental review (ER) survey areas as a proxy for 
the Pennsylvania model. Because the ER survey areas are located only where regulated undertakings 
occur, they do not necessarily represent the highest sensitivity areas within the state. However, it can 
be assumed that survey was requested by the PHMC because the project area had some degree of 
sensitivity for prehistoric sites and that the archaeologists who did the survey identified areas of 
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elevated potential for testing. This hypothesized “ER survey model” results in a precise model 
because it identifies 12% of the known sites within an area of 2.6% of the state, for a Kg of 0.783. As 
in the analysis in the section above, the FNR has no bearing here because false negatives have no 
meaning outside of surveyed areas. However, this relatively high Kg can be combined with the 
statewide site prevalence of 0.0019 to derive a PPG of 4.602. This indicates that, given the method 
used to call for an ER survey and the methods used to find sites (e.g., STUs, pedestrian survey, etc.), 
a location within an ER survey area is 4.6 times more likely to contain a site than an area outside of 
an ER survey area. Again, these figures are built from a number of assumptions, but will suffice for 
comparative purposes. 
 
The PPG for the Pennsylvania model is 3.350, but further manipulation is required to make the ER 
survey model PPG and the Pennsylvania model PPG comparable. The Pennsylvania model is, by 
choice, much less specific than the ER survey model. While the ER survey model only covers 2.6% 
of the state, the Pennsylvania model considers 29.4% of the state as site-likely; these percentages are 
called the detection prevalence. In order to compare the PPG metrics, the detection prevalence of 
each model needs to be made equal. This is straightforward for non-site areas, but more complicated 
for site areas of the current model. The complication arises from the fact that a reduction of model 
area percent does not lead to an equal reduction of site percent. In the subarea models that make up 
the total model for this project, it is very typical for the vast majority of sites to be accounted for in 
the first few percent of the background area. As the amount of background area increases, the percent 
of sites accounted for decreases rapidly. A 50% reduction of the site-likely area will not lead to a 
50% reduction of the percent of sites accounted for. Instead, a 50% reduction in site-likely area may 
only lead to a 10% reduction in the percent of correctly predicted sites. Therefore, for a 91% 
reduction in the Pennsylvania model’s site-likely area to make the detection prevalence match the ER 
survey model, a much smaller reduction in the site-percent is required. This percent can be found in 
the Kg, which is the ratio of background to site percentages. Using the Kg of the current model 
equates to a reduction of 70% of the correctly predicted sites to match the 91% decrease in the site-
likely area needed to make the detection prevalence of the two models comparable. Finally, after the 
two models are made comparable, a PPG of 11.054 and Kg of 0.910 are calculated for the 
Pennsylvania model. As such, the adjusted version of the Pennsylvania model correctly classifies 
29% of sites within an area of 2.7% of the state, whereas the ER survey model correctly classifies 
12% of sites in approximately the same area (Table 9).  
  

Table 9 - Metrics of ER Survey Model and Pennsylvania Model 

Metric ER Model 
Current 
Model 

Adjusted 
Current 
Model 

Kg 0.783 0.701 0.910 

Sensitivity / TPR 0.120 0.984 0.294 

PPG 4.602 3.350 11.054 

Detection Prevalence 0.026 0.294 0.027 
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Best Model 

The final comparison to be made here is more of a theoretical exercise than the previous 
comparisons. As it is wise to compare a model to the lowest bar of the random or null model, it is 
also wise to compare a model against the highest bar, which is the best possible model given the data 
available. Using an example of a model built to predict email spam, the best model would be a model 
that perfectly separates spam emails from non-spam emails with no errors on either side. However, 
given the data available to make such a model, a perfect error-free model might not be possible. This 
hypothetical optimal model that makes the best prediction based on the given data is referred to as 
the Bayes Classifier by Hastie et al. (2009:21).  
 
For APM, it is not as straightforward as the spam example. Typically, the point of an APM is not to 
perfectly predict the location of every unknown archaeological site. This is because it is 
unequivocally clear that the data given to build these models are not capable of creating a perfect 
error-free model. Therefore, the Bayes Classifier for APM will be something with a reasonable 
amount of error, preferably on the side of false positives. However, since it is clear that 
archaeological data will not lead to a perfect model no matter how optimized the hypothetical Bayes 
Classifier could be, the amount of error acceptable for a sub-optimal model is highly dependent on 
the goals of the model. The identification of how much and what kinds of error are acceptable in a 
model given the goals of that model are tightly coupled to a discussion of model thresholds. Such a 
discussion is present in the Task 4 report (pp. 86–91). Suffice to say, that without a great deal of 
further development in a field-wide framework of models and objectives, the “best” model given the 
data and project goals is an unknown quantity. Further, how this model compares to the hypothetical 
Bayes Classifier for planning-based APM is unknown and will only be told by time, field testing, and 
modeling improvements.  
 
MODEL ACCURACY  
 
Model accuracy for this project was established through various internal measures depending on the 
model type, as well as on a 25% hold-out sample for all model types. The hold-out testing sample 
was chosen at random from the population of site-present cells for each subarea. The values present 
the internal testing (Test RMSE) and external testing (CV Accuracy) of the models that compose the 
final mosaic. Table 10 lists the Area Under the Curve (AUC), test RMSE error from the hold-out 
sample, and the out-of-fold error rate from the 10-folds CV model fitting.3  
 
   

                                                            
3 The error rate measures were not calculated in a comparable metric for models of Regions 1, 2, and 3. 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 7: FINAL REPORT 

 

 

4 • FINDINGS AND RESULTS 

80 

Table 10 - Error Rates for OOB and Hold-Out Samples for Three Model Types 

Model AUC 
Test 

RMSE 
CV 

Accuracy Subareas 

LR 0.970 0.208 0.206* 6 

MARS 0.953 0.237 0.916 24 

RF 0.990 0.097 0.988 67ⱡ 

Average 0.971 0.181 N/A N/A 
 
* The CV metric of LR is RMSE and not accuracy 
ⱡ The total number of RF models including Regions 1, 2, and 3 is 97 

 
The hold-out error rates of each subarea model for each region are discussed in detail under the 
heading of “Model Validation” in Chapter 5 of the reports for Tasks 4, 5, and 6. This section looks at 
the error rates in aggregate. As documented in Table 10, the error rate values for the test RMSE are 
quite low for the 25% hold-out sample. The RMSE for the three models ranges from a high of 0.237 
for the MARS model and a low of 0.097 for the RF models. Interestingly, the LR model RMSE is 
lower than the MARS model. This seems a little counterintuitive given that the MARS model should 
decrease the bias error over LR, but it is a result of the small number of LR models selected for the 
final sensitivity assessment. The six LR models were selected because they were a better fit to the 
subarea than the MARS or RF model; therefore these six models are biased toward lower RMSE. 
The RMSE of the MARS models is slightly higher than the six selected LR models, but not 
significantly so. On the other hand, the RMSE of the selected RF models at 0.097 is much lower than 
the MARS or LR. 
 
The AUC is not necessarily a measure of error, but instead a measure of how well the model balances 
the TPR and FPR across all thresholds. The higher the AUC the better the model fits the hold-out 
data. Following the same trend as the RMSE, the AUC is best (highest) for the RF model and lowest 
for the MARS models. Finally the CV error is the error rate calculated on the out-of-fold sample and 
averaged across each of the 10-folds. This error should essentially always be lower or perhaps nearly 
equal to the hold-out sample test. That is because the out-of-fold sample is only an estimator of true 
hold-out samples since the model will eventually use all of the out-of-fold data for model fitting. In 
this study, the CV error was measured as a percentage of accuracy for RF and MARS and as RMSE 
for LR. 
 
What Table 10 shows is that the RMSE of the 25% hold-out sample is quite low for all three model 
types and particularly low for the RF models. This is the case for two main reasons: 1) the models are 
a good representation of the pattern present in the known archaeological sites and therefore good at 
predicting hold-out values; and 2) the spatial autocorrelation of the site-present cells being predicted 
for adds a degree of bias to the error rate. The first point is simply that the models are relatively 
accurate descriptions of the existing data. This point is elaborated on throughout this chapter and is 
the focus of many sections in the task reports. The second point is addressed in the methodological 
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sections in the previous reports and Chapters 3 and 5 in this report. The main issue associated with 
autocorrelation of the response variable observations (the site-present cells being predicted for) is 
that they are not spatially independent or identically distributed. Instead, site-present cells are 
dependent on the location of other site-present cells and as such are often clustered. Although the 
25% hold-out sample is randomly chosen from the population of site-present cells, there is a greater 
probability of cells being selected from known sites that occupy large areas and from geographic 
areas where numerous known sites are clustered. The large area of a single site or area where sites 
are clustered will be more similar relative to the environmental variables than areas without clusters 
or large known sites. Therefore, the model predictions will be biased toward higher predicted 
probabilities for site-present cells near areas of large and clustered known sites. This is a known 
source of bias in these models, and methodological controls attempt to reduce it. However, it will 
only be through stratified random sampling techniques, the incorporation of random spatial effects, 
or the estimation of the structure of the spatial errors that the bias of autocorrelation will be greatly 
reduced.  
 
VARIABLE IMPORTANCE 
 
The degree to which the different environmental variables correlate to site presence and absence is 
measured by the K-S and MW U test prior to model fitting. This process is discussed in Chapter 3 
and Figure 9. This routine of testing allows for the distinguishing of variables that on the univariate 
dimension have some power to discriminate site-present cells from the general background. 
However, these tests do not identify high-dimensional relationships that may affect variables 
differently in the presence of other variables. The RF algorithm used in this project is able to identify 
variable importance in the presence of other variables. The results of the variable importance 
measures for 102 subareas in Regions 4–10 are explored below.4  
 
The RF algorithm measures variable importance by measuring the decrease in accuracy incurred by 
removing a variable. After the construction of each tree in the forest ensemble, the OOB data are 
randomly permutated and sent though each split in the tree. The variable that defines each split is 
essentially removed by this because of the randomized data. At each split, the accuracy is recorded 
on the random data and compared to the accuracy achieved at that split (by a specific variable) on the 
real training data. The mean decrease in classification accuracy between random and real data is a 
measure of the importance of each variable. The reason for this is that if a variable predicts equally as 
well with real and random data (a low mean decrease in accuracy), then it is not a very effective 
variable. On the other hand, if a variable predicts very well with real data and poorly with random 
data (a high mean decrease in accuracy), then that variable is taken to be important.  
 

                                                            
4 The variable importance measures were not calculated in a comparable metric for the models of Regions 1, 2, and 
3. 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 7: FINAL REPORT 

 

 

4 • FINDINGS AND RESULTS 

82 

The equation outlines this process with  as the overall variable importance. This is calculated 

as the average variable importance of the jth variable from the bth tree ( ), then averaged across 

all trees in the ensemble forest ( ). Finally,  is calculated as the difference in accuracy 

between the classifications of real data versus permutated OOB data. 
 

	
∑

 

To make use of this technique, the variable importance of each RF model is calculated and then 
standardized to make a model-to-model comparison more appropriate. The tables below show the 
results of this for both riverine (Table 11) and upland (Table 12) subareas, assuming that the 
variables affecting settlement are likely different in these two settings. As discussed above, the VI is 
measured as a mean decrease in accuracy across all trees in a mode: the higher the value, the more 
important the variable. The tables show the top 10 variables sorted by 1) the average VI for each 
model; 2) total summed VI from all models; and 3) the total number of times that a variable was used 
in these regions. The green highlighted column identifies the column for which the results are sorted 
in descending order. And finally, Table 13 combines the measures of total VI and average VI into a 
composite score to identify the variable that contributes the most to accuracy and does so in many 
subarea models. The composite score is the sum of the total value and average value after they are 
manipulated to a common scale. This table is a list of the top 30 variables from both riverine and 
upland settings. The variables are color-coded by general type and put side-by-side for comparison.  
   



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 7: FINAL REPORT 

 

 

4 • FINDINGS AND RESULTS 

83 

Table 11 - Variable Importance Measures for Riverine Subareas of Regions 4–10 

Variable Importance Ranked by Average Decrease 

Rank Variable 
Average 
Decrease 

Total 
Decrease Count Variable Description 

1 e_trail_dist 134.3 2552.4 19 Distance to historic Indian trail (Wallace 1998) 

2 ed_h6 127.2 3561.5 28 Distance to 4th order and up steams 

3 c_trail_dist 115.5 3465.9 30 Cost distance to historic Indian trail (Wallace 1998) 

4 ed_drnh 104.2 833.3 8 Distance to head of drainage 

5 ed_h7 103.3 723.4 7 Distance to 3rd order and up streams 

6 ed_h4 87.9 1230.4 14 Distance to NWI wetlands 

7 cd_h3 78.8 157.5 2 Cost distance to NHD water bodies 

8 ed_conf 73.5 514.3 7 Distance to stream confluence 

9 cd_h7 72.5 435.2 6 Cost distance to 3rd order and up streams 

10 cd_h6 66.8 601.6 9 Cost distance to 4th order and up steams 

Variable Importance Ranked by Total Decrease 

Rank Variable 
Average 
Decrease 

Total 
Decrease Count Variable Description 

1 ed_h6 127.2 3561.5 28 Distance to 4th order and up steams 

2 c_trail_dist 115.5 3465.9 30 Cost distance to historic Indian trail (Wallace 1998) 

3 e_trail_dist 134.3 2552.4 19 Distance to historic Indian trail (Wallace 1998) 

4 cd_drnh 64.5 1871.7 29 Cost distance to head of drainage 

5 aws050 55.2 1820.2 33 Soil: available water capacity at 50 cm below surface 

6 elev_2_drainh 66.2 1788.2 27 Vertical elevation to head of drainage 

7 ed_h2 50.2 1605.0 32 Distance to NHD flow lines 

8 cd_h4 58.6 1464.9 25 Cost distance to NWI wetlands 

9 ed_h5 56.4 1410.0 25 Distance to NWI water bodies 

10 std_32c 53.3 1331.9 25 Standard deviation of slope in 32 cell neighborhood 

Variable Importance Ranked by Count 

Rank* Variable 
Average 
Decrease 

Total 
Decrease Count Variable Description 

9 aws050 55.2 1820.2 33 Soil: available water capacity at 50 cm below surface 

10 ed_h2 50.2 1605.0 32 Distance to NHD flow lines 

11 c_trail_dist 115.5 3465.9 30 Cost distance to historic Indian trail (Wallace 1998) 

12 cd_drnh 64.5 1871.7 29 Cost distance to head of drainage 

13 elev_2_strm 37.4 1085.5 29 Vertical elevation to stream 

14 ed_h6 127.2 3561.5 28 Distance to 4th order and up steams 

15 elev_2_drainh 66.2 1788.2 27 Vertical elevation to head of drainage 

16 tpi_sd10c 19.9 536.7 27 
Standard deviation of Topographic Position Index for 10 cell 
neighborhood 

17 tpi_10c 19.6 529.9 27 Topographic Position Index for 10 cell neighborhood 

18 cd_h4 58.6 1464.9 25 Cost distance to NWI wetlands 
* Rank for variables sorted by count begin at 9 because the eight factor levels of NICCDC took up the first eight spots. 
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Table 12 - Variable Importance Measures for Upland Subareas of Regions 4–10 

Variable Importance Ranked by Average Decrease

Rank Variable 
Average 
Decrease 

Total 
Decrease Count Variable Description 

1 ed_h6 205.1 2051.5 10 Distance to 4th order and up steams 

2 ed_h7 176.3 881.4 5 Distance to 3rd order and up streams 

3 e_trail_dist 163.2 1142.3 7 Distance to historic Indian trail (Wallace 1998) 

4 cd_h7 135.2 2973.9 22 Cost distance to 3rd order and up streams 

5 cd_h6 112.2 1570.2 14 Cost distance to 4th order and up steams 

6 ed_drnh 90.4 1175.1 13 Distance to head of drainage 

7 c_trail_dist 78.7 3146.2 40 Cost distance to historic Indian trail (Wallace 1998) 

8 ed_h1 74.1 148.2 2 Distance to historic streams (PSU 2004) 

9 ed_h4 67.7 474.0 7 Distance to NWI wetlands 

10 ed_h2 63.6 1017.4 16 Distance to NHD flow lines 

Variable Importance Ranked by Total Decrease 

Rank Variable 
Average 
Decrease 

Total 
Decrease Count Variable Description 

1 c_trail_dist 78.7 3146.2 40 Cost distance to historic Indian trail (Wallace 1998) 

2 cd_h7 135.2 2973.9 22 Cost distance to 3rd order and up streams 

3 cd_h5 57.3 2232.9 39 Cost distance to NWI water bodies 

4 ed_h6 205.1 2051.5 10 Distance to 4th order and up steams 

5 cd_h4 51.1 1991.6 39 Cost distance to NWI wetlands 

6 elev_2_drainh 51.1 1889.7 37 Vertical elevation to head of drainage 

7 elev_2_strm 36.3 1741.4 48 Vertical elevation to stream 

8 cd_conf 40.6 1703.7 42 Cost distance to stream confluence 

9 cd_h6 112.2 1570.2 14 Cost distance to 4th order and up steams 

10 aws050 38.1 1296.2 34 Soil: available water capacity at 50 cm below surface 

Variable Importance Ranked by Count 

Rank Variable 
Average 
Decrease 

Total 
Decrease Count Variable Description 

1 elev_2_strm 36.3 1741.4 48 Vertical elevation to stream 

2 elev_2_conf 26.2 1230.7 47 Vertical elevation to stream confluence 

3 cd_conf 40.6 1703.7 42 Cost distance to stream confluence 

4 c_trail_dist 78.7 3146.2 40 Cost distance to historic Indian trail (Wallace 1998) 

5 cd_h5 57.3 2232.9 39 Cost distance to NWI water bodies 

6 cd_h4 51.1 1991.6 39 Cost distance to NWI wetlands 

7 elev_2_drainh 51.1 1889.7 37 Vertical elevation to head of drainage 

8 aws050 38.1 1296.2 34 Soil: available water capacity at 50 cm below surface 

9 cd_h2 24.1 772.0 32 Cost distance to NHD flow lines 

10 tpi_sd250c 21.8 696.3 32 
Standard deviation of Topographic Position Index for 250 cell 
neighborhood 
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 Table 13 - Variable Importance Values Centered and Scaled Comparing Riverine and Upland 
Settings  

Rank 

Riverine Subareas Upland Subareas 

Variable Total Average Sum Variable Total Average Sum 

1 ed_h6 1.000 0.947 1.947 ed_h6 0.652 1.000 1.652 

2 c_trail_dist 0.973 0.860 1.833 cd_h7 0.945 0.659 1.604 

3 e_trail_dist 0.717 1.000 1.717 c_trail_dist 1.000 0.383 1.383 

4 ed_drnh 0.234 0.776 1.010 e_trail_dist 0.363 0.795 1.159 

5 cd_drnh 0.526 0.480 1.006 ed_h7 0.280 0.859 1.139 

6 ed_h4 0.345 0.655 1.000 cd_h6 0.499 0.547 1.046 

7 elev_2_drainh 0.502 0.493 0.995 cd_h5 0.710 0.279 0.989 

8 ed_h7 0.203 0.769 0.972 cd_h4 0.633 0.249 0.882 

9 aws050 0.511 0.411 0.922 elev_2_drainh 0.601 0.249 0.850 

10 cd_h4 0.411 0.436 0.848 ed_drnh 0.373 0.441 0.814 

11 ed_h2 0.451 0.374 0.824 cd_conf 0.542 0.198 0.739 

12 ed_h5 0.396 0.420 0.816 elev_2_strm 0.553 0.177 0.730 

13 rng_32c 0.365 0.421 0.785 ed_h2 0.323 0.310 0.633 

14 std_32c 0.374 0.397 0.771 aws050 0.412 0.186 0.598 

15 elev_2_conf 0.321 0.406 0.727 cd_drnh 0.337 0.199 0.536 

16 vrf_32c 0.274 0.428 0.703 elev_2_conf 0.391 0.128 0.519 

17 ed_conf 0.144 0.547 0.692 std_32c 0.304 0.212 0.516 

18 eldrop32c 0.275 0.405 0.680 ed_h4 0.151 0.330 0.481 

19 cd_h6 0.169 0.497 0.666 ed_h5 0.175 0.298 0.473 

20 cd_h7 0.122 0.540 0.662 rng_32c 0.257 0.187 0.444 

21 cd_h5 0.219 0.415 0.634 e_hyd_min 0.211 0.231 0.441 

22 cd_h3 0.044 0.587 0.631 ed_h1 0.047 0.361 0.408 

23 e_hyd_min 0.270 0.358 0.628 tri_32c 0.203 0.173 0.377 

24 elev_2_strm 0.305 0.278 0.583 slpvr_32c 0.193 0.174 0.367 

25 e_hyd_min_wt 0.232 0.341 0.573 eldrop32c 0.245 0.121 0.367 

26 tri_10c 0.087 0.462 0.549 rng_16c 0.160 0.205 0.365 

27 cd_conf 0.218 0.322 0.540 cd_h2 0.245 0.118 0.363 

28 std_16c 0.053 0.466 0.519 tpi_sd250c 0.221 0.106 0.327 

29 slpvr_32c 0.185 0.288 0.473 tpi_250c 0.218 0.105 0.323 

30 tri_32c 0.181 0.281 0.462 ed_conf 0.096 0.209 0.305 
Color coding: blue = distance to hydrology; green = measure of topography; brown = soil attribute; purple = 
elevation to water feature; yellow = distance to trails 

 
From these tables, it is evident that the Euclidian distance to streams of 4th order and higher (ed_h6) 
is the most important variable in both upland and riverine settings when averaged across the RF 
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models for all subareas in Regions 4–10. However, for upland settings, the distance to 3rd order and 
higher streams (ed_h7) is almost equally important. In general, this finding is perhaps not surprising 
given the emphasis archaeologists put on sources of reliable year-round water in our mental 
settlement models. For the upland areas, the importance of distance to 3rd order and high steams 
(ed_h7) makes a lot of sense as these waterways originate further into the uplands than the 4th order 
streams. Simply, reliable flowing water is a very important factor in site location given the data we 
have. The next most important variables are a bit of a surprise: the distance to historically 
documented Indian trails (Wallace 1998) measured by Euclidian and slope-sensitive cost distance. 
The historic trails do have a decent degree of correlation with both 3rd and 4th order streams, but 
these trails also often correspond to ridge tops and other overland routes. There may also be some 
circularity in this correlation because people may have sought to identify sites near the trails (first 
published in 1965), and these trails often correlate to modern roads that people travel to find fields to 
surface collect.  
 
Following these variables, there begins to be a bit of a shift in important variables between riverine 
and upland locations. For riverine subareas, variables tied to the location of heads of drainage 
(ed_drnh, cd_drnh, and elev_2_drainh) are important, as well as the distance to NWI wetlands 
(ed_h4). In the upland settings, the slope-sensitive cost distances to 3rd and 4th order streams and 
NWI wetlands (cd_h4) and water bodies (cd_h5) gain importance. The same variables focused on 
drainage head locations are slightly further down the list of importance. It is interesting that the 
variables associated with drainage heads are seemingly slightly more important in riverine areas than 
uplands. The heads of drainage are a decent analog to the location of spring heads and seeps, 
hydrology features thought to be important in upland settings. Although they have a higher rank in 
riverine settings, drainage heads are still important in upland settings. 
 
The most important (and seemingly only important) soil variable is the available soil water capacity 
at a depth of 50 cm (aws050). The other soils variables appear further down the list, generally ranked 
in the lower 50% of all variables, with niccdcd appearing more important than drcwet or drcdry.  
 
The variables that measure aspects of topography, slope variation, and landforms are generally 
derived from the DEM raster and appear among the more important variables in Table 11, Table 12, 
and Table 13. For both upland and riverine areas, the variables of range of slope (rng_32c) and 
standard deviation of slope (std_32c) over 32-cell neighborhoods rank high. These two measures are 
highly correlated (Pearson’s r = 0.956) at known site locations and can be used by the algorithm 
interchangeably. Figure 32 below shows a Pearson’s r correlation matrix for all of the variables in 
Table 13, noting that many of the correlated variables were separated during the variable selection 
process and are not modeled together. The lower half of Table 13 contains a number of additional 
DEM derived variables including the topographic relief index (tri), vector roughness factor (vrf), 
elevation drop (eldrop), and topographic position index (tpi). Also in the lower half of Table 13 are 
additional hydrology variables, most of which have analogs or cost sensitive measures in the upper 
half.  
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Figure 32 - Pearson’s correlation r value for the 30 most important variables. 
 
Interesting observations based on these findings include the apparent utility of a 32-cell 
neighborhood when calculating variables derived from the DEM. For this project, these same 
variables were all calculated at neighborhoods of 8, 10, 16, and 32. That intention of this range of 
neighborhoods was to determine at what scale the patterns became most useful. It appears that the 
most useful size is 32 cells, but attempting the same analysis for larger neighborhoods would be 
informative. The topographic position index (tpi) was calculated at a different range of neighbors (5, 
10, 50, 100, and 250) because this variable requires a larger area to derive useful patterns. In this case 
again, the largest neighborhood size was the most useful. Another interesting observation is the 
utility of cost-sensitive distance in the upland subareas. In this project cost of distance is a function of 
slope, therefore it is not surprising that cost distance was not pervasive in riverine settings where 
slope in general is not as restrictive. However, in the uplands where slope can be a major factor in 
effective distance, weighting for slope apparently was effective. Also of interest is the utility of the 
elevation to features variables elev_2_strm for streams (specifically to NHD flow lines [h2]), 
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elev_2_drainh for heads of drainage, and elev_to_conf for the elevation above or below confluences. 
It is likely that these elevation variables interact with other hydrologic or topographic variables to 
derive this utility. Such interactions can be specified explicitly in the LR and MARS algorithms, but 
the RF model can detect these interactions based on node splitting parameters. New research 
indicates that variable interactions may be detectable from RF variable importance metrics (Kelly 
and Okada 2012). It is interesting that the variables associated with increasing accuracy are so similar 
between upland and riverine settings. Intuitively, it would seem that since upland and riverine 
settings are so very different in terms of hydrography and topography, the variables correlating to 
sites would also differ greatly. However, these results show that this is not the case. This is likely 
because the variables that influenced site location were not as radically different even when the 
environment differed. This also likely has to do with the more limited set of variables we are able to 
compute to serve as proxies for 10,000 plus years of environmental change. Those that work well in 
both settings are probably the variables that serve as solid proxies withstanding some degree of 
change and mapped closely to a component of previous settlement decisions, or at least what we 
believe them to be. 
 
A final note to this analysis is to indicate the variables that faired very poorly. These included the 
classification of topographic index (tpi_cls) on various neighborhood sizes, topographic position 
index (tpi) of small neighborhoods, soil variables of drcwet, drcdry, and niccdcd, and flow direction 
(flowdir). The classified TPI likely is just a poorly constructed variable at this point, the small 
neighborhoods for tpi and other topographic variables are likely just too small to pick up on 
landscape trends, flow direction just has no correlation to site location, and the soils variables need 
some reconsideration. Soils variables would likely be improved by reworking them into continuous 
variables, measuring them as proximity variables, or manipulating them into composite variables that 
better describe the attributes of an environment resulting from different soil characteristics. 
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5 
CONCLUSIONS AND RECOMMENDATIONS 

 
The results of this project demonstrate that statistical techniques can identify and extrapolate patterns 
found within the body of known archaeological sites in Pennsylvania. Additionally, the use of split-
sampling techniques and validation metrics show that these patterns can achieve a relatively low rate 
of error when identifying known sites not included in the pattern’s development. The project further 
shows that the extrapolated pattern can be classified based on appropriate context-specific threshold 
criteria to illustrate a qualitative assessment of the sensitivity for archaeological material at a 
particular location given the characteristics of sites documented within environmental settings similar 
to that location. Finally, these assessments can be a useful tool in aiding planners and decision 
makers to better understand the relative potential impact of various project alternatives when 
considered at an appropriate scale.  
 
The model generated by this project cannot replace archaeological field survey and, like any model 
derived from the abstraction of data, have strengths and weaknesses. While the model has wide 
geographic coverage, computational efficiency, and methodological consistency, it also uses biased 
and non-independent site data (as described in Chapter 1) and has limited explanatory power. These 
attributes must be considered in the model’s implementation. Among the strengths of this approach is 
that the general pattern observable in known archaeological site locations can be extrapolated quickly 
over vast geographic areas, incorporating an array of variables. Further, this is done with statistical 
techniques that can identify high-dimensional relationships among variables and within a framework 
that helps us understand the relationships and the degree to which the patterns match the known data. 
This is akin to an archaeologist studying the known sites of a river valley, quantifying their 
relationship to features of the environment, and then impartially identifying where those features 
intersect throughout the valley, but on a scale that would take an infinite amount of time and brain 
power. The weaknesses of this approach are that the model only considers known archaeological sites 
to find a pattern, that known archaeological site distributions are not independent or necessarily 
representative of true site distributions, and that the variables used to describe the pattern are only a 
limited set of proxies for a large number of unknown variables that influenced Native American site 
selection processes. Building on the previous metaphor, our archaeologist finds a pattern that ignores 
knowledge gained from other watersheds, is aware of the faults in the data, and cannot be sure of 
casual relationships between the pattern and environmental variables. While these weaknesses exist, 
they do so as counterbalances to the strengths; in the spirit of Wolpert (1996), there is “no free 
lunch.” Every attempt to model site sensitivity will require the balancing of strengths and 
weaknesses, where the “best” objective model is the one that “best” achieves the subjective goals of 
the project or study. To bridge the gap between model and goals requires an acceptance of strengths 
and weaknesses and avoidance of blind reliance on either one.  
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The methods used in this study were employed because they were a way to achieve the project’s 
objectives within a given timeframe. These methods are an outgrowth of the theoretical base of APM 
studies old (Judge and Sebastian 1988) and new (Kamermans et al. 2009). Further, this study builds 
from the lessons learned from the Mn/Model’s years of development (Oehlert and Shea 2007) and 
up-to-date research in numerous academic and industrial fields of study that employ similar models 
with similar goals and constraints. The end result of this process, as documented in seven task 
reports, is a transparently constructed and valuable tool for planning, advising, and research that 
balances strengths and limitations.  
 
USAGE RECOMMENDATIONS  
 
It is recommended that this sensitivity assessment be used for planning purposes such as comparing 
relative impacts from multiple project alternatives, calculating relative Phase I archaeological survey 
costs for multiple project alternatives, and acting as additional support for the guidance of 
archaeological field survey within the environmental review process (Figure 33). These uses should 
be implemented at a map scale no greater than approximately 1:24,000 (1 map inch = 2,000 on-the-
ground feet), which is the same scale as a common USGS 7.5ʹ series quadrangle map. As discussed 
in Chapter 1, this limitation is due to the scale at which the base data of archaeological site locations 
were originally recorded and digitized.  
 

 
Figure 33 - Overview of final sensitivity layer. 
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Aggregate 

Given the scale at which this model is most appropriate, roughly 1:24,000, it makes sense to have the 
sensitivity assessment raster reflect this scale. As generated, the final sensitivity assessment has a 
raster resolution of roughly 10 × 10 m. This resolution was established toward the beginning of the 
model to match the resolution of the DEM for consistency across all environmental variables. 
However, at the final stages of modeling, the use of this resolution is seemingly finer than can be 
accounted for by the base data (i.e., site locations). It therefore makes sense to aggregate the final 
model raster to a resolution that is more appropriate to the base data and better suited to the planning 
purpose of the model. 
 
The process of aggregation involves reducing the raster resolution by grouping the sensitivity of a 
neighborhood of cells into a new sensitivity value. For example, if the search neighborhood is 10 
cells, then for each neighborhood of 10 × 10 cells, a new sensitivity is calculated from the sensitivity 
values of that neighborhood. The resulting raster has a lower resolution than the original and a new 
value that is derived from the cells in the original raster. There are a number of functions to 
determine the new sensitivity value, but the most common are the maximum value of the original 
cells, their mode, minimum, or average (for continuous values). These functions simply describe how 
the numerous values of the original raster neighborhood are combined into the resulting lower 
resolution raster. The maximum function takes the highest value of the neighborhood, the minimum 
function takes the lowest value, the mode takes the most common value, and the average takes the 
mean of the original cells. Figure 34 is a graphical example of an aggregate that uses a 2 x 2-cell 
neighborhood and takes the maximum value of the original raster and applies it to the resulting raster.  
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Figure 34 - Example of raster aggregation based on a 2-cell neighborhood and a maximum value 
function. 
 
If the first 2 × 2 neighborhood of the original raster contains a high sensitivity cell, then the resulting 
raster will apply a value of high sensitivity to the aggregated cell. Similarly, the 2 × 2 neighborhood 
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in the lower left of the raster only contains low sensitivity, so the resulting raster will code that region 
as low. 
 
For the final sensitivity raster from this model, it is recommended that a 3 × 3 neighborhood with a 
maximum function is used to derive a new aggregated raster for planning purposes. The approach 
would reduce the resolution down to 30 × 30-m cells that more accurately reflect the base unit of 
analysis (i.e., archaeological sites). The maximum function is a conservative approach that uses the 
highest sensitivity likelihood established by the model for the resulting sensitivity. As such, if even a 
single cell in the nine cells that make up the 3 × 3 neighborhood is considered high sensitivity in the 
original raster, the aggregate raster will be set to high sensitivity for that neighborhood. Figure 35 is 
an example of the original 10 × 10-m resolution sensitivity rater and Figure 36 is an example of the 
same area aggregated with a 3 × 3 neighborhood and the maximum function. The implementation of 
this approach has the added benefit of homogenizing geographic regions, defining landscape level 
trends, and removing sparse and spotty sensitivity assessments. This recommendation is designed to 
better align the output of this analysis with the goals of the project.  
 

 

Figure 35 - Example of sensitivity assessment at original 10 × 10-m resolution. 
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Figure 36 - Example of sensitivity assessment at aggregate of neighborhood maximum 30 × 30-m 
resolution. 

Additional Information 

The sensitivity assessment raster created through this process is a useful tool when combined with an 
understanding of the assumptions, models, and findings documented in this and the other task 
reports. However, once separated from their supporting literature, the data may be taken for granted, 
raising the potential for misuse. One solution to this problem may be to provide additional visual 
information along with the sensitivity assessment that quantifies another dimension of the analysis. 
Additional information pertinent to interpreting the analysis includes subarea boundaries, the type of 
model used in that subarea, the density of sites within the subarea, and raster layers of site and survey 
density. 
 
Additional information can be incorporated by providing a separate layer or by integrating the 
additional information into the sensitivity assessment. This could be done mathematically or as a 
union of qualitative factors. As an overlay, the type of model, site, and survey densities per subarea 
could simply be a layer that is turned on or off by the viewer to add additional information to the 
decision-making process. Models in areas of very low site density are likely to be less representative 
of the entire site population. Figure 37 is an example of such an overlay, demonstrating the type of 
model used in each of the 132 subareas, and Figure 38 is the density of known sites per square mile 
within each subarea.  
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The second approach to providing additional information is to modify the sensitivity raster layer. For 
example, a raster layer of known site or ER survey density could be classified into high, moderate, or 
low density and then combined with the sensitivity assessment to make new categories that 
incorporate this information. The resulting layer would be symbolized to show areas of high 
sensitivity that are also in areas of high recorded site density; this would be an area where the data 
used by the model was more representative. In areas where the sensitivity is high but the survey or 
site density is low, the model results may be taken more skeptically.  
 
The Mn/Model addressed this problem in a similar way. For that project, a predictive model of 
survey locations was created in the same manner as for the archaeological sites. Essentially, the 
survey area model was an extrapolation of landscape conditions similar to those that have been 
surveyed in the past. The result of this was a layer that showed environments similar to and 
dissimilar to areas that have been surveyed. The theory is that areas that are similar to previously 
surveyed areas will have a better representation of known sites and therefore higher confidence 
predictions. This is an interesting approach that could be implemented in Pennsylvania as well.  
 

 
Figure 37 - Model type by subarea. 
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Figure 38 - Density of known archaeological sites per square mile within each subarea. 

Urban Areas 

The sensitivity assessment for Region 10, the entirety of Philadelphia County, is a low confidence 
model. Region 10 has a very low site density (0.118 sites per square mile), and the landscape has 
been heavily modified over the past 300 plus years. Attempting to model such an environment with 
the methods documented in the seven task reports introduces a whole different set of challenges 
beyond the rest of the state. The infilling of streams and wetlands, filling of low areas, cutting of hill 
tops, widespread development, and subsequent burial or destruction of site locations leads to a very 
unrepresentative sample of site locations and variable measurements. While Philadelphia is by far the 
most affected, the same can likely be said for urbanized areas such as Pittsburgh, Harrisburg, 
Allentown, Erie, Scranton, and so on.  
 
The lack of apparent integrity from the view of small-scale environmental variables masks a 
documented truth of such settings: prehistoric sites exist in many locations and are often protected by 
historic-period fill. Recent work by PennDOT on the I-95 corridor has proven this (URS Corporation 
2014). However, developing models for such an area requires very different methods than those 
employed here. A model of Philadelphia prehistoric sensitivity is a model of 300 years of land use 
focused on identifying the locations of remaining integrity. Researching historical documents for 
evidence of deep fill, shallow building construction, slab construction, stream valleys, and historic-
period habitations can all contribute to successful identification of buried resources (Yamin et al. 
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2010). Currently, this sort of analysis only occurs on a local or site-specific scale, where historic 
maps and resources are available. On a larger scale, such a model could be developed using broader 
trends in urban development mixed with current street/alley layouts, major utilities, and historic 
maps. This would be a very worthwhile undertaking.  
  
IMPROVEMENTS TO CURRENT METHODS  
 
The methods employed in the current model are built to suit the project objectives within the 
constraints of time, processing power, and scalability. The numerous techniques used to work with or 
around these limitations are discussed throughout the task reports and are summarized here in 
Chapter 3. Nonetheless, there are a number of areas where improvements can be made to the current 
methods that may help increase the accuracy and utility of these assessments. Discussed below, many 
of these improvements will incur a cost relative to one or more of the previously mentioned 
constraints. However, that should not preclude their consideration or experimentation along these 
avenues. 

Defining Spatial Structure 

Issues associated with undefined spatial structure are potentially the most pressing that need to be 
addressed in this research. Spatial structure accounts for the way that site locations and variables are 
related and interact. This structure is multidimensional because site-likely cells are more related to 
neighboring cells than they are to cells in distant sites; neighboring sites are potentially related to one 
another on a cultural level as well as in relation to their environmental niche; environmental niches 
are more related to others in the same watershed; and so on to account for a vast scale of structured 
correlation. Many traditional and modern statistical modeling and inference methods are not designed 
to account for this structure as they typically are applied to controlled tests where data can be 
assumed to be stationary, homogeneous, and independent. Such is not the case for spatial data, a 
realization made 45 years ago in Cliff and Ord’s (1969) paper, “The Problem of Spatial 
Autocorrelation.” 
 
Spatial autocorrelation can be defined as, “[a] measure of the degree to which a set of spatial features 
and their associated data values tend to be clustered together in space” (ESRI 2015). In the 
Pennsylvania model, this concept is manifested in the use of archaeological sites as the unit of 
analysis. Ideally, observations would be independent and identically distributed, but clearly 
archaeological sites are systematically related. Further, the autocorrelation is amplified through the 
use of individual site-present cells (as opposed to a single point representing a site) as our data 
points. These units are not only related on the larger systematic scale of archaeological sites, but also 
related as repeated observations from within a single archaeological site—that is, they are highly 
clustered. The effects of positive spatial autocorrelation on the models is the exaggerated influence of 
groups of sites and single large sites leading to a heightened estimate of probability near existing 
sites and on landforms with numerous or large sites.  
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A related issue is that of intraclass correlation. Described as the Intraclass Correlation Coefficient 
(ICC), this is a measure of how similar measurements are within groups. In the context of the present 
study, the ICC can calculate how similar the measures of each environmental variable are within 
sites. The greater the values of the ICC of a variable within an archaeological site, the greater the 
effect that variable has on the model of that site. While the Pennsylvania project does not model sites 
on an individual basis, an ICC that is high across many sites will have a large effect. For example, 
the median ICC for the distance to 3rd order or higher streams (ed_h6) calculated from 20 random 
samples of 500 individual site locations is 0.9994. The median ICC from the same sample for the 
topographic relief index from a 10-cell neighborhood (tri_10c) is 0.7749. However, with knowledge 
of how sites are distributed, especially riverine sites (which compose 44% of our site sample), the 
high correlation of distance to water values within a site should be no surprise. If a portion of the site 
is near water, then all of the site will be near water—and sites clearly have a positive relationship 
with proximity to water. The lower median ICC for the topographic variable is still relatively high, 
but shows that there is a greater degree of variability of this feature within the known site sample.  
 
These issues arise from the fact that the structure and correlation of the spatial relationship between 
site-likely cells is not known to the statistical models. To address this issue, the spatial structure 
needs to be defined and accounted for or the data points need to be uncorrelated through sampling 
strategies. In the intervening years since Cliff and Ord (1969) drew attention to the “Problem” of 
spatial data, many methods have been proposed to identify and incorporate spatial structure into 
models, but there is still more to do. This is very much the case for the incorporation of spatial 
structure into archaeological site location modeling. The studies of fields such as geostatistics and 
spatial statistics have developed theoretical and methodological frameworks for addressing 
correlation, but differences between the types of data, analysis, and spatial structure commonly seen 
in those fields as compared to archaeology are nontrivial. Established methods such as Moran’s I, 
spatial lag, and variogram analysis all have a place in controlling for spatial structure in 
archaeological data, but are not a straight fit.  
 
As discussed in Chapter 1, archaeological location data as measured for this study have some 
particular characteristics that set them apart from other spatial data, such as being nonmechanistic, 
discrete, heterogeneous in temporal and spatial scale, difficult to detect and measure, and derived 
from a biased sampling strategy. Adopting a new method of measurement such as continuous 
surfaces for site density or aggregating site counts into larger continuous polygons or quadrants could 
make them more amenable to existing spatial statistics methods, but there are tradeoffs associated 
with any such strategy. The solution to this problem likely lies with a mixed approach of resampling 
strategies, quantifying relationships, and spatially explicit models. Creating methods specific to the 
character of archaeological data will be challenging, but ultimately rewarding. 
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Variable Creation and Selection 

The approach taken by this project to explanatory environmental variables is to define as many 
variations on environmental measures as practical, conduct univariate testing against numerous 
bootstrapped background samples, select approximately 30–40 variables with the best discriminatory 
power, remove highly correlated variables, and allow the models to use inherent variable selection 
techniques to choose the best subset. This is called a filtering method because the variables must pass 
through the univariate testing filter prior to use in the model.  
 
Improvements on this approach would include creating additional variables to offer a larger range of 
potential correlations. This may include more compound variables describing landform morphology 
or measures of environmental attractiveness or richness; further elaborating on measures relating to 
soil data; and hydrologic models based on more accurate reconstructions of the past environment. 
Additionally, variable selection could be performed within a cross-validation framework to decrease 
variance. With the current univariate approach, the full body of site data is used to select variables 
that are then used within a CV framework to parameterize the models. In this way, the models will 
have “seen” or been influenced by the data that are in the hold-out sample by which they are 
validated (Hastie et al. 2009:345). This is a somewhat subtle point and more applicable to problems 
with higher ratios of variables to observations, but should be considered. The downside to using the 
cross-validation framework is escalated computational complexity and time. Methods such as 
Recursive Feature Elimination (RFE) (Kuhn and Johnson 2013) and the Boruta algorithm (Kursa and 
Rudnicki 2010) could be beneficial in achieving these goals. As opposed to the filter method 
described above, RFE and Boruta are called wrapper methods. These algorithms take a full set of 
variables and wrap them within a cross-validated model building sequence (commonly using RF as 
the base model), which results in a ranking of variables that are relevant to the classification problem. 
 
Another approach that should be investigated is to identify a small set of variables that have 
widespread relevance to site locations in many different settings, as analyzed through the wrapper 
methods above. Restricting the model fitting to a small set of intuitive and proven relevant variables 
(such as distance to water) would likely lead to models with a higher bias error, but greater 
parsimony and interpretability across all geographies.  

Model Parameterization  

Chapter 3 discussed the details of the model parameterization sequence used for this project. In short, 
the method uses 10-fold CV to test a range of parameters and choses the best parameters as the set 
that predicts the highest accuracy on the out-of-fold samples. This is a straightforward method in 
addressing parameter selection, but could be augmented with some additional steps to better fit the 
characteristics of our data. Possible additional steps include variable interaction terms and class 
imbalance solutions such as class weights and sampling strategies. 
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Variable interactions are simply the multiplicative effect of two or more variables on an outcome. 
This can be thought of as a synergistic effect in which the combination of two parts is greater than 
their sum. Interactions such as this can be included into statistical models including the LR and 
MARS models of the GLM family used in this study. In the parameterization of these models, no 
interaction terms were used, but given the complexity of variables derived from environmental 
settings, interactions exist. The costs of incorporating interaction terms are added model complexity, 
added processing time, and a potential decrease in interpretability if the interaction effects are not 
well understood. However, the benefits could lead to a reduction in bias. Interaction terms can be 
added to or searched for in LR and MARS, but RF can be used to identify interactions without 
additional steps.  
 
Two common methods of dealing with highly imbalanced datasets are through weighting methods 
and via resampling techniques (Jeni et al. 2013). Class weighting and sampling strategies can be used 
in the model fitting sequence to address the highly imbalanced nature of this data set. As described in 
Chapter 1, given that archaeological sites make up only a very small percentage (0.22%) of the 
overall landscape, they have a very low prevalence (prevalence = 0.0019) within the state and even 
within previously surveyed areas (prevalence = 0.01). This leads to a situation where if 10 × 10-m 
cells are selected randomly from within the state, on average a total of over 37,000 cells would be 
required to sample enough site-present cells to cover an average site (approximately 2-acres or 81-
cells). This is an imbalance of 469 to 1. The effect of this imbalance is that the positive case of site-
presence is very much in the minority and can easily be out-weighted by statistical methods; some of 
these implications are discussed in the Task 4 report (p. 79).  
 
Two approaches to addressing imbalance through weighting include case weights and cost-sensitive 
training. Case weights can instruct the algorithm that the penalty for misclassifying a positive class 
observation (i.e., site-present cell) is more costly than misclassifying a negative class observation 
(i.e., a background cell). Cost-sensitive training is a method to alert the training algorithm that 
misclassification of the smaller positive class is more egregious than a misclassification of the larger 
negative class. Useful in partitioning methods such as RF, cost-sensitivity can set a lower threshold 
for the evidence required to assign an observation to a site as opposed to a higher threshold for the 
background. Setting specified case weights for the positive and negative classes in the algorithm and 
cost-sensitive approaches can produce better performance if correctly specified. Each of these 
approaches acknowledge that sites and background cells are not on equal terms and that sites are 
clearly more important than background cells in terms of correct classification. Experimentation with 
case weighting and cost-sensitivity was undertaken for the Pennsylvania model, but not fully 
implemented. Issues such as identifying proper weights and the ability to apply the costs to the raster 
prediction process hampered these efforts; revisiting this topic will likely help to create more 
generalizable models. 
 
The other common method to address class imbalance is by resampling. This can be achieved 
through down-sampling the more numerous negative class or up-sampling the minority positive 
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class. Down-sampling is used to reduce the number of negative class observations through random 
sampling. Up-sampling is used to increase the number of the positive class observations through 
randomization or simulation. For the Pennsylvania model, the negative class was down-sampled to a 
ratio of 3:1 background cells to site cells. This ratio was an arbitrary choice, but through 
experimentation did appear to have a positive effect without overestimating the effects of small site 
prevalence. This down-sampling combined with bootstrap resampling and prevalence sensitive 
thresholds are the methods by which class imbalance was addressed in this project. Another form of 
resampling that should be investigated for future models is called Synthetic Minority Over-Sampling 
Technique or SMOTE (Chawala et al. 2002). Briefly, SMOTE sampling conducts a blend of both up- 
and down-sampling to achieve a more balanced dataset. The down-sampling is done through random 
sampling and the up-sampling is done through synthesizing new site-likely observations. The 
synthesis of new observations initially picks a single actual site-likely observation, picks a number of 
closely related observations, and then makes new observations by randomizing their values. This 
method should be experimented with to address class imbalance, but also to potentially address some 
issues related to correlation through the randomization of variable measures. 

Model Averaging 

The modeling process used throughout the Pennsylvania project seeks to find the “best” model to 
represent the archaeological site location potential of a given subarea. This is accomplished by 
creating numerous models through parameterization procedures and generating testing error based on 
CV and hold-out samples. Finally a model is chosen based on these metrics and a subjective 
evaluation of how the model conforms to the landscape. As discussed throughout, the different model 
types have difference characteristic that need to be balanced when choosing the representative model, 
but in the end only one prevails. However, the method of model averaging can be used to incorporate 
the pros and cons of each model style into a single model. 
 
A simple form of model averaging was carried out in this project, but not introduced into the results 
of any task reports. This process took the results of the LR, MARS, and RF models to make two 
additional models: one that combined LR and RF and another that combined MARS and RF. The 
combination of the models was done by overlaying them and retaining the highest level of sensitivity 
for each cell. This is similar to the aggregation function discussed above, but the cell size does not 
change. The results of the model combination were interesting and seemed to pick up characteristics 
of both models, but interpreting the results of the individual models became unclear in the combined 
context. For this reason, these models were not presented in the final reports. 
 
Additional and more sophisticated methods exist for model averaging including a method referred to 
as Bayesian Model Averaging (BMA). On a basic level it works on the same principle as the simple 
model combination described above, as well as a similar principle to the bagging method in RF: that 
is, to reduce variance and incorporate uncertainty by estimating the actual distribution of site 
sensitivity from multiple points of view (in this case models). The use of BMA for LR was 
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recommended for the Mn/Model by Oehlert and Shea (2007). As a general description, BMA uses 
the output of a number of models and blends them with a model weight based on uncertainty to 
produce a new model composed of the original models and the uncertainty. The choice of model 
weights, referred to as the model’s prior probability, can be achieved in different ways to suit the 
purpose. A significant benefit of this approach is that not only is uncertainty accounted for to the 
degree it can be represented in the prior weights, but the BMA method can include models of many 
different types. In such a way BMA can incorporate the results of data-driven models, such as those 
produced here, with more deductive models that focus on hypothetical settlement mechanics and not 
just where we have found sites. A number of models both inductive and deductive can be 
appropriately weighted and blended in this way. This may not only be a beneficial approach to 
understanding uncertainty in the existing models, but also a way to broaden them for a more 
theoretically informed point of view. 

Testing and Reiteration 

Finally, these models should be tested with new field data and reiterated to reflect new methods and 
understandings. Building from a foundational understanding of past attempts to model archaeological 
site location sensitivity, the Pennsylvania model set project applied modern statistical techniques and 
algorithms, many of which have never been published in the archaeological literature, to derive an 
understanding of archaeological sensitivity on a statewide scale. Throughout this process best-
practices were used to address bias, and a number of metrics were used to assess model fit and 
validity. The results of this transparent, well-documented, and reproducible process are a series of 
sensitivity raster layers that are an accurate representation of the pattern presented in known 
archaeological site locations. As presented in Chapter 4, comparisons to existing models applied to 
Pennsylvania show this model to have achieved a good balance between model accuracy and 
precision.  
  
As with any model, prediction, or projection, there is error and there will be room for improvement. 
Given that this is a first attempt to model these data on this scale, there may be significant room for 
improvement. The information contained in the task reports of this project contains extensive 
documentation on error rates, performance metrics, and assumptions; however, it is through use in 
project planning and documentation of new sites that the true value of this model will become 
apparent. The identification of the strengths and weakness of these models through use and testing 
can be incorporated back into the model to correct blind-spots and add utility. Like the Mn/Model 
project, through incorporation of the suggestions above and continued iteration, the models can be 
adapted to take advantage of new findings and techniques, and can thereby grow in utility. The 
process to this point should only be the beginning of the Pennsylvania model’s life, which only 
through continued improvement and evolution will best serve the needs of cultural resources 
planning and protection. 
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ACRONYMS/ABBREVIATIONS 

 
AIC Akaike Information Criterion 

AMS Amazon Web Services 

ANOVA Analysis of Variance 

APM Archaeological Predictive Modeling 

AUC Area Under Curve  

AUROC Area Under Receiver Operating Characteristics Curve 

CART Classification and Regression Trees 

BIC Bayesian Information Criterion 

BMA Bayesian Model Averaging 

CoV Coefficient of Variation 

CRGIS Cultural Resources Geographic Information System 

CV Cross-Validation 

DEM Digital Elevation Model 

ECDF  Empirical Cumulative Distribution Function 

EDA Exploratory Data Analysis 

FNR False Negative Rate 

FPR False Positive Rate 

GCV Generalized Cross-Validation 

GIS Geographic Information Systems 

GLM Generalized Linear Model 

GRSQ Generalized R-Square 

ICC Intraclass Correlation Coefficient 

Kg Kvamme Gain 

K-S Kolmogorov–Smirnov 

LR Logistic Regression 

MARS Multivariate Adaptive Regression Splines 

MLE Maximum Likelihood Estimate 

MnDOT Minnesota Department of Transportation 

Mn/Model Minnesota Statewide APM 
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MSE Mean Squared Error 

MW Mann-Whitney 

NPG Negative Prediction Gain 

NPV Negative Prediction Value 

NWI National Wetland Inventory 

OLS Ordinary Least Squares 

OOB Out-of-Bag Sample 

OOS Out-of-Sample 

PASS Pennsylvania Archaeological Site Survey 

PPG Positive Predictive Gain 

PPV Positive Prediction Value 

R2 R-Squared 

RF Random Forests/randomForest 

RMSE Root Mean Square Error 

ROC Receiver Operating Characteristics 

RSS Residual Sum-of-Squares 

SD Standard Deviation 

SMOTE  Synthetic Minority Over-Sampling Technique 

SSE Sum of Squares Error 

TNR True-Negative Rate 

TPR True-Positive Rate 

UDR Unexpected Discovery Rate 

USDA United States Department of Agriculture  
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TERMS  

 
 first use: 
 
Accuracy (in error estimates for MARS and RF models)  .................................................. Task 5, p. 59 
 The measurement of accuracy is used in many classification methods. This measure is simply 

the percent of observations (site-present or site-absent) that are correctly classified by the 
algorithm. As used in this report, the accuracy is the percentage of observations from the out-
of-bag sample that were correctly classified by the model. This is an internal metric that 
assess the model’s ability to correctly predict data that were not used in the fitting of the 
model. 

 
Adaptive Regression Splines (see Multivariate Adaptive Regression Splines)  ................. Task 3, p. 16 
 
Akaike Information Criterion (AIC) ..................................................................................  Task 3, p. 62 
 A measure of relative model quality that balances goodness of fit and model complexity. This 

measure is used in model selection to choose the model that has the best fit relative to 
complexity for a given data set. Within a series of nested candidate models, the one with the 
lowest AIC will likely represent the model with the best goodness of fit without being over-
fit or over-parameterized (see Akaike 1974). 

 
Analysis of Variance (ANOVA) ......................................................................................... Task 3, p. 47 
 ANOVA is a suite of statistical models used to test the difference in variation between 

groups. In linear model creation, ANOVA can be used to estimate the variance explained by 
each variable or whether there is a significant difference in variance explained by each model 
(see Freedman 2005). 

 
Archaeological Predictive Modeling (APM) ........................................................................ Task 1, p. 1 
 The field of study concerning the use of existing archaeological data or theory to predict the 

sensitivity of locations for the presence of archaeological material. 
 
Area Under Curve (AUC) (see also Receiver Operating Characteristics)  ......................... Task 3, p. 21 
 Also referred to as Area Under Receiver Operating Characteristics Curve (AUROC), AUC is 

a measure of the balance between a model’s Sensitivity and Specificity across the full range 
of cut-off points. The AUC is a single measure that captures a model’s ability to balance True 
Positive Rate and False Positive Rate across the full range of the model’s output. The higher 
the AUC, the higher the Sensitivity and Specificity across the full range of the model, and the 
more likely the model is to correctly classify a randomly chosen positive instance. AUC is 
used in model selection to assess a model’s ability to correctly classify observations (see 
Fawcett 2006). 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 7: FINAL REPORT 

 

 

A-4 

 
Bagging (see Bootstrap Aggregating) ................................................................................. Task 3, p. 18  
 
Bayesian Information Criterion (BIC)  ............................................................................... Task 7, p. 25 
 BIC is a measure of relative model quality that balances goodness of fit and model 

complexity, similar to the Akaike Information Criteria (AIC). This measure is used in model 
selection to choose the model that has the best fit relative to complexity for a given data set. 
Within a series of nested candidate models, the one with the lowest BIC will likely represent 
the model with the best goodness of fit without being over-fit or over-parameterized. BIC 
penalizes model complexity more than AIC for models with greater than seven predictors 
(James et al. 2014).   

 
Bayesian Model Averaging (BMA) .................................................................................. Task 7, p. 100 
 BMA is an ensemble technique that uses random sampling and Bayes theorem to account for 

uncertainty in the model selection process.  While there are a number of ways to apply BMA, 
the general principle is to randomly sample the model space of numerous models to derive a 
posterior probability based on all models, weighted by some criteria.  The end result attempts 
to decrease the risk of choosing a single over-fit model, but comes at the cost of 
computational complexity (see Wasserman 2000 [not in refs]). 

 
Boosting .............................................................................................................................. Task 3, p. 20 
 Boosting is a term that defines a family of statistical regression and classification methods 

that use random subset selection and weighting to minimize variance and lessen the potential 
for over-fitting. The concept of boosting is used in a number of regression and classification 
models with the general commonality of providing a means to achieve an ensemble of 
models. The final model is often selected through the weighted average of sub-models (see 
Freund and Schapire 1997).  

 
Bootstrap Aggregating ........................................................................................................ Task 3, p. 18 
 Bootstrap Aggregating (or Bagging) is a term that defines a method of statistical regression 

and classification often applied to tree-based machine learning algorithms. Simply, bagging 
uses the regression or classification of numerous bootstrapped samples to create an ensemble. 
Taking the average output of this ensemble generally reduces model variance and lessens the 
potential for over-fitting (Breiman 1996a). 

 
Bootstrapping ...................................................................................................................... Task 3, p. 14 
 Bootstrapping is a statistical method of resampling that draws numerous samples from a 

sample or population with replacement. This means that each time a sample is chosen, its 
value is returned to the sampling population so that it may be drawn again. Boostrapping 
offers a method of estimating population parameters from small samples or complicated 
distributions (see Efron and Tibshirani 1993).  
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Classification and Regression Trees (CART) ..................................................................... Task 3, p. 18 
 CART is a statistical learning algorithm. In a simple form, the CART is used to classify 

training observations based on the nested splitting of input variables. Called nodes, the split 
point of each variable creates a branch-like structure that begins with all of the training 
observations at the base of the tree and ends with the classification of each training 
observation at the tips of each branch. A predictive model can be drawn from the ability of 
the tree to correctly classify training and test observations based on the splits in each variable. 
The general structure of the CART is used as the basis for a number of algorithms such as 
Bagging, Boosting, and Random Forest (see Breiman et al. (1984). 

 
Confusion Matrix ................................................................................................................ Task 3, p. 35 
 A classification table in the form of a 2-cell × 2-cell contingency table that shows how many 

sites were correctly predicted as sites and how much of the non-site area was correctly 
predicted as such. This method is frequently used as a means to assess the ability of a model 
to classify observations (see Fawcett 2006). 

 
Cost Variable ........................................................................................................................ Task 3, p. 7 
 A Cost Variable is a predictive variable derived through a cost analysis. The cost associated 

with a cost variable may be anything that is thought to introduce a difficulty or impediment to 
movement. For example, the linear distance for any point to the nearest stream only considers 
the straight line distance between those two points. A cost distance to the nearest stream will 
consider an impediment or set of impediments between any given point and the nearest 
stream. If crossing a wetland is considered costly, the least cost path from a given point may 
not be the shortest linear path, but may be a non-linear path that avoids traveling over 
wetlands.  

  
Coefficient of Variation (CoV) ........................................................................................... Task 3, p. 65 
 The CoV is a statistic that measures the normalized dispersion within a frequency 

distribution. The acronym CoV is used in this study to avoid confusion with the acronym 
used for Cross-Validation (CV). The CoV is calculated as the ratio of the standard deviation 
to the mean and is also referred to as Relative Standard Deviation (RSD). The CoV 
represents the percentage of standard deviation from the sample mean (see Lehmann 1986).  

 
Cohen’s Kappa Coefficient (see Kappa) ............................................................................. Task 4, p. 61 
 
Cross-Validation (CV) (see Generalized Cross Validation and  
 K-folds Cross-Validation) ...................................................................................... Task 3, p. 14 
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Cultural Resources Geographic Information System (CRGIS) .......................................... Task 2, p. 14 
 Computerized database and mapping tool for the visualization and analysis of cultural 

resources data within the Commonwealth of Pennsylvania. This tool is developed and 
administered through a join agreement between the Pennsylvania Historical and Museum 
Commission and the Pennsylvania Department of Transportation. (This tool is available at: 
www.portal.state.pa.us/portal/server.pt/community/crgis/3802.) 

 
Digital Elevation Model (DEM) ........................................................................................... Task 1, p. 8 
 A digital elevation model is a computer based representation of the topography at earth’s 

surface. DEMs are stored as a raster format composed of square cells representing a single 
elevation measure for a given resolution. DEMs are available in a range of resolutions and 
are created and curated by the United States Geologic Survey. (Information and data sets are 
available at: http://ned.usgs.gov.)  

 
Earth (see  also Multivariate Adaptive Regression Splines)  .............................................. Task 3, p. 16 
 Earth is an implementation of the Multivariate Adaptive Regression Splines algorithm 

written in the R Statistical Language (see Milborrow 2011).  
 
Empirical Cumulative Distribution Function (ECDF) ........................................................ Task 7, p. 36 
 A cumulative distribution function (CDF) is a statistical function that estimates the 

probability of a random variable or value being equal to or less than a point in a given 
distribution.  The term “empirical” signifies that the CDF is derived from real data and not a 
hypothetical distribution.  The term ECDF is used in the context of this report to describe the 
way in which the K-S test compares two sequences of numbers.      

 
Euclidian Distance ................................................................................................................ Task 3, p. 7 
 The simple, or straight-line, distance between two points, colloquially described as “as the 

crow flies.” 
 
Exploratory Data Analysis (EDA) ...................................................................................... Task 7, p. 21 
 Exploratory Data Analysis is an approach to modeling and understanding data that uses many 

techniques to visualize different dimensions of the data outside of the formal modeling 
process.  EDA is often an early step in the modeling process to better understand the data and 
identify preliminary patterns, bias, and distributions.   

 
Factor & Factor Level  ........................................................................................................ Task 5, p. 51 
 A factor is the data type used by the R statistical language to code data that are categorical 

(nominal), as opposed to quantitative data such as continuous integers. The factor data type is 
composed of the qualitative categories represented as levels (e.g., “high,” “moderate,” “low”) 
and a string of integers to represent the categories (e.g., 1, 2, 3). The categorical data are 
actually stored as a string of representative integers, but referenced back to the levels so that 
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the data can be converted to its original category when needed. Among other reasons, this 
allows the program to work very efficiently with integers as opposed to storing and 
computing a long list of category labels. 

 
False Negative Rate (FNR) ................................................................................................. Task 3, p. 70 
 The fraction of the positive observation (site locations) that are incorrectly classified as a 

negative observation (site not-likely). The FNR is derived from the Confusion Matrix and 
calculated by dividing the number of false negatives by total number of observed positive 
observations. This number is also interpreted as the Type-II error rate, or beta (β).  

 
False Positive Rate (FPR) ................................................................................................... Task 3, p. 36 
 The fraction of the negative observations (background locations) that are incorrectly 

classified as a positive observations (site likely). The FPR is derived from the Confusion 
Matrix and calculated by dividing the number of false positives by total number of observed 
negative observations. This number is also interpreted as the Type-I error rate. 

 
Generalized Cross-Validation (GCV) ................................................................................. Task 3, p. 18 
 GCV is a statistical method that estimates performance or prediction error from within a 

model based on weight assigned to model complexity. GCV approximates the measure of 
performance that would be derived through leave-one-out Cross-Validation. In this project, 
the GCV relates to the internal performance measure derived from the Multivariate Adaptive 
Regression Splines model (see Milborrow 2014). 

 
In more formal terms, the cross-validation (CV) prediction error can be defined by the 

equation below. Where  (pronounced f-hat) is the approximated function of data set , what 

we call the model. The term ,  is the error or loss function that defines the 

error—RMSE in our case. The term  represents the model fit to the remaining 
training data  minus the ith k-fold. So this reads that the CV error of the model is the 
average error computed over each of i iterations of the CV given the loss function of the left-

out fold ( ) and the model fit to the data of the remaining folds ( ) 
 

	
1
	 ,  
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A slight alteration as used in the method of parameterization is the addition of the selected 
parameter value ( ) to the outcome and loss function. 
 
 

, 	
1
	 , ,  

 
Generalized Linear Models (GLM) .................................................................................... Task 3, p. 18 
 GLMs are a family of models that extend linear regression by allowing for error distributions 

other than the normal distribution. This is achieved by using link functions to relate the 
response variable to the appropriate error distribution. Logistic Regression and Multivariate 
Adaptive Regression Splines are examples of GLM regression (see Madsen and Thyregod 
2011). 

 
Generalized R-Square (GRSQ) ........................................................................................... Task 3, p. 53 
 This metric is used in the Multivariate Adaptive Regression Splines model to normalize 

Generalized Cross-Validation and estimate a model’s R-Squared when predicting for 
independent data. This measure is a ratio of 1 – GCV divided by the GCV of the Null Model 
or intercept only model (see Milborrow 2014). 

 
Geographic Information Systems (GIS) ............................................................................... Task 1, p. 4 
 A GIS is a computer application that stores, manages, displays, and manipulates information 

with a spatial component (see Wheatley and Gillings 2002). 
 
Gini Importance Criterion or Gini Impurity ....................................................................... Task 4, p. 81 

The Gini Importance criterion is a metric used within the random forest algorithm for both 
branch splitting and variable importance. For the former, the Gini criterion is used to measure 
the purity, or how well segregated the representation of sites versus background values, of the 
node following its split on one of p variables. The split is made using the variable the leads to 
the largest increase in node purity from the parent node to the two descendent nodes. For the 
latter, the Gini Importance criterion is used to assess the value of each variable’s contribution 
to the model. For each instance that a variable is chosen to split a node, the decrease in Gini 
is added up and compared to the other variables. Those variables that contributed to a greater 
decrease in the Gini are considered to be more important to the model’s ability to correctly 
classify (see Breiman 2001). 

 
Intraclass Correlation Coefficient (ICC) ............................................................................. Task 7, p. 97 
 The ICC is a measure of how similar measurements are between groups.  In the context of the 

Pennsylvania model project, the ICC is used to describe the relationship between the 
measurement of a given environmental variable between known site locations.  A high ICC 
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would indicate that the variable is strongly correlated to individual site locations and 
therefore may lead to difficulties in model building based on site-present cells.  A low ICC 
for a variable would indicate a lower correlation between site locations and that variable, 
which is preferable.     

 
K-folds Cross-Validation (CV) ........................................................................................... Task 3, p. 14 
 Cross-Validation is the method by which a sample of observations is split into a number of 

different but equal-sized classes. The number of classes is referred to as K and the classes 
themselves are referred to as folds, hence “K-folds Cross-Validation.” This is a method by 
which models can be validated on test sets that were not part of the training set, while at the 
same time, using the entire data set for modeling (see Efron and Tibshirani 1997). 

 
Kappa coefficient ............................................................................................................... Task 4, p. 61 
 The Kappa coefficient, or Cohen’s Kappa coefficient, is a statistical measure of a predictions 

agreement with real observations after accounting for chance agreement. In this project, the 
Kappa is used in a similar fashion as the Kvamme Gain statistic. However, the Kappa’s 
calculation of by-chance observation is more inclusive that the Kvamme Gain. The Kappa 
statistic is derived from the confusion matrix and is used to compare model results of similar 
prevalence (see Viera and Garrett 2005).  

 
Kolmogorov–Smirnov (K-S) Test  ....................................................................................... Task 3, p. 8 
 A non-parametric statistical test that measures the equality of continuous unpaired probability 

distributions to each other (two-sample test) or a reference distribution (one-sample test). In 
this study, the K-S test is used to test whether the distribution of an environmental variable is 
significantly different between known site locations and the overall environmental 
background (see Conover 1999). 

 
Kvamme Gain (Kg) ............................................................................................................. Task 1, p. 27 
 The Kg is a metric used to assess the ability of a model to correctly classify positive 

observations (site present) given the area in which positive observations are predicted to 
occur (site-likely area). The higher the gain, the greater the ratio of percent sites present to 
percent of the modeled area considered site-likely. This measure does not take into account 
model precision or True Positive Rate (Sensitivity), meaning that an equivalent Kg statistic 
can be reached by correctly predicting 16% of known sites in 5% of the area or 95% of 
known sites in 30% of the area (see Kvamme 1988). 

 
Likelihood Ratio Test ......................................................................................................... Task 3, p. 50 
 This is a statistical test used to compare the fit of two models. In this project, the Likelihood 

Ratio Test is used to compare Logistic Regression models by testing the likelihood ratios of 
the Null Model and alternative models. This test uses a p-value to accept or reject the null 
model based on the likelihood ratio. 
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Logistic Regression (LR) .................................................................................................... Task 1, p. 17 
 Logistic Regression is a statistical model used to predict for a binary response (0 or 1) or to 

classify a categorical response (“dead” or “alive”) based on one or more predictors. This 
method uses a S-shaped logistic transformation to model the binary response probability as 
the log odds of the linear function of the predictor variables. Simply, the model fits the linear 
model to the S-shaped curve so that the prediction is kept between 0 and 1 (see Pampel 
2000).  

 
Mann-Whitney (MW) U Test ............................................................................................... Task 3, p. 8 
 The Mann-Whitney U Test is a non-parametric statistical test that evaluates the dissimilarity 

of unpaired distributions by ranking the observations and comparing the mean ranks. This 
test is similar in concept to the Kolmogorov–Smirnov Test, but uses a ranked approach as 
opposed to a distance approach. The MW U Test is more sensitive to changes in the median 
of two distributions (see Lehman 1975). 

 
Maximum Likelihood Estimate (MLE) .............................................................................. Task 3, p. 50 
 The MLE is a statistical procedure used to estimate parameters within Logistic Regression. 

This function uses an iterative approach to identify a set of parameters for which the 
probability of the observed data is the greatest (see Pampel 2000).  

  
Mean Squared Error (MSE) ................................................................................................ Task 3, p. 56 
 The MSE is a statistic, or loss function, used to quantify the difference between an estimate 

and a true value. In this project, the MSE is used to quantify the difference between the 
predicted values (ŷ) and the observed test values (y). MSE is calculated as the Sum of 
Squared Errors divided by the number of observations (see Lehman and Casella 1998). 

 
Model Formula  ................................................................................................................... Task 5, p. 51 
 As used in this project, the model formula is a symbolic representation of the a priori 

relationship between the model predictors (x1, x2, x3,… xn) and the outcome (y). Typically, 
the tilde symbol (~) is used to specify that the response is a function of one or more 
predictors. For example, the formula (y ~ x1) specifies to the statistical model that y as the 
response variable is a function of the linear predictor x1. Further, the formula symbols 
specify the relationship between the predictor variables. For example, the formula (y ~ x1 + 
x2 + x3) specifies that y is an additive function of the linear predictors x1, x2, and x3. 
Additional symbols can be used in the formula to represent interactions between predictors, 
non-additive relationship, and polynomials. However, this project uses only linear and 
additive formulae. 
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mtry   ................................................................................................................................ Task 3, p. 54 
 This is the name of a key parameter in the RF model. One of the key features of RF is the 

random selection of a subset of the predictor variables to test at each node in the tree building 
process. The number of randomly selected variables to try is called “mtry.. By default, mtry is 

set to  for classification problems and /3 in regression problems. In this project, mtry is 

optimized through cross-validation to the lowest error rate of the out-of-fold sample. 
 
Multivariate Adaptive Regression Splines (MARS) ........................................................... Task 3, p. 14 
 A statistical model that is an extension of the Generalized Linear Model. This method 

approximates a non-linear model by fitting piecewise linear segments that are connected at 
nodes referred to as hinge functions. The hinge functions provide the point at which the two 
straight lines join. A sequence of lines and hinges approximates a non-linear Spline. The 
MARS model uses a forward pass to find the best fit that minimizes the Sum of Squared 
Error. This first pass is referred to as “greedy” because it seeks the best fit regardless of how 
many terms, or line and hinge segments, it creates. To avoid over-fitting, the MARS method 
has a second pass that prunes the terms created in the first path to assess which can be 
removed without having large negative effects on the model’s performance; this lowers the 
model’s complexity and variance. The MARS method uses Generalized Cross-Validation to 
assess how pruning affects performance. This method was introduced by Friedman (1991).  

 
Negative Prediction Gain (NPG) ........................................................................................ Task 3, p. 70 
 The NPG is a statistic that is derived from the confusion matrix to assess a model’s ability to 

correctly classify site-unlikely areas. The NPG quantifies how much less likely a site 
discovery is at a location labeled site-unlikely using the model than if surveying at random. 
Ideally, a model would have a low NPG and a high Positive Predictive Gain (see Oehlert and 
Shea 2007). 

 
Negative Prediction Value (NPV)....................................................................................... Task 3, p. 70 
 The NPV is a measure that is derived from the confusion matrix. This measures the 

probability that a non-site cell is correctly labeled as a background cell (see Oehlert and Shea 
2007). 

 
nprune   ................................................................................................................................ Task 5, p. 56 
 This is the name of a key parameter in the MARS model. This algorithm includes a 

backwards pass that prunes the model down to reduce variance and eliminate unneeded 
model terms. The nprune parameter is used to set the maximum number of terms that are 
allowed to remain in the model; the fewer terms, the more simple the model. Through this 
parameter, models can be trimmed for the purpose of model size, complexity, or generality of 
the fit. By default, nprune is set to NULL so that the model is unrestrained in the number of 
terms. For this project, the nprune parameter is set through cross-validation to the lowest 
error rate of the out-of-fold sample. 



PENNSYLVANIA DEPARTMENT OF TRANSPORTATION 
ARCHAEOLOGICAL PREDICTIVE MODEL SET 

TASK 7: FINAL REPORT 

 

 

A-12 

 
Null Model .......................................................................................................................... Task 3, p. 50 
 The term Null Model refers to a Logistic Regression that only contains the response variable 

(in this case, site prediction), with no predictor. It is essentially a flat-line regression that uses 
the average of all values, thereby providing a baseline against which the saturated model (that 
is, the model that incorporates the predictors) can be tested. If the saturated model is not 
better than the null model by a statistically significant amount (in this case as measured using 
the Likelihood Ratio Test), then new predictors need to be chosen. 

 
Ordinary Least Squares (OLS) ............................................................................................ Task 3, p. 50 
 OLS is the statistical method most commonly used to estimate unknown parameters within 

linear regression. OLS seeks to fit a line that minimizes the Sum of Squared Errors between 
the predictor (in this case, the environmental variable) and the response (site-present vs. site-
absent).  

 
Out-of-Bag (OOB) Sample ................................................................................................. Task 3, p. 19 
 The term OOB is used to describe the internal testing data set within predictive algorithms 

such as Bagging and Random Forests. Within these algorithms, the training data set is 
sampled via the bootstrap with roughly two-thirds of the data used for model training and the 
remaining one-third used for testing and variable selection. This remaining one-third is 
referred to as the OOB Sample. OOB Sample error rates are calculated from this hold-out set 
(see Breiman 1996b).  

 
Out-of-Sample (OOS) ......................................................................................................... Task 3, p. 37 
 The term OOS refers to the portion of data within the hold-out sample from K-folds Cross 

Validation. For example, in k = 10 fold CV, the first pass will use folds 1–9 to train the 
model and fold 10 to test the model. The tenth fold is the OOS fold and the error estimate 
derived from this is called the OOS estimate (see Efron and Tibshirani 1997). 

 
Pennsylvania Archaeological Site Survey (PASS) ............................................................. Task 1, p. 65 
 The PASS files are a collection of paper forms, maps, reports, and photographs that 

document the location and attributes of known archaeological sites within the 
Commonwealth of Pennsylvania. These files have been digitized and can be accessed 
through the Cultural Resources Geographic Information System. 

 
Positive Predictive Gain (PPG) ........................................................................................... Task 3, p. 36 
 The PPG is a statistic that is derived from the Confusion Matrix to assess a model’s ability to 

correctly classify site-likely areas. The PPG quantifies how much more likely a site discovery 
is at a location labeled site-likely using the model than if surveying at random. Ideally, a 
model would have a high PPG and a low Negative Prediction Value (see Oehlert and Shea 
2007). 
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Positive Prediction Value (PPV) ......................................................................................... Task 3, p. 70 
 The PPV is a measure that is derived from the Confusion Matrix. This measures the 

probability that a site cell is correctly labeled as a site-likely cell (see Oehlert and Shea 
2007).  

 
Prevalence  .......................................................................................................................... Task 5, p. 77 
 Prevalence is the proportion of a population found to have a particular condition.  In this 

case, the population is the total number of ~10 × 10-m raster cells that make up each subarea 
and the condition is that a cell be within a known archaeological site.  Determining 
prevalence is important in these models because the low number of cells within known 
archaeological sites is very small compared to the overall area being predicted, leading to 
highly imbalanced data in terms of site-presence versus site-absence. 

 
Pseudo R-Squared (Pseudo R2) ..........................................................................................  Task 3, p. 55 
 Pseudo R-Squared describes a statistic that is intended to mimic the qualities of the R-

Squared, but is applicable to models that do not use Ordinary Least Squares, such as Logistic 
Regression. In general, Pseudo R-Squared is similar to R-Squared in that the numerous 
variations of the measure range approximately from 0 to 1 and a higher number indicates a 
generally better fit. However, Pseudo R-Squared should not be compared directly to R-
Squared because they are derived quite differently. A number of Pseudo R-Squared variations 
have similarities to the Likelihood Ratio Test (see Pampel 2000). 

  
Python Language ................................................................................................................ Task 3, p. 38 
 Python is a widely used high-level programming language. (Information available at: 

http://www.python.org/.) 
 
R-Squared (R2) .................................................................................................................... Task 3, p. 50 
 R2, also referred to as the Coefficient of Determination, is a metric used in the evaluation of 

variance and goodness-of-fit for primarily linear models using Ordinary Least Squares. The 
R2 is calculated as a one minus the residual sum of squares divided by the total sum of 
squares. The most common interpretation of R2 is for the fit of a linear model. An R2 of 1 
indicates a perfect fit between the regression line and data points. 

 
R Statistical Language ........................................................................................................ Task 3, p. 38 
 R Statistical Language is a widely used statistical computing environment. (Information 

available at: http://www.r-project.org/.) 
 
Random Forests .................................................................................................................. Task 3, p. 14 
 Random Forests is trademarked statistical classification algorithm created by Leo Breiman 

and Adele Cutler. Random Forests is a tree based ensemble method that builds off the ideas 
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of Classification and Regression Trees and Bagging. The primary features of Random Forests 
include internal testing through Bootstrap Aggregating and variable importance via random 
subset selection (see Breiman 2001). 

 
randomForest (RF) (see also Random Forests) ................................................................... Task 3, p. 18 
 RF is an implementation of the Random Forests classification algorithm written in the R 

Statistical Language (see Liaw and Wiener 2002). 
 
Receiver Operating Characteristics (ROC) ......................................................................... Task 3, p. 21 
 The ROC is a graphical representation of statistical classification model results. The ROC 

graph typically takes on a curved shape and is therefore often referred to as the ROC curve. 
The x-axis of the ROC graph is a model’s False Positive Rate and the y-axis is the True 
Positive Rate; both are scaled from 0 to 1. The quantities on the x- and y-axes are also 
referred to as 1 – Specificity and Sensitivity, respectively. The actual curve in the graphic is 
generated by calculating the True Positive Rate and False Positive Rate for each cut-point of 
the model’s prediction. The graphic also contains a line (often dashed) that originates at point 
0,0 and goes at a 45-degree angle to point 1,1. This line represents a model that has no 
predictive power. The closer the ROC curve is to the upper left corner of the graph (which is 
point x = 0, y = 1), the greater the predictive power. Put another way, the best classification 
has the largest area under the curve. A line of this description will have a high True Positive 
Rate for the entire range of False Positive Rates. The ROC curve can be used to estimate the 
total predictive power of the model, often enumerated as the Area Under Curve, to compare 
similar models across all cut-points, or select an optimal cut-point to use for classification, 
resulting in a Confusion Matrix (see Fawcett 2004). 

 
Residual Sum-of-Squares (RSS) ......................................................................................... Task 3, p. 53 
 The RSS is a measure of the model fit. The RSS is calculated as the sum of squared 

differences between the estimated and actual observations (see Salkind 2007). 
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Root Mean Square Error (RMSE) ....................................................................................... Task 3, p. 21 
 The RMSE is a statistic, or loss function, used to quantify the difference between an estimate 

and a true value. The RMSE is calculated as the square root of the Mean Squared Error. 
When calculated on Out-of-Sample predictions, such as in this project, the RMSE represents 
the sample standard deviation of the prediction errors. The formula below is how RMSE is 
calculated, where n = the number of data values, 	is the observed jth value and  is the 

predicted jth value for all j values from 1 to n. Therefore the RMSE is the square root of the 
average of all squared errors.  

 

	
1
	 	 	 		 

 
 A benefit of RMSE over Mean Squared Error is that it is scaled to the dependent variable and 

is therefore directly interpretable. With a binary dependent variable (0 to 1), the RMSE is 
taken as the distance on average between the predicted probability and the true value (see 
Salkind 2007).  

 
Sensitivity (see also True Positive Rate) ............................................................................. Task 3, p. 21 
 Sensitivity is a term used for a classification’s True Positive Rate; this value is also referred 

to as Recall. Sensitivity is the total fraction of sites that are classified by the model to be in 
the site-likely area. This measure is akin to the concept of precision and Type II errors. 
Sensitivity is calculated for a cut-point within a classification model as the number of 
correctly predicted positive observations (correctly classified sites) divided by the total 
number of actual positive observations (known sites) (see Oehlert and Shea 2007). 

 
Synthetic Minority Over-Sampling Technique (SMOTE) .................................................... Task 7, p. 6 
 This is a technique developed to deal with highly imbalanced class data in machine learning.  

Highly imbalanced data occur when one of the two classes (e.g., positive and negative) is 
represented at a much greater rate than the other; typically the positive class or class of 
interest is much smaller than the negative class.  In the context of the Pennsylvania model 
project, the data are highly imbalanced because the number of site-present cells is much 
smaller than the number of background cells in the environment.  SMOTE tries to create a 
more equal class distribution by down-sampling the negative class to make it smaller and up 
sampling the positive class by creating new synthetic observations that are random 
permutations of existing observations (see Chawala et al. 2002).    

 
Specificity (see also True Negative Rate) ........................................................................... Task 2, p. 21 
 Specificity is a termed used for a classification’s True Negative Rate. Specificity is the 

fraction of background that is classified as site-unlikely by the model. This measure is akin to 
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the concept of accuracy and Type I errors. Specificity is calculated for a cut-point within a 
classification model as the number of correctly predicted negative observations (correctly 
classified non-sites) divided by the total number of actual negative observations (background 
cells) (see Oehlert and Shea 2007). 

 
Spline  ................................................................................................................................ Task 3, p. 18 
 A curve that connects two or more points. The shape of the Spline is determined by a 

mathematical function that interpolates the space between the points into a smooth curve. 
 
Sum of Squared Error (SSE) ............................................................................................... Task 3, p. 50 
 The SSE is a measure of prediction accuracy. This measure is calculated nearly the same as 

the Residual Sum-of-Squares, but more commonly used on prediction errors as opposed to 
model fit. Within this project, the SSE is used as a part of the Mean Squared Error and Root 
Mean Square Error statistics to assess the accuracy of prediction results (see Lehman and 
Casella 1998). 

 
True Negative Rate (TNR ) (see also Specificity) .............................................................. Task 3, p. 67 
 The TNR is a measure of a model’s classification at a given cut-point. Often referred to as a 

model’s Specificity, the TNR is calculated as the percent of negative observations correctly 
classified as such. In this project, this would be the rate at which background cells are 
correctly classified as site un-likely cells (see Oehlert and Shea 2007). 

 
True Positive Rate (TPR ) (see also Sensitivity) ................................................................. Task 3, p. 67 
 The TPR is a measure of a model’s classification at a given cut-point. Often referred to as a 

models Sensitivity, the TPR is calculated as the percent of positive observations correctly 
classified as such. In this project, this would be the rate at which known site-present cells are 
correctly classified as site-likely cells (see Oehlert and Shea 2007). 

 
Unexpected Discovery Rate (UDR) .................................................................................... Task 3, p. 70 
 The UDR is a measurement of a model’s classification ability at a given cut-point. The UDR 

is defined as the probability of a cell containing a site given that the model predicted it as 
site-unlikely. That can be thought of as the rate of unintentional discovery, or “oops” rate 
(see Oehlert and Shea 2007). 
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APPENDIX B 

VARIABLES CONSIDERED THROUGHOUT PROJECT 
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Predictor Family Measure 
Neighborhood 

Sizes Description 

aspect Topography bearing n/a Orientation of slope relative to north 

aws050 
Soils - 
aggregate 

water storage - 
integer n/a 

Water that is available to plants in the 
top 50 cm of soil.  AWS is expressed as 
centimeters of water, reported as the 
average of all components in the map 
unit.  

c_hyd_min Hydrology cost-distance n/a 
Minimum distance to stream or water 
body 

c_hyd_min
_wt Hydrology cost-distance n/a 

Minimum distance to stream, water 
body, or wetland 

c_trail_dist 
Topography - 
Cultural cost-distance n/a 

Cost-distance to historically 
documented Native American trails 
(Wallace 1965). 

cd_conf Hydrology cost-distance n/a 
Cost-Distance to stream confluence 
(NHD flow lines) 

cd_drnh Hydrology cost-distance n/a 
Cost-Distance to stream heads (NHD 
flow lines) 

cd_h1 Hydrology cost-distance n/a Cost-distance to historic streams 

cd_h2 Hydrology cost-distance n/a Cost-distance to NHD flow lines 

cd_h3 Hydrology cost-distance n/a Cost-distance to NHD water bodies 

cd_h4 Hydrology cost-distance n/a Cost-distance to NWI wetlands 

cd_h5 Hydrology cost-distance n/a Cost-distance to NWI water bodies 

cd_h6 Hydrology cost-distance n/a 
Cost-distance to 4th order and higher 
streams 

cd_h7 Hydrology cost-distance n/a 
Cost-distance to 3rd order and higher 
streams 

dem_fll Topography 
elevation, meters 
(float) n/a 

1/3rd Arc-second digital elevation 
model as float, with sinks filled 

drcdry 
Soils - 
aggregate 

classification, 
nominal n/a 

Drainage class (dominant condition) - 
the NRCS describes natural soil 
drainage classes that represent the 
moisture condition of the soil in its 
natural condition throughout the year 

drcwet 
Soils - 
aggregate 

classification, 
nominal n/a 

Drainage class (wet conditions) - the 
NRCS describes natural soil drainage 
classes that represent the moisture 
condition of the wettest soil component 
in its natural condition throughout the 
year 
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Predictor Family Measure 
Neighborhood 

Sizes Description 

e_hyd_min Hydrology 
Euclidian-distance, 
meters n/a 

Minimum distance to stream or water 
body 

e_hyd_min
_wt Hydrology 

Euclidian-distance, 
meters n/a 

Minimum distance to stream, water 
body, or wetland 

e_trail_dist 
Topography - 
Cultural 

Euclidian-distance, 
meters n/a 

Euclidian distance  to historically 
documented Native American trails 
(Wallace 1965). 

ed_conflu Hydrology 
Euclidian-distance, 
meters n/a 

Euclidian distance to stream confluence 
(NHD flow lines) 

ed_drnh Hydrology 
Euclidian-distance, 
meters n/a 

Euclidian distance to stream heads 
(NHD flow lines) 

ed_h1 Hydrology 
Euclidian-distance, 
meters n/a Euclidian distance to historic streams 

ed_h2 Hydrology 
Euclidian-distance, 
meters n/a Euclidian distance to NHD flow lines 

ed_h3 Hydrology 
Euclidian-distance, 
meters n/a 

Euclidian distance to NHD water 
bodies 

ed_h4 Hydrology 
Euclidian-distance, 
meters n/a Euclidian distance to NWI wetlands 

ed_h5 Hydrology 
Euclidian-distance, 
meters n/a Euclidian distance to NWI water bodies

ed_h6 Hydrology 
Euclidian-distance, 
meters n/a 

Euclidian distance to 4th order and 
higher streams 

ed_h7 Hydrology 
Euclidian-distance, 
meters n/a 

Euclidian distance to 3rd order and 
higher streams 

eldrop#c Topography elevation, meters 
1,8,10,16,32 
cells 

Drop in elevation over # cell 
neighborhood 

elev_2_con
f 

Topography - 
Hydrology 

vertical-distance, 
meters na 

Elevation to stream confluence (NHD 
flow lines) 

elev_2_drai
nh 

Topography - 
Hydrology 

vertical-distance, 
meters na 

Elevation to stream head (NHD flow 
lines) 

elev_2_str
m 

Topography - 
Hydrology 

vertical-distance, 
meters na Elevation to stream (NHD flow lines) 

flowdir Hydrology direction, bearing na Flow direction based on DEM 

flw_acum Hydrology accumulation, cells na Flow accumulation based on DEM 
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Predictor Family Measure 
Neighborhood 

Sizes Description 

niccdcd 
Soils - 
aggregate 

classification, 
nominal n/a 

The broadest category in the land 
capability classification system for 
soils; the dominant capability class, 
under nonirrigated conditions, for the 
map unit based on composition 
percentage of all components in the 
map unit. 

random Random random float (0 to 1) na 
Randomly selected number between 1 
and 0 

rel_#c Topography index, 0 to 1 
1,8,10,16,32 
cells Relative topographic position 

rng_#c Topography 
elevation range, 
integer 

1,8,10,16,32 
cells 

Range of elevation in # cell 
neighborhood 

slope_deg Topography slope, degrees n/a Topographic slope measured in degrees 

slope_pct Topography slope, percent n/a 
Topographic slope measured in percent 
rise over run 

slpvr_#c Topography slope range, integer 
1,8,10,16,32 
cells 

Slope variability within # cell 
neighborhood 

std_#c Topography standard deviation 
1,8,10,16,32 
cells 

Standard deviation of elevation range 
within # cell neighborhood 

tpi_#c Topography index, integer 
5,10,50,100,250 
cells 

Topographic Position Index. Position 
of cell relative to surrounding 
landscape within # cell neighborhood 

tpi_cls#c Topography 
classification, 
nominal 

5,10,50,100,250 
cells 

TPI standardized and classified into 1 
standard deviation groups within # cell 
neighborhood 

tpi_sd#c Topography standard deviation 
5,10,50,100,250 
cells 

Standard deviation of TPI within # cell 
neighborhood 

tri_#c Topography index, integer 
1,8,10,16,32 
cells 

Topographic Ruggedness Index. 
Measure of terrain roughness within # 
cell neighborhood  

twi#c 
Topography - 
Hydrology index, integer 

1,8,10,16,32 
cells 

Topographic Wetness Index. Measure 
of upslope accumulation within # cell 
neighborhood 

vrf_#c Topography index, integer 
1,8,10,16,32 
cells 

Vector Roughness Factor. Measure of 
three-dimensional variation in slope 
within # cell neighborhood 
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APPENDIX C 

PENNSYLVANIA MODEL SUBAREA MAPS 

 
 



Region: 1, Zone: east, Subarea: riverine section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 5.5 11 16.5 22
Miles ´



Region: 1, Zone: east, Subarea: riverine section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 1, Zone: east, Subarea: riverine section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 1, Zone: east, Subarea: upland section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 5.5 11 16.5 22
Miles ´



Region: 1, Zone: east, Subarea: upland section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 1, Zone: east, Subarea: upland section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 1, Zone: north, Subarea: riverine section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 1, Zone: north, Subarea: riverine section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4.5 9 13.5 18
Miles ´



Region: 1, Zone: north, Subarea: upland section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 1, Zone: north, Subarea: upland section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4.5 9 13.5 18
Miles ´



Region: 1, Zone: west, Subarea: riverine section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 1, Zone: west, Subarea: upland section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 1, Zone: west, Subarea: riverine section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 1, Zone: west, Subarea: riverine section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 1, Zone: west, Subarea: riverine section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4 8 12 16
Miles ´



Region: 1, Zone: west, Subarea: riverine section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 1, Zone: west, Subarea: upland section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 1, Zone: west, Subarea: upland section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 1, Zone: west, Subarea: upland section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 1, Zone: west, Subarea: upland section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4 8 12 16
Miles ´



Region: 10, Zone: all, Subarea: upland section 9
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 10, Zone: all, Subarea: riverine section 9
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 23, Zone: all, Subarea: riverine section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4.5 9 13.5 18
Miles ´



Region: 23, Zone: all, Subarea: upland section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 23, Zone: all, Subarea: riverine section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 23, Zone: all, Subarea: riverine section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 23, Zone: all, Subarea: riverine section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 23, Zone: all, Subarea: riverine section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 23, Zone: all, Subarea: upland section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4.5 9 13.5 18
Miles ´



Region: 23, Zone: all, Subarea: upland section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 23, Zone: all, Subarea: upland section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 23, Zone: all, Subarea: upland section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 4, Zone: west, Subarea: riverine section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 4, Zone: west, Subarea: upland section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 4, Zone: west, Subarea: upland section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4 8 12 16
Miles ´



Region: 4, Zone: west, Subarea: upland section 6
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 4, Zone: west, Subarea: riverine section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 4, Zone: west, Subarea: riverine section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 4, Zone: west, Subarea: riverine section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 4, Zone: west, Subarea: riverine section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4 8 12 16
Miles ´



Region: 4, Zone: west, Subarea: riverine section 6
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 4, Zone: west, Subarea: upland section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 4, Zone: west, Subarea: upland section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 4, Zone: west, Subarea: upland section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 5, Zone: east, Subarea: riverine section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 5, Zone: east, Subarea: upland section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 5, Zone: east, Subarea: upland section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 5, Zone: east, Subarea: upland section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 5, Zone: east, Subarea: upland section 6
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 5, Zone: east, Subarea: upland section 7
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 5, Zone: east, Subarea: riverine section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 5, Zone: east, Subarea: riverine section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 5, Zone: east, Subarea: riverine section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 5, Zone: east, Subarea: riverine section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 5, Zone: east, Subarea: riverine section 6
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 5, Zone: east, Subarea: riverine section 7
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 5, Zone: east, Subarea: upland section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 5, Zone: east, Subarea: upland section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 6, Zone: all, Subarea: riverine section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 6.5 13 19.5 26
Miles ´



Region: 6, Zone: all, Subarea: upland section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 6, Zone: all, Subarea: riverine section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 6, Zone: all, Subarea: riverine section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 6, Zone: all, Subarea: riverine section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 6, Zone: all, Subarea: riverine section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 6, Zone: all, Subarea: upland section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 6.5 13 19.5 26
Miles ´



Region: 6, Zone: all, Subarea: upland section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4 8 12 16
Miles ´



Region: 6, Zone: all, Subarea: upland section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4 8 12 16
Miles ´



Region: 6, Zone: all, Subarea: upland section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 7, Zone: all, Subarea: riverine section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4 8 12 16
Miles ´



Region: 7, Zone: all, Subarea: upland section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 4.5 9 13.5 18
Miles ´



Region: 7, Zone: all, Subarea: upland section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 7, Zone: all, Subarea: upland section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 7, Zone: all, Subarea: upland section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 7, Zone: all, Subarea: upland section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 7, Zone: all, Subarea: upland section 6
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 7, Zone: all, Subarea: upland section 7
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 7, Zone: all, Subarea: upland section 8
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 7, Zone: all, Subarea: upland section 9
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 7, Zone: all, Subarea: riverine section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 7, Zone: all, Subarea: riverine section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 7, Zone: all, Subarea: riverine section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 7, Zone: all, Subarea: riverine section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 7, Zone: all, Subarea: riverine section 6
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 7, Zone: all, Subarea: riverine section 7
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 7, Zone: all, Subarea: riverine section 8
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 7, Zone: all, Subarea: riverine section 9
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 8, Zone: all, Subarea: riverine section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 6.5 13 19.5 26
Miles ´



Region: 8, Zone: all, Subarea: upland section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 6.5 13 19.5 26
Miles ´



Region: 8, Zone: all, Subarea: upland section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 8, Zone: all, Subarea: upland section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 8, Zone: all, Subarea: upland section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 8, Zone: all, Subarea: upland section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 8, Zone: all, Subarea: upland section 6
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 8, Zone: all, Subarea: upland section 7
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 8, Zone: all, Subarea: upland section 8
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 8, Zone: all, Subarea: upland section 9
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 8, Zone: all, Subarea: riverine section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 8, Zone: all, Subarea: riverine section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 8, Zone: all, Subarea: riverine section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 8, Zone: all, Subarea: riverine section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 8, Zone: all, Subarea: riverine section 6
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 8, Zone: all, Subarea: riverine section 7
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 8, Zone: all, Subarea: riverine section 8
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1 2 3 4
Miles ´



Region: 8, Zone: all, Subarea: riverine section 9
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 9, Zone: all, Subarea: riverine section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1 2 3 4
Miles ´



Region: 9, Zone: all, Subarea: riverine section 10
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 9, Zone: all, Subarea: riverine section 11
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 9, Zone: all, Subarea: riverine section 12
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 9, Zone: all, Subarea: riverine section 13
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 9, Zone: all, Subarea: riverine section 14
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 9, Zone: all, Subarea: riverine section 15
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 9, Zone: all, Subarea: upland section 1
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1 2 3 4
Miles ´



Region: 9, Zone: all, Subarea: upland section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 9, Zone: all, Subarea: upland section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 9, Zone: all, Subarea: upland section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 9, Zone: all, Subarea: riverine section 2
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 9, Zone: all, Subarea: upland section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 9, Zone: all, Subarea: upland section 6
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 9, Zone: all, Subarea: upland section 7
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 9, Zone: all, Subarea: upland section 8
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 9, Zone: all, Subarea: upland section 10
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 9, Zone: all, Subarea: upland section 11
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 9, Zone: all, Subarea: upland section 12
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3.5 7 10.5 14
Miles ´



Region: 9, Zone: all, Subarea: upland section 13
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 9, Zone: all, Subarea: upland section 14
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2.5 5 7.5 10
Miles ´



Region: 9, Zone: all, Subarea: riverine section 3
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1 2 3 4
Miles ´



Region: 9, Zone: all, Subarea: upland section 15
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 3 6 9 12
Miles ´



Region: 9, Zone: all, Subarea: riverine section 4
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 9, Zone: all, Subarea: riverine section 5
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 9, Zone: all, Subarea: riverine section 6
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 1.5 3 4.5 6
Miles ´



Region: 9, Zone: all, Subarea: riverine section 7
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´



Region: 9, Zone: all, Subarea: riverine section 8
Pennsylvania Predictive Model Set

High
Moderate
Low

Sensitivity

0 2 4 6 8
Miles ´


