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Executive Summary 
 

Vehicle counting and classification data plays a vital role in designing roadways, determining 
pavement characteristics, eliminating traffic jams, and improving road safety. To realize the 
greatest benefit of such information, verifying data accuracy reported by statewide automatic 
vehicle classifier (AVC) is of the utmost importance.  Currently, PEEK Traffic Automatic Data 
Recorders (ADR 2000) are used to count and classify traveling vehicles; however, this system is 
not completely accurate. Classification inaccuracies are the result of hardware and/or sensor 
malfunction, as well as classification schemes or algorithms implemented in the device. This 
study focuses on inaccuracies resulting from classification algorithm error—not hardware-related 
issues. 

In general, vehicles are classified based on number of axles and wheelbase axle spacing. 
ODOT’s ADR equipment is currently based on the 18-year-old ‘FHWA-USA’ classification 
algorithm. An updated classification scheme is necessary to accurately represent the design and 
wheelbase axle spacing of late-model vehicles currently traveling on Oklahoma highways. 
Adopting such a scheme will reduce vehicle misclassification. 

Axle-spacing overlap among vehicle classes and vehicles pulling one-, two-, or three-axle trailers 
are cause for substantial errors in axle-based AVC classifiers, especially for particular vehicle 
classes, as summarized in Table 21. A novel method for an improved classification algorithm 
was developed during this study. A sample of roughly 20,000 vehicles was included in the 
analysis. Accurate vehicle classification was manually determined using a ground-truth system 
with continuous video recording equipment. Vehicle axle spacings were obtained from currently 
deployed PEEK Traffic ADR 2000 equipment using per vehicle recording (PVR) configuration. 
Reported axle spacing was compared with vehicle manufacturer blueprint spacing and proven 
within 1% accuracy. Given these results, axle spacings measured and reported by ADR were 
used throughout this study. 

Data collection, including video recordings and ADR axle spacings, were performed at many 
ODOT AVC sites located on urban and rural roadways to capture various traffic characteristics. 
During the first project year, one-minute binned ADR data was collected and analyzed. During 
the second project year, PVR data was collected and analyzed after PEEK Traffic agreed to 
provide the OU team with programming software enabling ADR to collect per vehicle 
information. During data collection and analysis, the research team developed and continuously 
evaluated/improved a new “OU-FHWA13” classification scheme. Notably, the new scheme was 
evaluated in sequence with the original scheme and not in parallel to it, meaning the ADR was 
configured to collect one hour of data using the original scheme and then another hour of data 
collection (in the same or different day) using the newly developed OU scheme. Hence, the 
number, type, and class of vehicles collected during the first hour did not necessarily match data 
collected in a subsequent hour. Although this had no effect on classification accuracy, the 
matching number of vehicles required to conduct a normalized comparison was lacking. 
Simultaneous recording of traffic using both the original and the OU scheme requires an AVC 
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site with two sets of sensors and controllers, which ODOT does not have. Hence, the OU scheme 
evaluation was always in sequence.  

Video recordings and measured axle spacing were processed to develop 13 good-fit Gaussian 
distributions—one for each FHWA class. Hence, 13 Gaussian distributions were used to model 
wheelbase axle spacing for 13 FHWA vehicle classes. An optimization algorithm was 
implemented to determine axle spacing thresholds to minimize vehicle misclassification and 
improve overall system accuracy. Axle spacing thresholds were subsequently implemented as 
OU-FHWA13 scheme in the ADR equipment, and then experimentally evaluated for accuracy. 
Axle-spacing distribution accuracy depends on the number of vehicles captured per class during 
data collection. The higher the vehicle-count in the sample pool, the better-fit the Gaussian 
distribution. Low vehicle counts were recorded for class 7 (42 vehicles), 11 (47 vehicles), and 
class 12 (64 vehicles). In spite of this, the research team developed new thresholds and decision 
tree entries with a demonstrated improvement during scheme evaluation.   

In this study, two key performance indicators were employed: mis-detection and false–detection. 
Mis-detection occurs when ADR doesn’t show a class vehicle recorded by ground-truth; false-
detection occurs when ADR wrongly classifies a class vehicle.  Test results from OU-FHWA13 
demonstrated substantial classification improvement for all classes, especially those with 
significant error as classes 8, 5, 6, 3 and 2 as well as those with fewer errors such as 7 and 10. 
Results confirmed nearly 45% decrease in false-detection for class 8 vehicles; 21% and 13% 
decrease in false- and mis-detection, respectively, for class 5. Evaluation results are detailed in 
Table 65 and 66. Classification improvement for classes 7 and 10 were achieved by adding 
entries missing in ODOT’s current FHWA-USA algorithm. A 4% reduction in consolidated 
errors grouped by type was recorded for Single-Unit Trucks (SUT) (classes 5 to 7). A 50% 
reduction in error was achieved for passenger vehicle (PV) (classes 1 to 4). A 15% reduction in 
consolidated system error was achieved for Multi-Unit Trucks (MUTs) (classes 8 to 13), 
primarily due to accuracy improvements for class 8.   

In summary, this report details the following: 1) Comprehensive evaluation of system 
classification accuracy for ODOT AVC sites; 2) Newly designed tools for acquiring and 
processing ground truth data for accuracy studies; 3) Recording and analyzing per vehicle data; 
4) Populating a database with vehicle axle-spacing ground truth data; 5) Minimizing system 
errors and optimizing classification accuracy using a class-based database of probability density 
functions (PDFs); and 6) Improved classification algorithm for ODOT AVC stations. 
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1 Chapter I: Introduction and Background 

1.1 Introduction 

The Federal Highway Administration (FHWA) and Oklahoma Department of Transportation 
(ODOT) must keep apprised of continual improvements in vehicle classification systems. 
Improved accuracy is essential for suitable roadway design and to ensure adequate capacity, 
surface durability, and commuter safety for motorists.  

This report details a study of vehicle classification accuracy of 13 FHWA classes measured at 
existing ODOT weigh-in-motion (WIM), automatic vehicle classifier (AVC), and short-term 
classification sites. A ground truth system utilizing on-site raw video recordings was developed 
and utilized for this study. Project efforts resulted in an improved classification algorithm that 
reduces vehicle classification errors at statewide ODOT AVC sites.  

1.2 Existing knowledge 

The earliest attempt to investigate the accuracy of Automatic Vehicle Classification (AVC) 
devices was reported in 1993 in the state of Georgia [1]. Final results of the study were published 
in 1995 [2]. Two cameras (one to monitor vehicles changing lanes and the other to record the 
individual vehicles that passed the test site) were used. A Computer Vehicle Classification and 
Reduction System (CVCRS) was used to consolidate video data into tables of time-stamped 
vehicle records, excluding data for vehicles changing lanes. The CVCRS operated by manually 
running and pausing video stream. The system captured the time stamp and made a preliminary 
classification based on length measurements provided by the operator, who would later confirm 
or modify the classification decision before restarting the video and waiting for the next vehicle 
image. 

In a 1998 study on classification and weigh-in-motion data from sites in New England [3], 
researchers used cusum (cumulative sum) from statistical quality control theory for data quality 
check; however, no effort was made to inspect individual WIM or classification records. 

A Montana DOT study in 2003 [4] aimed at improving the quality and quantity of truck weight 
and classification data to aid in pavement design comparing ESAL (Equivalent Single Axel 
Load) factors calculated for WIM classification data and weigh station data. No attempt was 
made to validate classification accuracy. 

Colorado DOT reported results from a study of 15-minute classification count taken 
approximately every hour for a continuous 24-hour period [5].  Vehicles were classified by an 
on-site technician who would record and count vehicles traveling in both directions. As a quality 
control measure 15-minute segments of classification data recorded by each technician was 
verified by CDOT personnel examining video recorded during the manual collection. Software 
used to extract vehicle data from the video [6] enabled the CDOT operator to manually play and 
pause the video, and then log passing vehicle classification. 
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In an Indiana DOT study [7], video cameras were used to capture traffic flow and verify WIM 
vehicle classification accuracy. Video recordings were imported into software that automatically 
classified vehicle information into four categories using digital image processing techniques. A 
precision rate of 94.2% was purported. The Indiana DOT method does not produce a ground-
truth data set primarily because the system groups vehicles into only four categories instead of 
13 FHWA categories. Error between classes is thus, acceptable. Researchers in this study 
proposed a Transportable Infra-Red Traffic Logger (TIRTL) to generate a vehicle classification 
data set for comparison. 

Minnesota DOT used road tubes with a TimeMark Delta IIIL device to conduct vehicle 
classification studies and update vehicle classification distributions for counties to use when 
designing pavement structures [8]; however, the accuracy of existing vehicle counters was not 
investigated.  

Researchers in [9] performed an accuracy study in Hawaii for several selected non-intrusive 
vehicle classification sensors, relying on synchronous field observations (direct or videotaped) to 
establish ground truth data. Continued work [10] detailed a similar method of manual 
classification using simultaneous video recordings as ground truth. The method of extracting 
useful data from video recording was not described. 
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2 Chapter II: Equipment and Study Procedure 

2.1 Equipment: 

The following section presents a brief description of the AVC and WIM site equipment under 
study.  

2.1.1 Peek Traffic ADR® 

Peek Traffic ADR-2000 operates as a traffic counter and classifier, recording traffic volume and 
vehicular classification data using a variety of sensor types. The system’s internal sensor 
interfaces modules that monitor sensor inputs from magnetic loops, piezoelectric, or contact 
enclosures. See Figure 1. 

 

 

Figure 1  - Peek Traffic ADR-2000 Plus 

 

The ADR-2000 Plus is portable and expandable, equipped with four slots (one for memory, three 
for sensor modules), enabling a range of application options. When fitted with three SC-514P 
contact closure input cards, the portable ADR-2000 Plus monitors a maximum of 42 traffic lanes. 
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ADR 2000 technical specifications are presented in Table 1: 

Feature Description 

Housing Rugged, weatherproof cast aluminum housing, with brass body lock and two keys 

Weight & Size Typically 8 Kg (17.6 lbs) with battery 
Height: 163.2 mm (6.44”) 
Depth: 342.3 mm (13.48”) 
Width: 242 mm (9.53”) 

Environmental 
range -40ºC to +70ºC. Up to 95% humidity, non-condensing 

Display Display 20-digit x 4-line liquid-crystal display 

 
Inputs for four tubes, plus three additional slots that can contain any combination 
of the sensor boards listed below 

8-input piezo sensor board 
8-input loop sensor board 
4-input contact closure sensor board 
8-input piezo WIM sensor board 

Count rate 200 counts per input per second 
Recording 

Interval 
Selectable period of 1, 2, 5, 6, 10, 15, 30, or 60 minutes; 2, 3, 6, 12, or 24 hours. 
One normal and up to four daily peak periods are available. 

File size 
(duration) 

File duration is selectable: 24, 48, or 72 hours, or 7 days of continuous files or 
midnight to midnight daily files; Programmable for a preset start and end time, as 
well as date 

Memory Memory 2MB (256KB standard, with 127KB available for data storage); up to 
64MB available on a PCMCIA memory card 

Autonomy 16 weeks with internal battery for roadtube counting 

Accuracy One count per interval or better than 10% at 95% confidence on gross weight or 
better than ASTM standard 13-18 

Power Internal rechargeable lead/acid battery (6V, 10AH), or 4 x 1.5V D cells 
external Recharging via AC charger or solar panel (optional) 

Communications Selectable RS232 port between 300 and 19,200 baud for connection to PC 
Palm Pilot or modem for remote telemetry 

Classification FHWA and EEC, and programmable classification options 

Table 1  - Technical Specifications for the ADR 2000 
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2.2 Deployment and data acquisition 

Two digital video recorders mounted on two tripods were utilized to record video ground truth 
data. Figure 2 illustrates the positioning of both cameras. 

 1) Camera one was located on the right shoulder of the highway and captured traffic flow 
passing over the sensors. 

2) Camera two was located on the opposite side of the road, enabling vehicle detection otherwise 
obstructed from camera one. Hazardous conditions in early testing required revised camera 
placement on only one roadside with front- and back-view placement at optimal distances.  

 

 

 

 

 

 

 

  

A 5-step deployment was executed. 

Step 1: Install a weather-protective tent for study team members. 
Step 2: Start power generator and make connection to tent to support long period of testing 

deployments. 
Step 3: Manually synchronize the time between the video camera recorder and existing site 

equipment (PEEK ADR or IRD iSINC Lite) within a second by observing the clock 
display on the device screen and setting the camera’s clock to match. 

Step 4: Install cameras at an appropriate distance on roadside shoulders to capture images of 
vehicles crossing over roadway ground sensors.   

Step 5: Commence video recording on both cameras. 
 
After site testing, video files were downloaded from the camera’s internal memory to the hard 
disk of a laptop for post processing. Equipment utilized in the testing setup included: 

Figure 2 - Video data acquisition 
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• Sony Handycam HDR-CX290 video cameras 
• 2 camera tripods 
• Power generator 
• Weather-protective tent 
• ThinkPad T-430 laptop 
• Traffic cones, when necessary 

 

 

Figure 3  - Schematic of typical AVC station 

Classification stations utilized Loop-Axle-Loop Arrays, as depicted in Figure 3.  Data collected 
included speed, class, (chassis) length, volume, headway, gap, direction by lane, or any 
combination thereof. 

 

 

 

 

 

 

9 
       



 

2.3 Analysis and Data Processing  

After the video recording equipment and the recording classification unit recorded data, 
researchers performed post processing using custom-made Matlab tools. Initially, video data 
syncing was necessary to compensate for an offset between video camera timestamps and those 
from ADR unit output files. A no-cost online time code tool allowed simple conversion of ADR-
recorded timestamp files into frames. Next, an empirical offset of 1 or 2 seconds was used to 
match video and ADR-recorded data. Matching was verified by cross correlating random streams 
of sample vehicle time-converted frames. Following synchronization, output files were input into 
custom-made tools for manual vehicle classification for vehicle images in the video footage. 
Ground truth databases were then constructed. 

Because humans were employed to distinguish and classify vehicles, certain errors were 
inevitable. Most were attributed to restrictions imposed by the setup process and camera angle. 
Such errors might have a serious effect on the integrity and accuracy of the algorithm to be 
developed in this study. To compensate, video data collected by two cameras were analyzed 
separately. Initially, two engineers classified vehicles based on video captured from both sides of 
the road. Vehicle classification was then cross-correlated to determine human error in either of 
two separate classifications, which minimized the possibility of human detection error, especially 
errors due to camera positioning or camera angle. The results were verified and the accurate 
vehicle class data provided solid ground truth to be used in the study.   

Human error was attributed to the following factors. 

a)    Difficulties differentiating classes, chiefly for classes 2 and 3, especially for certain  
        types of SUVs.  

For example, the Honda CRV 2000 SUV has two axels spaced 2620mm (or 8.595801 feet) 
apart, which is within the range of a class 2 vehicle according to the algorithm currently 
employed by existing ADR equipment. A Suburban 2007 SUV with two axels spaced 
3302mm (or 10.83333 feet) should be classified as a class 3 vehicle. Classification error 
when compared with the ADR output is evident in site summary results to be shown below.  

b)   Difficulties identifying the number of rear wheels, due to obscured camera view,  
        regardless of camera angle.  
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2.4 Video Processing Tools 

Two video processing tools developed during this implementation of this project to expedite the 
processing of highway video recordings (ground-truth). 

2.4.1 Video processing Tool #1 
2.4.1.1 Introduction: 
A semi-automated method to classify vehicles required someone to watch a video and manually 
record the class number, lane number, and the time at which each vehicle drove over the AVC 
device loops and sensors. Recorded data would be compared with AVC device data to determine 
device accuracy of the later. 
 
Originally, a simple Matlab program was developed to detect motion in the highway videos and 
to prompt the user to input classification data for each vehicle image. Although this method 
significantly decreased the amount of time required to process each video, the process still 
required eight hours for each video. Because the purpose was to improve automated 
classification for a large number vehicles and effectively reduce video processing time, the 
program was written to automatically classify the majority of isolated class 2 compact passenger 
vehicles, which represents the bulk of traffic. 
 
Figure 4 shows a map of AVC sites in Oklahoma, some of which were tested using the Matlab 
program. 
 

 
Figure 4  - Map of AVC Sites in Oklahoma 

2.4.1.2 Applicable Standards: 

To determine program functionality for classifying each vehicle type, it was important to clearly 
define each class and its features. The Federal Highway Administration (FHWA) 13-class 
standard [11] was utilized. These are shown in Figure 5. 
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Figure 5  - FHWA Vehicle Classifications 

2.4.1.3 Research: 

As previously mentioned, video footage was captured at a particular AVC site to test device 
accuracy. Two cameras were used to achieve images from two angles: one nearly perpendicular 
to the highway for a side view; the other for a frontal view to aid in distinguishing between lanes 
when analyzing video footage. Both cameras were mounted on tripods. Although filming 
specifications made camera angles relatively constant, tripod distance from the roadway were not 
identical from site to site. Differences in the number of lanes and curvature required customized 
camera setup. Camera views must include filming all roadway lanes, as well as devices under 
test (e.g., the AVC device or an alternative sensor device). Such efforts ensure that the timing 
recorded by the devices matches the timing of the video. Before filming commences, camera 
clocks must be synched to the AVC device clock and those of other devices under test. Filming 
typically lasted one to two hours, during which the ADR is configured to bin data every one 
minute instead of the typical fifteen-minute intervals. Information from the AVC device and any 
other devices are recorded. Figure 6 illustrates camera type used for the project. 
 

12 
       



 

 
Figure 6  - Video Camera 

 
Filming ceases following pre-determined data collection time. Video recordings are stored as 
MP4 files in the video cameras, and then transferred to a laptop computer. Matlab’s built-in 
video reader function reads MP4 files without altering format; however, the user can alter video 
resolution to decrease computation time. Video footage is used to classify vehicles, and results 
are then compiled into an Excel spreadsheet. Vehicle class, lane number, frame number, time, 
and image are saved. Results are compared with those obtained from the AVC device and other 
devices to determine accuracy. 

 
Because manually analyzing video footage is extremely time consuming, the research team 
initially developed the aforementioned Matlab program to semi-automate the process. The new 
program reads in each video files frame and detects the point at which motion is detected in a 
user-defined area. Subsequently, the program displays the image and prompts the user to classify 
the vehicle. Data is imported into a spreadsheet along with side and front images of the vehicle. 
The process continues for each video frame.  
 
To develop Matlab’s semi-automated vehicle classification program, a basic understanding of 
digital image processing was necessary. [12] provided Matlab functions for performing various 
tasks. For example, a color image can be converted to a gray-scale image, converted to a binary 
image by thresholding pixel values, filtered through dilation to reduce noise, and then scanned to 
detect circles representing tires. This combination of functions detects, extracts, and labels 
certain image objects. [12] contains examples for various functions used in image processing. 
Although the information is foundational and helpful, it is not sufficient specific problem 
solving. Methods detailed in [12] must be combined with additional customized methods for 
writing a program that successfully classifies vehicles. 
 
Digital image processing and object detection in video footage were comprehensively researched 
and investigated (e.g., a function to track moving objects captured by a surveillance camera). 
[13] employs a motion flow field to foreground object validation and tracking from frame to 
frame. Following detection, object features (e.g., orientation, acceleration, and predicted 
trajectory) are calculated to help determine whether it is person, vehicle, or other type of object. 
By comparing object positioning in neighboring frames, a motion flow field is computed, which 
aids filtering non-moving foreground objects. Motion flow from frame to frame is “needed for 
real time surveillance applications” [13]. Even though it is not necessary to track vehicles in the 
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project from frame to frame using a motion flow field, key features of an object can be calculated 
and leveraged to distinguish one object from another object. Information from neighboring 
frames, as opposed to that from a single frame filters unwanted objects and noise. 
 
A method to detect and classify vehicles [14] employs a virtual detection line (VDL) for 
producing a time-spatial image (TSI). VDL is a line placed perpendicular to the road in the video 
frames. As video advances from frame to frame, pixels contained in the VDL are saved and 
pieced together to form a TSI. Using multiple VDLs produces multiple TSIs that aid in 
identifying merged vehicles. Two vehicles appearing merged in one TSI might appear as two 
separate vehicles in another. Thus, multiple TSIs prevent error caused by merging. After a TSI 
has been produced for a video and each object has been identified as a separate vehicle, a 
cropped image of each is generated. Binary images of the TSIs and cropped images use image 
processing techniques, such as thresholding, edge detection, and dilation. Using binary images, 
width, area, compactness, length-width ratio, major-axis to minor-axis ratio, and rectangularity, 
identifying features for each vehicle are calculated and used to classify it into general categories 
(e.g., two-wheeler vehicle). Next, “three shape-invariant and four texture-based features are used 
to find the exact type of vehicle belonging to a certain broad class of vehicles” [14]. Successful 
test results reveal that using multiple TSIs decreases counting and classification errors and that 
using the two-step classification system increases classification accuracy. 
 
Previously, [15] classified vehicles with an accuracy of 94% into eight different classes, some of 
which were FWHA defined. The work also determined in which lane on two-way roads a vehicle 
was traveling. Blob detection, principle component analysis (PCA), and linear discriminant 
analysis (LDA) were used for classification. Later, [16] improved this classification technique by 
drawing on facial recognition [17]. 
  
Most work in video-based AVC uses LDA and PCA classification for determining vehicle class 
(e.g. [18], which used the techniques on images processed with edge detection). In these, the 
algorithm detects the image’s most differentiating features(the “principle components”) and uses 
a function of these to place it in a multiple dimensional space. With any luck, the data points lie 
in linearly separable regions of the space for accurate LDA. Weighted-k nearest neighbor 
(wkNN) techniques are also used to determine the distance of an image from each cluster. As the 
vehicle advances along the road, multiple analyses are performed increase accuracy and 
confidence in the classification. Tracking specific objects is often accomplished using techniques 
presented in [19]. 

 
As mentioned briefly before, [17] developed a technique for improving methodology for facial 
recognition. “Fisherfaces” uses Fisher’s Linear Discriminant to improve group classification and 
transform images from high to low dimensional image space improved and expedited 
classification. Further research is required to determine how to apply the technique to the work 
presented in this report. Fisherfaces are known to reduce the effects of lighting on recognition 
and work well for systems with predetermined classes. 

 
Research detailed herein utilized a combination of principal component analysis and linear 
discriminant analysis to classify vehicles. Forty-four descriptors were defined, and Fisher’s 
Linear Discriminant was used with a database of vehicle images to project the 44-dimensional 
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vectors into a two-dimensional vector space. Doing so maximized spacing between classes and 
minimized in-class scatter. To further improve rate of detection, efforts were focused on 
developing an algorithm entirely based on the target class 2 vehicles. Although data to 
classifying 12 other FWHA classes was ignored, the reduced amount of data enable improved 
separation for class 2 vehicles. 

 
2.4.1.4  System Overview: 

Another tool was executed in three stages: setup, processing, and user classification. Setup 
determines video-specific parameters needed to process the video and obtain images and binary 
masks of vehicles. The bulk of this work is completed during the processing phase, wherein the 
program detects vehicles, determines lane, and attempts to automatically classify isolated 
vehicles. During classification the user is presented images of each unclassified vehicle and 
prompted to classify the vehicle. Upon completion, all necessary data required from the video 
has been extracted. 
 
Vehicles are classified according to calculated values of their descriptors (measurements taken 
on its properties). For data in this report, properties included vehicle shape and image. Vehicle 
lane is also required. As such, the location of vehicles in each frame must be determined. 

 
As a project constraint, video footage must contain only relatively stationary background objects, 
and vehicles. By defining the setup accordingly, vehicles can be detected relative to foreground 
objects (i.e., background subtraction), which first requires a background image without such 
objects. Since such an image is not always available, an adaptive solution to determine the true 
background is necessary, even in the presence of foreground objects. Moreover, given a quiet 
background, variations in lighting and cloud movements change background appearance over 
time. A single algorithm was created to robustly adapt changes without disrupting foreground 
object detection. Over time, the learned background converged to a true background 
notwithstanding a poor initial image. To do so, a sufficient amount of frames (e.g., 2000 frames) 
were processed by the algorithm in reverse order to reach the video start. The resulting 
background proved to be the original background, even in cases of high traffic. Figures 7 and 8 
depict a frame and its resulting background.  

 

 
Figure 7  - Example Frame 
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Figure 8  - Calculated Background Image 

The second step of the setup process was determining lane position on the roadway to assign a 
lane number to vehicles and to filter out vehicles traveling the opposite direction. Lane lines are 
not required to be in perfect line with actual lanes. Rather, determining vehicle paths was of 
utmost importance. Each path corresponded to a lane and specifically identified where vehicles 
were traveling within the lane. Furthermore, the overlap of multiple vehicles was detected when 
the object appeared to follow two or more lanes lines. 

 
The final step of the setup process was measuring vehicle velocities in each lane at different 
points in the frame. After collecting ample data points, polynomial fits were generated to 
describe average velocities of vehicles in each lane at each point [20]. Thus, vehicle tracking 
could predict vehicle movement after a vehicle became obscured so that basic properties relating 
pixels to real distance could be determined. 

 
During this phase, the program reads one frame at a time, updating its learned background. 
Background image is used for each frame to determine which pixels are in the foreground. 
Morphological processing suppresses noise and converts pixels into blobs representing objects. 
Figures 9 and 10 show foreground objects before and after morphological processing. 

 

 
Figure 9  - Foreground Pixels 
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Figure 10  - Processed Foreground Image 

 
The vehicle-tracking algorithm analyzes blobs each frame to determine vehicle lane. Information 
is tracked over time and images of the blob and the vehicle when not obstructed is saved. Once 
the vehicle reaches the edge of the frame, the algorithm measures vehicle properties and attempts 
vehicle classification. If successful, the classification and lane are input in the log file. If 
unsuccessful, class must be determined by the user. 

 
A simple graphical user interface is displayed to aid the user in quickly and efficiently 
classifying vehicles. Lanes are predetermined and only the frames with unclassified vehicles are 
displayed. Manual classification can be completed while the program runs in the background, 
which speeds up the process. This GUI is displayed in Figure 11. 
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Figure 11  - Classification User Interface 

 
To decrease processing time, video resolution was reduced from the original 1280x720 to 
320x180. This alteration did not decrease system accuracy or classification rate. Converting 
color to gray-scale footage was tested; however, color information proved necessary to preserve 
the integrity of blob shapes. 

 
2.4.1.5 Background Detection:  

Background detection begins with program acceptance of the first frame as the background 
image. Foreground objects appearing in the background are replaced with true contents of the 
background determined over time via updates. To further explain, assume that the initial true 
background is known. Also consider the case of an empty road without foreground objects. Over 
time, the background will change as trees move with the wind and the clouds change. Variations 
in lighting will also affect scene brightness. To maintain the background, one could simply 
replace it with the current frame every time. Vehicles driving by are incorporated into the 
background and only difference from one frame to the next will appear as part of the foreground. 

 
To combat this problem, a small percentage of the new frame could be added, based on 
observation that background objects move slowly. The background can then update quickly 
enough to follow clouds but slowly enough so foreground objects are not incorporated. Objects 
moving quickly influence the background. Although performance is vastly improved, an “echo 
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trail” of each passing vehicle remains, as a portion remains incorporated into the background as 
the vehicle passes the camera view. Further complicating the problem, vehicles generally have a 
relatively uniform color along the side panel. On a single pixel scale this factor appears as a 
stationary object. Clearly, this technique must be further improved. 

 
Given that background objects move slowly, it can be assumed that individual pixel values of the 
background do not change significantly from frame to frame. Differences between current 
background and current frame allows individual weights to pixels such that similar pixels are 
increasingly incorporated and pixels vastly different are no longer updated into the background. 
This added layer of robustness again increases performance even though some problems remain. 

 
The original algorithm adds yet another filtering layer. Instead of taking into account only a 
difference in current frame and background, the program tracks recent changes in each pixel over 
time, using a method similar to the original weighted learning method, although it is applied to 
learning pixels changes. Such variation values are then applied to the original learning weights 
and provide a customized coefficient for each color channel in each pixel. In this way the 
background updates quickly given small changes but slowly for large changes. The method 
adequately determines background over time, even in the presence of high traffic. 

 
Since the goal is to determine which pixels are in the foreground, this method is still lacking. 
Although a reliable background image is achieved, using simple image subtraction does not take 
full advantage of color information contained in the video. Since changes in color channel is 
combined to determine a “color distance,” the amount of change in a pixel results in too much 
weight for gray-scale color. Distance between completely green and completely red is the same 
as the distance between a light and dark gray. Given that roadways are typically grey and that 
passing clouds easily change its tone, the image subtraction technique washes out more pertinent 
changes in hue information with brightness changes. 

 
To combat this, both background and foreground images are converted from RGB color space to 
HSV color space, thus allowing the distance between the hue of one pixel and another to be 
determined by scaling according to saturation. Low-saturation hue changes are visibly similar, 
whereas the change in high saturation is more significant. A weighted combination of differences 
between hue-saturation and values (brightness) of pixels is then used to determine true color 
distance between the pixels. These differences are then used to calculate background-updating 
weights and apply these to a threshold to determine which pixels are in the foreground. 

 
2.4.1.6 Morphological Processing: 

After foreground pixels are obtained, a significant amount of noise remains in the image. This is 
due to a number of factors, primarily wind and color similarity. Wind moves trees back and forth 
at an appreciable speed, producing apparent foreground objects in what should be the 
background. Conversely, vehicles with color similar to a background object could appear to have 
holes, since the region of similar color appears as the same background. To mitigate such noise, 
morphological processing on the detected foreground image is performed. 

 
Morphological processing operates primarily on binary images for reducing noise and improving 
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object shapes. Following significant experimentation and improvement in the background 
subtraction process, the developed program used three steps to process the binary mask of the 
foreground, decreasing computational time. The first operation was an area open operation, 
which removed connected blobs of pixels containing no more than a specified number of pixels. 
Individual pixels are removed, as are string-like pixel regions that appear along moving tree 
lines. Next, morphological closing using a diamond-shaped structuring element is executed with 
the intent to fill spaces with missing pieces of the blobs and to restore vehicle shape. The final 
step is another area opening—this time performed inversely so small regions of connected black 
pixels are filled in, eliminating holes that remain in a vehicle’s blob of pixels. See Figures 8-11 
above for illustrations of this morphological process in its entirety. 

 
2.4.1.7 Lane Detection: 

Once foreground is distinguished from the background and the scene is undated accordingly, 
roadway lanes can be determined. Cars (ground-based vehicles) typically make contact with the 
road. Given accurate foreground detection, it is safe to assume that the bottom-most pixels of 
each blob correspond to the contact points between the car and the road. Although shadows can 
invalidate this assumption, constraints can be applied so that video filmed when shadows cast by 
vehicles are either on the far side or beneath the vehicles. In such cases, shadows are close 
enough to the vehicle that they are detected as part of it. Later it is shown that when operating in 
the border between acceptable and unacceptable shadows, some errors are introduced into the 
vehicle tracking process. The errors are minor, however, and found not significantly interfere 
with system operation. 

 
Assuming that the bottommost pixels in each column of the blob correspond to the contact points 
of the road, other pixels were deleted from the image during the lane detection stage. Figure12 
illustrates the blob before and after this process. 

 

  
Figure 12  - Vehicle Blobs and Remaining Portions for Lane Detection 

 
Most pixels in the resulting image correspond to points along the lanes in the roadway. This 
operation was completed for each frame, summing the resulting images. At the end of the 
process, the image was normalized, creating an intensity map of the most traveled paths in the 
frame. This intensity map is illustrated in Figure 13. 
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Figure 13  - Intensity Map of Most Traveled Paths 

After obtaining the intensity map, the number and locations roadway lanes can be determined. 
For each column in the rightmost third of the image, peaks in the intensity were found, denoting 
them as points along a lane. Once complete, the process indicates the most common number of 
peaks for each column, revealing the number of lanes. Noise was filtered from columns 
appearing to have an incorrect number of lanes. Ignoring the columns revealed a set of points 
along each lane and created a linear fit to describe the lane. For added robustness, intersect points 
of each lane were checked, and an attempt was made to differentiate lanes that appeared to 
intersect in an incorrect location. Ideally, lane lines should only intersect at the vanishing point 
of the scene. However, camera resolution is not ample, and some error is to be expected near the 
vanishing point. As a result, the leftmost third of the frame is ignored for the purpose of vehicle 
tracking. The following figures demonstrate the linear fit process and accuracy of detected lanes 
matching vehicle location. Note that in most cases, only one lane was detected for vehicles 
traveling in the opposite direction due to camera distance. This was advantageous, since traffic 
traveling in the opposite interferes with classification on the intended side of the roadway. 
Figures 14 and 15 illustrate the lane detection process. 
 

 
Figure 14  - Linear Fits for Lanes 
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Figure 15  - Detected Lanes 

 
2.4.1.8 Vehicle Tracking: 

The process of tracking vehicles from frame to frame on a lane-by-lane basis assumes vehicles 
do not change lanes during their video capture. Given that a vehicle changes lanes, it’s image 
will be captured twice and the user must delete one. Doing so in accordance with the research 
team’s design decision that it is better for the user to eliminate duplicates rather than manually 
locating a missing vehicle. This process is simplified due to the way in which the classification 
interface was designed for easy scenario identification. 

 
For each frame, the vehicle-tracking algorithm detects blobs in the frame and computes its 
corresponding lane. Each pixel along the bottom edge of the blobs is examined, and the lane is 
calculated on a continuous scale. For example, a pixel between lanes 2 and 3 might have a value 
of 2.2. Such a figure results in a lane plot vs. x-coordinate for each blob in the image. The flat 
edges of vehicles cause stabilized plot in one lane. Analyzing smoothed curves of the lane plot 
derivative allows the program to reliably determine vehicle lane. Additionally, if the left portion 
of a blob appears to settle in one lane and the right potion settles in another, the algorithm detects 
this is possible only if the blob in question actually corresponds to multiple vehicles. The point at 
which the lane change is present is identified and interim edges of the vehicle are tracked. 
 
The algorithm only tracks in which lane a vehicle is traveling, as well as the front and back 
coordinates along the lane. When either the front or back of the vehicle is obscured, the 
algorithm utilizes velocity curves from the setup phase to interpolate its position. Each endpoint 
in interpolated separately to account for apparent growth of the vehicle as it approaches the 
camera’s location. For vehicles that are not obscured, the algorithm uses the same interpolation 
to step forward vehicles in the previous frame and match them with detected blobs in the current 
frame. Figure 16 depicts the process and steps performed to segment out vehicles and roadway 
lanes. 
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Figure 16  - Determining Vehicle Lanes  

 Clockwise from Top Left: a) Current Frame. b) Intersecting Multi-Vehicle Blob. c) Lane Plot for Blob. 
d) Lane Instability (Yellow), Stability Threshold (White), Discretized Lane (Green). 

 
Once a vehicle image reaches the right edge of the frame, the vehicle-tracking algorithm 
attempts to use the previously saved image and blob for classification. If the program detects that 
the bounds of the vehicle are overlapping with another or that the vehicle was detected in the 
previous frame as a multiple-vehicle blob, classification is aborted since the shape is distorted. 
This occurrence is outside the scope of the project, as the objective was to classify isolated high 
number of traveling class 2 compact cars. 

 
One drawback with this method of tracking is that if the camera set too low and aimed too 
perpendicular to the road, shadows cast by vehicles, especially pickup trucks, occasionally fall 
along another lane’s linear fit. If the shadow extends past the vehicle, the algorithm will believe 
it to be two vehicles and will miss the opportunity to classify one. This scenario presents the user 
with a duplicate classification phase. To mitigate this problem, the research team incorporated a 
second camera angle to avoid a similar geometrical problem. However, careful setup is required 
so that the point at the right edge of the first camera’s frame is within view of the second camera. 
Although a technique was developed to translate corresponding points on lanes from one video 
to another by analyzing traffic flow, not all videos assigned frames lined up correctly. During the 
project, a single camera was used for simplicity and efficient processing time. Future work could 
employ added care in setting up camera. Incorporating a second view might eliminate the 
shadow problem so that additional information about vehicle shape and size in three-dimension 
is possible. 
 
2.4.1.9 Automatic Classification: 

Given an input video, the algorithm used in this study enabled image extraction, shape, and lanes 
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of vehicles traveling along the road. The automatic classification portion of the project takes 
these images and blobs and attempts to characterize the various classes of vehicles according to 
measurements of the images and blobs. The first step along this process generating numerical 
values of the image that describe its properties. A complete list of properties can be found in the 
source code under the function avcprops in AVCClassifier.m. These include axis ratio, area, 
centroid, pyramid histogram of oriented gradients, intensity, gradient distribution, and other 
properties of the blob and image [21]. Image scale was based on its lane number to improve class 
coherency. Descriptors form a 44-dimensional feature vector that describes the vehicle. 

 
Vectors classification required generation of a database of vehicle blobs and images sorted by 
class. Vector values were calculated for each vehicle and stored in a large matrix of vectors and 
class labels. Using Fisher’s Linear Discriminant, a matrix to optimally projects the 44-
dimensional space onto two dimensions was created, maximizing distance between classes and 
minimizing between-class scatter [22]. Superior results were obtained experimentally after 
considering just four classes: class 3, class 2, class 2 compact cars only, and everything else. By 
lumping less common vehicles into one class, spacing of more populated classes improved. 
Splitting class 2 into two subclasses ensured adequate spacing between class 3 and compact cars. 
Failing to do so would have prevented the number of classified vehicles at 100% certainty, 
primarily because some class 2 vehicles, such as SUVs, are quite similar to class 3 pickup trucks. 
However, compact cars resemble neither of these and are best considered separate in this 
scenario. Attempting to only separate compact cars from everything else resulted in poorly 
conditioned matrices for projection that were somewhat over-tuned and unstable. Figure 17 
illustrates the distribution of data points in two dimensions. 
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Figure 17  - Distribution of Data Points of Classified Vehicles 

 
Figure 17 demonstrates there is still a significant amount of overlap between compact cars and 
the rest of class 2. Fortunately, these types of vehicles are in same class, which is advantageous 
for this project. Clearly, no attempt was made to distinguish individual classes from the 
“everything else” category. This enables clear spacing between compact cars and class 3 
vehicles. 

 
To classify vehicles, a method similar to linear discriminant analysis was employed. Instead of 
defining a linear boundary, a polygon was drawn around points corresponding to compact cars, 
enveloping other class 2 vehicles, as well. When a vehicle is detected, measured properties 
utilize the fisher matrix to project vector to two dimensions, and verify that it lies within the class 
2 specifications. Given affirmation, classification is made with certainty. A number of class 3 
vehicles could also be classified given the unfortunate circumstance that pickup trucks with 4 
tires are class 3, while pickup trucks with 6 tires are class 5. Thus, class 3 and class 5 pickup 
trucks cannot be distinguished from one another. Since the program is used for validation, such 
an error is unacceptable.  
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2.4.1.10 User Interface: 
 

To aid in ease of use, a graphical user interface was designed to augment the manual 
classification process. A single function call AVC.run(), starts the program and launches the 
screen shown in Figure 18. 

 

 

Figure 18  - AVC Welcome Screen 

A user is given the option to set up a new video for classification, to begin classifying a 
completed or in-progress video, or to define new classes using a custom database of vehicle 
images. The latter option extends program usefulness by permitting application in similar 
situations. Figure 19 shows the interface associated with starting a new video. 
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Figure 19  - New Video Setup Screen 

The program interface permits the user to select a class definition and guides them in selecting 
input files and parameters. Also, the interface offers the option to save parameters generated 
during setup (e.g., background, velocity curves, and lane lines). These can later be reloaded for 
debugging and/or analysis purposes. An option is also provided to generate database files that 
extend the current vehicle database and improve classification. 

The setup and processing phase run for an extended period of time, depending on the length of 
input video. A user could begin the process, go onto another task, and then return later to classify 
vehicles. Of note is that the system is designed so that  classification can occur during while 
processing is running in the background. It is important to keep in mind, however, that Matlab is 
not designed to support multithreading in its standard installation. Thus, a user must open 
another version of Matlab. Given that a user commences the program with 
AVC.runAndClassify() instead of AVC.run(),once the setup phase is complete, the program will 
automatically start a new instance of Matlab and open the classification interface. If not, the user 
must use the following procedure, whether or not processing is complete. 

To classify vehicles detected by the system, a user should call AVC.run() and select the begin 
classification option. The user will then be prompted to select the file ending in “-config.mat” in 
the output folder notifying the program to locate needed files for the classification interface. A 
classification interface like the one shown in Figure 20 will open. Options are made available to 
change the automatically detected lane, to display the frames before and after the vehicle, to skip 
auto-classified vehicles, or to undo the last action taken. The vehicle in question is highlighted 
with a box. The previous and following two vehicles are also shown to aid in detecting 
duplicates. By using this interface in conjunction with the developed system, the time required to 
process a video is reduced to 12.5% of the initial time without sacrificing accuracy. 

2.4.1.11 Design Constraints: 
Another tool must be similarly flexible to work with new videos. The camera should be located 
on the right side of the roadway, far enough from the roadway so that vehicles in each lane are in 

27 
       



 

full view. The camera should face oncoming traffic, making an approximate 45-degree angle 
with the road. Video must be filmed with sufficient ambient light and a stationary background. 
Shadows cast by vehicles must lie mostly beneath or on the opposite of the camera side of the 
vehicles. The camera cannot be moved during video recording. System behavior is undefined 
when non-vehicle objects are present (e.g. pedestrians, road workers). 

Since the program is used to validate sensor data, the primary focus is accuracy. Although 
missing vehicles obscured by larger vehicles is unavoidable, other instances should be accounted 
for correctly. The goal of the project reported herein was to automatically classify over 65% of 
isolated compact cars with 97% accuracy. Vehicles not automatically classified should be 
manually classified by a user utilizing the method detailed above. 

2.4.1.12 Tool Validation: 
The developed validation tool was tested against existing manually classified videos filmed at 
two separate AVC sites. Due to the limited number of videos available, one (identified as B in 
Table 2) was previously used to generate the classification database. For this reason, data from 
manually classified vehicles was effectively used to automatically classify some of the same 
vehicles. In spite of this, the validation tool provided a good measure of the number of vehicle 
models matched in the video. The other video (A in Table 2) was not used in generating the 
classification model, thus, performance was tested independently. Results from the second video 
were comparable to the first, showing that the system is not limited to videos from which it was 
trained. 

To validate vehicle tracking, the number of vehicles detected automatically was compared to the 
number of vehicles shown in the high traffic video. Extracted images were examined to ensure 
consistent differentiation between multi-vehicle blobs. Automatically classified vehicles were 
also visually validated to ensure inexplicitly they were class 2. Finally, the number of classified 
vehicles was compared to the number of isolated compact cars to determine classification rate. 

To validate the program interface, all team members were required to use the system to classify 
vehicles. The program was also demonstrated to research tem advisors. 

2.4.1.13 Results: 

Results from testing the newly developed classification system are shown in the Table 3. 
Classification criteria were drawn conservatively, yielding 100% accuracy and exceeding an 
initial goal of 97% accuracy. Every automatic vehicle classification was correct. Notably, not 
every classified vehicle was one the research team intended to classify. Classification rate (i.e., 
percentage of isolated compact cars classified) was over 80%, again exceeding an initial goal of 
65%. Overall processing time for each video was reduced to approximately 12.5% of the original 
time devoted to video classification. Table 2 details classification results for each video. 
 

Video Accuracy Classification Rate 

A 100% 81.58% 

B 100% 85.55% 

Table 2  - Results (Video B used to generate the classification model only) 
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2.4.2 Video Processing Tool #2 

A second video-processing tool was developed and used when per vehicle data was available. 
Typically, an AVC device collects vehicle data and files the data in one-minute bins, meaning 
that the exact order of each vehicle passing over the AVC device is unknown. Given that specific 
order and timing of each vehicle is required, the AVC device must be configured to record per 
vehicle data. Such configuration was used in this project to identify errors and improve the AVC 
device classification algorithm. 
 
Since the exact time each vehicle passes over the AVC device is gathered when the system is set 
for per vehicle data collection, time can be converted to frame numbers that correspond with 
when the vehicle appears video. This second video-processing tool uses frame numbers to show 
a user each vehicle counted by the AVC device. Instead processing each video frame and 
classifying vehicles when they are detected, the tool inspects only frames containing vehicles. 
When an image with a vehicle is displayed, the tool also displays AVC device-assigned class and 
lane, allowing the user to correct either value when necessary. This process enables quick 
validation and identification of errors in AVC device data and identify errors.  
 
The validation tool is relatively simple when compared to the first tool, due to the fact that more 
specific information about each vehicle is available. The added information reduces user 
interaction to merely answering yes or no to the assigned classification rather than requiring him 
or her to independently classify each vehicle. Video processing time is reduced significantly. 
 
2.4.2.1 Preparing the Data 

As mentioned earlier, the AVC device was configured to record per vehicle data. Once data is 
collected and organized into an Excel file, the frame number for each record is calculated. The 
easiest process for performing this task is to first open the video file and find the frame number 
that corresponds to the first vehicle. Then, using an Excel time code, each time stamp in the 
Excel file is converted to a frame number based on a frame rate of 30 frames per second. Time 
begins at zero, meaning that calculated frame number for the first vehicle will not match the 
frame number found in the video. By subtracting the difference between the two values from 
among the calculated frame numbers, accurate frame numbers can be obtained for each vehicle. 
Once these are calculated, the Excel file can be validated. 
 
2.4.2.2 Using the Data 

Matlab’s validator.m can be used once the data is prepared. The program begins by asking the 
user for the number of videos used for validation. Given that the user selects one, the program 
prompts the user to select a single video file. Given that the user selects two, the program 
prompts the user to select a primary and secondary video file, along with a frame offset 
corresponding to the offset between the two videos. After the videos are selected, the user is 
required to choose the data file under validation from a Excel file with the calculated frame 
numbers. Once a file is chosen, the program reads ithe data and runs the Validate.m program 
with video and data file inputs. 
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The next section demonstrates how Validate.m utilizes frame numbers from the data file to 
display vehicle images from the videos. The program also displays lane and frame numbers for 
easy manual validation. Since each row in the data file represents a single vehicle, Validate.m 
continues displaying data one row at a time until all data has been verified. Instead of attempting 
to automatically classify vehicles using a method similar to that employed by the first video-
processing tool, the second tool assumes that the AVC device correctly classified most vehicles, 
meaning that all vehicles have been classified and a user is merely correcting errors.   
 
2.4.2.3 The Graphical User Interface (GUI) 

Once Validate.m has loaded the data file, a graphical user interface (GUI) is initiated and data is 
displayed one record at a time, as shown in Figure 20. 
 

 
Figure 20  - GUI for Per Vehicle Data Validation 

 
The program GUI displays a frame of the primary video in one area and a frame from the 
secondary video in another. Given that there a secondary video is not available, the text “second 
camera angle not available” is displayed in lieu of the frame. Boxes next to each frame can be 
checked to indicate in which video the vehicle appears. In some instances, a vehicle is visible in 
only one video (e.g. when a larger vehicle blocks a smaller vehicle from view). A slider below 
the image can be adjusted to indicate which frame is under review in case the vehicle is either 
difficult to see or out of view due to an error in frame number. Notably, frame number 
calculations are not always accurate since the AVC timing resolution is one second and each 
second is populated with 30 frames. The lane and class of the vehicle are displayed under the 
slider, along with options to change either value when an error is identified. If for some reason a 
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vehicle appears twice, an option to skip the second occurrence is provided. Likewise, if a vehicle 
is observed in the frame but was not counted by the AVC device, an option to add the vehicle to 
the records is provided. The latter instance commonly occurs when two vehicles are counted as 
one due to proximity. In the event that the user makes a mistake, the undo button allows previous 
actions to be corrected. Instructions for use are printed at the bottom of the GUI. User progress is 
displayed in the bottom right corner of the window, informing the user of how many records 
must be validated. 
 
Additional GUI features permit user comments or tags with custom markers. This option useful 
when studying common types of errors or discovering rare occurrence. The comment button 
enables a user to note details about a record; the custom markers enables the user to group types 
of errors. For example, a user can tag all class 3 vehicles misclassified as class 5 with a “1” for 
easier identification at a later time. 
 
As the user continues validating one record at a time, two values are printed to the Matlab 
command line, namely readCursor and printCursor. The readCursor value specifies the row in 
the data file from which the program is reading; the printCursor represents the row in which the 
program is printing in the output file. These values allow the user to quit the program and resume 
at the same point at a later time. When Validate.m is launched, the user will be prompted to 
indicate the last printed values for readCursor and printCursor. These values enable the user to 
continue classification from the previous session. readCursor and printCursor values continually 
increase as the user validates data until the end of the file is reached. When this occurs, the 
program closes the GUI and notifies the user that the data has been validated. 
 
2.4.2.4 The Output 

Each time the user presses ENTER after validating a record displayed in the GUI, Validate.m 
writes data in a new row of the output file. The output file contains all data from the original per 
vehicle data file, plus additional information. The first four columns in the output file contain file 
paths and links to images obtained from videos during validation. A column titled “Used?” 
contains a 1 and/or 2 to denote whether the vehicle appeared in the primary or secondary video. 
“Array” contains the correct lane number for each vehicle, while “Original Array” contains lane 
number recorded prior to validation. It can be assumed that when the numbers are identical, no 
change has been made by the user. The same principal applies to “Class” and “Original Class.” 
“Error type” is a column containing a 1 for inaccurate classification, a 2 for inaccurate lane, or a 
3 if both class and lane were inaccurate. Columns titled “Markers” and “Comments” contain 
marker numbers and comments added by the user. These cells are left empty if the user does not 
add information. 
 
As mentioned previously, the value of printCursor enables the program to resume the validation 
process without overwriting the output file. The program uses printCursor to append additional 
data to the end of the file instead of creating new output file, meaning that for each input file 
under validation, one output file is created. Output file can be used to study classification errors. 
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2.5 Video Tools Summary 

The second video-processing tool was unlike the first in both purpose and method. The first tool 
was designed to automate the process of vehicle classification in a video to provide ground-truth 
data for studying classification accuracy of an AVC equipment. The second tool was designed to 
identify specific errors made by the AVC device and to allow manual validation for each vehicle 
classification. This tool takes advantage of additional individual vehicle data gathered for 
quickly sorting through videos and requiring only a yes or no answer to a question about each 
classification.  
 
One drawback of the validation tool is that vehicles not counted by the AVC device are typically 
hidden from the user. In this case, the user will only be shown frames containing vehicles 
counted by the AVC device; other frame will be skipped. Since the purpose of the tool is 
identifying classification errors (as opposed to manually classifying each vehicle) this oversight 
is not a problem. If the validation tool is used to manually classify all vehicles appearing in a 
video, some vehicles would be missed if the AVC device failed to count them. 
 
The validation tool was used to identify common classification errors and to improve the 
algorithm used by the AVC device. Since the program is not intended to sort through and process 
each frame of the video, the time required to validate AVC devise per-vehicle data is 
significantly reduced when compared with previous methods. 
 
Although the developed video-processing tool was efficient and time saving, its accuracy was 
limited to 94-98% in best cases. Therefore, the PI has decided to manually process the video 
recordings for determining vehicle classification. This process was time consuming but its 
accuracy was guaranteed. The accuracy study and its results presented in Chapter 3 and 4 were 
obtained by manually processing the video recordings. 
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3 Chapter III: The study of Classification Accuracy 

To investigate classification accuracy of ODOT AVC/WIM sites, several on-site deployments 
were made to record videos capturing traffic flow as vehicles traveled over site sensors. This 
chapter presents the analysis and results of vehicle classification accuracy based on one-minute 
time binned ADR data. This chapter also presents analyses performed in project Phase I (year 
one) during which time the research team did not have the tools or ability to record per vehicle 
(PVR) data. In Phase II, PEEK Traffic provided the research team the mechanism to collect PVR 
data. These analyses and results are presented in Chapter 4, which also provides an accuracy 
study of the ODOT classification algorithm developed and provided by Mr. Daryl Johnson. This 
scheme is named “ODOT Scheme F”. 

3.1 Classification Errors using 1 minute bins: 

After ground-truth data was obtained, a comparison with the classification device output was 
completed. The following factors were investigated. 

1) General distribution of vehicle classes during field-test periods is obtained by both the 
classification device and VVT for each lane of the site under inspection, and then for 
distribution of vehicles traveling in the same direction on all lanes combined. Distribution 
comparison allows visual site-specific observations. 

2) Error per class is calculated using equation (1). The error reported represents classification 
errors occurring at each site: a) Mis-detection when VVT records a vehicle and ADR does 
not; b) False-detection when ADR records a vehicle and VVT does not show the vehicle; or c) 
combination of both mis-detection and false-detection. 

                                           ( )
( )

min ,
1 %

max ,
x y

Er
x y

 
= −  
 

,                                                      (1) 

where 𝑥𝑥 represents the ADR count, and y represents the VVT count. 
A total of seven AVC field-test deployments were carried. Deployment information is shown in 
Table 3.  

Date Site Name Start Time Stop Time Observation 
Time 

Labels of Lanes 
Observed 

6/10/2013 AVC19 16:30:00 17:45:00 1:15:00 6 
6/13/2013 AVC10 13:17:00 14:48:00 1:31:00 4,5,6 
6/21/2013 AVC18 16:37:00 17:39:00 1:02:00 1,2,3 
7/11/2013 AVC24 17:18:00 18:22:00 1:04:00 5,6,7,8 
7/11/2013 AVC47 12:59:00 14:23:00 1:24:00 1,2 
8/16/2013 AVC19 8:26:00 9:27:00 1:01:00 6 
8/16/2013 AVC19 11:19:00 13:16:00 1:57:00 6 

Table 3  - Deployments Summary 
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Test site selection was not random; instead they were carefully chosen to provide a wide 
spectrum of vehicle traffic and flow characteristics at various locations. Some sites are located 
on rural 2-lane highways; others are located on major highways near Oklahoma City or Tulsa. 

 

3.2 Deployments and Data Collection: 

The following sections provide an extensive analysis of each deployment. 

3.2.1 AVC19 Deployment 

AVC19 is located on highway I-44 in Tulsa. ADR 2000 device is used for automatic vehicle 
classification using loop-axle-loop configuration. This site was visited twice: one visit was on 6-
10-2013; another on 8-16-2013. Vehicle traffic on lane 6 was observed during both visits. 
Deployment on 6-10-2013 commenced at 16:30:00 and ended at 17:45:00. A total of 1:15:00 
video recording data were captured and processed. Results are presented in Table 4. Figure 21 
shows a comparison of vehicle classification distribution during the deployment period. 

A repeat deployment on AVC19 occurred on 8-16-2013 and aimed at capturing morning 
congestion and noon-to-afternoon traffic flow. Two separate periods were recorded and studied: 
period 1 from 8:26:00 to 9:27:00 and period 2 from 11:19:00 to 13:16:00. 

 

Class ADR 
Count 

Video 
Count 

Class 
Error 

1 2 8 75% 
2 256 332 23% 
3 90 150 40% 
4 1 0 100% 
5 15 10 33% 
6 4 8 50% 
7 0 3 100% 
8 14 0 100% 
9 43 57 25% 
10 1 1 0% 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 0 - 

Sum 426 569  

Table 4  - AVC19 / 6-10-2013 deployment 
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Figure 21   - Classes Distribution for AVC19 / 6-10-2013 

Table 5 provides results for observation period 1. An increased number of class 5 vehicles was 
recorded by ADR. The sum of class 2 and class 3 vehicles was less than that recorded by video 
data, suggesting that class 2 and class 3 vehicles are wrongly classified as class 5 by the ADR 
device. The sum of all detected vehicles for the ADR device is larger than that of the video-based 
system, which suggests that the ADR device is segmenting several vehicles and then counting 
them as separate vehicles. Figure 22 shows a comparison of vehicle classification distribution for 
test observation period 1. 
 

Class ADR 
Count 

Video 
Count Class Error 

1 1 0 100% 
2 104 175 41% 
3 134 112 16% 
4 6 2 67% 
5 76 20 74% 
6 12 11 8% 
7 0 0 - 
8 15 4 73% 
9 34 36 6% 
10 0 0 - 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 0 - 

Sum 382 360  
Table 5  - AVC19 / 8-16-2013 deployment / Period 1 
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Table 5 shows classification errors occurred for classes 1, 2, 3 and 4. Moreover, a larger 
percentage of errors was recorded for classes 5 and 8 in particular. 

 
Figure 22  - Vehicle Classification Distribution for AVC19 / 8-16-2013 / Period 1 

Observation period 2 included more misclassifications when compared to those in period 1, as 
shown in Table 6. ADR device generated larger counts for almost all vehicle classes. Figure 23 
shows a comparison of vehicle classification distribution for this test period. 
 

 
Figure 23  - Vehicle Classification Distribution for AVC19 / 8-16-2013 / Period 2 
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Class ADR 
Count 

Video 
Count Error 

1 7 5 29% 
2 427 388 9% 
3 221 222 0% 
4 9 0 100% 
5 49 28 43% 
6 22 25 12% 
7 0 2 100% 
8 29 5 83% 
9 87 85 2% 
10 3 1 67% 
11 1 1 0% 
12 1 1 0% 
13 0 1 100% 
14 0 0 - 
15 0 0 - 

Sum 856 764  

Table 6  - AVC19 / 8-16-2013 deployment / Period 2 

3.2.2 AVC10 Deployment 

AVC10 is located on highway 169 in Tulsa. ADR device is used for automatic vehicle 
classification implementing the same loop-axle-loop configuration. The site was visited on 6-13-
2013. Vehicle traffic flow on lanes 4, 5, and 6 were observed. Deployment commenced at 
13:17:00 and ended at 14:48:00. A total of 1:31:00 video data recording was captured and 
processed. The results are shown in Tables 7, 8 and 9. The ADR device was set to collect 
classification data in one-minute bins that were later accumulated. 

As previously observed, the ADR device wrong classified class 2 and 3 vehicles as class 5. 
When comparing one-minute bins collected by the ADR device to video records, a high 
percentage of errors was observed for nearly all vehicle classes. Similar to AVC19, AVC 10 
exhibited high error rates in classes 4, 5 and 8. In addition, class 7 had two mis-detections that 
amplified the error reported for this class substantially when compared to the previous site. 

Figures 24, 25, and 26 show a comparison of vehicle classification distribution during the test 
period. 
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Class ADR 
Count 

Video 
Count Class Error 

1 13 13 0% 
2 773 753 3% 
3 264 269 2% 
4 1 0 100% 
5 28 6 79% 
6 6 8 25% 
7 0 1 100% 
8 2 0 100% 
9 12 10 17% 
10 1 0 100% 
11 1 1 0% 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 0 - 

Sum 1101 1061  

Table 7  - AVC10 / 6-13-2013 deployment – Lane 4 

 

 

Class ADR 
Count 

Video 
Count Error 

1 16 10 38% 
2 799 871 8% 
3 436 398 9% 
4 14 3 79% 
5 76 15 80% 
6 22 32 31% 
7 2 4 50% 
8 13 2 85% 
9 66 70 6% 
10 2 2 0% 
11 1 1 0% 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 0 - 

Sum 1447 1408  

Table 8  - AVC10 / 6-13-2013 deployment – Lane 5 
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Class ADR 
Count 

Video 
Count Error 

1 13 12 8% 
2 317 304 4% 
3 195 218 11% 
4 37 1 97% 
5 37 20 46% 
6 82 117 30% 
7 3 3 0% 
8 15 6 60% 
9 104 104 0% 
10 3 2 33% 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 1 100% 

Sum 806 788  

Table 9  - AVC10 / 6-13-2013 deployment – Lane 6 

 

Figure 24  - Vehicle Classification Distribution for AVC10 / 6-13-2013 / Lane 4 
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Figure 25 - Vehicle Classification Distribution for AVC10 / 6-13-2013 / Lane 5 

 

 

Figure 26 - Vehicle Classification Distribution for AVC10 / 6-13-2013 / Lane 6 
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3.2.3 AVC18 Deployment 

AVC18 is located on highway 64 west of Tulsa. The ADR device was used for automatic vehicle 
classification. This site was visited on 6-21-2013. Traffic flows on lanes 1, 2, and 3 were 
observed. Deployment commenced at 16:37:00 and ended at 17:39:00. A total of 1:02:00 video 
data recording was captured and processed to obtain results presented in Tables 10, 11, and 12. 
ADR device was set to gather classification data in one-minute bins that were later accumulated. 

 

Class ADR 
Count 

Video 
Count Error 

1 1 5 80% 
2 564 553 2% 
3 183 193 5% 
4 1 0 100% 
5 17 5 71% 
6 2 3 33% 
7 0 0 - 
8 5 1 80% 
9 12 12 0% 
10 1 0 100% 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 0 - 

Sum 786 772  

Table 10  - AVC18 / 6-21-2013 deployment – Lane 1 

Once more, errors were observed in classes 4, 5, 8, and 10, in particular. In the case of class 10, a 
single false-detection amplified the error percentage substantially when compared with the error 
rate reported in previous site field-testing. 
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Class ADR 
Count 

Video 
Count Error 

1 3 10 70% 
2 848 825 3% 
3 259 285 9% 
4 1 1 0% 
5 27 4 85% 
6 3 4 25% 
7 0 0 - 
8 5 1 80% 
9 26 28 7% 
10 2 1 50% 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 1 100% 

Sum 1174 1160  

Table 11  - AVC18 / 6-21-2013 deployment – Lane 2 

Class ADR 
Count 

Video 
Count Error 

1 1 18 94% 
2 747 697 7% 
3 239 259 8% 
4 1 0 100% 
5 22 1 95% 
6 0 1 100% 
7 1 1 0% 
8 4 0 100% 
9 5 6 17% 
10 0 0 - 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 0 - 

Sum 1020 983  

Table 12  - AVC18 / 6-21-2013 deployment – Lane 3 

Figure 27, Figure 28, and Figure 29 show a comparison of vehicle classification distribution for 
this test period. 
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Figure 27  - Vehicle Classification Distribution for AVC18 / 6-21-2013 / Lane 1 

 
Figure 28  - Vehicle Classification Distribution for AVC18 / 6-21-2013 / Lane 2 
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Figure 29  - Vehicle Classification Distribution for AVC18 / 6-21-2013 / Lane 3 

3.2.4 AVC24 Deployment 

AVC24 is located on highway 77 in Oklahoma City. This site was visited on 7-11-2013. Traffic 
flow on lanes 5, 6, 7, and 8 were observed. Deployment commenced at 17:18:00 and ended at 
18:22:00. A total of 1:04:00 video data recording was captured and processed. Results are shown 
in Tables 13, 14, 15, and 16.  

Class ADR 
Count 

Video 
Count 

Class 
Error 

1 3 4 25% 
2 1056 1049 1% 
3 258 249 3% 
4 1 1 0% 
5 25 1 96% 
6 0 0 - 
7 0 0 - 
8 2 1 50% 
9 1 1 0% 
10 0 0 - 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 0 - 

Sum 1346 1306  

Table 13  - AVC24 / 7-11-2013 deployment – Lane 5 
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Class ADR 
Count 

Video 
Count Class Error 

1 1 0 100% 
2 1282 1272 1% 
3 276 272 1% 
4 0 1 100% 
5 17 3 82% 
6 3 3 0% 
7 0 0 - 
8 3 1 67% 
9 3 3 0% 
10 0 0 - 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 0 - 

Sum 1585 1555  

Table 14  - AVC24 / 7-11-2013 deployment – Lane 6 

Class ADR 
Count 

Video 
Count Class Error 

1 0 4 100% 
2 1285 1263 2% 
3 257 272 6% 
4 2 0 100% 
5 18 7 61% 
6 0 0 - 
7 0 0 - 
8 9 4 56% 
9 8 8 0% 
10 0 0 - 
11 0 0 - 
12 0 0 - 
13 0 1 100% 
14 0 0 - 
15 1 0 100% 

Sum 1580 1559  

Table 15  - AVC24 / 7-11-2013 deployment – Lane 7 
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Class ADR 
Count 

Video 
Count Class Error 

1 1 1 0% 
2 676 660 2% 
3 136 139 2% 
4 1 0 100% 
5 13 5 62% 
6 0 0 - 
7 0 0 - 
8 0 0 - 
9 2 2 0% 
10 0 0 - 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 0 - 

Sum 829 807  

Table 16 - AVC24 / 7-11-2013 deployment – Lane 8 

The same misclassification observations made during past field-testing sites occurred during this 
deployment, as well. Class 5 vehicles were detected as class 2 and 3. Classes 4 and 8 also had 
high classification errors. Figures 30, 31, 32, and 33 show a comparison of vehicle classification 
distribution for this test deployment. 
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Figure 30  - Vehicle Classification Distribution for AVC24 / 7-11-2013 / Lane 5 

 
Figure 31 - Vehicle Classification Distribution for AVC24 / 7-11-2013 / Lane 6 
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Figure 32 - Vehicle Classification Distribution for AVC24 / 7-11-2013 / Lane 7 

 

Figure 33 - Vehicle Classification Distribution for AVC24 / 7-11-2013 / Lane 8 
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3.2.5 AVC47 Deployment 

AVC47 is located on Route 66 outside Chandler. This site was visited on 7-11-2013. Traffic 
flows on lanes 1 and 2 were observed. Deployment commenced at 12:59:00 and ended at 
14:23:00. A total of 1:24:00 video data recording was captured and processed to generate results 
shown in Tables 17 and 18.  

Class ADR 
 

Video 
 

Class 
 1 5 3 40% 

2 111 116 4% 
3 67 91 26% 
4 4 0 100% 
5 28 3 89% 
6 3 5 40% 
7 1 1 0% 
8 6 1 83% 
9 11 14 21% 
10 0 0 - 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 0 - 

Sum 236 234  

Table 17 - AVC47 / 7-11-2013 deployment - Lane 1 

Class ADR 
 

Video 
 

Class 
 1 2 2 0% 

2 120 113 6% 
3 65 90 28% 
4 0 0 - 
5 17 3 82% 
6 6 6 0% 
7 1 1 0% 
8 1 0 100% 
9 4 4 0% 
10 0 0 - 
11 0 0 - 
12 0 0 - 
13 0 0 - 
14 0 0 - 
15 0 1 100% 

Sum 216 220  

Table 18 - AVC47 / 7-11-2013 deployment - Lane 2 
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Figures 34 and 35 show a comparison of vehicle classification distribution for this test period. 

 

Figure 34 - Vehicle Classification Distribution for AVC47 / 7-11-2013 / Lane 1 

 
Figure 35 - Vehicle Classification Distribution for AVC47 / 7-11-2013 / Lane 2 
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3.3 ODOT Scheme F Algorithm Evaluation 

A final step in Phase I of the classification accuracy study was implementing and testing a 
modified algorithm provided to us by Mr. Daryl Johnson at ODOT. Table 19 depicts the 
modified algorithm. Testing was conducted at AVC18 site. Traffic and ground-truth data was 
recorded between 14:43:00 to 15:14:00 using the FHWA-USA classification scheme; recording 
between 15:45:00 to 16:16:00 was performed after implementing ODOT scheme F. Data 
processing was performed on the one-minute binned data.  

The ODOT modified scheme added a missing class 5 entry to the original FHWA-USA scheme. 
The addition describing a single truck and one axle trailer resulted in a clear improvement in 
class 5 vehicle accuracy. 

 

Table 19  - Modified algorithm proposed by ODOT 

A comparison of mis-detection and false-detection errors between both algorithms is presented in 
Figures 36 and 37. Clearly, the ODOT modified scheme improves classification accuracy of 
class 5 vehicles. Errors were mainly attributed to the missing entry in FHWA-USA. A slight 
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increase in false-detections in classes 6 and 4 was also reported. Minor increases and decreases 
for errors concerning the remaining classes indicate that this algorithm requires further 
improvement. Hence, researching an optimal algorithm that combines all missing entries and 
optimizes axle spacing thresholds between various classes is necessary to improve overall system 
accuracy. 

 
Figure 36 - Miss detection error comparison between original scheme and modified algorithm 

 

Figure 37 - False-detection error comparison between original scheme and modified algorithm 
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4 Chapter IV: Development of an Improved Classification Scheme   

Upon completion of classification accuracy testing at ODOT AVC sites with ADR units serving 
as a means for vehicle classification and data recording, a noteworthy amount of errors were 
detected in reported classification results, particularly for classes 2, 3, 5 and 8. It was surmised 
that axle spacing thresholds in the original Scheme F algorithm currently employed by ODOT 
was not accurately differentiating among classes and not reflecting wheelbase vehicles traveling 
Oklahoma state roadways and highways. It was clear that improving AVC site accuracy required 
new and revised classification algorithm thresholds. Furthermore, the new thresholds must be 
optimized to recognize current vehicle counts per class. 

To determine optimal axle-spacing thresholds, the research team analyzed vehicle data collected 
during phase II (year two) of the project. With this information, the research team developed 
combinational patterns and statistical distributions of axle spacing per vehicle class (i.e., 
wheelbase distributions). Per vehicle data was required to build such distributions and was used 
to obtain more accurate estimates for adjusting and improving classification algorithm accuracy. 

To obtain PVR axle-spacing data and vehicle count, a firmware modification to the ADR unit 
was performed prior to each deployment. Instead of recording data as time/speed binned files 
(customary for ODOT recording stations), the revised PVR method generated a file containing a 
record for each passing vehicle, including its class, axle spacing(s), and speed, among others. A 
PVR recording method was tested and validated by comparing wheelbase lengths reported by the 
vehicle manufacturing blueprints and those reported by the ADR unit of several vehicles. Margin 
of error was 1%; site wheelbase calibration was not performed prior to inserting data in the 
database. 

4.1 Classification Errors using PVR data 

Because statistical distribution of cars populating different FWHA class categories has changed 
over the years, original thresholds are no longer accurately representing current vehicle classes. 
This serves as the main explanation as to why the FHWA has continually recorded an increase in 
the number of errors since the original system was first conceived. 

Large datasets of all class vehicle wheelbases were needed to obtain and build needed 
distributions. Data gathering was accomplished by recording PVR files from ADR units. In the 
first phase of data gathering for classification error analysis, data was obtained from ODOT 
AVC 18 and 19 sites, as shown in Table 20. Each site was monitored for approximately two 
hours on two separate visits. Video footage for three lanes per site was captured and processed. 
Obtained errors were categorized according to class.  

Classification errors were primarily categorized as mis-detection and false-detection  

1. Mis-detection errors occurred when a vehicle class was detected by the ground-truth 
system but not by the ADR classifier, resulting in a reduction of the total class vehicle 
count reported by the ADR unit. 
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2. False-detection errors occurred when a vehicle of a particular class was wrongfully 
classified in a different class, resulting in an increase of the total vehicle count of the 
wrong class reported by the ADR. 

Mis-detection and false-detection are related—either a one-to-one or one-to-many relationship. 
One-to-one relationship describes vehicles that were mis-detected in one class but falsely 
assigned to a different class. One-to-many describes a vehicle of a particular class that was split 
into more than one vehicles belonging to different classes. Occasionally a class 9 vehicle are 
falsely detected by the ADR unit as a class 6 and a class 2 vehicle. 

 
Statistic AVC18 AVC19 
Date 6/11/2014 6/19/2014 
Traffic  Free Flow Free Flow 
Time Begin 11:51:05 14:24:43 
Time end 14:00:44 16:26:19 
Time Duration 2:09:39 2:01:36 
No. of Lanes 3 3 
No. of vehicles 3248 4188 
Total Number of Cars in Database              7436  

Table 20  - Summary Statistics for the initial data acquisition ground-truth data sets 

Data acquisition at these two locations was accomplished using the original algorithm, namely 
FHWA-USA that follows scheme F. Although the algorithm name includes “FHWA,” it was not 
developed by the federal agency nor was it promoted or required by the FHWA. Nonetheless, the 
FHWA-USA classification scheme is used in the current configuration of all of ODOT ADR 
units.  Figure 36 illustrates the concept of error analysis and tree entry modification utilized 
while processing results reported in this chapter. 
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Figure 36  - Error analysis and tree entry modification 

 

To objectively quantify classification error in our study, the two aforementioned indicators 
were used. The mis-detecion error per class given in (2) is the percentage ratio of the difference 
between the ground-truth count and correctly classified vehicle count to the total number of 
ground-truth vehicle counts. The second indicator investigated was the false-detection error given 
in (3); it is the percentage ratio of the difference between the station reported total vehicle count 
and the correctly classified station vehicle count to the station reported total vehicle count. 

Ground truth  Station Correct %                                                      (2)
Ground truth

Misdetection − =  
 

 

 

Station reported  Station Correct %                                                    (3)
Station reported

Falsedetection  −
=  
 

 
4.2 Classification Error Summary based on Video Recordings 

This section discusses classification errors per class that have been found while analyzing the 
PVR AVC data collected by the ADR units, excluding errors resulting from hardware 
malfunction or errors related to the behavior of vehicles passing over detection loops (e.g., lane 
changing over sensors that could result in false-detection or misreading).  
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• CLASS 2  

Regarding class 2 errors, 98% of errors were the result of class 3 vehicles falsely classified as 
class 2, as depicted in Figure 37. This type of misclassification is the primary cause for class 2 
detection error and the result of overlap in vehicle wheelbases that pertain to both classes. 
Additionally, a small number of class 2 errors resulted from detection of only one axle from a 
class 5 vehicle or a high speed class 1 motorcycle as it crossed the sensor. The default 1-axle 
entry is class 2, which is the reason fast traveling motorcycles are sometimes classified as class 2 
vehicles. 

 
Figure 37 - Class 2 major overlapping case 

• CLASS 3  

Figure 38 depicts the four primary contributing reasons for class 3 errors. First is the result of 
class 3 vehicles classified as class 2 (i.e., mis-detection). Second, large class 3 trucks with 
wheelbase lengths overlapping those of class 5 are sometimes classified as class 5 trucks (i.e., 
false-detection). Third, three-axle class 3 trucks overlap with class 8 trucks, which causes class 3 
to be classified as class 8 upon sensor overpass (i.e., false-detection). Fourth, four-axle class 3 
trucks overlap with class 8, once again causing misclassification as a class 8 truck (i.e., false-
detection). 

 

 

 

 
Figure 38 - Class 3 major overlapping cases 

• CLASS 4  

The primary cause for class 4 errors was an overlap between small bus axle spacing and that of 
class 5 single unit trucks (SUTs), as depicted in Figure 39. In rare cases, the same was true for 
axel overlap with class 3 vehicles. Additionally, certain class 6 trucks overlapped with the axle 
space of class 4 trucks, again resulting in false-detection of a class 4 vehicle. 

 

Figure 39 - Class 4 major overlapping case 
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• CLASS 5  

Figure 40 depicts reasons for class 5 detection errors. Four major causes include: 1) smaller 6-
wheel trucks with wheelbase spacing overlapping with class 3; 2) three-axle class 5 vehicles 
overlapping with class 8; 3) four-axle class 5 vehicles overlapping with class 8; and 4) overlap 
with class 4 buses. 

 

  

 

 

Figure 40 - Class 5 major overlapping cases 

• CLASS 6  

Class 6 errors occurred because three-axle trucks sometimes overlapped with class 4 spacing of 
three-axle buses, as depicted in Figure 41. The result is a class 6 truck being classified as a class 
4 bus. In essence, this leads to false-detection of class 4 buses and mis-detection of class 6 
trucks. 

 
Figure 41 - Class 6 major overlapping case 

• CLASS 7  

Concerning class 7 trucks, a missing entry in the original tree resulted in class 7 SUTs with 5 
axles being classified as class 9 according to the default 5-axle entry, as depicted in Figure 42. 

 
Figure 42 - Class 7 error case 

• CLASS 8 

Although Class 8 did not have a significant number of mis-detection errors, the class had a large 
percentage of false-detections mainly due to errors discussed above regarding class 3 and class 5. 
For these reasons, class 8 is considered one of the most problematic for vehicle classification.  
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• CLASS 9  

Class 9 results were superior over other classes. Mis-detection was due to incorrect axle number 
detection. Class 9 vehicles were occasionally classified as class 6 and class 2 combinations, 
which is the default for a 0- or 1-axle entry, as depicted in Figure 43. 

 
Figure 43 - Class 9 error case 

• CLASS 10 

Specific entries depicted in Figure 44 were found to be missing from the original classification 
algorithm tree. Vehicles in class 10 were sometimes segmented into several smaller classes upon 
detection. 

 

 
Figure 44 - Class 10 missing entries  

• CLASS 11 
No errors were detected for class 11 in the initial phase of data collection and database 
construction.  

 
• CLASS 12 

Figure 45 depicts the missing entry, which caused class 12 vehicles to be misclassified as class 
10—the default 6-axle entry. 

 
Figure 45 - Class 12 missing entry classified as class 10 
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4.3 Methodology 

Statistical distribution of axle-spacing per class was performed to construct a new algorithm 
(axle spacing thresholds) that would predictably decrease the number of classification errors 
reported by the AVC classifier. PVR and video recordings were post processed. Axle spacing 
measured by the ADR unit was assigned to its correct vehicle classifications using the video 
recording. Distribution results statistically describe random variables (i.e., vehicle classes) 
corresponding to vehicles currently traveling on Oklahoma state roadways. Once distributions 
were developed and understood, the research team approximated them by Gaussian distribution 
models using least mean squared error for regression fitting and model error minimization. 
Finally, the research team implemented two different algorithms to find optimal thresholds axle-
spacing thresholds differentiating various classifications. One optimal algorithm considers 
weights proportional to vehicle counts while the other algorithm uses equal weights.  

Table 21 presents the combined results of the original FHWA-USA algorithm during all data 
acquisition deployments. Each row in the table shows the sum per class as recorded by the 
classification station (ADR unit), along with the correct classification for that sum distributed 
over all classes. The table serves as an instant indicator to aid in detecting classification errors 
for each particular class. 

Station 
sum Class Class 

1 
Class 

2 
Class 

3 
Class 

4 
Class 

5 
Class 

6 
Class 

7 
Class 

8 
Class 

9 
Class 

10 
Class 

11 
Class 

12 
Class 

13 

28 Class 1 21 2 3 0 0 0 0 0 2 0 0 0 0 

6011 Class 2 17 3396 2579 0 3 1 2 0 13 0 0 0 0 

2601 Class 3 0 30 2492 4 70 0 1 2 2 0 0 0 0 

102 Class 4 0 0 0 9 65 23 1 0 4 0 0 0 0 

536 Class 5 0 0 241 2 292 0 0 0 1 0 0 0 0 

157 Class 6 0 0 1 0 0 137 1 0 17 1 0 0 0 

17 Class 7 0 0 0 0 0 0 17 0 0 0 0 0 0 

218 Class 8 0 0 84 0 81 1 1 50 1 0 0 0 0 

798 Class 9 0 0 0 0 1 1 3 0 792 1 0 0 0 

26 Class 10 0 0 0 0 0 0 0 0 0 26 0 0 0 

4 Class 11 0 0 0 0 0 0 0 0 0 0 4 0 0 

12 Class 12 0 0 0 0 0 0 0 0 0 0 0 12 0 

3 Class 13 0 0 0 0 0 0 0 0 0 1 0 0 2 

4 Class 15 0 0 0 0 0 0 0 0 0 2 0 0 2 

Table 21 – Combined results of the original FHWA-USA algorithm during all data acquisition 
deployments 
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4.4 Axle Spacing Distribution Model 

Data gathering was accomplished by recording PVR files during data acquisition. Histograms of 
vehicle axle spacing were constructed to reflect collected ground-truth data. An emerging 
distribution pattern of wheelbase spacing for each class was observed, based on the premise that 
vehicle axle spacing differences could be approximated by a probability density function (PDF). 
Figure 46 shows the resulting histogram plot for the first-axle spacing data collected using a 
database of 20,099 vehicles. Binning was performed per axle spacing sample value.  

Some classes can be distinguished based on the number of axles regardless of overlap spacing, 
while others are affected by considerable overlap, which causes misclassification decisions. 
Similar histogram distribution derivations were conducted for consecutive axle spacing. 

Based on the histogram plots and in accordance with the central limit theorem and law of large 
numbers, normal distribution was chosen as the approximation model for the study detailed in 
this report. Hence, normal distribution fitting was performed for all classes using least mean 
squared error criteria, as depicted in Figure 47, according to the model formula: 

( )
( )2

2
x μ
2σ1f x,μ,σ  e   

σ 2π

− −

=                                              (5) 

1 2 nx x xμ
n

+ +…+
=                                                  (6) 

( )2σ E X μ = −                                                      (7) 

where 𝜇𝜇 is the mean and 𝜎𝜎 is the standard deviation. 
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Figure 46  - First axle spacing for classes 4 through 12 histogram plots 

 
Figure 47 - First axle spacing Gaussian PDF fitting 

 
Prior to calculating optimal thresholds, error weights proportional to vehicle count were assigned 
per class to ensure overall system error would not increase after new threshold values were set—
the reason being that not all classes had the same number of vehicle counts per unit of time. 
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Thus, equating weights amongst classes when calculating thresholds would result in decreased 
error for one particular class, but an overall increase in total system error. Weight assignment 
was based on vehicle count percentage attained from ground-truth data for each class. Classes 
were assigned one or more weights, each according to the number of distinguished, problematic, 
overlapping cases. Finally, an axle-spacing error minimization calculation was conducted to 
obtain optimal thresholds for separating classes with overlapping, thus problematic, spacing. 
Figure 48 shows PDFs plotted for all classes and all consecutive axle-spacing.  
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Figure 48 - Distribution models overlapped for all classes, axle spacing’s (1-2), (2-3), (3-4),(4-5) & (5-6). 
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4.5 Classification Algorithm Development 

In constructing the newly proposed algorithm (we call it OU-FHWA13 scheme), each 
classification error detected during the PVR data was addressed. In addition, all missing entries 
from the original algorithm were added to the newly proposed one, and all problematic 
thresholds were calibrated using the distribution database and cumulative distribution functions 
(CDFs). The following presents a per class analysis of the aforementioned process. 

CLASS 2  

The chief error for class 2 (as indicated earlier) was due to first-axle spacing overlap with class 3. 
Figure 49 illustrates the intersection of both PDFs for classes 2 and 3. Forty four percent of class 
2 vehicles, compared to 56% of class 3 vehicles, were counted in ground-truth video recorded 
data. In terms of weight calculation, 1.27 vehicles of class 2 equates to one vehicle of class 3. 
The optimal weighted threshold that minimizes inaccuracies for class 2 vehicles was found to be 
9.615 feet. Since the ADR unit allows only one decimal digit in the algorithm, the actual 
threshold was set to 9.6 feet.  

When no weights are used in the calculation, the optimal threshold becomes the one that equates 
the errors between class 2 and 3, regardless of vehicle class 2 or 3 counts. We call this threshold 
“equal error threshold.” Equal error threshold for class 2 vehicles 9.49 feet. Figure 50 plots the 
weighted and equal error thresholds.  

 

Figure 49 - Class 2, Class 3—1st  axle distribution 

 

CLASS 3 

Class 3 errors were segmented into four main types. The first was associated with class 2 
vehicles, as explained above. The remaining class 3 errors were categorized as follows. 

• 2-axle class 3 with class 5  

Errors with class 5 were due to overlap in first-axle spacing. Figure 50 illustrates the intersection 
of both class 3 and 5 1st axle spacing PDFs. Ninety one percent of class 3 vehicles, compared to 
9% of class 5 vehicles, were counted in the ground-truth video-recorded data. In terms of weight 
calculation, an error of 10.032 for class 5 equates to one of class 3. The optimal threshold that 
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minimizes inaccuracies for this class 3 error type was found to be 13.456 feet. (Threshold was 
set to 13.5 feet in the device, making 11 errors for class 5 equate to one for class 3 due to 
decimal point precision limitations of ADR equipment.) The equal error threshold was found to 
be 12.1 feet. Figure 50 plots the optimal weighted and equal error thresholds. 

 

Figure 49  - Class 3, Class 5 1st axle distribution 

The weighted threshold used to differentiate between class 3 and class 5 vehicles was 
subsequently used to improve classification accuracy of class 8 vehicles. If 1st axle spacing of a 
vehicle is below the threshold value of 13.5 feet (separating class 3 and 5), the vehicle in 
question becomes a candidate of either class 3 or 8 but not class 5, even if the 2nd and 3rd vehicle 
axle spacings overlap with class 5 vehicles. On the other hand, if the vehicle’s 1st axle spacing is 
above 13.5 feet, the vehicle becomes a candidate for class 5 or 8, but not 3, even if the 2nd and 3rd 
vehicle axle spacings overlap with class 3 vehicles. As a result, two 3-axle class 8 entries and 
three 4-axle class 8 entries were added to the algorithm to account for this argument and to 
enhance class 8 detection accuracy. This differed from the “one entry per number of axles” 
limitation in the original algorithm.  

• 3-axle Class 3 with Class 8 

Errors with class 8 were also caused by second-axle spacing overlap. Figure 51 shows the 
intersection of the 2nd axle spacing PDFs for both classes. Ninety five and three tenths percent of 
3-axle class 3 vehicles compared to 4.7% of 3-axle class 8 vehicles were counted in ground-truth 
video recording data. In terms of weight calculation, an error of 20.27 of class 8 equates to one 
of class 3. The weighted threshold that minimizes inaccuracies for this class 3 error type was set 
23.2 feet, making 20.8296 errors of class 5 equate to one of class 3. The equal error threshold 
was found to be 19.4 feet. Both thresholds are plotted in Figure 51. 
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Figure 50  - 3-axle Class 3, Class 8 2nd axle spacing distribution 

 
• 4-axle Class 3 with Class 8 

Four types of class 8 errors resulted from overlap in second-axle spacing. Figure 52 shows the 
intersection of class 3 and class 8 PDFs. Thirty five and four tenths percent of 4-axle class 3 
vehicles compared to 64.6% of 4-axle class 8 were counted in the ground-truth video recorded 
data. In terms of error weight calculations, a 1.82 error for class 3 equates to 1.0 of class 8. The 
weighted threshold was set to 29.4 feet, with class 3 error equaling 1.808 of class 8. Equal error 
threshold was determined to be 28.3 feet. 

 

Figure 51  - 4 axle Class 3, Class 8 2nd axle distribution 

CLASS 4 

Class 4 errors were one of the most problematic overlap errors of all classes. Figure 53 illustrates 
the 1st axle spacing between class 4, as well as the amount of overlap. The cause was the wide 
variety of large- and small-size buses. Notably, only a small sample of class 4 vehicles compared 
to other classes was obtained from ground-truth video dataset. Ninety seven and seven tenths 
percent of 2-axle class 5 compared to 2.3% of 2-axle class 4 vehicles were counted in the 
ground-truth data. In terms of error weigh calculations, an error of 42.12 for class 4 equated to 
one of class 5. The weighted threshold was set to 22.5 feet, with class 4 error of 42.02 equates  
one of class 5. Despite adjusting the threshold accordingly, it is clear that axle-spacing 
classification is not a viable solution for segregating class 4 and class 5.  
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Figure 52  - Class 4, Class 5 1st axle distribution 

 

 

CLASS 5 

Two types of class 5 errors were addressed while discussing class 3 and 4 errors above. The two 
remaining cases are errors that occur to class 8.  

• 3-axle Class 5 with Class 8 

Figure 54 shows the end axle spacing PDFs of 3-axle class 5 and 8. Ninety six and three tenths 
percent of 3-axle class 5 vehicles compared to 3.7% of 3-axle class 8 were counted in ground-
truth video recorded data. In terms of error weigh calculations, an error of 26.20 for class 8 
equates to one of class 5. The weighted threshold was set at 28, with class 8 error of 26.287 to 
one of class 3. The equal error threshold was found to be 21.8 feet. 

 

Figure 53  - 3-axle Class 5, Class 8 2nd axle distribution 

• 4-axle Class 5 to Class 8 

Figure 55 shows the 2nd axle spacing PDFs of 4-axle class 5 and 8. Seventy three and seven 
tenths percent of 4-axle class 5 vehicles compared to 26.3% of 4-axle class 8 were counted in 
ground-truth data. In terms of error weight calculation, an error of 2.8 for class 8 equates to one 
of class 5. The weighted threshold was set to 30.6, with a class 8 error of 2.8321 equates to one 
class 5. The equal error threshold was found to be 27.7 feet. 
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Figure 54  - 4-axle Class 5, Class 8 2nd axle distribution 

CLASS 6  

Figure 56 shows the intersection of the 3-axle class 4 and 6 PDFs. Ninety five and nine tenths 
percent of class 4 vehicles compared to 4.1% of class 6 were counted in ground-truth video 
recorded data. In terms of error weight calculations, an error of 23.39 for class 4 equates to one 
of class 6. The optimal weighted threshold is set to 25.5 feet with an error of 20.6 for class 4 to 
one of class 6. The equal error threshold was found to be 24.29 feet. 

 
Figure 55  - Class 4, Class 6 1st axle distribution 

CLASS 7  

A new missing entry was added for class 7; however, because there were no problematic 
overlapping cases, no distribution analysis was conducted. 

CLASS 8 

All problematic class 8 errors that were analyzed were relative to class 5 and class 3 vehicles. 
Errors appearing in relation to a class 9 truck being classified as a class 8 were caused by the 
miss detection of one axle from the class 9 truck. This case was found to occur in sparse cases at 
some sites and is not related to an error in the decision tree or algorithm. As such, this particular 
class 8 problem was neglected.  
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CLASS 9 

Class 9 errors were related to incorrect axle reporting by the classification equipment. First-axle 
spacing range was short for no apparent reason. Hence, the range was extended to accommodate 
larger class 9 trucks. 

CLASS 10, 11 AND 12. 

Specific missing entries for class 10 were added. Class 11 experienced no problems, and thus no 
modifications were made to the algorithm. One missing entry for class 12 was also added. 

4.6 Proposed Classification Algorithm and Scheme 

Table 22 presents the OU-FHWA13—newly constructed classification tree. The spacing’s set are 
in feet. Consecutive spacing’s are labeled (SP) followed by a number indicating which spacing is 
being referred to e.g. (SP1 means first axle spacing). The change type column shows what type 
of change was done in regards to the original classification tree. “M” refers to modification of 
the original entry. “A “refers to the addition of an entry which was not present in the original 
classification tree. Table 23 presents the original FHWA-USA scheme used by ODOT for 
comparison with the one developed by the OU research team. 
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Number of Axles Class Class Description Axle Spacing Change type

0 2 - (Any) -
1 2 - (Any) -
2 1 Motorcycle (SP1 0 - 6.0) -
2 2 Passenger Car (SP1 6.0 - 9.6) M
2 3 Four tire single unit (SP1 9.6 -13.5) M
2 5 Six tire single unit (SP1 13.5 - 22.5) M
2 4 Bus (SP1 22.5 - 40.0) M
2 2 2 axle Default entry (Any) -
3 2 Class 2 with single axle trailer (SP1 6.0 - 9.6)(SP2 6.0 - 30.0) M
3 3 Class 3 with single axle trailer (SP1 9.6 - 13.5)(SP2 6.0 - 23.2) M
3 5 Class 5 with single axle trailer (SP1 13.5 - 30)(SP2 6.0 - 28 ) A
3 6 Three axle single unit (SP1 6.0  - 25.5)(SP2  - 6.0) M
3 4 three axle Bus (SP1 25.5 - 40.0)(SP2  - 6.0) M
3 8 Three axle single Trailer (SP1 6.0 - 13.5)(SP2 23.2 - 50.0) M
3 8 Three axle single Trailer (SP1 13.5  - 15)(SP2 28 - 50.0) A
3 3 3 axle Default entry (Any)(Any) M
4 7 Four axle single unit (SP1 6.0 - 24.0)(SP2  - 6.0)(SP3  - 6.0) M
4 8 Four axle single trailer (SP1 6.0 - 18.0)(SP2  - 6.0)(SP3 15.0 - 50.0) A
4 8 Four axle single trailer (SP1 6.0 - 13.5)(SP2 27.3 - 50.0)(SP3  - 15.0) A
4 8 Four axle single trailer (SP1 13.5 - 18.0)(SP2  30.6 - 50.0)(SP3  - 15.0) A
4 2 Class 2 with two axle tailer (SP1 6.0 - 9.6)(SP2 6.0 - 30.0)(SP3  - 15.0) M
4 3 Class 3 with two axle tailer (SP1 9.6 - 13.5)(SP2 6.0 - 29.4)(SP3  - 15.0) M
4 5 Class 5 with two axle tailer (SP1 13.5 - 30)(SP2 6.0 - 30.6)(SP3  0 - 15.0) M
4 8 4 axle Default entry (Any)(Any)(Any) -
5 3 Class 3 with three axle trailer (SP1 9.6 - 13.5)(SP2 6.0 - 30.0)(SP3  - 6.0)(SP4  - 6.0) A
5 5 Class 5 with three axle trailer (SP1 13.5 - 30)(SP2 6.0 - 30.0)(SP3  0 - 6.0)(SP4  0 - 6.0) A
5 7 Five axle single unit (SP1 6.0 - 24.0)(SP2  - 6.0)(SP3  - 6.0)(SP4  - 6.0) A
5 9 Five axle single trailer (SP1 6.0 - 30.0)(SP2  - 6.0)(SP3 6.0 - 50.0)(SP4  - 20.0) M
5 9 Five axle single trailer (SP1 6.0 - 30.0)(SP2 30.0 - 50.0)(SP3  - 6.0)(SP4  - 6.0) A
5 11 Five axle multi trailer (SP1 6.0 - 25.0)(SP2 15.0 - 50.0)(SP3 6.0 - 20.0)(SP4 6.0 - 50.0) -
5 9 5 axle Default entry (Any)(Any)(Any)(Any) -
6 10 Six single axle trailer (SP1 6.0 - 25.0)(SP2  - 6.0) (SP2  - 6.0)(SP3 2.0 - 50.0)(SP4 2.0 - 6.0) A
6 10 Six single axle trailer (SP1 6.0 - 25.0)(SP2  - 6.0)(SP3 2.0 - 50.0)(SP4 2.0 - 6.0)(SP5 2.0 - 6.0) M
6 10 Six single axle trailer (SP1 6.0 - 25.0)(SP2 20.0 - 50.0)(SP3 2.0 - 6.0)(SP4 2.0 - 6.0)(SP5 2.0 - 6.0) A
6 12 Six axle multi trailer (SP1 6.0 - 25.0)(SP2  - 6.0)(SP3 15.0 - 50.0)(SP4 6.0 - 20.0)(SP5 6.0 - 50.0) M
6 12 Six axle multi trailer (SP1 6.0 - 25.0) (SP2 6.0 - 40.0)(SP3 6.0 - 20.0)(SP4 15.0 - 50.0)(SP5  - 6.0) A
6 10 Six single axle trailer (Any)(Any)(Any)(Any)(Any) -
7 10 Seven axle single trailer (SP1 6.0 - 23.0)(SP2  - 6.0)(SP3 2.0 - 50.0)(SP4 2.0 - 6.0)(SP5 2.0 - 6.0)(SP6 2.0 - 6.0) -
7 10 Seven axle single trailer (SP1 6.0 - 23.0)(SP2  - 6.0)(SP3 2.0 - 6.0)(SP4 2.0 - 50.0)(SP5 2.0 - 6.0)(SP6 2.0 - 6.0) A
7 13 Seven axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any) -
8 13 Eight axle mutli trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any) M
9 13 Nine axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any) M
10 13 Ten axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any) M
11 15 Eleven axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any) -
12 15 Twelve axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any) -
13 15 Thirteen axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any) -
14 15 Fourteen axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any) -

Table 22  - Newly Developed Classfication tree - OU-FHWA13 
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Table 23  - Original FHWA-USA classification tree 

4.6.1 Entry Comparison between FHWA-USA  and OU-FHWA13 
This section presents a class-by-class entry comparison between the newly developed OU-
FHWA13 and the original FHWA-USA algorithm being utilized by ODOT for classifying vehicles. 

• CLASS 2: 

Major error for class 2 was related to first-axle spacing overlap with class 3. A threshold 
separating class 2 from 3 was updated based on vehicle counts and the first axle-spacing PDF 
for both classes. This is shown in tables (24 - 27). 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 2 2 Passenger Car (SP1 6.0 - 10.2) 
OU_FHWA13 2 2 Passenger Car (SP1 6.0 - 9.6) 

Table 24 – Two axle class 2 entry comparison 

Number of Axles Class Class Description Axle Spacing

0 2 - (Any)
1 2 - (Any)
2 1 Motorcycle (SP1 0 - 6.0)
2 2 Passenger Car (SP1 6.0 - 10.2)
2 3 Four tire single unit (SP1 10.2 - 13.0)
2 5 Six tire single unit (SP1 13.0  - 20.0)
2 4 Bus (SP1 20.0 - 40.0)
2 2 2 axle Default entry (Any)
3 2 Class 2 with single axle trailer (SP1 6.0-10.2)(SP2 6.0-23.0)

3 3 Class 3 with single axle trailer (SP1 10.2-13.0)(SP2 6.0-23.0)

3 6 Three axle single unit (SP1 6.0-23.0)(SP2 -6.0)

3 4 three axle Bus (SP1 20.0-40.0)(SP2 -6.0)

3 8 Three axle single Trailer (SP1 6.0-17.0)(SP2 14.0-50.0)
3 2 3 axle Default entry (Any)(Any)
4 7 Four axle single unit (SP1 6.0-23.0)(SP2 -9.0)(SP3 -9.0)
4 8 Four axle single trailer (SP1 6.0-20.0)(SP2 -6.0)(SP3 6.0-50.0)
4 8 Four axle single trailer (SP1 6.0-17.0)(SP2 14.0-50.0)(SP3 3.2-6.0)
4 2 Class 2 with two axle tailer (SP1 6.0-10.2)(SP2 6.0-35.0)(SP3 -3.2)
4 3 Class 3 with two axle tailer (SP1 10.2-13.0)(SP2 6.0-35.0)(SP3 -3.2)
4 5 Class 5 with two axle tailer (SP1 13.0-20.0)(SP2 6.0-40.0)(SP3 -3.2)
4 8 4 axle Default entry (Any)(Any)(Any)
5 5 Class 5 with three axle trailer (SP1 13.0-20.0)(SP2 6.0-40.0)(SP3 -3.2)(SP4 -3.2)
5 9 Five axle single trailer (SP1 6.0-22.0)(SP2 -6.0)(SP3 6.0-50.0)(SP4 -23.0)
5 11 Five axle multi trailer (SP1 6.0-17.0)(SP2 11.0-25.0)(SP3 6.0-18.0)(SP4 11.0-25.0)
5 9 5 axle Default entry (Any)(Any)(Any)(Any)
6 10 Six single axle trailer (SP1 6.0-22.0)(SP2 -6.0)(SP3 -50.0)(SP4 -11.0)(SP5 -11.0)
6 12 Six axle multi trailer (SP1 6.0-22.0)(SP2 -6.0)(SP3 -25.0)(SP4 6.0-18.0)(SP5 11.0-25.0)
6 10 Six single axle trailer (Any)(Any)(Any)(Any)(Any)
7 10 Seven axle single trailer (SP1 6.0-22.0)(SP2 -6.0)(SP3 -50.0)(SP4 -13.0)(SP5 -12.0)(SP6 -12.0)
7 13 Seven axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)
8 15 Eight axle mutli trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)
9 15 Nine axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)
10 15 Ten axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)
11 15 Eleven axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)
12 15 Twelve axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)
13 15 Thirteen axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)
14 15 Fourteen axle multi trailer (Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)(Any)
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This first axle-spacing modification was subsequently updated in all instances of classes 2 and 
3 for higher axle vehicle entries. The second-axle spacing for three-axle class 2 entries 
(passenger vehicle with a single-axle trailer) was extended to 30ft. The original scheme limits it 
to 23ft. The third axle-spacing for four-axle class 2 entries (passenger vehicle with a two-axle 
trailer) was extended to 15ft  from 3.2ft with no errors. Both axle-spacing extensions resulted in 
no additional classification errors during evaluation. 
 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 3 2 Class 2 with 
single axle trailer 

(SP1 6.0-10.2)(SP2 6.0-23.0) 

OU_FHWA13 3 2 Class 2 with 
single axle trailer 

(SP1 6.0 - 9.6)(SP2 6.0 - 30.0) 

Table 25 – Three-axle class 2 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 4 2 Class 2 with two-
axle tailer 

(SP1 6.0-10.2)(SP2 6.0-35.0)(SP3 
-3.2) 

OU_FHWA13 4 2 Class 2 with two-
axle tailer 

(SP1 6.0 - 9.6)(SP2 6.0 - 
30.0)(SP3  - 15.0) 

Table 26 – Four-axle class 2 entry comparison 

One final modification was performed to remove the Three-axle default entry from class 2 to 
class 3. This default entry set in the original algorithm was a cause of much false-detection 
occurring in class 2 vehicles. The majority of three-axle entries were observed during data 
collection to be of class 3 vehicles and not class 2.  

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 3 2 3 axle Default entry (Any)(Any) 

OU_FHWA13 3 3 3 axle Default entry (Any)(Any) 

Table 27 – Default three axle entry comparison 
• CLASS 3: 

As indicated earlier in section 4.2, class 3 errors were mainly of 4 types. The first error was 
related to the overlap with class 2 vehicles and has been corrected in the class 2 entry. The 
second error was in related to first-axle spacing overlap with class 5. A threshold calculated 
using the developed probability density distributions was updated and also maintained 
throughout all subsequent higher axle-count entries in class 3. The third and fourth errors were 
related to class 8—three and four axle trucks. One additional entry was added to OU-FHWA13 
scheme to address a one instance of five-axle class 3 vehicle (a class 3 vehicle pulling three-
axle trailers) was observed in the database. The updated entries are shown in tables (28– 32) 
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Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 2 3 Four tire single 
unit 

(SP1 10.2 - 13.0) 

OU_FHWA13 2 3 Four tire single 
unit 

(SP1 9.6 -13.5) 

Table 28 – Two-axle class 3 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 3 3 Class 3 with 
single axle trailer 

(SP1 10.2-13.0)(SP2 6.0-23.0) 

OU_FHWA13 3 3 Class 3 with 
single axle trailer 

(SP1 9.6 - 13.5)(SP2 6.0 - 23.2) 

Table 29 – Three-axle class 3 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 4 3 Class 3 with two 
axle tailer 

(SP1 10.2-13.0)(SP2 6.0-
35.0)(SP3 -3.2) 

OU_FHWA13 4 3 Class 3 with two 
axle tailer 

(SP1 9.6 - 13.5)(SP2 6.0 - 
29.4)(SP3  - 15.0) 

Table 30 – Four-axle class 3 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA - - - - 

OU_FHWA13 5 3 Class 3 with 
three axle trailer 

(SP1 9.6 - 13.5)(SP2 6.0 - 
30.0)(SP3  - 6.0)(SP4  - 6.0) 

Table 31 – Five-axle class 3 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 3 2 3 axle Default 
entry 

(Any)(Any) 

OU_FHWA13 3 3 3 axle Default 
entry 

(Any)(Any) 

Table 32 – Three-axle default entry comparison 
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• CLASS 4: 

Class 4 errors were occurring due to first-axle spacing overlap with class 5, due to today’s short-
wheelbase buses traveling the roadways. The threshold in the original scheme was causing a 
mis-detection for class 5 and false-detection for class 4—class 5 with wheelbase of minimum 20 
is being wrong classify as class 4. As shown in table 21, the ADR classified 102 vehicles as 
class 4. The video recording actually shows that 9 vehicles were class 4; 65 vehicles were class 
5; 23 vehicles were class 6; one vehicle was class 7; four vehicles were class 9.   Furthermore, 
it was observed that the number of class 4 vehicles traveling the roadways is much less than 
those of class 5. Given that, the OU research team developed a new threshold—favoring class 
5—to optimize classification accuracy while minimizing errors with class 5. Entries for 
FHWA_USA and OU-FHWA13  are shown in tables (33 – 34).  

 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 2 4 Bus (SP1 20.0 - 40.0) 

OU_FHWA13 2 4 Bus (SP1 22.5 - 40.0) 

Table 33 – Two-axle class 4 entry comparison 

  
The same analysis and logic was applied to reduce class 4 errors with class 6.  
 

 Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 3 4 three axle Bus (SP1 20.0-40.0)(SP2 -6.0) 

OU_FHWA13 3 4 three axle Bus (SP1 25.5 - 40.0)(SP2  - 6.0) 

Table 34 – Three-axle class 4 entry comparison 
 

• CLASS 5: 

Class 5 classification errors were mainly of four types. The first error type was related to the 
first-axle spacing overlap with class 3. This was addressed in class 3 error analysis section. The 
second error type was addressed in class 4 error analysis section. The third and fourth error 
types were related to three- and four-axle class 8 trucks. The research team divided class 8 
vehicles into two groups based on first-axle spacing of class 8 vehicles. This division resulted in 
one group whose axle-spacing’s overlap with class 3 vehicles; and a second group whose axle 
spacing’s overlap with class 5 trucks. This class 8 vehicle segregation obtains far greater 
accuracy for these two types of class 5 errors. Effectively, the thresholds were set as previously 
described using the PDFs of both classes.  The updated entries are shown in tables (35 - 38). 
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Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 2 5 Six tire single 
unit 

(SP1 13.0  - 20.0) 

OU_FHWA13 2 5 Six tire single 
unit 

(SP1 13.5 - 22.5) 

Table 35 – Two-axle class 5 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 4 5 Class 5 with two 
axle trailer 

(SP1 13.0-20.0)(SP2 6.0-
40.0)(SP3 -3.2) 

OU_FHWA13 4 5 Class 5 with two 
axle trailer 

(SP1 13.5 - 30)(SP2 6.0 - 
30.6)(SP3  - 15.0) 

Table 36 – Four-axle class 5 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 5 5 Class 5 with 
three axle trailer 

(SP1 13.0-20.0)(SP2 6.0-
40.0)(SP3 -3.2)(SP4 -3.2) 

OU_FHWA13 5 5 Class 5 with 
three axle trailer 

(SP1 13.5 - 30)(SP2 6.0 - 
30.0)(SP3  0 - 6.0)(SP4 0  - 6.0) 

Table 37  - Five-axle class 5 entry comparison 

Finally, a missing entry in the original scheme was responsible for roughly 14% of class 5 
errors. These are three-axle class 5 vehicles. This entry was added in our developed OU-
FHWA13 scheme as follows. 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA - - - - 

OU_FHWA13 3 5 Class 5 with single axle trailer (SP1 13.5 - 30)(SP2 6.0 - 28 ) 

Table 38  - Three axle class 5 entry comparison 
• CLASS 6: 

Class 6 classification error was mainly related to axle-spacing overlap with class. It was 
addressed earlier. The scheme was updated as shown in Table 39. 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 3 6 Three axle single unit (SP1 6.0-23.0)(SP2 -6.0) 
OU_FHWA13 3 6 Three axle single unit (SP1 6.0  - 25.5)(SP2  - 6.0) 

Table 39 – Three axle class 6 entry comparison 
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• CLASS 7: 

Class 7 classification error was due to missing an entry for five-axle class 7 vehicles. The upper 
limit of first-axle spacing was extended to 24 from 23 to reflect axle-spacing distributions 
developed during data collection. The updated entries are shown in tables (40 -41) 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 4 7 Four axle single 
 

(SP1 6.0-23.0)(SP2 -9.0)(SP3 -
 

OU_FHWA13 
4 

 

 

7 Four axle single 
unit 

(SP1 6.0 - 24.0)(SP2  - 6.0)(SP3  
- 6.0) 

Table 40 – Four-axle class 7 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA Missing Missin
 

Missing Missing 
OU_FHWA1

3 5 7 Five axle single unit 
(SP1 6.0 - 24.0)(SP2  - 6.0)(SP3  - 
6.0)(SP4  - 6.0) 

Table 41 – Five-axle class 7 entry comparison 
 

• CLASS 8: 

Class 8 classification errors was related to axle spacing overlap with class 3 and class 5, as 
indicated early in this section in addition to entries that are deemed missing by the research 
team. The following presents all new entries and modification updates implemented in the OU-
FHWA13. The updated entries are shown in tables (42-47). 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 3 8 Three axle single 
Trailer 

(SP1 6.0-17.0)(SP2 14.0-50.0) 

OU_FHWA13 3 8 Three axle single 
Trailer 

(SP1 6.0 - 13.5)(SP2 23.2 - 50.0) 

Table 42 – Three-axle class 8 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA - - - - 

OU_FHWA13 3 8 Three axle single 
Trailer 

(SP1 13.5  - 15)(SP2 28 - 50.0) 

Table 43 – Three-axle class 8 new entry 
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Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 4 8 Four axle single 
trailer 

(SP1 6.0-17.0)(SP2 14.0-
50.0)(SP3 3.2-6.0) 

OU_FHWA13 4 8 Four axle single 
trailer 

(SP1 6.0 - 13.5)(SP2 27.3 - 
50.0)(SP3  - 15.0) 

Table 44 – Four-axle class 8 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA - - - - 

OU_FHWA13 4 8 Four axle single 
trailer 

(SP1 13.5 - 18.0)(SP2  30.6 - 
50.0)(SP3  - 15.0) 

Table 45 – Four-axle class 8 new entry  

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 4 8 Four axle single 
trailer 

(SP1 6.0-20.0)(SP2 -6.0)(SP3 
6.0-50.0) 

OU_FHWA13 4 8 Four axle single 
trailer 

(SP1 6.0 - 18.0)(SP2  - 6.0)(SP3 
15.0 - 50.0) 

Table 46 – Four-axle class 8 entry comparison 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 4 8 4 axle Default 
entry 

(Any)(Any)(Any) 

OU_FHWA13 4 8 4 axle Default 
entry 

(Any)(Any)(Any) 

Table 47 – Four-axle class 8 default entry comparison 
• CLASS 9: 
No class 9 classification errors were found related to the algorithm.  First-axle spacing was 
extended to 30ft from 20ft based on the first-axel PDF distribution developed during data 
collection. An entry was added to the scheme for class 9 vehicles with specific and unique axle 
spacing’s that were observed on the roadways. Note, the original default five-axle class 9 entry 
was able to successfully classify this truck. The updated scheme is shown in tables 48 and 50. 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 5 9 Five axle single 
trailer 

(SP1 6.0-22.0)(SP2 -6.0)(SP3 
6.0-50.0)(SP4 -23.0) 

OU_FHWA13 5 9 Five axle single 
trailer 

(SP1 6.0 - 30.0)(SP2  - 6.0)(SP3 
6.0 - 50.0)(SP4  - 20.0) 

Table 48 – Five-axle class 9 entry comparison 
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Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA - - - - 

OU_FHWA13 5 9 Five axle single 
trailer 

(SP1 6.0 - 30.0)(SP2 30.0 - 
50.0)(SP3  - 6.0)(SP4  - 6.0) 

Table 49 - Class 9 new entry  

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 5 9 4 axle Default 
entry 

(Any)(Any)(Any) 

OU_FHWA13 5 9 4 axle Default 
entry 

(Any)(Any)(Any) 

Table 50 – Five-axle class 9 default entry comparison 

• CLASS 10: 

Two new entries for class 10 were added for 6-axle and 7-axle class 10 trucks. It was observed 
that class 10 trucks were sometimes split into multiple smaller vehicles, despite the default six 
axle class entry that existed in the original scheme. The research team believes this might be 
the cause of similarity in axle spacing with smaller classes. The updated entries are shown in 
tables (51-52). 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA - - - - 

OU_FHWA13 6 10 Six single axle 
trailer 

(SP1 6.0 - 25.0)(SP2  - 6.0) (SP2  
- 6.0)(SP3 2.0 - 50.0)(SP4 2.0 - 

6.0) 

Table 51 – Six-axle class 10 new entry  

 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA - - - - 

OU_FHWA13 7 10 Seven axle 
single trailer 

(SP1 6.0 - 23.0)(SP2  - 6.0)(SP3 
2.0 - 6.0)(SP4 2.0 - 50.0)(SP5 2.0 

- 6.0)(SP6 2.0 - 6.0) 

Table 52 – Seven-axle class 10 new entry  

The first-axle spacing upper limit was extended to 25ft from 22ft to reflect class 10 PDF 
distribution developed during data collection, as shown in table 53. 
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Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 6 10 Six single axle 
trailer 

(SP1 6.0-22.0)(SP2.0 - 6.0)(SP3 0 -
50.0)(SP4 0  -11.0)(SP5 -11.0) 

OU_FHWA13 6 10 Six single axle 
trailer 

(SP1 6.0 - 25.0)(SP2.0 - 6.0)(SP3 2.0 
- 50.0)(SP4 2.0 - 6.0)(SP5 2.0 - 6.0) 

Table 53 – Six-axle class 10 entry comparison 
One additional entry was added in the OU-FHWA13 to describe a particular class 10 axle-
spacing of vehicle traveling on the roadways, although the vehicle was classified correctly using 
the FHWA-USA scheme. The entry is shown in table 54. 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA - - - - 

OU_FHWA13 6 10 Six single axle 
trailer 

(SP1 6.0 - 25.0)(SP2 20.0 - 50.0)(SP3 
2.0 - 6.0)(SP4 2.0 - 6.0)(SP5 2.0 - 6.0) 

Table 54 – Six-axle class 10 additional entry  
• CLASS 11: 

No class 11 errors were recorded during the study. Threshold updates were performed to reflect 
the axle-spacing of the class 11 vehicles. The number of class 11 recorded during the study 
was 4 which is not enough to construct a good class distributions. However, the team decided to 
make some algorithm adjustments based on the limited collected data. ODOT may elect to keep 
the original class 11 entries. The updated entry is shown in table 55. 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 5 11 Five axle multi 
trailer 

(SP1 6.0-17.0)(SP2 11.0-25.0)(SP3 
6.0-18.0)(SP4 11.0-25.0) 

OU_FHWA13 5 11 Five axle multi 
trailer 

(SP1 6.0 - 25.0)(SP2 15.0 - 
50.0)(SP3 6.0 - 20.0)(SP4 6.0 - 50.0) 

Table 55 – Five-axle class 11 entry comparison 
• CLASS 12: 

A missing entry for class 12 was added and slight calibration to the original class 12 entry in  
FHWA-USA was done. Entries are shown in tables 56 and 57. 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA - - - - 

OU_FHWA13 6 12 Six axle multi 
trailer 

(SP1 6.0 - 25.0) (SP2 6.0 - 40.0)(SP3 
6.0 - 20.0)(SP4 15.0 - 50.0)(SP5  - 6.0) 

Table 56 - Class 12 missing entry  

79 
       



 

Algorithm Number 
of Axles Class Class Description Axle Spacing 

FHWA-USA 6 12 Six axle multi 
trailer 

(SP1 6.0-22.0)(SP2 -6.0)(SP3 -
25.0)(SP4 6.0-18.0)(SP5 11.0-25.0) 

OU_FHWA13 6 12 Six axle multi 
trailer 

(SP1 6.0 - 25.0)(SP2  - 6.0)(SP3 15.0 - 
50.0)(SP4 6.0 - 20.0)(SP5 6.0 - 50.0) 

Table 57 - Class 12 entry comparison 
• CLASS 13: 

Vehicles with eight to ten axles were classified as class 13 as supposed to only seven-axle 
vehicles as defined in the FHWA-USA. 
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5 Chapter V: Field-Testing of the Developed Classification Algorithm 

Evaluation of the developed classification algorithm was performed after embedding the newly 
calculated optimal thresholds into the algorithm which will call it OU-FHWA13. Experimental 
field testing of the algorithm was conducted into three consecutive testing rounds, during which 
the algorithm was constantly refined according to the obtained results to improve its 
performance. Both mis-detection and false-detection indicators were used as measuring criteria 
for algorithm accuracy. 

5.1 Algorithm Evaluation and Improvement: First Round 

The field-testing was based on initial data acquisition in which PVR data was recorded and 
processed, leading to the construction of the initial distribution database. The algorithm, 
constructed according to the process presented earlier, was calibrated by adding missing entries 
and using distributions to optimize entry thresholds. Testing was performed on ODOT sites 
AVC07 and AVC31. Table 58 summarizes 1st round site testing statistics information. No 
analysis was performed on the data collected from AVC31 due to low count of site passing 
vehicles.  

 

Statistic AVC07  AVC31  
Date 6/25/2014 6/25/2014 6/24/2014 6/24/2014 
Traffic Free Flow Free Flow Free Flow Free Flow 
Time Begin 11:44:02 10:40:48 16:05:15 17:06:11 
Time end 12:45:14 11:43:26 17:03:35 18:07:19 
Time Duration 1:01:12 1:02:38 0:58:20 1:01:08 
No. of Lanes 3 3 3 3 
No. of vehicles 3406 3179 443 385 
Total Number of 
Cars in Database            14849   

Table 58  - Summary Statistics for round one field test 

 

The original FHWA-USA decision tree and our OU-FHWA13 were each run for one hour back-
to-back on the same site. Tables 59 and 60 present the numerical counts and analysis results 
obtained by the original and developed algorithms. Figures 57 and 58 summarize these results 
obtained for this round of field-testing. A substantial improvement for classes 8, 2, 3, 5, and 6 
were observed.  
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Class 
Video count 

(ground-
truth) 

ADR 
count 

Correct 
ADR count 

Mis-detection 
error 

False-detection 
error 

Class 1 6 9 6 0% 33% 
Class 2 952 1689 943 1% 44% 
Class 3 1645 815 797 52% 2% 
Class 4 7 37 2 71% 95% 
Class 5 182 198 106 42% 46% 
Class 6 37 42 35 5% 17% 
Class 7 4 3 3 25% 0% 
Class 8 16 85 16 0% 81% 
Class 9 300 271 271 10% 0% 

Class 10 5 5 5 0% 0% 
Class 11 4 4 4 0% 0% 
Class 12 6 6 6 0% 0% 
Class 13 0 0 0 0% 0% 

Table 59 – AVC07, original algorithm field test results for round one field test 

Class 
Video count 

(ground-
truth) 

ADR 
count 

Correct 
ADR count 

Mis-detection 
error 

False-detection 
error 

Class 1 19 15 13 32% 13% 
Class 2 1552 1487 1412 9% 5% 
Class 3 1360 1414 1250 8% 12% 
Class 4 5 9 0 100% 100% 
Class 5 169 177 118 30% 33% 
Class 6 38 37 37 3% 0% 
Class 7 1 1 1 0% 0% 
Class 8 9 13 9 0% 31% 
Class 9 255 255 255 0% 0% 

Class 10 7 7 7 0% 0% 
Class 11 4 4 4 0% 0% 
Class 12 2 2 2 0% 0% 
Class 13 0 0 0 0% 0% 

Table 60 – AVC07, new algorithm field test results for round one field test 
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Figure 56  - AVC 07: Mis-detection error comparison between the original and the developed algorithm  

 

 
Figure 57  - AVC 07: False-detection error comparison between the original and developed algorithm 
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5.2 Algorithm Evaluation and Improvement: Second Round 

Data (axle spacing and video recordings) collected during first round of testing was added to the 
distribution database. At this stage of the project, the distribution database was populated with 
14,849 vehicles. The developed algorithm was updated once again to improve its accuracy 
before a second round of testing commenced. Three site deployments and field-testing were 
conducted at ODOT AVC19. Table 61 shows related information for round 2 site deployment. 

Statistic  AVC19  
Date 7/15/2014 7/16/2014 7/16/2014 

Traffic Free Flow Free Flow Free Flow 
Time Begin 14:55:15 11:14:37 14:55:15 
Time end 16:01:36 12:20:00 16:01:36 

Time Duration 1:06:21 1:05:23 1:06:21 
No. of Lanes 3 3 3 

No. of vehicles 2087 1526 1637 
Total Number of Cars in 

Database  20099  

Table 61  - Summary Statistics for round two field test 

Tables 62 and 63 present the numerical vehicle counts and analysis results obtained from testing 
both algorithms (original and OU developed), while Figures 59 and 60 graphically illustrate 
errors results from the second round of field-testing. Similar to round 1 testing, further reduction 
in errors was confirmed for classes 5, 2, and 3. Although a minimal number of samples for class 
8 (and higher) were available during round 2 testing, results depicted fewer errors. Nevertheless, 
a slight shift of thresholds in the calibrating process indicated that more data was required for the 
distribution database. Hence, a third round of testing  was necessary. 

Class 
Video count 

(ground-
truth) 

ADR 
count 

Correct 
ADR count 

Mis-detection 
error 

False-detection 
error 

Class 1 3 2 2 33% 0% 
Class 2 453 803 449 1% 44% 
Class 3 709 333 315 56% 5% 
Class 4 5 12 5 0% 58% 
Class 5 78 67 39 50% 42% 
Class 6 10 11 10 0% 9% 
Class 7 0 0 0 0% 0% 
Class 8 6 36 6 0% 83% 
Class 9 172 172 172 0% 0% 

Class 10 2 2 2 0% 0% 
Class 11 0 0 0 0% 0% 
Class 12 6 6 6 0% 0% 
Class 13 1 1 1 0% 0% 

Table 62  - AVC19, original algorithm field test results for round two field test. 
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Class 
Video count 

(ground-
truth) 

ADR 
count 

Correct 
ADR count 

Mis-detection 
error 

False-detection 
error 

Class 1 15 8 6 60% 25% 
Class 2 1035 986 919 11% 7% 
Class 3 748 803 664 11% 17% 
Class 4 2 6 1 50% 83% 
Class 5 85 81 54 36% 33% 
Class 6 18 17 17 6% 0% 
Class 7 0 0 0 0% 0% 
Class 8 9 13 8 11% 38% 
Class 9 166 166 166 0% 0% 

Class 10 0 0 0 0% 0% 
Class 11 3 3 3 0% 0% 
Class 12 1 1 1 0% 0% 
Class 13 0 0 0 0% 0% 

Table 63  - AVC19, new algorithm field test results for round two field test 

 

Figure 59 - AVC19: Mis-detection error comparison between the original and the developed algorithm  
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Figure 58  -  AVC19: False-detection error comparison between the original and developed algorithm 

 

5.3 Algorithm Evaluation: Third and Final Round 

Additional algorithm accuracy testing was performed during the third and final round of data 
collection. At this stage, the database was populated with 20,099 vehicles—the sum of all 
ground-truth data obtained thus far. Final threshold value adjustments were performed using all 
vehicle data in the same manner as previously presented. Testing was performed for two hours 
on all six lanes at ODOT AVC18. Table 64 summarizes the deployment information. Testing 
was performed on two separate visits to AVC18. During the first visit, classification data was 
collected via the original FHWA-USA scheme used by ODOT. During the second visit, 
classification data was collected via OU-FHWA13 scheme developed by the OU research team. 
.Surprisingly, the total vehicles count and vehicle count per class were almost a match. Figure 61 
depicts class vehicle counts recorded for the algorithms during both deployments. 

Statistic                    AVC18  
Date 8/11/2014 8/05/2014 
Traffic  Free Flow Free Flow 
Time Begin 14:04:09 11:57:13 
Time end 16:16:18 14:09:24 
Time Duration 2:12:09 2:12:11 
No. of Lanes 6 6 
No. of vehicles 6169 5888 
Total Number of Cars in Database                     12057  

Table 64  - Summary Statistics for phase three field test 
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Figure 59  - Vehicle count comparison between new algorithm testing date and original algorithm testing 
date. 

Figure 61 shows ground-truth vehicle counts per class obtained during first (FHWA-USA 
testing) and second (OU-FHWA13 testing) deployment. Only class 4 through 15 counts are 
depicted in the figure. A matched number of vehicles per class in both deployments makes 
comparison easier. Tables 65 and 66 present results obtained during field-testing for both the 
original FHWA-USA algorithm and the developed OU-FHWA13 algorithm. The tables include 
ground-truth vehicle counts, ADR reported counts, ADR correctly classified counts, mis-
detection error, and false-detection error percentages per class. Figures 62 and 63 graphically 
depict results listed in Tables 31 and 32.  

Tables and figures demonstrate a sizable decrease of 45% was achieved for False-detection 
errors for class 8 vehicles. This improvement was primarily attributed to a reduction in the 
number of False-detections that occurred when class 3 or class 5 vehicles with trailers were 
traveling over the ADR sensors. Adding just a few entries to the decision tree and using optimal 
thresholds found via axle spacing distribution analyses resulted in significant improvement for 
class 8 error ratio.  

A substantial improvement for class 2 and class 3 was also evident in the results. The threshold 
separating these classes reflects actual wheelbase spacing distribution of vehicles currently 
traveling on roadways. Some transportation agencies combine class 2 and 3 all together to 
eliminate errors among these classes. This approach significantly reduces the errors among both 
class 2 and 3.  

Class 5 exhibited a noticeable reduction in errors mainly due to the reduction of false-detection 
errors occurring when large class 3 trucks were inadvertently classified as class 5 vehicles. Class 
6 also experienced a decrease in mis-detection relative to class 4 buses. The OU-FHWA13 
algorithm ignores short buses since it was found that very few travel Oklahoma state roadways 
and highways. Class 7 and class 10 vehicle classification improved as a result of inserting new 
entries that were missing in the original algorithm into the decision tree. 

Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 Class 15

8/5/2014 8/11/2014
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Class 
Video count 

(ground-
truth) 

ADR 
count 

Correct  
ADR count  

Mis-detection  
error 

False-detection 
error 

Class 1 29 17 13 55% 24% 
Class 2 2023 3519 2004 1% 43% 
Class 3 3026 1433 1380 54% 4% 
Class 4 3 53 2 33% 96% 
Class 5 252 271 147 42% 46% 
Class 6 116 104 92 21% 12% 
Class 7 22 14 14 36% 0% 
Class 8 30 97 28 7% 71% 
Class 9 359 355 349 3% 2% 

Class 10 22 19 19 14% 0% 
Class 11 0 0 0 0% 0% 
Class 12 0 0 0 0% 0% 
Class 13 1 2 1 0% 50% 
Class 15 0 4 2 0% 50% 

Table 65  - AVC18, original algorithm—FHWA-USA—final round field test results 

Class 
Ground-

truth video 
count 

Total counted 
by the ADR 

Correctly 
classified by 

the ADR 

Mis-detection 
error 

False-detection 
error 

Class 1 50 30 24 52% 20% 
Class 2 3101 2994 2825 9% 6% 
Class 3 2205 2349 2007 9% 15% 
Class 4 13 6 3 77% 50% 
Class 5 254 241 181 29% 25% 
Class 6 102 110 102 0% 7% 
Class 7 25 22 22 12% 0% 
Class 8 19 25 18 5% 28% 
Class 9 384 376 376 2% 0% 
Class 10 11 11 11 0% 0% 
Class 11 4 4 4 0% 0% 
Class 12 0 0 0 0% 0% 
Class 13 1 1 1 0% 0% 
Class 15 0 0 0 0% 0% 

Table 66  - AVC18, new algorithm—OU-FHWA13—final round field test results 

88 
       



 

 

Figure 60  - Mis-detection error comparison of field test results 

 

Figure 61  - False-detection error comparison of field test results 

We define a consolidated system error as the sum of the difference of actual vehicle number per 
class to the number of reported vehicles per class divided by the sum of the actual number of 
vehicles per class. This figure is considered an indicator of the number of system errors for a 
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particular vehicle type. Figure 64 indicates consolidated error results grouped by vehicle type. 
The new algorithm resulted in an error reduction of 15% for heavy trucks (MUTs classes 8 to 
13), primarily due to improved classification for class 8 vehicles. A reduction of 4% was 
observed for light trucks (SUTs in classes 5 to 7), mainly due to class 5 error reduction and a 
decrease of class 6 errors with class 4. Finally, error for passenger vehicles (classes 1 to 4) were 
reduced by 57%, primarily due to overlap error reduction between classes 2 and 3. 

 

Figure 62  - Consolidated system error by vehicle type 
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6 Chapter VII: Conclusion 

In light of the integral role vehicle classification plays in highway and road design, the study 
conducted and completed for several ODOT sites was invaluable. Evaluating system 
classification accuracy required the development of new tools to acquire and process ground-
truth data. Axle-based AVC classifiers reporting errors due to axle-spacing overlap between 
different classes were found to cause misclassification relative to spacing values programmed 
into the classification algorithm for each device. To alleviate this problem and decrease errors 
caused by overlap, a novel approach was proposed for constructing distribution databases that 
reflect actual ground-truth axle-spacing for vehicles currently traveling on Oklahoma roadways. 
The resulting database was used to build an improved algorithm that was tested adjacent to the 
one currently be deployed at ODOT sites. Results showed a 45% reduction in errors for class 8, 
which is the most problematic class of all 13 FHWA classes. In addition, the new approach 
resulted in substantial improvements in classes 5, 6, 2, and 3. Consolidated system error reported 
a 15% reduction in misclassified MUTs classes 8 to 13 (mainly due to classification 
improvements in class 8). Additionally, a 4% reduction was observed for SUTs in classes 5 to 7. 
A 50% error reduction was achieved for PVs, classes 1 to 4. Class 7 and class 10 errors were also 
reduced by adding entries not present in the original FWHA-USA algorithm that is currently 
utilized in ODOT systems.  
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