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ABSTRACT 
 

The objective of this research is developing a toolset for designing and managing cost 

efficient and environmentally friendly supply chains for perishable products. 

The models we propose minimize transportation and inventory holding costs in the 

supply chain, while accounting for carbon emissions due to transportation and other activities. 

These models are extensions of the classical Economic Lot-Sizing (ELS) model. The ELS model 

identifies an inventory replenishment schedule for a fixed planning horizon with deterministic 

and time-varying demand. We extended these models to consider the use of multiple modes of 

transportation. The models support replenishment decisions for perishable products and capture 

the impact of inventory replenishment decisions on greenhouse gas emissions. We have used the 

numerical results to analyze the impact of potential carbon emission regulations on 

replenishment decisions.  

We anticipate that these models will be used to assess the impacts that potential carbon 

regulatory policies, such as carbon caps, carbon taxes, carbon cap-and-trade, and carbon offsets 

have on transportation mode selection decisions and overall emissions levels in the supply chain. 

The benefits from using these models are twofold. First, policy makers can use these 

models to evaluate the potential impact on emissions for each regulatory policy. Second, 

environmentally conscious companies can use these models and the corresponding solution 

algorithms as sub-modules within their material requirements planning (MRP) systems for 

requirements planning when multiple modes, multiple products, perishable products, and 

multiple supplier replenishment options are available. 
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EXECUTIVE SUMMARY 
 

Concerns have been raised frequently in recent years due to the increased emission levels 

and the impact of emissions on the quality of air, and consequently, on the quality of our lives. In 

particular, the burning of fossil fuels for power generation and transportation yields significant 

amounts of carbon emitted to the environment. Researchers and government entities in different 

countries note that there is an urgent need to put policies into action and set emission reduction 

targets. For example, through its European Climate Change Program, the European Union aims 

to reduce carbon emissions by at least 20% by 2020 as compared to 1990 levels [2]. As a 

consequence, many companies are taking actions by revising their operations and updating their 

technologies. Other companies are readily committed to going green since green initiatives not 

only benefit the environment, but also increase customer goodwill and loyalty and guarantee 

sustainable operations.   

Emissions within the supply chain of a product may result from production, inventory 

and transportation activities. Freight transportation is a major contributor to greenhouse gas 

(GHG) emissions as it accounted for 6,800 trillion BTUs (TBTUs) of energy in 2005, and is 

expected to consume 10,850 TBTUs by 2030, a 60% growth in energy consumption.  In addition 

to developing new technologies, modifications in the way companies manage their day-to-day 

operations have the potential to reduce carbon emissions. In the context of supply chain 

management, shifting from one transportation mode to another impacts costs, delivery lead times 

for shipments and emissions. It is thus important to identify appropriate mode(s) of 

transportation to use in the supply chain in order to minimize cost while maintaining customer 

satisfaction by delivering products on-time, and also reducing the carbon footprint of the product 

delivered. 

The research conducted in this study is focused on developing models for designing and 

managing cost efficient and environmentally friendly supply chains. These mathematical models 

represent the relationships that exist between costs and emissions in a two-stage supply chain. 

The models minimize the total of transportation and inventory holding costs in the supply chain, 

while accounting for carbon emissions due to transportation and other logistics and supply chain-

related activities.  

These models provide insights and direction to guide companies on making sustainable 

logistics management and transportation decisions.
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CHAPTER 1 BACKGROUND 
 

 

PROBLEM MOTIVATION 

 

For decades, the main objective of models developed for supply chain optimization, logistics 

management and transportation systems analysis has focused on minimizing costs. These models 

have been driven by the needs of different industries to improve cost efficiency and performance. 

There is a growing interest within the operations research and analytics community to account 

for “green objectives” in supply chain, transportation and other decision-making related models. 

This movement has been inspired by our increased awareness of environmental issues and 

recognition of the need for long-term sustainability. Although some firms may not be in a hurry 

to “minimize their emissions and carbon footprint,” many large companies are now committed to 

going green. Green initiatives not only benefit the environment, but also benefit the companies 

that implement them, due to increased customer goodwill and loyalty and sustainable operations. 

A number of companies such as Walmart, Tesco, and Hewlett Packard [3] are responding to 

environmental concerns by taking steps toward reorganizing their shipment schedules and using 

fuel efficient vehicles. These companies have come to realize that reductions in GHG emissions 

can help to strengthen their brand image and to develop competitive advantages. The expectation 

is that other companies will join this trend and strive to reduce their carbon footprint.  

This research contributes to improving the economic competitiveness of transportation 

systems, which is one of the three main research themes of STRIDE. From a policy maker’s 

point of view, the outcomes of this research will help identify carbon regulatory policies which 

have a great impact on reducing transportation related emission at a minimum cost. From a 

logistics management point of view, the outcomes of this research will help identify 

transportation schedules that minimize costs while responding to environmental issues and 

concerns. Overall, this research will contribute to improving transportation-related costs and 

emissions in the supply chain, and consequently will contribute to the long-term sustainability of 

transportation systems. We believe that the models we propose have the potential to help 

companies in the region improve transportation and logistics-related costs and emissions, and 

therefore, become competitive while mitigating environmental impacts. 

 

 

RESEARCH OBJECTIVE 

 

The main objective of this research was to develop a toolset for designing and managing 

cost efficient and environmental friendly supply chains. In pursuit of this objective, we extended 

the classical ELS model to capture the impact of transportation mode selection choices on costs 

and emissions. These mathematical models minimize total transportation and inventory holding 

costs in the supply chain, while accounting for carbon emissions due to transportation and other 

logistics and supply chain-related activities. The goal was to provide insights and guidance for 

companies to make sustainable logistics and transportation decisions. 

This research helps us gain a better understanding of the impact that carbon regulatory 

mechanisms have on transportation mode selection, transportation schedules, and consequently, 

on costs and emissions in the supply chain. 
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PROBLEM STATEMENT 

 

The mathematical models we developed are extensions of the classical ELS model 

introduced by Wagner and Whitin [4]. Our supply chain consists of a single facility and its 

suppliers. The facility could be a manufacturing facility, or a retailer making inventory 

replacement decisions every period within a fixed planning horizon of length T. A “supplier” in 

our model corresponds to a unique combination of a supply firm and a particular transportation 

mode. Thus, there may be multiple “suppliers” for a given supply firm- but one for each 

transportation mode.  

A facility can replenish its inventories using local or distant suppliers. Typically, if 

shipment delivery time is not a concern, a facility can increase the supplier pool size by 

considering suppliers located further away, which increases the likelihood that the facility will be 

able to identify suppliers (e.g., wholesalers) that can provide products at a competitive price. 

Depending on the distance traveled and transportation mode accessibility, barge, rail, or truck 

can be used to replenish inventories. The facility may, alternatively, replenish inventories using 

nearby suppliers who can respond in a timely manner. Because of short travel distances, these 

suppliers tend to use truck shipments. Shipments are initiated depending on the size of a 

shipment, e.g., full truck load (FTL) or less-than-full truck load (LTL). Somewhat paradoxically, 

replenishment costs from local suppliers are often higher compared to more distant suppliers, 

mainly due to frequent LTL shipments, as opposed to the FTL shipments from more distant 

suppliers. Our goal is to identify suppliers and a replenishment schedule that minimizes total 

replenishment (purchase and transportation), inventory holding costs and the carbon footprint of 

this supply chain.  

In this problem, operations costs consist of replenishment and inventory holding costs. 

Replenishment costs from supplier 𝑖 (𝑖 =  1, … , 𝐼) in period 𝑡 consist of a fixed order cost (𝑓𝑖𝑡) 

and a variable cost (𝑐𝑖𝑡). Recall that a supplier in our model is defined by the combination of a 

physical supplier and specific transportation mode. Thus, the fixed order cost consists of the 

costs necessary to process an order as well as to load or unload a shipment. The variable cost 

consists of the purchasing cost and distance-dependent transportation costs. These costs are a 

function of quantity shipped. A unit inventory holding cost is charged per unit of inventory held 

at the facility at the end of each time period (ℎ𝑡).  

We assume that carbon emissions in this supply chain result from transportation activities 

and holding inventory. We separate transportation related emissions into fixed ( 𝑓𝑖) and variable 

(𝑐̂𝑖) emissions. Fixed emissions are mainly due to loading and unloading of a shipment. These 

emissions depend on the transportation mode used since the equipment required to load and 

unload a barge, rail car, or truck, is different. Variable emissions depend on the transportation 

mode used. That is the case because the amount of carbon emitted per ton and per mile traveled 

by truck is different from that of rail or barge. Our models also consider emissions that may 

result from holding inventories. For example, the emissions per unit of inventory held in a time 

period (ℎ̂𝑡) depend on the heating/cooling system at the facility.  
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Figure 1-1 provides a network representation of a two-tier supply chain problem with 

three suppliers and one facility. The time horizon consists of two time periods. This network 

contains one dummy node, a total of 𝑇 facility nodes (one node per time period), and 𝐼 × 𝑇 

supplier nodes. The dummy node has a supply equal to the total demand over the planning 

horizon. A facility node 𝑡 has a demand equal to 𝑑𝑡, which denotes demand in period 𝑡 (𝑡 =

1, … , 𝑇). The supplier nodes correspond to each supplier in every time period. The network has 

𝐼 × 𝑇 replenishment arcs, 𝑇 × 1 inventory arcs and 𝐼 × 𝑇 dummy arcs. Replenishment arcs 

connect suppliers with the facility in each time period. The cost per unit flow on a replenishment 

arc is 𝑐𝑖𝑡 (𝑖 = 1, … , 𝐼;  𝑡 = 1, … , 𝑇). There is also a fixed cost for using supplier i in period t 

equal to 𝑓𝑖𝑡(𝑖 = 1, … , 𝐼;  𝑡 = 1, … , 𝑇) which is incurred when using a replenishment arc. 

Inventory arcs connect the facility nodes in consecutive time periods. The cost per unit of flow 

on an inventory arc is ℎ𝑡 (𝑡 = 1, … , 𝑇). The inventory replenishment models developed are 

presented in Chapter 2. 

 

 
Figure 1-1. The network representation of a two-period, three-supplier problem. 

 

We extend of the models proposed to consider perishable products. We classify 

perishable products as: products with fixed shelf lifetime and deteriorating products. The former 

category includes products whose length of lifetime is known a priori, such as, pharmaceuticals, 

dairy products, and fashion items. The latter category includes deteriorating items. Deterioration 

refers to spoilage, dryness, vaporization, etc., which results in value lost during the storage 

period. These are also known as age-dependent perishable products. The objective of inventory 

replenishment models for these products is to minimize the total system costs associated with 

replenishment-related decisions. The models developed capture the trade-offs that exist between 

transportation costs and remaining shelf life of products, transportation and inventory costs, and 

total costs and CO2 emissions resulting from transportation and inventory holding. Shorter 

transportation lead times increase the remaining shelf life for perishable products. This provides 

companies with more flexibility when making inventory replenishment decisions. For example, 
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if the shelf life of a product is short, such as one day, then the inventories should be replenished 

daily. If the shelf life of a product is longer, then a company can reduce replenishment costs by 

ordering less frequently. A company can reduce transportation lead time for perishable products 

by using local suppliers, or by using transportation modes such as refrigerated trucks and 

refrigerated rail cars, or airplanes. However, using suppliers located nearby could result on 

higher replenishment costs, mainly due to a limited pool of suppliers than can be reached and, 

therefore, less competitive prices. Using refrigerated trucks, refrigerated rail cars and airplanes 

result in higher transportation costs as compared to using trucks and rail cars. 

Inventory decisions are impacted by tradeoffs that exist between replenishment and 

inventory holding costs, and also by the lead time and remaining shelf life of perishable 

products. Using refrigerated trucks and storage areas can increase the remaining shelf life of a 

perishable product. These activities increase energy consumption and consequently carbon 

emissions.  

The models we propose for perishable products are multi-objective, mixed-integer linear 

programming model which minimize costs and environmental impacts due to supply chain 

activities including transportation and inventory. The cost objectives of these models minimize 

the total inventory replenishment costs which consist of transportation, inventory, purchase and 

fixed order costs. The environmental objective minimizes greenhouse gas (GHG) emissions due 

to transportation and inventory.  

 

 

SCOPE OF STUDY 

 

A number of studies propose methods to measure and quantify carbon emissions in the 

supply chain due to processes such as transportation[5], [6], [7], [8],[9]. Other studies propose 

optimization models to minimize the carbon footprint of a supply chain through changes in 

supply chain design and operations. For example, [10] extend the classical ELS model with a 

single replenishment mode to identify inventory replenishment schedules under different carbon 

regulatory mechanisms, such as, carbon cap, carbon tax, carbon cap and trade, and carbon offset. 

[11]and [9] develop extensions of ELS to identify inventory replenishment schedules under a 

carbon cap and a carbon cap-and-trade mechanism respectively. Studies by[12], [13] , and [14] 

concentrate on developing larger scale supply chain network design models which take into 

account carbon emissions.  

This study falls into the latter stream of research, which identifies operational policy 

changes that impact costs and emissions in the supply chain. It specifically contributes to the 

literature by improving transportation related costs and emissions in the supply chain, and 

consequently achieving the long-term sustainability of transportation systems. The models 

proposed have the potential to help companies improve transportation and logistics-related costs 

and emissions, and therefore, become competitive while mitigating environmental impacts. 

Transportation mode selection decisions need to address the trade-offs that exist between 

costs and emissions in the supply chain. These decisions also need to account for carbon 
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regulatory mechanisms that are in place. In this research we analyzed the impact of four potential 

carbon regulatory mechanisms, consisting of carbon caps, carbon taxes, carbon cap and trade, 

and carbon offsets, on supply chain operations. Under a carbon cap mechanism, the amount of 

carbon emitted due to transportation, production and inventory activities cannot surpass a 

predetermined cap. Under a carbon tax mechanism, a facility pays a tax per ton of carbon emitted 

due to its operations. Under a carbon cap-and-trade mechanism, a carbon cap is imposed on the 

facility, where a carbon market also exists which allows the facility to sell unused carbon credits 

at a profit, or to purchase carbon credits if needed. Under a carbon offset mechanism, a carbon 

cap is imposed on the facility. A carbon market may also exist, which allows the facility to 

purchase carbon credits if needed, but not to sell back unused carbon credits.  The models we 

propose thus consider production and transportation planning decisions for a producer under 

various assumptions on the costs associated with emissions.  Additional distinguishing features 

of our work include: 

 

 Explicit consideration of transportation cost structures that closely approximate practical 

transportation pricing terms and costs.  

 

 Consideration of product characteristics such as shelf life and deterioration rate, and how 

these factors affect replenishment costs and emissions. We expect that emissions in the 

supply chain, similar to replenishment schedules and costs, are impacted by product type 

and characteristics.  
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CHAPTER 2 RESEARCH APPROACH  
 

Below we present mathematical models for optimizing costs and emissions in the supply 

chain under different carbon regulatory mechanisms. This is an extension of a model proposed 

by [10]. We add a new dimension to their model that accounts for the availability of different 

transportation modes to replenish inventories. We also note that this model is an extension of the 

classical ELS which captures the impact of the following carbon regulatory mechanisms on 

replenishment decisions: carbon caps, carbon taxes, carbon cap-and-trade and carbon offsets. 

Depending on the carbon regulatory mechanism, the models we propose require carbon 

constraints, emissions cost, penalty costs which should be paid per unit of emission, or a 

combination of both. Description of the different carbon mechanisms and the corresponding 

objective functions of our models are given below. 

To consider perishable products we present two multi-objective optimization models 

which optimize costs and emissions for perishable products. We describe the cost functions we 

used in these models. We provide a multi-objective model for perishable products which lose 

value with time. These are referred to in the literature as deteriorating items. We also provide a 

multi-objective model for items that have a fixed shelf life.        

 

MODELS WITH ENVIRONMENTAL OBJECTIVES  

 

Consider the two-tier supply chain described in Chapter 1 which consists of a facility and a 

number of suppliers (Figure 1-1). The facility has the option to use nearby suppliers to replenish 

its inventories, or use suppliers located further away. In addition to costs, concerns about 

emissions do impact replenishment decisions of the facility. Transportation related emissions for 

shipments from local suppliers are typically low due to shorter distances traveled. Unit emissions 

- given in per ton and per mile - for barge and rail are smaller than unit emissions from trucks. 

However, depending on the transportation distance, the total emissions for long hauls using rail 

and barge may be higher. The objective of the models we propose is to identify a replenishment 

schedule that minimizes the total system costs and the carbon footprint of this supply chain. 

Cost Minimization Model 

 

The following is the mixed integer programming formulation of the cost minimization model.  

We list the model parameters and decision variables. 

 

Model parameters: 

𝑓𝑖𝑡 ,    Fixed order cost for supplier i (i =1,..,I) in period t (t = 1,…T) 

𝑐𝑖𝑡 ,    Variable cost per unit shipped from supplier 𝑖 in period t  

ℎ𝑡  ,    Inventory holding cost in period t   

𝑑𝑡 ,    Demand in period t   
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Decision variables: 

𝑦𝑖𝑡        Binary variable equal to 1 if supplier i is used in period t 

𝑞𝑖𝑡    Amount shipped from supplier i in period t 

𝐻𝑡    Inventory held in period t 

 

We refer to this as model (P). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑(𝑓𝑖𝑡𝑦𝑖𝑡 + 𝑐𝑖𝑡𝑞𝑖𝑡 + ℎ𝑡𝐻𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

 

s.t.              (P) 

 

∑ 𝑞𝑖𝑡

𝐼

𝑖=1

+ 𝐻𝑡−1−𝑑𝑡 = 𝐻𝑡                          𝑡 = 1, … , 𝑇                                                 (1) 

𝐻0 = 0                                                                                                                                (2) 

𝑞𝑖𝑡 ≤ (∑ 𝑑𝜏

𝑇

𝜏=𝑡

) 𝑦𝑖𝑡                                       𝑖 = 1, … 𝐼; 𝑡 = 1, … , 𝑇                             (3) 

𝑦𝑖𝑡 ∈ {0,1}; 𝑞𝑖𝑡 ≥ 0; 𝐻𝑡 ≥ 0                     𝑖 = 1, … , 𝐼; 𝑡 = 1, … , 𝑇                         (4) 

 

The objective function of (P) minimizes total costs. Constraints (1) are the inventory 

balance constraints. These constraints ensure that demand is met. Constraints (2) set the initial 

inventory to zero. Constraints (3) connect continuous and binary variables, and ensure that no 

flow is shipped from supplier 𝑖 in period 𝑡, unless 𝑦𝑖𝑡 = 1. The remaining constraints are the 

binary and the non-negativity constraints, respectively. 

 

Carbon Cap Mechanism 

 

We now discuss a mathematical model which optimizes replenishment decisions under a carbon 

cap mechanism. Due to the carbon cap, the total amount of carbon emitted during the planning 

horizon cannot surpass this cap. To express this cap mathematically, we add constraint (1) to the 

model. This constraint limit the total emissions in the supply chain to C. C denotes the carbon 

cap level over the planning horizon. We refer to this as model (P-Cap). 

 

Model parameters: 

𝑓𝑖𝑡   Fixed emissions for supplier i (i =1,..,I) in period t (t = 1,…T) 

𝑐̂𝑖𝑡   Variable emissions per unit shipped from supplier 𝑖 in period t  

ℎ̂𝑡   Inventory holding emissions in period t  

 

The following is the MIP formulation of the problem. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑(𝑓𝑖𝑡𝑦𝑖𝑡 + 𝑐𝑖𝑡𝑞𝑖𝑡 + ℎ𝑡𝐻𝑡)

𝑇

𝑡=1

𝐼

𝑖=1
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s.t.          (P-Cap) 

    (1) – (4) 

 

∑ ∑(𝑓𝑖𝑦𝑖𝑡 + 𝑐̂𝑖𝑡𝑞𝑖𝑡 + ℎ̂𝑡𝐻𝑡

𝑇

𝑡=1

𝐼

𝑖=1

) ≤ 𝐶                      (5) 

 

The objective function minimizes total costs, subject to ELS constraints as well as the carbon 

cap constraint, C.  This model, in addition to costs, keeps track of emissions from inventory 

holding, transportation and loading/unloading activities. While the firm still minimizes supply 

chain related costs, it must ensure that the carbon constraint is not violated. This additional 

constraint can potentially increase total costs and impact supplier and transportation mode 

selection decisions. 

 

Carbon Tax Mechanism 

 

Under a carbon tax mechanism, a facility pays a fee/tax for each unit of CO2 emitted. Let 

𝛼 denote the tax charged per unit of CO2 emitted. The following is the corresponding 

optimization model, which we refer to as (P-Tax): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑(𝑓𝑖𝑡 + 𝛼𝑓𝑖)𝑦𝑖𝑡 + (𝑐𝑖𝑡 + 𝛼𝑐̂𝑖𝑡)𝑞𝑖𝑡 + (ℎ𝑡 + 𝛼ℎ̂𝑡)𝐻𝑡

𝑇

𝑡=1

𝐼

𝑖=1

 

    s.t.         (P-Tax)  

(1) - (4) 

The objective function minimizes the total of replenishment costs, inventory costs, and emission 

taxes.  

 

Carbon Cap-and-Trade Mechanism 

 

A carbon cap is imposed on the facility under a carbon cap-and-trade mechanism. 

However, a carbon market also exists, which allows the facility to sell unused carbon credits at a 

profit, or to purchase carbon credits if needed to satisfy customer demand (the European Union 

Emissions Trading system was the first large emission trading scheme in the world). Let 𝑒𝑡
+ be 

the amount of carbon credits purchased in period t, and let 𝑒𝑡
− denote the amount of carbon 

credits sold in period t. We denote the market price per unit of carbon by 𝑝. The following is the 

corresponding optimization model, which we refer to as (P-CT): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑(𝑓𝑖𝑡𝑦𝑖𝑡 + 𝑐𝑖𝑡𝑞𝑖𝑡 + ℎ𝑡𝐻𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

+ 𝑝 ∑(𝑒𝑡
+ − 𝑒𝑡

−)

𝑇

𝑡=1

 

s.t.:          (P-CT)  

  

 

(1) - (4)  
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 ∑ ∑(𝑓𝑖𝑦𝑖𝑡 + 𝑐̂𝑖𝑡𝑞𝑖𝑡 + ℎ̂𝑡𝐻𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

+ ∑ 𝑒𝑡
−

𝑇

𝑡=1

≤ 𝐶 + ∑ 𝑒𝑡
+

𝑇

𝑡=1

                                (6) 

 

Carbon Offset Mechanism 

 

A carbon cap is imposed on the facility under a carbon offset mechanism, and a carbon 

market also exists that allows the facility to purchase carbon credits. However, under a carbon 

offset mechanism, a facility cannot sell unused carbon credits. Let 𝑒𝑡
+ be the amount of carbon 

credits purchased in period t. The following is the optimization model, which we refer to as (P-

CO): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑(𝑓𝑖𝑡𝑦𝑖𝑡 + 𝑐𝑖𝑡𝑞𝑖𝑡 + ℎ𝑡𝐻𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

+ ∑ 𝑝𝑒𝑡
+

𝑇

𝑡=1

 

s.t.:                      (P-CO)   

(2) - (4) 

 

∑ ∑(𝑓𝑖𝑦𝑖𝑡 + 𝑐̂𝑖𝑡𝑞𝑖𝑡 + ℎ̂𝑡𝐻𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

≤ 𝐶 + ∑ 𝑒𝑡
+

𝑇

𝑡=1

               (7) 

 

Experimental results have provided us with some interesting insights about the impacts of carbon 

regulatory mechanisms on supplier and transportation mode selection decisions. We discuss 

some of our findings in the following section.  

 

REPLENISHMENT MODELS FOR PERISHABLE ITEMS  

 

In this section, we present the economic lot sizing model with multiple replenishment modes for 

perishable products.  The objective of this problem is to identify a replenishment schedule for 

perishable products which minimizes costs and emissions during a planning horizon of length T.  

 

Transportation Cost Functions with Multiple Setup Cost Structure  

 

The fixed-charge transportation cost structure assumes there is a fixed cost as well as a 

variable cost per unit shipped using a particular transportation mode. The multiple setup cost 

structure (Equation (8)) assumes a fixed order cost (𝑓𝑖), a unit variable cost charged for each unit 

shipped (𝑝𝑖), and a fixed cargo container cost (𝐴𝑖), which is charged for each container used. The 

following corresponds to a multiple setup transportation cost function. 

 𝑇𝑟𝐶𝑜𝑠𝑡𝑖(𝑞𝑖𝑡) = {
𝑓𝑖 + 𝑝𝑖𝑞𝑖𝑡 + 𝐴𝑖 ⌈

𝑞𝑖𝑡

𝑈𝑖
⌉      𝑖𝑓 𝑞𝑖𝑡 > 0                          (8)    

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  
 

 

  In Equation (8), Ui is the cargo capacity. Different from most of the literature that uses a 

linear or fixed-charge cost structure, we use a non-linear, step-wise function in order to better 
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represent the structure of the replenishment costs. Figure 2-1 illustrates a multiple setup cost 

function for two different replenishment modes. This cost structure allows us to more accurately 

represent both the costs and the emissions associated with a given mode as a function of the 

quantity shipped. 

 

 
Figure 2-1. A multiple setup cost function. 

 

In Equation (8), 𝑝𝑖 is the unit replenishment cost. This cost includes the unit procurement 

cost and unit transportation costs for replenishment mode 𝑖.  

 

Replenishing Age-Dependent Deteriorating Items via Multiple Transportation Modes 

 

We start by defining a new set of decision variables, denoted by 𝑞𝑖𝑡𝜏. Let 𝑞𝑖𝑡𝜏 represent 

the amount of demand on period 𝜏 satisfied by a replenishment that used mode 𝑖 and arrived in 

period 𝑡. Using 𝑞𝑖𝑡𝜏  allows calculating the age of a product and corresponding inventory 

replenishment costs. Let 𝑝𝑖 denote the unit procurement cost for replenishment mode i, and 𝐴𝑖 

denote the fixed cost of a replenishment mode i. We now present the multiple setup cost function 

presented in equation (7) using these newly defined variables.  

 

𝑇𝑟𝐶𝑜𝑠𝑡𝑖(𝑞𝑖𝑡𝜏) = {𝑓𝑖 + 𝑝𝑖 ∑ 𝑞𝑖𝑡𝜏

𝑇

𝜏=𝑡

+ 𝐴𝑖 ⌈
∑ 𝑞𝑖𝑡𝜏

𝑇
𝜏=𝑡

𝑈𝑖
⌉      𝑖𝑓 𝑞𝑖𝑡𝜏 > 0                                         (9)    

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

 

The model considers product deterioration during delivery time and during storage at the 

facility. We assume that the product is shipped as soon as it is produced. The transportation lead 

time for replenishment mode 𝑖, denoted by 𝐿𝑖, depends on the location of the supplier and the 

A1

A2

U1

U2

f1+A1

f2+A2

qit

TrCost(qit)
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transportation mode used. We denote the deterioration rate for a replenishment using mode 

𝑖 from period t to period 𝜏 by 𝛼𝑖𝑡𝜏. The deterioration rate is not constant; instead, it depends on 

the duration of product storage. Typically, deterioration rate increases with time, and thus, 

 𝛼𝑖𝑡𝜏  ≤   𝛼𝑖𝑡𝑗 for 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑗 ≤ 𝑇. 

Let 𝑘𝑖𝑡𝑙 represent the percentage of inventory from replenishment from supplier 𝑖 which 

arrived in period t that has not perished until it is used in period 𝑙. The order of this 

replenishment is released at time 𝑡 −  𝐿𝑖 to count for the transportation lead time. If 

transportation lead time is assumed to be zero, replenishment in time period 𝑡 for the same time 

period is received without a loss. This means that 𝛼𝑖𝑡𝑡 = 0 and 100% of the replenishment is 

delivered. Thus, we define 𝑘𝑖𝑡𝑡 = 1. The remaining 𝑘𝑖𝑡𝑙 for 1 ≤ 𝑡 ≤  𝑙 ≤  𝑇 are calculated as: 

 𝑘𝑖𝑡𝑙 = ∏ (1 − 𝛼𝑖𝑡𝑗)𝑙−1
𝑗=𝑡 . Based on the assumption stated above, we can see that 𝑘𝑖𝑡𝑙 ≤ 𝑘𝑖𝜏𝑙 

for 1 ≤ 𝑡 ≤ 𝜏 ≤  𝑙 ≤  𝑇. 

The formulation of the lot-sizing problem with multi-mode replenishment and age 

dependent perishable inventories is presented below. We refer to this as formulation (Q). Next 

we present the new variable and parameters used in this formulation. 

 

Model parameters: 

𝐴̂𝑖𝑡: GHG emissions due to loading and unloading of one cargo container mode i in 

period t 

𝐶𝑖: Capacity of a cargo container for replenishment mode i  

𝑘𝑖𝑡𝑙:     Percentage of inventory from replenishment mode i that arrives in period t that 

has not perished until it is used in period  

 

Decision variables 

𝑞𝑖𝑡𝜏: The amount received from replenishment mode i in period t to satisfy demand in 

period τ (τ ≥ t) 

𝑧𝑖𝑡: Number of cargo containers of replenishment mode i used in period t 

 

The following is the mixed integer programming formulation of the problem.  

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒛 = ∑ ∑[∑ 𝑐𝑖𝑡𝜏

𝑇

𝜏=𝑡

𝑇

𝑡=1

𝐼

𝑖=1

𝑞𝑖𝑡𝜏 + 𝑓𝑖𝑡𝑦𝑖𝑡 + 𝐴𝑖𝑧𝑖𝑡],      

St.                 (Q) 

       ∑ ∑ 𝑘𝑖𝑡𝜏𝑞𝑖𝑡𝜏
𝑇
𝑡=1

𝐼
𝑖=1 = 𝑑𝜏                                         1 ≤ 𝜏 ≤ 𝑇                                           (10) 

                    𝑞𝑖𝑡𝜏 −
𝑑𝜏

𝑘𝑖𝑡𝜏
𝑦𝑖𝑡 ≤ 0                                  𝑖 = 1, … , 𝐼; 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑇                 (11)            

                      ∑ 𝑞𝑖𝑡𝜏
𝑇
𝜏=𝑡 −𝐶𝑖𝑧𝑖𝑡 ≤ 0                                           𝑖 = 1, … , 𝐼; 𝑡 = 1, … , 𝑇                       (12) 

                   𝑦𝑖𝑡 ∈ {0,1}; 𝑞𝑖𝑡𝜏 ≥ 0; 𝑧𝑖𝑡 ∈ 𝑍+           𝑖 = 1, … , 𝐼; 𝑡 = 1, … , 𝑇                       (13) 
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Where, 𝑐𝑖𝑡𝜏 = 𝑝𝑖 + ∑ ℎ𝑠𝑘𝑖𝑡𝑠
𝜏−1
𝑠=𝑡 . 

Constraints (9) ensure that demand in period 𝜏 (𝜏 = 1, … , 𝑇) is satisfied. In this constraint 

the term 𝑘𝑖𝑡𝜏 captures product deterioration during both transportation lead time and storage. 

Constraints (10) relate the continuous variables 𝑞𝑖𝑡𝜏 to the binary variables 𝑦𝑖𝑡. When 𝑦𝑖𝑡 = 0, 

this implies no replenishment of inventories in period 𝑡, as a consequence  𝑞𝑖𝑡𝜏 = 0 for 𝜏 =

𝑡, … , 𝑇. Constraints (9) and (10) indicate that replenishment amounts should be larger than the 

actual demand to compensate for the loss of inventory due to deterioration. Constraints (11) 

identify the number of units of cargo required to replenish inventories from replenishment mode 

𝑖 in period t. Constraints (12) are, respectively, the binary, integrality and non-negativity 

constraints. 

 

A Multi-Objective Optimization Model for Age-Dependent Deteriorating Items 

 

Multi Objective Programming models are used when optimal decisions need to be taken in the 

presence of tradeoffs between two or more conflicting objectives. Typically, there does not exist 

a single solution that simultaneously optimizes each objective. Thus, solving a multi-objective 

optimization model means approximating or computing all or a representative set of Pareto 

optimal solutions. We describe two approaches to calculate the Pareto set of solutions for the bi-

objective optimization problems we present below. The approaches are the weighted sum and ε-

constraint methods. 

The multi-objective optimization model presented next aids with replenishment decisions 

for perishable products. The goals are to identify inventory replenishment modes and build a 

schedule which minimizes the total costs and emissions. In these models we consider only CO2 

emissions, since they account for about 90% of the total GHG emissions.  We consider products 

which have a fixed shelf life as well as products that deteriorate gradually. 

 The total cost (TC) objective is the following: 

𝑇𝐶(𝑞;  𝑦;  𝑧) = ∑ ∑[∑ 𝑐𝑖𝑡𝜏

𝑇

𝜏=𝑡

𝑇

𝑡=1

𝐼

𝑖=1

𝑞𝑖𝑡𝜏 + 𝑓𝑖𝑡𝑦𝑖𝑡 + 𝐴𝑖𝑧𝑖𝑡],                                                          (20) 

 

where, 𝑐𝑖𝑡𝜏 = 𝑝𝑖 + ∑ ℎ𝑠𝑘𝑖𝑡𝑠 𝜏−1
𝑠=𝑡 . 

 

The following is the total emissions (TE) objective function.  

𝑇𝐸(𝑞, 𝑧) =  ∑ ∑[∑ 𝑐̂𝑖𝑡𝜏

𝑇

𝜏=𝑡

𝑇

𝑡=1

𝐼

𝑖=1

𝑞𝑖𝑡𝜏 + 𝐴̂𝑖𝑡𝑧𝑖𝑡],                                                                                        (21) 

 

where, 𝑐̂𝑖𝑡𝜏 = 𝑐̂𝑖𝑡 + ∑ ℎ̂𝑠𝑘𝑖𝑡𝑠 𝜏−1
𝑠=𝑡 . 

 The following is a multi-objective, mixed integer linear programming formulation for this 

inventory replenishment problem, which we refer to as (M-P). 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑞,𝑦,𝑧(𝑇𝐶(𝑞, 𝑦, 𝑧), 𝑇𝐸(𝑞, 𝑧))  

s.t.                    (M-P)                            

     (10) − (13) 

 

A Multi-Objective Optimization Model for Perishable Items with Fixed Shelf-Life  

 

The model considers that items have a fixed shelf life which we denote by k. In this case, 

the product can stay on the shelves for at most k time periods, after which, the product is 

disposed at no cost. We consider that the planning horizon of length T is a typical one and 

repeats itself over time. All problem data are assumed cyclic with cycle length equal to T (

1 1 2 2; ;...,T Td d d d   where td is the demand in period t). As a result, the inventory pattern at 

the facilities will be cyclic as well. We model this by letting the initial inventory be equal to the 

last period inventories. The decisions to be made in each time period are which supplier to select 

and mode of transportation to use, and how much to order. 

 The total cost objective is the following: 

 

𝑇𝐶(𝑞, 𝑦, 𝑧) = ∑ ∑ [∑ (𝑐𝑖𝑡
𝑡+𝑘
𝜏=𝑡 𝑞𝑖𝑡[𝜏] + ℎ𝑡𝑞𝑖𝑡[𝜏+1]) + 𝑓𝑖𝑡𝑦𝑖𝑡 + 𝐴𝑖𝑧𝑖𝑡

𝑇
𝑡=1

𝐼
𝑖=1 ]  (22) 

The following equation represents the total emissions due to storage and transportation:  

 

𝑇𝐸(𝑞, 𝑧) = ∑ ∑ [∑ (𝑐̂𝑖𝑡
𝑡+𝑘
𝜏=𝑡 𝑞𝑖𝑡[𝜏] + ℎ̂𝑡𝑞𝑖𝑡[𝜏+1]) + 𝐴̂𝑖𝑡𝑧𝑖𝑡

𝑇
𝑡=1

𝐼
𝑖=1 ]   (23) 

The following is a mixed integer linear programming formulation for this inventory 

replenishment problem, which we refer to as (M-D). 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑞,𝑦,𝑧(𝑇𝐶(𝑞, 𝑦, 𝑧), 𝑇𝐸(𝑞, 𝑧))  

 

s.t.                 (M-D) 

∑ ∑ 𝑞𝑖𝑡𝜏

𝜏

𝑡=[𝜏−𝑘]

𝐼

𝑖=1

= 𝑑𝜏                     1 ≤ 𝜏 ≤ 𝑇                                                    (24) 

                     

∑ 𝑞𝑖𝑡[𝜏]

𝑡+𝑘

𝜏=𝑡

≤ ∑ 𝑑[𝜏]𝑦𝑖𝑡

𝑡+𝑘

𝜏=𝑡

                𝑖 = 1, … , 𝐼; 1 ≤ 𝑡 ≤ 𝑇                              (25) 

 

  ∑ 𝑞𝑖𝑡[𝜏]

𝑡+𝑘

𝜏=𝑡

−𝐶𝑖𝑧𝑖𝑡 ≤ 0                  𝑖 = 1, … , 𝐼; 1 ≤ 𝑡 ≤ 𝑇                               (26) 

 

                    𝑦𝑖𝑡 ∈ {0,1}                                  𝑖 = 1, … , 𝐼; 1 ≤ 𝑡 ≤ 𝑇                               (27) 
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                         𝑞𝑖𝑡𝜏 ≥ 0                                       𝑖 = 1, … , 𝐼; 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑇                       (28) 

                         𝑧𝑖𝑡 ∈ 𝑍+                                       𝑖 = 1, … , 𝐼; 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑇                       (29) 

 

For our convenience, in this formulation we have used the notation [t] = (t+1) mod T+1 

i.e., d[t-1]=dt-1 for t=2,..,T. This objective function minimizes costs and emissions due to inventory 

replenishment decisions. The cost function includes production, setup, inventory holding, and 

transportation costs. The emission objective includes transportation, loading/unloading and 

storage related emissions. Constraints (24) ensure that demand in the period τ (τ =1,...T)   is 

satisfied. Constraints (25) indicate that if a shipment is initiated from supplier i in period t, then, 

the amount shipped could be as big at the total demand in the following k periods. Constraints (26) 

identify the number of cargoes required to replenish inventories from supplier i in period t. (27) 

are the binary constraints. (28) are the non-negativity constraints, and (29) are the integer 

constraints.                                  
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CHAPTER 3 SOLUTION APPROACH 

 
In Chapter 2 we proposed four extensions of the ELS model which capture the impact of carbon 

regulatory mechanisms on supplier and transportation mode selection decisions in the supply 

chain. The mechanisms we investigate are the following: carbon cap, carbon tax, carbon cap-

and-trade and carbon offset. The models for carbon tax (P-Tax) and carbon cap-and-trade (P-CT) 

mechanisms are easily solvable. We present two dynamic programming algorithms which solve 

these problems in polynomial time. The models for carbon cap (P-Cap) and carbon offset (P-CO) 

mechanisms are NP-hard [16].  In our numerical analysis, we use CPLEX to solve small 

instances of these problems. The two NP-hard models imply that solution times, when the 

problems are solved using standard MILP solvers, will be impractical as the problem sizes grow. 

Both models include a single carbon cap constraint. In the absence of this constraint, the 

problems are shown to be polynomially solvable. Thus, relaxation of this constraint leads to 

easily solvable subproblems. Considering this fact, one can develop Lagrangian relaxation-based 

algorithms to generate good lower and upper bounds for these difficult problems. It is also 

possible to generate upper bounds for these models by removing the carbon cap constraint, and 

changing the objective to minimizing the total carbon emissions. However, we do not provide 

details for these algorithms since this is beyond the scope of this project, which focuses on 

demonstrating how carbon regulatory mechanisms influence costs and emissions in a biofuel 

supply chain. 

 In order to solve the multiple-objective models (M-P) and (M-D) we use the weighted 

sum and the -constraint methods described below.  

SOLVING MODELS WITH ENVIRONMENTAL OBJECTIVES 

 

In this section we provide a dynamic programming algorithm to solve model (P). The following 

proposition presents the properties of an optimal solution to model (P). This knowledge is then 

used in developing the algorithm presented below.  

Proposition 1: There exists an optimal solution to (P) such that: 

𝑞𝑖𝑡
∗ 𝑞𝑙𝑡

∗ = 0, 𝑓𝑜𝑟 𝑖, 𝑙 =  1, … , 𝐼,      𝑖 ≠ 𝑙,     𝑎𝑛𝑑,      𝑡 =  1, 2, … , 𝑇 

𝑞𝑖𝑡
∗ 𝐻𝑡−1

∗ = 0, 𝑓𝑜𝑟  𝑖 =  1, … , 𝐼,      𝑡 =  1, 2, … , 𝑇 

Proof: This indicates that an optimal solution satisfies the zero-inventory ordering property and 

uses at most one supplier for replenishment in each period. This proposition is adapted from 

[17]. Model (P) is a special case of the ELS problem with multi-mode replenishment costs and 

cargo capacity constraints discussed by Eksioglu [18]. In that study, Eksioglu proposes an 

extension of the dynamic programming algorithm of Wagner and Whitin [4] that solves the ELS 

model with multi-mode replenishment and fixed-charge cost functions, model (P). 
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Theorem 1: There exists a dynamic programming algorithm that solves problem (P) in 𝑂(𝐼𝑇2). 

Proof: Problem (P) is also a special case of the lot sizing problem with substitutions with a 

single end-product and multiple substitutable components. Based on the Zero Inventory 

Property, an optimal replenishment schedule exists such that if period t is a replenishment period, 

the corresponding replenishment quantity equals ∑ 𝑑𝜏
𝑡′−1
𝜏=𝑡  for some 𝑡 ≤ 𝑡′ ≤ 𝑇 + 1 (where 𝑡′ is 

the next replenishment period after period t, and we use the dummy period 𝑇 + 1 as a final 

replenishment period in any solution by convention). Based on the Single Source Property of (P) 

the minimum cost associated with periods 𝑡 through 𝑡′ − 1 equals 

𝑔𝑡,𝑡′ = {𝑚𝑖𝑛𝑖=1,…,𝐼(𝑓𝑖𝑡 + 𝑐𝑖𝑡𝑑𝑡,𝑡′−1)} + ∑ ℎ𝜏𝑑𝜏+1,𝑡′−1.       

𝑡′−1

𝜏=𝑡

                           (30) 

Where 𝑑𝑘,𝑗 = ∑ 𝑑𝜏
𝑗
𝜏=𝑘  and 𝑘 = 1, … , 𝑇 and 0 < 𝑘 ≤ 𝑗 ≤ 𝑇. Because any solution 

contains a sequence of setup periods, we can solve problem (P) by solving a shortest path 

problem in an acyclic network. That is, we create a graph 𝐺, where the total number of nodes in 

𝐺 is 𝑇 + 1, with one node per time period plus a dummy node (𝑇 + 1). Traversing arc (𝑡, 𝑡′) ∈ 𝐺 

represents the choice of satisfying demand for periods 𝑡, … , 𝑡′ − 1 using a replenishment in 

period 𝑡. The cost of arc (𝑡, 𝑡′) is 𝑔𝑡,𝑡′, and the supplier used for replenishment in period 𝑡 is the 

one that gives the minimum in (30). The goal is to find the shortest path from node1 to 𝑇 + 1 in 

𝐺.  

The same dynamic programming algorithm can thus be used to solve the problem of (P-

Tax) in 𝑂(𝐼𝑇2) time in the worst case. 

In an optimal solution of (P-CT), constraints (6) are necessarily binding. For any solution 

such that the left-hand side is less than the right-hand side, we can decrease the objective 

(assuming 𝑝 >  0) by increasing the value of one or more 𝑒𝑡
− variables. We can thus re-write 

constraint (6) as follows: 

 

∑ ∑(𝑓𝑖𝑦𝑖𝑡 + 𝑐̂𝑖𝑡𝑞𝑖𝑡 + ℎ̂𝑡𝐻𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

− 𝐶 = ∑(𝑒𝑡
+ − 𝑒𝑡

−)

𝑇

𝑡=1

                                          (31) 

We can then substitute ∑ (𝑒𝑡
+ − 𝑒𝑡

−)𝑇
𝑡=1  out of the objective function of (P-CT) as follows:  

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 ∑ ∑(𝑓𝑖𝑡𝑦𝑖𝑡 + 𝑐𝑖𝑡𝑞𝑖𝑡 + ℎ𝑡𝐻𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

+ 𝑝 ∑ ∑(𝑓𝑖𝑦𝑖𝑡 + 𝑐̂𝑖𝑡𝑞𝑖𝑡 + ℎ̂𝑡𝐻𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

− 𝐶     (32) 

Next, we can re-arrange the terms in the objective function to obtain: 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 ∑ ∑(𝑓𝑖𝑡𝑦𝑖𝑡 + 𝑐̃𝑖𝑡𝑞𝑖𝑡 + ℎ̃𝑡𝐻𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

− 𝑝𝐶                                                               (33) 
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Where 𝑓𝑖𝑡 = 𝑓𝑖𝑡 + 𝑝𝑓𝒊, 𝑐̃𝑖𝑡 = 𝑐𝑖𝑡 + 𝑝𝑐̂𝑖𝑡, and ℎ̃𝑡 = ℎ𝑡 + 𝑝ℎ̂𝑡 for all 𝑖 = 1, … , 𝐼 and 𝑡 = 1, … , 𝑇. 

Note that in this objective function, 𝑝𝐶 is a constant, and so we can remove it from the 

objective without loss of optimality. After this transformation, the feasible regions of (P) and (P-

CT) are identical, as is the mathematical structure of the objective function in both cases. 

Therefore, we can use the dynamic programming approach detailed above to solve this problem 

in 𝑂(𝐼𝑇2) time. 

SOLVING COST MINIZATION MODELS FOR PERISHABLE ITEMS 

 

In this section we present approaches which solve the cost minimization, inventory 

replenishment models with multiple setup cost structures. 

An optimal solution to the inventory replenishment problem with multiple setups cost 

structure - described in here using model (Q) - does not satisfy the Zero Inventory Order 

property. This is due to the fact that the items considered do deteriorate with time. Therefore, in 

an optimal solution to this problem, demand in a time period can be satisfied through the 

inventory from a previous period and an FTL replenishment during the current time period. 

However, a few feasible solutions - which may not necessary be the optimal solution -to the 

problem, do satisfy the Zero Inventory Order policy. We rely on this in order to develop a 

dynamic programming algorithm which assumes that the Zero Inventory Order policy holds. For 

this reason, the solutions found when using this algorithm, are not necessary the optimal 

solutions to the problem modeled using (Q). We also develop a second dynamic programming 

algorithm that takes into account the multiple setups cost structure of the cost function. This 

algorithm is updated from [19] to consider age-dependent perishable inventories. Through 

extended numerical analysis we calculate the error gap that exists between the dynamic 

programming algorithm and the optimal solution generated using CPLEX. The maximum error 

gap observed was 0.1%. The maximum running time for the dynamic programming algorithm 

was 0.12 CPU seconds, and for CPLEX 596 CPU seconds. 

 

A Dynamic Programming Algorithm for Zero Inventory Order Policy 

 

Based on the Zero Inventory Order Policy, an order is placed at time period 𝑡 only if 𝐼𝑡−1 = 0. 

Also, demand of period t cannot be satisfied from both replenishment in period 𝑡 and inventory 

from period 𝑡 − 1. Consider that a replenishment schedule exists which, such that: period 𝑡 is a 

replenishment period and the corresponding replenishment quantity equals 

𝑏𝑡𝜏 =  ∑ (
𝑏𝛾

𝑘𝑡𝛾
⁄ )𝜏−1

𝛾=𝑡  for some 𝑡 ≤ 𝜏 ≤ 𝑇 + 1 where 1 ≤  𝑡 ≤  𝑇, and 𝜏 represents the next 

replenishment period after period 𝑡. Let 𝑇 +  1 be a dummy period with demand equal to zero.   

The number of cargo containers for the replenishment in period 𝑡 equals 𝑀𝑡𝜏 =  ⌈
𝑏𝑡𝜏

𝐶⁄ ⌉. The 

cost associated with satisfying demand from period 𝑡 through 𝜏 − 1 is denoted by 𝑓(𝑡, 𝜏 ) and 

equals: 

𝑓(𝑡, 𝜏 ) = 𝑠 = ∑ 𝐶𝑡𝛾
𝑏𝑠

𝑘𝑡𝛾
⁄ + 𝐴𝑀𝑡𝜏

𝜏−1

𝛾=𝑡
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We created an acyclic network where each 𝑓(𝑡, 𝜏 ) represents an arc cost on the graph and we 

solved the shortest path problem to find the optimal solution. We create graph G - as shown in 

Figure 3-1 – which has T +1 nodes are; one for each of the T time periods in addition to the 

dummy node T +1. Each arc (𝑡, 𝜏 ) in G represents a shipment that satisfies demands from t 

through 𝜏 − 1. The cost of each arc (𝑡, 𝜏 )is equal to 𝑓(𝑡, 𝜏). The dynamic programming 

algorithm finds the shortest path from node 1 to T + 1 in graph G. 

 

Figure 3-1- Network representation for dynamic programming algorithm (T = 4). 
 

A Dynamic Programming Algorithm for Multiple Setups Cost Structure 

 

Hwang [19] proposes a dynamic programming algorithm to find the optimal solution for the 

problem with a single replenishment mode, stationary cargo costs and a no speculative cost 

structure. We proposed a dynamic programming based heuristic by modifying this algorithm to 

consider age-dependent perishable inventories. We again assume 𝑡 −  1 and𝜏 −  1 (1 ≤ 𝑡 < 𝜏 ≤
 𝑇 +  1) be two consecutive regeneration points. Let the (𝑡, 𝜏 ) problem be finding the minimum 

cost (denoted by 𝑓(𝑡, 𝜏)) of satisfying total demand from period 𝑡 through 𝜏 − 1. Once all 

𝑓(𝑡, 𝜏) values are determined, the shortest path on Figure 3-1 finds the minimum solution to the 

model. 

Finding 𝑓(𝑡, 𝜏 ) values are more challenging in this case, as there may be FTL shipments 

within the (𝑡, 𝜏 ) problem.  

Let 𝑔(𝑚, 𝜏 ) be the minimum cost of (𝑚, 𝜏) problem using only FTL shipments. 

Thus, 𝑓(𝑡, 𝜏 ) is calculated as a function of 𝑔(𝑚, 𝜏 ). It calculates the minimum cost of satisfying 

the demand in (𝑡, 𝜏 ) problem with a possible LTL shipment only in period t and FTL shipments 

in the remaining periods. The procedure uses a backward dynamic programming approach. 

 

SOLVING MULTI OBJECTIVE MODELS FOR PERISHABLE ITEMS 

 

The two methods used to solve the bi-objective optimization models described above are the 

weighted-sum and ε-constraint methods. The weighted sum method is a traditional, popular 

method which transforms a bi-objective problem into a series of single-objective problems. This 

method generates a number of single-objective problems by changing the weights assigned to 

each objective function. The solutions to these problems approximate the Pareto frontier for the 
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bi-objective problem. The ε-constraint method minimizes one individual objective function with 

an upper level constraint imposed on the other objective function. The Pareto frontier is 

approximated by solving this single-objective problem for different values of the upper bound 

imposed on the other objective function. 

 
A weighted sum method: The weighted sum method minimizes a weighted sum of the two 

objectives 𝝀𝟏𝑻𝑪 + 𝝀𝟐𝑻𝑬. Typically, the values of 𝝀𝟏 and 𝝀𝟐 are selected such that 𝝀𝟏 +  𝝀𝟐 = 1 

and 𝝀𝟏, 𝝀𝟐 ≥ 𝟎. The Pareto frontier is then created by solving the single-objective problem for 

different values of 𝝀𝟏 and 𝝀𝟐. The following is the objective function of the single-optimization 

problem under the weighted sum approach. 

 

Deteriorating items:  
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑞,𝑦,𝑧𝜆1𝑇𝐶(𝑞, 𝑦, 𝑧) + 𝜆2𝑇𝐸(𝑞, 𝑧)  

 

    Subject to:   (10) – (13) 

𝜆1, 𝜆2 ≥ 0 
 

Fixed-shelf life items: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑞,𝑦,𝑧𝜆1𝑇𝐶(𝑞, 𝑦, 𝑧) + 𝜆2𝑇𝐸(𝑞, 𝑧)  
 

    Subject to:   (14) – (17) 

𝜆1, 𝜆2 ≥ 0 
 

In this study, the sum of 𝜆1 + 𝜆2is not equal to 1. We set the value of 𝜆1= 1 and change 

the value of 𝜆2. One can think of the values of 𝜆2 as the cost of per unit of CO2 emissions. In this 

case, the objective function calculates the total costs due to replenishment and emissions in the 

supply chain. This approach helps us test for changes in the total costs by increasing in the 

relative importance of 𝜆2 to 𝜆1. 𝜆2 could as well be considered as the tax a facility would pay per 

unit of emission under a carbon tax mechanism. Carbon regulatory mechanisms, such as carbon 

cap, carbon tax, carbon cap-and-trade, and carbon offset do not exist at the federal level. 

However, a few actions have already been enacted. For example, policies articulated by 

executive order in California set statewide GHG emission reduction targets for 2010, 2020, and 

2050. 

 

An 𝜺 -constraint method: The ε-constraint method approximates the set of Pareto solutions by 

solving a series of instances of the following single-objective problem for different values of the 

parameter ε. 

 

Deteriorating items:  
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑞,𝑦,𝑧 𝑇𝐶(𝑞, 𝑦, 𝑧)   

 

     Subject to:   (14) – (17) 

𝑇𝐸(𝑞, 𝑧) ≤  𝜀  
𝜀 ≤ 𝜀 ≤  𝜀  
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Fixed-shelf life items: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑞,𝑦,𝑧 𝑇𝐶(𝑞, 𝑦, 𝑧)   
 

     Subject to:   (10) – (13) 

𝑇𝐸(𝑞, 𝑧) ≤  𝜀  
𝜀 ≤ 𝜀 ≤  𝜀  

 

These models identify an inventory replenishment schedule which minimizes total costs, 

subject to, carbon emission constraints. One can think of ε as an emission cap imposed on the 

facility under the scenario that a carbon cap policy is used. 

The lower and upper limits within which the ε parameter must fall in (𝜀 ≤ 𝜀 ≤  𝜀) are 

obtained from the optimization of each separate objective function as follows: 

 

Deteriorating items:  
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑞,𝑦,𝑧 𝑇𝐸(𝑞, 𝑧)   

 

     Subject to:   (14) – (17) 

 

Fixed-shelf life items: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑞,𝑦,𝑧 𝑇𝐸(𝑞, 𝑧)   
 

     Subject to:   (10) – (13) 

 

Let (q, z) be the solution to this problem. Then, 𝜀 = TE (q, z) represents the minimum level of 

carbon emissions required to meet demand, without any considerations of costs. 

 

Deteriorating items:  
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑞,𝑦,𝑧 𝑇𝐶(𝑞, 𝑦, 𝑧)   

 

     Subject to:   (14) – (17) 

 

Fixed-shelf life items: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑞,𝑦,𝑧 𝑇𝐶(𝑞, 𝑦, 𝑧)   
 

     Subject to:   (10) – (13) 

 

 

Let (q, y, z), be a solution to these models. Then, 𝜀  = TE (q, z) represents the emission levels for 

the cost-optimal solution to the problem.  
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CHAPTER 4 FINDINGS AND APPLICATIONS 
 

DATA GENERATION 

 

In the following section we summarize the data we generated in order to test our algorithms and 

validate our models. We start by describing the dataset used to test models with environmental 

objectives and non-perishable items. The results of these experiments are summarized in Figures 

4.1 to 4.3.  

The product on which we focus on in this analysis is forest residue. Due to its physical 

characteristics of bulkiness, barge, rail, and truck may be used for shipping. The choice of the 

transportation mode depends on the travel distance and the associated level of carbon emissions. 

Forest residues are raw materials that can be used by biorefineries to produce cellulosic ethanol. 

We assume that such a biorefinery can meet its demand for forest residues using suppliers 

located nearby, or other suppliers around the nation. Canada is rich in forest, and therefore 

Canadian companies can be potential suppliers of forest residues. These suppliers may use rail or 

barge to ship their products to the US. Table 4.1 summarizes some of the parameters our study 

used to generate data related to suppliers. We use uniform distributions to randomly generate 

transportation distances and variable replenishment costs. The selection of purchasing costs (at 

the roadside) is motivated by the following fact. The US Department of Energy (US DOE) 

estimates that for a price ranging from $20 to $80 per dry ton at the roadside, quantities of forest 

biomass currently available for production of biofuels would vary (at the national level) from 33 

to 119 million dry tons (MDT) annually. However, for the biofuels industry to thrive, high levels 

of biomass should be available at lower prices. The US DOE is investigating a number of 

technology improvements, such as pre-processing of biomass that would reduce these prices in 

the near future [16]. The data in the table indicates a decrease in purchasing costs as we consider 

suppliers located further away. This is mainly because the pool of available suppliers increases 

as we consider suppliers located further away. A larger supplier pool provides the facility with 

more competitive prices.  

 

Table 4.1 Input data for forest residues 

 
Distance 

(in miles) 

Number of 

Suppliers 

Purchasing Costs 

(in $) 

U[5-25] 5 U[40-42] 

U[25-100] 5 U[38-40] 

U[100-500] 5 U[36-38] 

U[500-1,000] 15 U[34-36] 

U[1,000-1,500] 15 U[30-35] 

 

Table 4.2 presents the scheme we use to assign transportation modes to suppliers. We 

assume that suppliers located within 25 miles of the facility will use truck shipments only. We 

assume that 50% of the suppliers located between 25 and 100 miles have access only to truck 
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shipments, and the remaining 50% have access to both truck and rail. We assume that 50% of the 

suppliers located between 100 and 500 miles have access to truck and rail, and 50% have access 

to truck, rail and barge. As distance increases, the number of suppliers that have access to all 

modes of transportation increases. We use this scheme to also capture the reality that some 

suppliers may not have access to barge or rail due to the limited rail and barge infrastructure. 

 

Table 4.2 Transportation mode assignment scheme 

 
Distance 

(in miles) 

Truck 

(in %) 

Truck & Rail 

(in %) 

Truck & Rail & 

Barge (in %) 

U[5-25] 100 0 0 

U[25-100] 50 50 0 

U[100-500] 0 50 50 

U[500-1,000] 0 30 70 

U[1,000-1,500] 0 0 100 

 

Table 4.3 presents the scheme we use to generate variable costs for truck transportation. 

Variable transportation costs depend on the distances traveled and the quantities shipped; 

therefore, the unit costs presented in the table are charged per mile and per ton traveled. The 

intervals that we use to calculate costs were generated by analyzing data made available by the 

Agricultural Marketing Service (AMS) of the US Department of Agriculture. The AMS 

publishes quarterly reports which present truck transportation trends for agricultural products in 

different regions of the US. The data in the table presents the average national rates charged 

during the last six quarters, beginning in January 2011. 

 

Table 4.3 Variable cost for truck transportation 

 
Distance 

(in miles) 

Unit cost 

($/(mile*ton)) 

 [0-25] U[0.0801 - 0.2401] 

 [25-100] U[0.0457 - 0.1857] 

> 100 U[0.0346 - 0.1746] 

 

We randomly generated the fixed cost and variable costs for rail shipments. To identify 

these costs, we investigated the web-sites of Class I railway companies, such as CSX 

Transportation and BNSF Railway. These companies provide quotes (in $ per rail car) for 

different products and different origin-destination pairs. We used the data provided for forest 

products to derive regression equations. The independent variable in these equations is the 

distance traveled, and the dependent variable is the price charged per rail car. The value of R2 for 

these equations was 70% and the p-values of all independent variables were smaller than 0.1%. 

These values indicate that transportation distance has a great impact on the price charged. Based 

on these results, we decided to generate the fixed transportation cost using the following uniform 

distribution U[$2, 500, $3,500] (in$/shipment), and the unit variable cost using the following 
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uniform distribution U[$0.008, $0.2] (in $ /(mile*ton)). We also use data from AMS publications 

to derive transportation costs for barge. Based on this data, we generated the variable 

transportation cost using the following uniform distribution U[$0.100, $0.112] (in $ /(mile*ton)). 

We also consider the in-transit inventory costs. This is very important as the travel time 

differs substantially in different transportation modes. To calculate these costs, we first identify 

the travel time (in number of days) per shipment using information about travel distance and the 

average speed of the transportation vehicle. We assume the average speed for a truck is 65 mph, 

for rail 18 mph, and for barge 6.25 mph; vehicles operate for a total of 16 hours per day, and 

vehicles operate for 350 days per year. The annual unit inventory holding cost (in $ /ton) is set 

equal to 20% of the unit purchase cost. We then use trip duration and unit inventory holding 

costs to calculate the inventory holding costs per ton shipped. 

The total unit replenishment cost for supplier i, ci (in $/ton), is the sum of the unit 

purchasing, transportation and in-transit inventory holding costs. The unit purchasing cost for 

supplier i is charged per ton of product replenished. Since variable transportation costs are 

provided in $/(mile*ton), we multiply a supplier’s transportation distance by the variable 

transportation cost in order to calculate a variable transportation cost per ton shipped from 

supplier i. We consider a time horizon of T = 12 months, with t = 1,…,12. We assume that 

demand for forest residues in each month is uniformly distributed between 80,000 and 100,000 

tons. The conversion rate is estimated to be 60 gallons of ethanol per ton of residues [17]. Thus, 

the production capacity of the facility ranges between 57.6 and 72 million gallons of year 

(MGY).  

Let us now discuss the approach we used to collect emissions related data. In order to 

calculate emissions from material handling, we assume that loading and unloading of trucks, rail 

cars and barge are completed using loaders. The maximum allowable load for trucks (30 tons) is 

much smaller than rail (100 tons) or barge (1,500 tons) [18]. For a 30 ton truck, the loading time 

of forest residue bundles takes about 45 to 50 minutes, and unloading takes about 50 to 55 

minutes [84]. We assume that a loader with horsepower of 140 and fuel consumption of 0.0217 

gals/(hp*hr) is used [19]. It is estimated that the consumption of one gallon of diesel fuel emits 9; 

922 grams of CO2 [20]. We assume that all modes of transportation use the same loading and 

unloading equipment, and therefore, we calculate the fixed emissions in tons of CO2 per ton 

loaded and unloaded as follows: (duration of loading and unloading activities) * 0,0217 * 140 * 

9,922 * 10-6/30. Loading and unloading times are given in hours. 

We also consider emissions due to storage of forest residues. A study by Wihersaari [21] 

indicates that greenhouse gas emissions from storage can be much greater than emissions from 

the transportation of forest residues. The study indicates that “Greenhouse gas emissions are 

probably methane, when the temperature in the fuel stack is above the ambient temperature, and 

nitrous oxide, when the temperature is falling and the decaying process is slowing down.” 

Following this study, we consider emissions due to storage and inventory to be uniformly 

distributed between 5 and 10 kg per ton of forest residues held in inventory every month. 
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We use the method developed by Hoen et al. [22] to calculate emissions from 

transportation. Hoen et al. [22] provide the following equations to calculate emissions for 

transportation via truck, rail and barge. In these equations, transportation distance D is in 

kilometers, the load weight w is in kilograms, v denotes volume, and p denotes density. 

 

etruck = v * max(25, p) * (0.0002089 + 0.00003143*D) 

erail = 2.223 * 10-5 * D * w 

ebarge = 1.3904 * 10-5* D * w 

 

To generate the results in Figures 4.4 to 4.9 we consider the following example. Suppose 

that a retailer replenishes its inventories for a perishable product using 3 suppliers. Supplier 1 is a 

local supplier who uses a less-than-truckload (LTL) service provider. Supplier 2 is a wholesaler 

who provides the product at a discount price. This supplier sends shipments using dedicated, 

non-refrigerated trucks. Supplier 3 is also a wholesaler who uses dedicated, refrigerated trucks 

for delivery. Each supplier has its own lead time as shown in Table 4.1. We assume that products 

do not perish during delivery time if shipped by refrigerated trucks. Replenishment costs from 

supplier 3 are higher than supplier 2 due to using a refrigerated truck, but smaller than the local 

supplier. Order set-up and processing costs are the same for each supplier. Cargo container costs, 

which represent loading and unloading costs, are zero for the LTL service provider since he 

simply charges a fixed dollar amount per ton of product shipped. The dedicated trucks have a 

fixed capacity of 25 tons. Unit emissions are higher for shipments that use refrigerated trucks 

since additional energy is consumed for refrigeration. We consider a time horizon T = 10 days, 

and a time period equal to 1 day. We assume that inventory holding costs equal $1/(ton*day) and 

inventory holding emissions are 0.5 kg/(ton*day). Inventory holding emissions are due to using 

air conditioning in the storage area. We test the performance of this retailer considering different 

daily demands which vary from low demand levels (bt  [2;4] tons), to medium (bt  [4;6] tons) 

and high (bt  [14;16] tons. 

Table 4.4 Problem parameters  

 

Supplier 

 

Replenishment 

mode 

Replenishment 

unit cost  

(p) 

Fixed 

order 

cost 

(s) 

Fixed cargo 

Cost 

 (A) 

Capacity of 

mode  

(W) 

Fixed 

emissions 

(Â) 

Variable 

emissions 

(ĉ) 

Lead 

time 

(L) 

1 LTL 15 50 0  30 1 1 

2 

Non 

refrigerated 

FTL 

10 50 U[45,55] 25 50 1 2 

3 
Refrigerated 

FTL 
12 50 U[45,55] 25 50 1.5 3 
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The results presented in Figures 4.2 to 4.4 correspond to a product which deteriorates 

with time. In order to generate these results, we assume daily deterioration rates vary from 0 to 

19%. Since deterioration increases with a product’s age, we consider the increment to be 

constant at 1% daily. Deterioration rate during refrigeration is assumed zero. To generate these 

results we used the  -constraint method and set the value of  equal to 325 kg. This is the same 

as solving the problem by considering the cost objective only. The purpose of these experiments 

is to observe the impact of perishability on replenishment decisions.   

The results presented in Figures 4.5 to 4.7 correspond to products which have a fixed shelf 

life of k periods. The results presented in these graphs are obtained by solving the problem using 

the weighted sum method. In these experiments we use λ1 = 1 and λ2 = 0.7. The sum of λ1 + λ2 > 

1.   

Since a number of parameters used in these problems are generated randomly, for each 

problem solved we generate 10 instances, and present here the average of the results over all 

instances. The models are solved using the ILOG/CPLEX commercial solver.   

 

FINDINGS AND APPLICATIONS 

 

Models with Environmental Objectives  

 

We investigated the use of the models developed to gain insights on the impacts the 

potential carbon regulatory policies, such as carbon cap and carbon tax have on transportation 

mode selection decisions, costs, and emissions in the supply chain. More specifically, the results 

from our numerical analysis help us to (a) make important observations with respect to the 

tradeoffs that exist between costs and emissions; (b) analyze the implications that carbon 

regulatory mechanisms have on supply chain-related costs and performance; and (c) identify the 

mechanism that has the greatest impact in GHG emission reductions on the supply chain. 

  
                          (a)                                                 (b) 

(a) Carbon cap mechanism  (b) Carbon tax mechanism  
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Figure 4-1 Transportation mode utilization. 

The graphs in Figure 4-1 present the percentage usage of each mode of transportation for 

the delivery of forest residues under carbon cap and carbon cap and trade mechanisms. Under a 

carbon cap policy, decreasing the carbon cap level leads to an increase in the use of truck 

shipments from local suppliers to replenish inventories. As the carbon cap increases, other modes 

of transportation are explored. Under a carbon tax policy, similar behavior is observed. However, 

the shapes of the curves are not continuous, indicating that companies are less responsive to a 

carbon tax than a carbon cap. Figures 4-1 c and d are based on carbon market and offset price of 

20 to 40 $.    

A carbon cap and trade mechanism is more efficient than a carbon offset mechanism. The 

supply chain behaves similarly under the two mechanisms when the carbon cap is tight. 

However, the supply chain behaves differently under the two mechanisms when the cap is loose. 

Under loose carbon caps, in a cap and trade mechanism, the unused carbon units can be sold in 

the market at a profit. This is not the case under a carbon offset mechanism, which punishes 

companies for going over the cap, but does not reward for emissions below the cap. The shapes 

of the graphs in Figure 4-2 and Figure 4-3 support this observation. 

 

4-2 Carbon Cap and Trade Mechanism - Total Emissions. 
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4-3 Carbon Offset Mechanism - Total Emissions. 

 

Replenishment Decisions for Age-Dependent Perishable Items  

  

Using the models presented above we obtained insights about the relationship that exists 

between costs and emissions, transportation and inventory costs, and transportation mode and 

inventory holding costs for deteriorating items. More specifically, based on the results from our 

numerical analysis, we made the following observations. 

a) An increasing deterioration rate or short shelf life impacts supplier selection decisions in the 

supply chain. Suppliers that have shorter lead times are preferred since shorter lead times for 

perishable products imply longer shelf life. (See graph in Figure 4-4; Suppliers 1 and 2 are 

local and have zero lead time, while Supplier 3 is a far away wholesaler.) 

b) An increasing deterioration rate increases inventory replenishment costs, as suppliers that 

have shorter lead times (such as local suppliers) do not necessarily provide the least 

expensive products (see Figure 4-5-a). 

c) As the deterioration rate increases and the shelf life of a product decreases, inventories are 

replenished in smaller quantities. This increases the frequency of shipments and 

consequently, the fixed order replenishment costs (see Figure 4-5-b). 

d) An increasing deterioration rate increases emissions due to using refrigerated trucks, and 

increasing the frequency of shipments (see Figure 4-6). 

e) Decreasing emissions in the supply chain comes at a cost. There are a number of operational 

changes (such as supplier selection, or transportation mode selection) which result in great 

emissions reductions and result in relatively small increases in costs (see Figure 4-6). 

 

 
Figure 4-4 Replenishment mode selection for deteriorating products when demand is low. 
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Figure 4-5 Total Cost Distribution. 

 

 
Figure 4-6 Total Emissions versus 𝝀𝟐 (multiplier we use for emissions in the objective 

function when implementing the weighted sum method.). 

 

Replenishment Decisions for Perishable Items with Fixed Shelf-Life  

 

The following are some important observations about products with a fixed shelf life. 
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a) As the length of the shelf life of a product increases, the use of full-truckload shipments 

increases. As the value of k increases, the facility has the flexibility to use local suppliers as 

needed, or use discounted full-truckload shipments (see Figure 4-7). 

b) As the product shelf life increases, purchasing costs decrease. Long product shelf life 

provides more flexibility for inventory replenishment decisions. For example, as shelf life 

increases, the plant has the option to order not only from local suppliers, but also from 

suppliers located further away. As a result, purchasing costs decrease due to increasing the 

pool of suppliers (see Figure 4-8-a). 

c) Order costs decrease when k increases. (See Figure 4-8-b) This is due to the fact that, as 

product shelf life increases, orders are placed less frequently. Each order is of a larger size, 

which justifies the use of full truckload shipments. Thus, cargo container costs increase with 

k (see Figure 4-8-c). 

d) Inventory holding costs increase due to the increase in product shelf life and, consequently, 

due to the increase in order size (see Figure 4-8-d). 

e) For products with a very short shelf life (k = 1), increasing the value of λ2 does not impact 

total emissions. When product shelf life is short, the facility has less flexibility in 

replenishment decisions. In our example, the facility replenishes its inventories using the 

local supplier. As the value of k increases, the facility has more options to explore. In this 

case, the multiplier λ2 plays a greater role in reducing emissions in the supply chain. 

Increasing the value of λ2 impacts replenishment decisions and reduces emissions. One can 

think of λ2 as a penalty multiplier for emissions in the objective function, or as an emissions 

tax, which is charged per unit of CO2 generated in the supply chain. Thus, as the value of this 

tax increases, the amount of CO2 emitted decreases (see Figure 4-9)       

 

 
Figure 4-7 Replenishment mode selection. 
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(a)                                                 (b) 

 

 

 

 

(c)                                                                                        (d) 

 

Figure 4-8 Replenishment-related costs versus product shelf life. 

 

 
 

 

Figure 4-9 Total emissions versus λ2. 
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CHAPTER 5 CONCLUSIONS AND SUGGESTED RESEARCH 
 

 

CONCLUSIONS 

 

This research studies extensions of the ELS models to capture the environmental impacts 

of replenishment decisions in the supply chain. These models are further extended to consider 

perishable products with either a fixed shelf-life or products which deteriorate with time. We 

also investigate the impact of multiple replenishment modes to costs and emissions in the supply 

chain of perishable products. 

Replenishment decisions for perishable products are challenging due to shorter lifetime in 

the shelves. Replenishment decisions for perishable products are subject to a variety of tradeoffs. 

We investigate the trade-offs that exist between transportation costs and remaining shelf life of 

products, transportation and inventory costs, and total costs and CO2 emissions resulting from 

transportation and inventory holding. The objective of the models proposed is to satisfy the 

demand for perishable products over the time horizon using different replenishment modes such 

that the total costs and total emissions of the supply chain are minimized. Experimental results 

provide some interesting insights about the impacts of carbon regulatory mechanisms on supplier 

and transportation mode selection decisions in the supply chain. 

We provide a number of mathematical models and solve these models using algorithms 

which were developed based on the knowledge we created about the properties of optimal 

solutions to these problems. For example, we developed dynamic programming algorithms to 

solve some special cases of the cost-minimization models for products which deteriorate with 

time. One of the algorithms solves the problem assuming that the Zero Inventory Order policy 

holds. The other algorithm solves the problem with a single replenishment mode, stationary 

cargo costs and a no speculative cost structure.  The bi-objective optimization models are solved 

using the ε-constraint and the weighted sum methods.   

  The following are some important observations for replenishment decisions for perishable 

products: deterioration rate and product shelf life impacts the supplier selection decisions in the 

supply chain, the frequency of shipments, emissions and costs in the supply chain. 

 

SUGGESTED RESEARCH 

 

A possible extension to this research is to consider the joint replenishment decisions of 

different products types which use the same replenishment modes. In this case, replenishment 

decisions should address additional tradeoffs that exist between replenishment costs, required 

delivery time, shelf life of multiple products, and lead time of each replenishment mode. 

Consolidating replenishment decisions of different products may lead to fewer order setups, but 

may increase total inventory holding costs. Thus, this problem requires an extended analysis to 

understand the impact of joint replenishment decisions on the total costs and emissions. 
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Another extension of these models is to capture the impact that disposing of perishable 

products has on costs and emissions. Perishable products go to waste due to expiration date or 

deterioration. While some customers are willing to purchase products of high quality at a higher 

price, others, may be willing to purchase a product of lower quality when supplied at a low price. 

The lower quality is due to keeping a perishable product on the shelves for some time.  

Therefore, one could develop models to capture the tradeoffs that exist between price and quality 

of perishable products. 
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