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fc foot-candles 10.76 lux lx 
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1.0 BACKGROUND 

 The Phase 1 (Item 2200) of this project was undertaken to document the field 

performance (rut, fatigue, roughness) of the instrumented pavement section located on 

the southbound lane of I-35 near Purcell, Oklahoma. A 1,000-ft test section was 

constructed and instrumented with earth pressure cells, asphalt strain gages, 

temperature probes, moisture sensors, and lateral position sensors to monitor 

performance under real traffic loading and environmental conditions. Real-time traffic 

data was collected by a weigh-in-motion (WIM) station, located about three-quarters of 

a mile south of the instrumented section. A weather station was installed to collect 

temperature, rainfall, wind and other weather data. The asphalt layers were under-

designed with the anticipation that the pavement section would experience fatigue 

failure within few years, allowing monitoring of performance throughout the service life 

of the pavement. The field data collection was focused on pavement performance data 

(e.g., distribution of stresses within the pavement structure, longitudinal and transverse 

strains at the bottom of the asphalt layer, rutting, cracking), environmental data (e.g., air 

temperature, variation of temperature within the pavement structure), and traffic data 

(e.g., axle load, position, speed). In addition, field evaluations were conducted quarterly 

including falling weight deflectometer (FWD) testing, rut measurements at six selected 

transverse sections, and crack mapping. Since the rut profile measured on the 

pavement surface results from rutting of different layers within the pavement structure, a 

decision was made by the Project Panel to conduct a forensic investigation of the 

relative contribution of each layer through full-depth trenching toward the end of the 

project. A need for predicting distresses (i.e., rutting, based on the site-specific data) 

using the Mechanistic Empirical Pavement Design Guide (MEPDG) software was 

expressed by the Oklahoma Department of Transportation (ODOT). Subsequent 

discussions between the Capital Programs Division and Division 3 personnel revealed 

that the agency did not have enough funds for the reconstruction. A follow-up meeting 

between the ODOT personnel and the OU team was held on September 12, 2012 to 

discuss the preferred options for this project in moving forward. It was noted that it might 

take between twelve to eighteen months to find resources for the reconstruction of the 
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test section. Consequently, it was decided to extend this project for two additional years 

as Phase 2 of the original project. It is to be noted that Phase 1 of this project has 

already been completed, and a final report has been submitted to ODOT (Solanki, 

2010).  

In Phase 2 of this project, the quarterly field testing (FWD, rut measurements, 

roughness measurements, and crack mapping) has been performed on a quarterly 

basis. Also, the weekly downloading of traffic data and data processing have been 

performed to allow updating of the rut prediction models developed in Phase 1. To 

assist the agency in the implementation of the MEPDG efficiently, site-specific (Level 1) 

input parameters for traffic, climate and materials were developed in this study. 

Furthermore, the rut prediction models in the MEPDG software were calibrated using 

the developed input parameters and measured rut depths from the test section. 

Laboratory tests (i.e., Hamburg rut, fatigue, and volumetric properties) were performed 

on the extracted samples from the test section. Moreover, to determine the contribution 

of different pavement layers to total rutting, a forensic investigation was performed by 

cutting full-depth trenches at three selected stations of the test section. This report 

contains the accomplishments of Phase 2.  

2.0 OVERVIEW OF WORK DONE 

2.1 Task 1: Weekly Downloading and Processing of Traffic Data 

 Continuous traffic data collected by the WIM station were downloaded weekly 

and were processed for the composition, axle loads and other features, as done 

throughout Phase 1. Sometime after May 15, 2014, the OU project team started 

encountering problems in connecting and downloading traffic data from the WIM station. 

The OU project team worked closely with the ODOT personnel to resolve the issue. On 

July 16, 2014 the funding agency notified the OU project team that the data collection 

system at the WIM station had gone out of order. ODOT’s technical personnel tried to 

fix the data collection equipment but were unable to make the necessary repairs. It was 

also notified that ODOT was not planning to replace the equipment since the project 

was nearing an end. Therefore, the continuous WIM data could be collected only 
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through May 15, 2014. However, pavement temperature data were collected monthly 

throughout the duration of Phase 2.   

2.2 Task 2: Quarterly Field Testing and Processing of Data 

2.2.1 Field Rut Measurements 

A total of eight field trips were conducted during the project period (Phase 2) to 

address pavement distresses. These included rutting, fatigue cracking, and surface 

roughness. During the field trip on October 28, 2013, a total of 20 cylindrical samples 

and six slab samples were extracted from the test section for laboratory testing. 

Trenching activities were performed in the last field trip for the project on October 7, 

2014.  During the field surveys, rut measurements were conducted at six selected 

stations, that included Station No. 144, 235, 319, 540, 738 and 900. Rut data were 

collected across the wheel paths at each station using a Face Dipstick® with 12-in. 

moon-foot spacing. The rut progression graphs for all the test sections are presented in 

Figure 1. Figure 1 shows six rut progression curves, each curve representing the rutting 

progression at a specific station. The first three points of each curve (pertaining to 

August 21, 2008, December 3, 2008 and January 8, 2009) present the highest rut depth 

measured with the straight edge/rut gauge combination method. The rest of the points 

on each curve (from May 19, 2009 to July 21, 2014) present the highest rut values of 

the two wheelpaths measured with the Face Dipstick®. On October 6, 2014, rut 

measurements were performed on only three stations targeted for the trenching 

activities: Station No. 235, 738 and 900. From Table 1, it can be seen that the rut depths 

data, collected during the project period (from October 2012 to October 2014), have 

generally increased for all stations. The increase in rutting varied between 0.010-in. to 

0.156-in. The highest recorded rut value is 0.868-in. (22.05-mm), recorded on October 

6, 2014 at Station No. 738. From these observations, in general, it can be concluded 

that the rut depths increased from October, 2012 through 2014, especially during 

warmer months. Field rut measurements show that all stations in the I-35 test section 

have undergone both primary rutting and secondary rutting. No tertiary rutting was 

observed at any station. Similar type of rutting behavior was observed at the AASHO 

road test (Finn. et al., 1977) and NCAT Test Track (Selvaraj, 2007). Finn et al. (1977) 
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and Selvaraj (2007) reported visible increase in rut depth values during summer and fall 

months, but not in winter months. Thus, the observations from the present study are in 

agreement with those from the AASHO road test and the NCAT studies. Further 

discussions of field rut test results are presented in Hossain (2010). 

2.2.2 Field Crack Mapping 

Crack mapping was performed for the entire test section during the quarterly field 

trips. For Station No. 144, 319, 540, 738 and 900, crack mapping was performed over a 

distance of 50-ft. each way (north and south) at each station, except Station No. 235. To 

eliminate overlapping of mapping area, crack mapping was performed at 41-ft. north 

and 34-ft. south of Station No. 235. Pavement cracks were observed on the test section 

during the field trip in July, 2014, for the first time in approximately 6 years of service life 

and after approximately 4.3-million ESAL of traffic loading. Some of the cracks were 

longitudinal while the others were transverse. Figure 2 shows some of the cracks and 

their approximate locations. All the cracks were located within approximately 4 feet from 

the starting point of the test section to approximately 132-ft. of the test section.  No 

visual cracks were observed elsewhere in the test section. To investigate whether the 

cracks on the test section are top-down or bottom-up or temperature cracks, it was 

decided to extract full-depth pavement core samples from the cracked locations. During 

the October, 2014 field trip, some cracked locations were marked on the pavement and 

full-depth samples were obtained using a core-rig (Figure 3). It was observed from the 

core samples that the cracks were only at the surface, not evident below the pavement 

surface (i.e., not a top-down or bottom-up crack). Therefore, one can conclude that the 

observed cracks may be either temperature cracks or very premature top-down cracks 

in nature.  

2.2.3 FWD Testing and Analysis 

A Dynatest model 8000 series (8002-057) type Falling Weight Deflectometer 

(FWD) was used in this study. The FWD testing was conducted at six stations located at 

an interval of approximately 100-ft. along the test section. FWD tests were conducted by 

following ASTM D4694 test methods (ASTM, 2009). For conducting FWD tests on the 

top of asphalt layer, an 11.8-in. diameter plate was used with seven deflection sensors 
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spaced at 8, 12, 24, 36, 48, and 72-in. from the center. The loading pattern included 

three seating drops plus one load drop from different heights in progressive order. The 

FWD testing was conducted on the top of the asphalt layer for four different loads (6, 9, 

12 and 15 kips). The collected data was analyzed for layer modulus values using a 

widely used software, MODULUS 6.0 (Liu, W. and Scullion, T., 2001). The asphalt 

modulus-temperature correlation is presented in Figure 4. The regression analysis of the 

back-calculated data from FWD testing yielded an exponential best-fit line of the form 

presented in Equation (1) with α1 = regression constant (8,849 ksi), α2 = regression 

constant (–0.035), and T = mid-depth temperature of the total asphalt layers, obtained 

from the temperature sensors (ºF).  

 𝐸 = 𝛼1
𝛼2𝑇

           (1) 

In general, Equation (1) is a good predictor (R2 = 0.82) of modulus value of 

asphalt at different temperatures. In Figure 4, the back-calculated modulus of asphalt-

layer and pavement temperature correlations are presented. As noted above, these 

modulus values were obtained from the FWD tests conducted on the test section. More 

than six years of data (from May, 2008 through July, 2014) are presented in this figure. 

Figure 5 represents the back-calculated asphalt-concrete modulus and pavement 

temperature correlations from the beginning of the I-35 (Phase 1) project to the 

beginning of Phase 2. From Figure 5, it can be observed that the α1 value for the best-fit 

line is 8,785-ksi and the α2 value is –0.035. Therefore, one can conclude that the test 

section’s stiffness did not change significantly over the two years of the I-35 (Phase 2) 

project (i.e., from May, 2012 to July, 2014).  

2.2.4 International Roughness Index (IRI) 

The IRI for the test section was evaluated using the Face Dipstick®. These data 

were collected at Station No. 319, spanning 50-ft. north and 50-ft. south and at three 

different locations, namely  inner wheel path, outer wheelpath and mid-lane. The mid-

lane IRI value is obtained from the test section for comparison purposes.  The IRI 

results are presented in graphical and tabular forms in Figure 6 and Table 2, respectively. 

Based on the graph in Figure 6, the average IRI value of the two wheelpaths at the 
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section started around 70s and increased almost continuously over time. The highest 

average IRI value observed on the test section was 154. In general, the IRI values 

increased with time, which means that the road surface was getting rougher with time, 

as expected. Based on the Federal Highway Administration standard (FHWA, 2013), 

the pavement at the test section is now considered in ‘mediocre’ condition (IRI value 

between 120 and 170). 

 2.3 Task 3: Updating Rut Prediction Models and Comparing Predicted and 

 Measured Ruts 

In this study, two different rut prediction models were developed from the traffic 

and environmental data obtained from the instrumented test section. One model was a 

Vertical Strain-based (VSB) model and the other was a Shear Strain-based (SSB) 

model. A commonly used multilayered linear elastic analysis software, WinJULEA, was 

used to predict strains induced by vehicular traffic on the test section. Approximately 

30.8-million axles have passed through the test section over the six-year period (from 

May, 2008 to July, 2014). During this period, a total of approximately 4.7-million ESAL 

(Equivalent Single Axle Load) was recorded on the test section. Rut measurements, 

made approximately every three months, were linearly interpolated to have a rut value 

for each hour of each day. As rutting was measured at six selected stations, each set of 

values were averaged to obtain one rutting value for that field trip. By relating the 

measured hourly rutting to the strains induced by vehicular traffic on the test section, the 

rut prediction model was developed by performing a nonlinear regression analysis using 

the least–square method. An Excel spreadsheet was used for this purpose. Detailed 

discussions on the methodology and development of rut prediction models are 

presented by Hossain (2013).    

2.3.1 Updated Vertical Strain-based (VSB) Model 

 The updated form of the VSB rut prediction model is given in Equation (2).  

 Ruti =  Ruti−1 + 9.11 × 10−07(Nsi
1.00×102εsi + Nti

4.15×102εti)   (2) 
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where: 

Ruti = Rut at time ‘i’ from field measurements,  

Ruti-1 = Rut at time ‘i-1’ from field measurements,  

εsi = Average hourly vertical strain from steering axles, 

εti = Average hourly vertical strain from tandem axles, 

Nsi = Total number of steering axle passes at time ‘i’, and 

Nti = Total number of tandem axle passes at time ‘i’. 

WinJULEA analyses showed that, for a particular vehicular load, the maximum 

vertical strain is experienced on the top of the aggregate base layer. So, vertical strain 

on the top of the aggregate base layer was used to develop the vertical strain-based rut 

prediction model. When rut was predicted using the developed VSB model [Equation 

(2)], the R2 value, based on the comparison between the predicted and the measured 

rut values, was found to be 0.78. Further, the positive coefficients for both traffic and 

vertical strains indicate that an increase in the number of axle passes and strain levels 

will increase rutting, as expected. Figure 7 shows the predicted rutting obtained from the 

VSB model and the measured average rutting of all stations, as a function of the 

cumulative number of axles.  

2.3.2 Updated Shear Strain-based (SSB) Model 

 The updated form of the SSB rut prediction model is given in Equation (3). 

 Ruti =  Ruti−1 + 8.85 × 10−07(Nsi
8.46×102γsi +  Nti

2.49×102γti)   (3) 

where: 

γsi = Average hourly shear strain from steering axles, and 

γti = Average hourly shear strain from tandem axles. 

The approach to compute shear strain was similar to the approach to compute 

vertical strain. However, the shear strain was computed at different depths in the HMA 

layer using WinJULEA. Depending upon the vehicle weight, the maximum shear strain 

was observed at the tire’s edge and at a depth of about 0.5-in. (12.7-mm) to 2-in. (51-

mm) below the pavement surface. When rut was predicted using the developed shear 
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strain-based model [Equation (3)], the R2 value, based on the predicted and measured 

rut values, was obtained as 0.72. Based on the R2 values, both regression models (VSB 

and SSB) are expected to predict rut at this site with a similar level of effectiveness. 

Further, the positive coefficients for both traffic and shear strains indicate that an 

increase in the number of axle passes and strain levels will increase the rutting, as 

expected. Figure 8 shows the predicted rutting from the shear strain-based model and 

the measured rutting from the test section as a function of increasing number of axles.   

2.4 Task 4:  Collecting Pavement Samples and Conducting Laboratory 

 Testing 

2.4.1 Extraction and Collection of Field Samples 

During the field trip on October 28, 2013, the OU project team, with the help of 

the ODOT personnel, extracted cylindrical and block samples from the pavement to 

conduct performance tests in the laboratory. A total of 20 full-death cylindrical core 

samples (approximately 6-in. in diameter and 7-in. in height) were obtained from the 

wheelpaths and mid-lane of the test section from 5 different stations. Samples were not 

obtained from the instrumented station (Station 319) to avoid potential damage to the 

instrumentation from the extraction activities. The cores were obtained using 6¼ inch 

O.D. diamond core barrel operated from a drill rig. Locations of the core and block 

samples are shown in Figure 9 and Figure 10. A total of 6 block samples were extracted 

from the shoulders of the test section from Station No. 540, 738 and 900. The block 

samples were obtained using saw-cutting machine. Figure 11 and (a)    

   (b) 

Figure 12 show the pavement sample extraction activities. 

2.4.2 Rut Tests on Field Samples 

Quarterly field rut measurements on the test section showed that out of the six 

stations, Station No. 738 consistently showed the highest rut while Station No. 900 

showed lowest rut. A total of 12 samples were obtained from these two stations: 4 from 

wheelpaths and 8 from middle of wheelpaths. Although, a total of four cylindrical core 

samples were obtained from the wheelpaths of these two stations (two samples each 
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from a station), it was decided that only the samples obtained from the middle of the 

wheelpaths would be tested for laboratory rutting susceptibility. It was hypothesized that 

the samples from the wheelpaths have already experienced significant rutting 

throughout the pavement life, whereas, the samples from the middle of the wheelpaths 

may not have experienced any rutting or much smaller rutting. Therefore, laboratory rut 

tests were conducted on samples obtained from the middle of the wheelpaths in these 

two stations. Full depth pavement cores were extracted from these locations, however, 

only the top S4 layer was tested for rutting in the Hamburg Wheel Tracking machine.  

2.4.2.1 Hamburg Wheel Tracking (HWT) Test 

As mentioned earlier, the core samples obtained from the field were 

approximately 7-in. in height, of which approximately 2-in. from the S4 layer (½-in. NMS 

Superpave mixture) and approximately 5-in. from the S3 layer (¾-in. NMS Superpave 

mixture). The S4 and S3 layers were visually marked on each core. Then the S4 and S3 

layers were separated using the saw cutting machine available in the Broce laboratory 

at OU. Then the S4 samples were tested for air voids using the OHD L-14 test methods 

(ODOT, 2014). The HWT tests were conducted following OHD L-55 test method 

(ODOT, 2014). Cylindrical specimens of 6-in. diameter and 2.36-in. height is required 

for testing in the HWT machine. As the S4 layers were approximately 2-in. in height, 

Plaster of Paris was used at the bottom of the extracted S4 cores to bridge the gap 

between the specimen and the HWT mold. Further, two specimens were cut from the 

side to match the HWT plastic mold dimensions, and were used as one set. Cores from 

Station No. 738 are marked as 11, 12, 13 and 14, whereas the cores from Station No. 

900 were marked as 17, 18, 19 and 20. For convenience, samples 11 and 12 constitute 

Set-1, samples 13 and 14 constitute Set-2, samples 17 and 18 constitute Set-3, and 

samples 19 and 20 constitute Set-4. The test procedure requires that the cylindrical 

samples be secured in the device, using plastic molds. During testing, the 1.85-in. wide 

wheel is tracked across a sample submerged in a water bath at 50±1°C temperature 

under 20,000 passes or until a rut depth of 20 mm. The load on the wheel is 158-lbs. 

(705-N). The average speed of the wheel is approximately 0.68-MPH (1.1-km/hour); 

and travels approximately 9.05-in. (230-mm) before reversing the direction. The device 
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operates at approximately 53±2 wheel passes/min. Rut depths were measured 

continuously with a LVDT. Figure 13 shows the HWT device used in this study.  

Figure 14 shows a representative set of samples from the HWT test. Figure 15 (a 

through d) shows graphical views of the maximum and minimum ruts observed for the 

four sets after the HWT tests. This can also be observed from Figure 15 that no moisture 

induced damage was evident for Set-1 and Set-2 samples, while Set-3 and Set-4 

samples exhibited some moisture induced damage (stripping). Detailed analyses of 

stripping are beyond the scope of this study.  

Table 3 presents a summary of the result from the HWT tests. It can be observed 

from the table that the maximum and minimum rut values from these tests were 4.2-mm 

and 1.5-mm, respectively. Set-2 showed the minimum rut, whereas Set-4 showed the 

maximum rut. The variations in maximum and minimum rut depths in the samples were 

not very significant. For example: there is only 0.2-mm variation in minimum rut depths 

and 0.8-mm variation in the maximum rut depths. Overall, it can be noted that the HWT 

test results show no significant difference in rut depths on the extracted samples from 

the test section. This should also be mentioned here that the rut tests were performed 

on extracted pavement samples which have experienced significant environmental 

exposure over the past six years and therefore have gone through significant aging. 

This could also explain the difference in rutting depths observed in the field versus the 

HWT rutting depths on the samples.  

2.4.3 Four Point Beam Fatigue Test 

 The block samples were extracted from the shoulder at Station No. 540, 738 and 

900, for laboratory beam fatigue tests. Two block samples were obtained from each 

location. The locations of block samples were marked on the pavement and cuts were 

made using a masonry saw. However, the extraction of block samples was tricky, as 

each block sample was approximately 20-in. long x 5-in. wide x 7-in. thick and weighed 

approximately 60 lbs. A brick tong was used to extract the blocks without any damage. 

The extracted blocks were further saw-cut to achieve the specific dimensions (15-in. 

long x 2.5-in. wide x 2-in. thick) for beam fatigue testing of the S3 layers. 
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A total of 10 samples were tested in the Four Point Beam Fatigue test apparatus. 

Each beam specimen was subjected to cyclic loading and unloading with a frequency of 

10-Hz, inside a temperature chamber at 20°C, as recommended by AASHTO T321 

(AASHTO, 2010). Figure 16 shows the setup for Four Point Beam Fatigue test. In this 

study, the beam fatigue tests were conducted at a deflection level of 400 micro-strain. A 

5-kN (1100-lbf.) load cell was used to measure the loads applied to the beam specimen. 

An LVDT with a maximum stroke length of ±1-mm (0.04-in.), mounted on a target glued 

at the center of the beam was used to measure the vertical deformation of the beam. 

The initial stiffness was determined at the 50th load cycle. The total number of load 

repetitions leading to a 50% reduction in the initial stiffness was considered as the test 

termination criterion, and was reported as the fatigue life (AASHTO, 2010). Figure 17 

shows a representative beam specimen after fatigue testing. Table 4 presents a 

summary of the fatigue test results.  

From Table 4, one can observe that the initial stiffness of the beam samples, 

obtained from three different stations, varied from approximately 8,800-MPa to 11,500-

MPa. It may also be noted that the beam fatigue tests were also performed on the 

extracted samples from the virgin test section in 2009 (Solanki et al., 2013). Initial 

stiffness observed from the fatigue tests on virgin pavement samples varied from 

approximately 3500-MPa to 4700-MPa. Therefore, it can be noted that the stiffness of 

the test section have increased by approximately 2.5 times. 

2.5 Task 5:  Forensic Investigation through Trenching 

To further investigate the nature and extent of rutting and to examine the 

contribution of different structural layers to the total rutting, trenches were cut at three 

selected locations on the test section. The following locations were used for this 

purpose: Station No. 235, 738 and 900. Station No. 738 had the highest rutting, while 

Station No. 900 exhibited the lowest rutting. Rutting observed on Station No. 235 was 

somewhat in the average range of the test section. Therefore, it was decided to cut 

trenches at these three stations to capture the highest, lowest and average rutting of the 

test section.  
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The trenching operations for the project were performed on October 7, 2014. The 

trenching operation started around 8:30 a.m. and was finished around 3:30 p.m. The 

OU and ODOT personnel, along with Dr. David Timm from Auburn University, were 

involved in the trenching operations. The following tasks were performed:  

1) The trench locations were first marked on the test section (Figure 18). At first, the 

research team discussed the possibility of trenching the entire width of the lane. 

However, as the test section is located on the right lane of the two-lane 

Interstate-35 southbound, trenching of the entire width did not seem to be a safe 

approach. Therefore, the research team decided to trench approximately half of 

the lane starting from the shoulder, to capture the rutting contribution of the 

outside wheelpath on the test section. As the rut depths were very similar in the 

inside and outside wheel path, trenching activities to capture rutting of the 

outside wheelpath seemed an efficient and safer approach.  

2) Approximately 10-ft.x3-ft. trenches were cut using a wet-saw cutting machine 

(Figure 19) at Station No. 235, 738 and 900. Depths of the trenches were 

approximately 36 to 42 inches. The test section is comprised of approximately 7 

inches of asphalt layer (2-in. of S-4 and 5-in. of S-3 layers), 8 inches of 

aggregate base layer and 8 inches of stabilized subgrade layer over natural 

subgrade soil. The pavement layers were removed from the trenches using a 

Caterpiller® 22-in. wide back-hoe and a jack-hammer (Figure 20).  

3) After the slabs had been removed, the trench edges and faces were cleaned 

using a garden hose. The Face Dipstick® with 12-in. moonfoot spacing was then 

used to measure the surface profile on each side of the trench (Figure 21) and an 

average surface profile for each trench was determined. The locations of the 

moonfoots were marked on the pavement. 

4) Depths of each lift in the pavement layers were visually marked on each face of 

the trench (Figure 22). Then, depths of each pavement layer (including each lift), 

from the respective surface, were measured using a carpenter square and a 

leveler (Figure 23). The depths were measured at the marked moonfoot spacing 

locations. Measurements were taken at 8 locations in each trench. 
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5) Then the measured depths of the layers in the two faces of the trench were 

averaged to report one single depth at each point. It was decided to measure the 

rut profile by construction lift thicknesses. Therefore, for each trench there were 

measurements for one S4 layer, two S3 layers, and one aggregate base layer. 

Figure 24, Figure 25 and Figure 26 represent the rut profile of each pavement layer 

at stations 235, 738 and 900, respectively. 

2.5.1 Contribution of Different Layers to Rutting 

 It can be observed from Figures Figure 24 through Figure 26 that almost all of the 

movements are confined to only the surface layer, which is the S4 layer in the test 

section. Although, few movements were observed in the subsequent S3 and aggregate 

base layers, the movements did not align with the wheelpaths, as it was for the top S4 

layer. As the movements in the S3 and aggregate base layers do not follow a consistent 

pattern like the S4 layer and because the movements are not significant, it can be 

concluded that the movements in the S3 and aggregate base layers are mere 

construction anomalies as can be expected in any pavement construction. Therefore, it 

can be concluded that no significant contributions were observed from other layers, and 

the rutting at the test section was primarily contributed by the 2-in. thick surface layer 

(S4 layer).  

Forensic investigations were undertaken by different groups of researchers to 

investigate the contributions of different pavement layers to rutting. Two notable 

references in this category are NCHRP Report 468 (NCHRP, 2002) and NCAT Report 

12-07 (Timm et al., 2012). The shape of the pavement profile observed after rutting in 

the I-35 test section was very similar to the shape of rutted pavement profile in the 

NCHRP study, where the HMA layer or the aggregate base layer was the primary 

contributor to rutting. Also, the I-35 test section includes a stabilized subgrade layer 

above the natural subgrade layer to minimize the contribution of subgrade layer to 

rutting. Based on the aforementioned observations, one could conclude that the rut in 

the test section was contributed primarily by the HMA layer, and more specifically by the 

S4 layer.     
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2.6 Task 6: Distress Modeling Using MEPDG Software 

2.6.1 Introduction to MEPDG 

Most state DOTs are gradually shifting pavement design approach from the 1993 

AASHTO design method to the Mechanistic Empirical Pavement Design Guide 

(MEPDG) approach. The AASHTO 1993 empirical design method is based on the 

limited data obtained from the AASHO road test in 1960s involving one particular 

environment with one particular set of materials and traffic (Muthadi and Kim, 2008). 

Comparatively, the MEPDG is a product of research studies involving more than 20 

years of data from different regions, climatse and materials. Consequently, the MEPDG 

is believed to better predict pavement performance through better utilization of local 

materials, traffic conditions and regional climate, compared to the 1993 AASHTO design 

guide method (Flintsch et al. 2008; Souliman et al., 2010).  

However, to gain the full benefit of pavement design using the MEPDG can be a 

challenging task. The MEPDG has three different input categories: (1) traffic, (2) climate 

and (3) materials. It also has three different levels of input data: Level 1, Level 2 and 

Level 3.  Level 1 inputs provide the highest level of accuracy and, therefore, would have 

the lowest level of uncertainty or error. Level 1 inputs require site-specific data based on 

field and laboratory tests. Level 2 inputs provide an intermediate level of accuracy. 

Level 2 inputs are typically user-selected. These inputs could come from an agency 

database, could be derived from a limited testing program, or could be estimated using 

correlations. Level 3 inputs provide the lowest level of accuracy. Therefore, it is 

desirable to develop Level 1 inputs for the most accurate design.  

The MEPDG software has various distress prediction models, such as rutting and 

fatigue models.  Even if Level 1 inputs are developed, the pavement distress prediction 

models in the MEPDG needs to be calibrated to incorporate local conditions. The 

purpose of incorporating local calibration in MEPDG is to addressany differences in 

construction practices, traffic and environmental conditions, maintenance policies, and 

material specifications across the United States (Metha et al., 2008). Although the 

MEPDG design method predicts pavement performance from laboratory-developed 

performance models, the models need to be adjusted based on the observed 
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performance in the field to reflect the differences between predicted and actual field 

performance. The MEPDG rut models have been calibrated globally using the data 

obtained from the Long Term Pavement Performance (LTPP) test sections throughout 

North America (Aguiar-Moya et al., 2008).  Therefore, to implement these models 

efficiently, it is necessary to calibrate the MEPDG rut models for local materials, traffic 

and environmental conditions.  

2.6.2 MEPDG Rut Models  

Permanent deformation or rutting is one of the major distresses in flexible 

pavements. One of the objectives of this study was to calibrate the MEPDG rutting 

models from the data obtained from the I-35 test section. The MEPDG uses the 

incremental damage concept to predict total rut depth in a pavement structure. The total 

rut depth is calculated as the summation of rut depths accumulated in all unbound 

(loose) and bound (asphalt and/or cement/asphalt-treated base) layers. Equation 4 is 

used in the MEPDG to calculate total rut depth (RD): 

 𝑅𝐷 =  ∑ 𝜀𝑝,𝑖ℎ𝑖
𝑛
𝑖=1          (4) 

where: 

n = Total number of sublayers, 

i = Sublayer number, 

𝜀𝑝,𝑖= Plastic strain in sublayer i, and 

ℎ𝑖 = Thickness of sublayer i. 

Equations 5 and 6 show the permanent deformation (rut) models in the MEPDG 

for asphalt layers and for unbound base and subgrade layers, respectively: 

 
𝜀𝑝

𝜀𝑟
=  𝐾𝑧𝛽𝑟110𝑘𝑟1𝑇𝛽𝑟2𝑘𝑟2𝑁𝛽𝑟3𝑘𝑟3      (5) 

where: 

𝜀𝑝 = Plastic strain (in./in.), 

𝜀𝑟 = Resilient strain (in./in.), 

𝑇 = Temperature of layer at middepth (°F), 

𝑁 = Number of load repetitions, 
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𝛽𝑟1, 𝛽𝑟2, 𝛽𝑟3 = Local calibration coefficients, 

𝑘𝑟1, 𝑘𝑟2, 𝑘𝑟3 = National coefficients (𝑘𝑟1 = -3.35412, 𝑘𝑟2 = 1.5606, 𝑘𝑟3 = 0.4791), and 

𝐾𝑧 = Depth confinement factor that adjusts the permanent strain for the confining 

pressure. 

𝛿𝑎 = 𝛽𝑠1𝑘1𝜀𝑣ℎ (
𝜀0

𝜀𝑟
) |𝑒

−[
𝜌

𝑁
]

𝛽

|        (6) 

where: 

𝛿𝑎 = Permanent deformation for the layer, 

𝜀𝑣 = Average vertical strain (in./in.), 

ℎ = Thickness of the layer,  

𝜀0,𝛽, ρ = Material properties, and 

𝛽𝑠1 = Calibration coefficient to optimize for both base and subgrade layers.   

 Therefore, the total rut of a pavement section is the summation of the rut 

occurring in each layer [the Granular Base coefficient (𝑘𝐺𝐵) = 2.03 and the Subgrade 

coefficient (𝑘𝑆𝐺) = 1.35}: 

 𝑅𝐷 =  ℎ𝐴𝐶𝜀𝑟𝐾𝑧𝛽𝑟110𝑘𝑟1𝑇𝛽𝑟2𝑘𝑟2𝑁𝛽𝑟3𝑘𝑟3 +  

             𝛽𝐺𝐵𝑘𝐺𝐵𝜀𝑣ℎ𝐺𝐵 (
𝜀0

𝜀𝑟
) |𝑒

−[
𝜌

𝑁
]

𝛽

| + 𝛽𝑆𝐺𝑘𝑆𝐺𝜀𝑣ℎ𝑆𝐺 (
𝜀0

𝜀𝑟
) |𝑒

−[
𝜌

𝑁
]

𝛽

|  (7) 

where: 

ℎ𝐴𝐶 = Thickness of asphalt layer, 

ℎ𝐺𝐵 = Thickness of granular base layer, and 

ℎ𝑆𝐺 = Thickness of subgrade layer.  

 It is evident that there are five calibration coefficients: βr1, βr2 and βr3 for the 

asphalt layer, βGB for the granular base layer, and βSG for the subgrade layer.  

2.6.3 Need for calibration of MEPDG Rut Models 

The purpose of incorporating local calibration in MEPDG is to address the 

differences in construction practices, traffic and environmental conditions, maintenance 

policies, and material specifications across the United States (Metha et al., 2008). 

Although, ODOT can use the performance models with nationally calibrated “default” 
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coefficients, the outcome may not reflect the actual field measurements. Therefore, 

higher level of precision and economically optimum outcomes can be achieved if 

transportation agencies like ODOT calibrate these rut model coefficients to represent 

the local conditions (traffic, materials and environment) prevalent in Oklahoma. In the 

present study, the MEPDG rut calibration models were calibrated using the I-35 test 

section’s data. The calibrated model can be assumed to represent the local conditions 

of Oklahoma.     

2.6.4 Overview of MEPDG Input Parameters 

2.6.4.1 Traffic 

The MEPDG software asks for the following traffic inputs: base year traffic 

volume, traffic growth rate, monthly adjustment factors, vehicle class distribution factors, 

hourly distribution factors, and axle load spectra, among other factors. Some of the 

major traffic inputs are reviewed below for completeness: 

Monthly Adjustment Factor 

The monthly adjustment factor (MAF) represents the proportion of annual truck 

traffic for a given class of a vehicle that occurs in a specific month. In other words, the 

monthly distribution factors for a specific month is equal to the monthly truck traffic for a 

given class for the month divided by the total truck traffic for that truck class for the 

entire year. The MEPDG assumes a constant MAF for the entire design period for all 

types of vehicles. Usually vehicles classes of 4 through 13 are used to develop MAF. 

                               𝑀𝐴𝐹𝑖 =  
𝐴𝑀𝐷𝑇𝑇𝑖

∑ 𝐴𝑀𝐷𝑇𝑇𝑖
12
𝑖=1

 × 12      (8) 

where:  

𝑀𝐴𝐹𝑖 = Monthly adjustment factor for month i, and 

𝐴𝑀𝐷𝑇𝑇𝑖 = Average monthly daily truck traffic factor for month i.  

Hourly Distribution Factor 

The hourly distribution factor (HDF) represents the percentage of average annual 

daily truck traffic (AADTT) within each hour of the day. There can be Level 1, Level 2 or 
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Level 3 inputs for the hourly distribution factors. The following steps are involved in 

generating HDF: 

Step 1: Determine the total number of trucks counted within each hour of  

   traffic data in the sample. 

Step 2:  Average the number of trucks for each of the 24 hours of the day in  

   the sample. 

 Step 3:  Total the 24 hourly averages from Step 2. 

 Step 4:  Divide each of the 24 hourly averages from Step 2 by the total from  

   Step 3 and multiply by 100.  

Vehicle Class Distribution 

Vehicle class distribution (VCD) is calculated from the data gathered from vehicle 

classification counting programs such as Automatic Vehicle Count (AVC), Weigh-In-

Motion (WIM) and vehicle counts. Normalized VCD represents the percentage of each 

truck class (Class 4 through Class 13) through the AADTT for the base year. Default 

VCD is provided in the MEPDG software. The design guide lists 17 Truck Traffic 

Classification (TTC) groups based on the roadway function class and the traffic stream 

expected on a given roadway.  The designer can choose the default set of TTC that 

suits his/her design purpose, or can use the Level 1 VCD developed from the actual 

traffic data for the project. The latter option gives the designer the most accurate vehicle 

class distribution for a particular application. 

Number of Axle/Truck 

This input represents the average number of axles for each truck class (Class 4 

to Class 13) for each axle type (single, tandem, tridem and quad). The designer can use 

the values determined through direct analysis of site-specific data (Level 1), or 

regional/statewide traffic data (Level 2), or the default values based on analyses of 

national databases (Level 3).  
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Axle Load Spectra 

The axle load distribution factors represent the percentage of total axle 

applications within each load interval for a specific axle type and vehicle class. 

Definition of load intervals for different axle types is provided below: 

- Single Axles: 3 kips to 40 kips, at 1 kip interval. 

- Tandem Axles: 6 kips to 80 kips, at 2 kips interval. 

- Tridem and Quad Axles: 12 kips to 102 kips at 3 kips interval. 

The normalized axle load spectra can only be determined from WIM data. 

Therefore, the level of inputs depends on data source (site, regional or national). For the 

design procedure, load spectra are normalized on an annual basis. 

2.6.4.2 Climate 

One of the major advances in pavement design using the MEPDG approach over 

the 1993 AASHTO approach is that in the MEPDG the designer can call for specific 

climatic data for the particular pavement. There are numerous weather stations installed 

in various places throughout the US. The user can use the actual climatic data from 

these installed weather stations or based on the GPS coordinates of a particular 

location the user can call up to six nearby weather stations data and thereby generate 

virtual weather stations according to his/her requirements. The user can also input the 

climatic data from the actual data obtained from the installed weather stations. 

2.6.4.3 Material 

This study is focused on data obtained from an instrumented flexible pavement 

section. Therefore, the inputs required for materials related to only flexible pavement 

construction are discussed here. There are three different inputs at Level 1 for asphalt 

concrete layer: inputs for asphalt mix, asphalt binder and asphalt in general. Dynamic 

modulus (E*) data for a range of temperatures and frequencies for asphalt mixes, 

complex shear modulus (G*) and phase angle (δ) data of the asphalt binder over a 

range of temperatures, and volumetric properties, such as, effective binder content, air 

voids and total unit weight are required as inputs at Level 1. Level 1 input for other 
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layers (aggregate base, stabilized subgrade, natural subgrade, etc.) utilizes the stress- 

dependent finite element method which has not yet been calibrated with distress. 

Therefore, Level 1 inputs for these layers are not yet recommended for design in the 

MEPDG (AASHTO, 2004). Therefore, resilient moduli data for the other layers are 

recommended to use at Level 3 inputs for materials in the MEPDG.    

2.6.5 Development of MEPDG Input Parameters 

2.6.5.1 Traffic 

The WIM site was instrumented with inductive loops and piezoelectric sensors to 

capture axle configuration, weight, distance between axles, and other pertinent data for 

each vehicle passing through the test section. Approximately four years (from 2008 to 

2012) of continuous traffic data were used to develop the traffic input parameters and 

axle load spectra at Level 1 for this study.   

Development of traffic data inputs is a very intense analytical data reduction 

procedure. A commercial software, TOPS, developed by Peek Traffic Corporation, was 

used to reduce the continuous traffic data collected by the WIM station and then 

converted/saved to Microsoft Excel format (.xlsx). Because of the massive volume of 

these data, they were loaded from Microsoft Excel to a MySQL database for faster data 

processing. The column field of the MySQL database mostly comprises of date, time, 

vehicle class, number of axles along with their consecutive distances (i.e., distance 

between two consecutive axles) and their individual weights, etc. A program was written 

in SQL (Structured Query Language) to extract and process the data from this stored 

database.  

From the axle definition mentioned in the FHWA vehicle classification, total 

number of single, tandem, tridem and quad axles were counted from the WIM data and 

then axles per volume was determined by dividing the total axle count by total volume.  

The SQL program also provides (month wise) axle weights for each axle group and for 

each FHWA vehicle classification. These output data were then transferred to Microsoft 

Excel and histograms were generated for different axle groups, on a monthly basis. The 
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bin ranges and intervals used to develop the histograms were recommended by the 

MEPDG (AASHTO, 2004).  

From the WIM data, the compound traffic growth rate was found to be 2.78%. 

Tables Table 5 and Table 6 show the MAF and HDF that were used as Level 1 inputs in 

the MEPDG software.  Figure 27 shows the Vehicle Class Distribution Factors that were 

developed from the four years of traffic data from the instrumented test section. From 

this figure, it is observed that the highest percentage of vehicle at this site is of Class 9 

(approximately 60%) followed by Class 5 vehicles (approximately 15%). This 

observation is consistent with previous studies (see e.g., Tran and Hall, 2007).   

Axle load spectra for four axle types (single, tandem, tridem and quad) for all 

vehicles were developed using the WIM data for approximately four years. As it was 

observed that Class 9 vehicles are predominant, among all vehicle classes, axle load 

distribution for Class 9 was further analyzed. Figure 28 (a) and Figure 28 (b) shows the 

axle load spectra for four years (2009, 2010, 2011 and 2012) for the single and tandem 

axles of Class 9 vehicles. It is observed from the figure that for single axles the 

distribution peaks around 11-kips axle loads, which is the expected range for Class 9 

single axles (Tran and Hall, 2007). Extensive analyses of axle load spectra of single 

axles for other vehicle classes showed similar results. Table 7 shows the single axle 

load spectra for all the vehicle classes that traversed the test section on Interstate-35 in 

Oklahoma. Figure 28 (b) shows the axle load spectra for Class 9 tandem axles. It can be 

observed from the figure that there are two distinct peaks for the tandem axle 

distribution: one between 10 and 16-kips, and the other between 28 and 36-kips. Table 8 

shows the tandem axle load spectra for all the vehicle classes. Some vehicle classes, 

e.g., Class 5 and 11 did not have tandem axles, so axle load spectra for these vehicle 

classes were unavailable and therefore was shown as 0.00 in Table 8.  

Lateral traffic wander data was also obtained from the instrumented test section. 

It was found that the mean wheel location was 15.5 inches from the lane marking and 

the traffic wander standard deviation was 10.2 inches. 
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2.6.5.2 Climate 

The Latitude and Longitude of the instrument pavement test section are 

N35.045343° and W97.378348°, respectively. From these GPS coordinates, climate 

data were generated for the test section using the MEPDG software by interpolation of 

six nearby climate stations. Data from six nearby weather stations: 2 from Oklahoma 

City area, one weather station each from Guthrie, Lawton, Stillwater and Hobart area, 

were used to generate a virtual weather station for this purpose. Depth of the water 

table was assumed as 10-ft. (3.3-m), as was obtained from the subsurface investigation 

operations during the construction of the test section. 

2.6.5.3 Material 

As discussed earlier, three different inputs are required for asphalt concrete 

layers: inputs for asphalt mix, asphalt binder and asphalt in general.  Dynamic modulus 

tests were performed on the loose asphalt mixes (both S4 and S3) obtained during the 

construction of the test section. To determine the target air voids, field core samples 

were extracted from the pavement and their air voids were determined in the laboratory. 

Six cores were cut from each top and bottom layers of the pavement. The average air 

voids and standard deviation for the top layer (S4 mix) and the bottom layer (S3 mix) 

were 9.1% and 0.63%; and 8% and 0.42%, respectively. Therefore the target air voids 

for laboratory samples was considered as 9±0.5% and 8±0.5% for the top and the 

bottom layers, respectively. Dynamic modulus tests for both the mixes (S4 and S3) 

were conducted in the laboratory in accordance with the AASHTO TP62 test methods 

(AASHTO, 2006). Tests were performed using a mechanical testing system (MTS) 

equipped with a servo-hydraulic testing system (MTS, 2011). The test was conducted 

on each specimen at four different temperatures: -12, 4, 21, 40, and 55°C (10, 40, 70, 

104 and 131°F) starting from the lowest temperature and going to the highest 

temperature. Though AASHTO TP62 recommends the testing of dynamic modulus on 

five different temperatures ranging from -10°C to 54°C, and six different frequencies: 25, 

10, 5, 1, 0.5, 0.1 Hz,  testing of a mix at a lower temperature is time consuming and 

needs a costly environmental chamber to maintain the temperature. Moreover, it causes 

problems in terms of ice formation inside the environmental chamber, which hinders the 
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testing procedure. An approach developed by Bonaquist et al. (2005) eliminates the 

lower temperature requirement, so that the time required in conducting dynamic 

modulus testing and master curve construction can be reduced. This approach uses 

three temperatures between 4 and 46.6°C and four frequencies between 0.01 and 10 

Hz, instead of five temperatures between (-10 and 54°C) and six loading rates between 

0.1 and 25 Hz, as recommended by AASHTO TP62.  This Bonaquist et al. (2005) 

procedure was used in the present study to construct the master curve. Thus, the 

dynamic modulus tests were conducted at four different temperatures: 4, 21, 40, and 

55°C, starting from the lowest temperature and going to the highest temperature. For 

each temperature level, the test was conducted at different loading frequencies from the 

highest to the lowest: 25, 10, 5, 1, 0.5, and 0.1 Hz. The dynamic modulus for the 

temperature (-10°C to 54°C) and frequencies: 25, 10, 5, 1, 0.5, 0.1 Hz recommended in  

AASHTO TP62 can be estimated from developed master curve. The load magnitude 

was adjusted based on the material stiffness, temperature, and frequency to keep the 

strain response within 50-150 micro-strains (Tran and Hall, 2006). The data were 

recorded for the last 5 cycles of each sequence. Dynamic modulus values were 

calculated for combinations of temperatures and frequencies.  The coefficient of 

variation (COV) for the measured dynamic modulus values of the samples was found to 

be less than 15%, which satisfied the limits given in the AASHTO TP62 test method 

(AASHTO, 2009). The master curves were then constructed using the principle of time-

temperature superposition and approach developed by Bonaquist et al. (2005). The 

amount of shifting at each temperature required to form the master curve describes the 

temperature dependency of the material. First, a standard reference temperature is 

selected (i.e., 21°C), and then data at various temperatures are shifted with respect to 

time until the curves merge into a single smooth function. Table 9 shows the dynamic 

modulus values for the S3 and S4 mixes at different temperature and frequencies. 

These values were used as inputs in the MEPDG software in this study.  

Dynamic Shear Rheometer (DSR) tests were performed following ASTM D7175 

tset methods (ASTM, 2008) on the PG 64-22 binder to obtain the Complex shear 

modulus (G*) and the phase angle (δ). DSR tests were performed in three different 
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temperatures: 61, 64 and 67°C (142, 147 and 152°F) for a loading rate of 1.59 Hz (10 

rad/sec). Table 10 presents the binder test data used as inputs in the MEPDG software. 

The other volumetric properties of the asphalt layers were obtained from the mix 

design sheet. Resilient Modulus (Mr) tests were performed on the samples from 

aggregate base, stabilized subgrade and natural subgrade layers (Solanki et al., 2013) 

in accordance with the AASHTO T 307-99 test method. The Mr test consisted of 

applying a cyclic haversine-shaped load with a duration of 0.1 seconds and rest period 

of 0.9 seconds. For each sequence, the applied load and the vertical displacement for 

the last five cycles were measured and used to determine the Mr values. The Mr values 

obtained for the aggregate base layer were in the range of 14,234 psi to 48,569 psi. For 

samples from the CFA-stabilized subgrade layer, the average Mr values were found to 

be 35,054 and 16,263-psi, at Optimum Moisture Content (OMC) and OMC+2%, 

respectively. The natural subgrade soil samples compacted at OMC and OMC+2% 

provided pavement design Mr values of approximately 17,008 and 12,327-psi, 

respectively. The Mr values used in this study as inputs in the MEPDG software are 

30,000 psi and 17,008-psi for aggregate base and natural subgrade layers, respectively.  

As the MEPDG software is not yet calibrated for the stabilized subgrade layer, the 

default values were used as the inputs for the stabilized subgrade layer.  

2.6.6 Comparison of Level 1 and Level 3 Traffic Input Parameters 

2.6.6.1 Hourly Distribution Factor (HDF) 

Figure 29(a) shows a graphical comparison of HDF at MEPDG Level 3 (default) 

and Level 1 values obtained using the CY 2009 data from the test section. The graph 

shows significant differences between the default and actual values obtained from the 

WIM station.  For example, the HDFs in the default values is constant from 0 to 5 hours, 

then increases sharply to a value of 5 for hours 6 to 9 and increases sharply again to a 

value of 6. Whereas, the actual HDFs obtained from the WIM station shows a gradual 

increase and decrease in the HDFs. This comparison indicates that there is a need to 

estimate HDF for different WIM sites in Oklahoma. The variation in HDF may have 

significant effect on performance of a pavement during design and analysis stage. 
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2.6.6.2 Vehicle Class Distribution (VCD) 

Figure 29(b) shows a graphical comparison of VCD values between the default 

(Level 3) and site-specific values (Level 1) obtained from the test section for the same 

year. The default VCD in MEPDG is Truck Traffic Classification (TTC) group 1. When 

these default values were compared to the site-specific values (Level 1) obtained from 

the WIM station near the test section, it was observed that significant differences exist 

between the default and site-specific values. For example, approximately 25% 

difference was observed between the default and actual values for Class 9 vehicles. A 

difference between percentage of Class 9 and other vehicles may have significant 

effects on pavement performance. Therefore, it is important to have an accurate VCD 

factor during the pavement design and analysis phase. 

2.6.6.3 Monthly Adjustment Factor (MAF) 

Figure 29(c) shows a graphical comparison between MEPDG default values 

(Level 3) for MAF and Level 1 MAF values obtained using the 2009 data from the WIM 

station at the test section. The default MAF value (Level 3) is constant at 1 irrespective 

of a month in a year, whereas the actual site-specific MAF (Level 1) values for Class 9 

vehicles varied from 0.64 to 1.15 for the test section, indicating the importance of 

developing site-specific MAF. 

2.6.6.4 Axle Load Spectra 

Figure 30(a) and (b) show a graphical comparison of axle load spectra between 

default (Level 3) and specific values (Level 1) obtained from the I-35 test section from 

2009 to 2012. Only single and tandem axles for Class 9 vehicles are presented here. It 

is observed that the peak values of site-specific axle load distribution are higher than 

the default values. For example, in case of single axles, the site-specific peak value was 

found to be approximately 26 to 30% compared to the default value of approximately 

18%. In case of tandem axles, the site-specific peak values were approximately 9% and 

10% compared to the default values of approximately 8% and 6%. These graphs 

demonstrate the need to develop Level 1 axle load spectra for pavement design 

purposes.   
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2.6.6.5 Lateral Traffic Wander 

Significant difference exists between Level 1 and Level 3 lateral traffic wander 

data. It was found that the actual (Level 1) mean wheel location was 15.5 inches from 

the lane marking and the traffic wander standard deviation was 10.2 inches, compared 

to the default (Level 3) mean wheel location of 18 inches and the default standard 

deviation of 10 inches.  

2.6.7 Calibration of MEPDG Rut Model 

Calibration was done by comparing the observed pavement performance with the 

MEPDG-predicted pavement performance over time. The analyses were initiated with 

the default (Level 3) global calibration parameters and then adjusted such that the 

difference between the observed and the predicted performance values was reduced 

progressively. The best fit minimized the difference between the observed and the 

MEPDG predictions. 

In this study, 𝛽𝑟2 was kept constant at the value of 1, as were observed in similar 

studies conducted by Banerjee et al. (2009) and Hall et al. (2011). After reviewing the 

calibration performed by Muthdai and Kim (2008), Banerjee et al. (2009), Hall et al. 

(2011) and Tarefder and Rodriguez-Ruiz (2012), it was decided that a range of  𝛽𝑟1 and 

𝛽𝑟3 would be chosen for the calibration effort in this study. The calibration coefficient  𝛽𝑟1 

is a shift factor that modifies the intercept term of the permanent deformation model. 

This factor primarily captures differences in the distress predictions caused by the 

varying thicknesses of the HMA layers and other initial conditions. 𝛽𝑟3 captures the 

differences coming from the number of load repetitions. Thus, it represents the rate of 

permanent deformation progression. 

From the literature review for the calibration coefficients of granular base (𝛽𝐺𝐵) 

and natural subgrade (𝛽𝑆𝐺), it was decided that the value for 𝛽𝐺𝐵 and 𝛽𝑆𝐺 will be 

assumed as 1 and 0.5, respectively, for this study. The calibration coefficients 𝛽𝐺𝐵 and 

𝛽𝑆𝐺 capture the deviation in predictions from the observed distresses that may arise 

from differences in the material properties.  

Trial runs were performed with multiple combinations of calibration coefficients. It 

was found that the rut predictions were highly sensitive to the variation of 𝛽𝑟3 and less 
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sensitive to 𝛽𝑟1. This is reasonable based on the fact that 𝛽𝑟3 is the calibration 

coefficient for the number of wheel passes and this happens to be a much bigger 

number than Kz10kr1 (responsible for the initial prediction of the permanent 

deformation), which is accounted through 𝛽𝑟1. The model output and best fit were 

estimated as Sum of Squared Errors (SSE), which represents the squared sum of the 

differences between the observed and the predicted rut values.   

Table 11 represents a total of 10 trials runs with respective SSE and R2 values. It 

can be observed from Table 11 that combination in trial No. 10 produced the least SSE 

and second best R2 value. Therefore, the final calibration coefficients that produced the 

least SSE were taken as: 𝛽𝑟1 = 2, 𝛽𝑟2 = 1, 𝛽𝑟3 = 0.9, 𝛽𝐺𝐵 = 1 and 𝛽𝑆𝐺 = 0.5. It should be 

noted that the default values of these factor at Level 3 are set as 1 in the MEPDG. The 

values of calibration factors obtained in this study were found to be significantly different 

than Level 3 (default) values. Figure 31 illustrates a visual comparison between rut 

predicted using the calibrated models and the measured rut from the test section.  It can 

be seen from this figure that the difference between the MEPDG-predicted rut and 

actual measured rut from the field is very minimal, as the points are closer to the 

equality line. Student’s t-test was also performed and the p-value was found to be 0.71, 

which is greater than 0. It means there is no significant difference between the 

measured and the predicted rut. The average error between the measured and the 

predicted rut after the calibration was less than 5%, which shows the goodness of 

prediction.  

3.0 Conclusions and Recommendations 

Following conclusions can be drawn from this study: 

1) Field rut measurements show that all stations in the I-35 test section have 

undergone both primary rutting and secondary rutting. No tertiary rutting was 

observed in any station. After roughly six years of service, the maximum rut of 

0.87-in. and the minimum rut of 0.48-in. were observed at Station 738 and 

Station 900, respectively. Although the rut depths increased with time, most of 

the rutting was accumulated during the summer months. Also, the rate of rutting 
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during the first summer month was much higher than in subsequent summer 

months with similar traffic applications. 

2) A few cracks were observed from approximately 4 feet from the starting point of 

the test section to approximately 132-ft. of the test section. No cracks were 

observed elsewhere in the test section. It was observed from the extracted core 

samples of the cracked locations that that the cracks were only at the surface, 

not evident below the pavement surface (i.e., not a top-down or bottom-up 

crack). Therefore, the observed cracks were temperature cracks in nature. 

Therefore, one can conclude that the observed cracks may be either 

temperature cracks or very premature top-down cracks in nature.  

3) The back-calculated asphalt-concrete moduli values obtained from the FWD 

tests did not show significant change of stiffness of the test section over the two 

years of the I-35 (Phase 2) project (i.e., from May, 2012 to July, 2014). 

4) Field IRI values were measured using Face Dipstick®. In general, the IRI 

values increased with time, which means that the road surface is getting 

rougher with time, as expected. The highest average IRI value observed on the 

test section was 154. According to the FHWA guidelines, the pavement at the 

test section is now considered in ‘Mediocre’ condition. 

5) Both VSB and SSB models predicted rut with similar level of accuracy, as 

evident from the high R2 values (0.78 for VSB and 0.72 for SSB model). 

6) Extracted samples obtained from the middle of the wheelpaths were tested in 

the HWT machine for rutting susceptibility. The maximum and minimum rut 

values from the tests were 4.2-mm and 1.5-mm, respectively. This can be 

stated that the HWT test results show there is no significant difference in rut 

depths on the extracted samples from the test section. This should also be 

mentioned here that the rut tests were performed on extracted pavement 

samples which have experienced significant environmental exposure over the 

past six years and therefore have gone through significant aging. This could 

also explain the difference in rutting depths observed in the field versus the 

HWT rutting depths on the samples.  
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7) Laboratory beam fatigue tests performed on the extracted samples showed that 

the initial stiffness of the beam samples varied from approximately 8,800-MPa 

to 11,500-MPa. Initial stiffness observed from the fatigue tests on virgin 

pavement samples (performed in the Phase 1) varied from approximately 3500-

MPa to 4700-MPa. Therefore, this can be stated that the I-35 test section’s 

stiffness have increased by approximately 2.5 times. 

8) To investigate the contribution of different structural layers to pavement total 

rutting, full-depth trenching activities were performed in three different locations 

on the test section. From the trenches, it was observed that almost all of the 

movements are confined to only the surface S4 layer. Although the trenching 

activities showed some movements in the underlying pavement layers (S3 and 

aggregate base), those movements does not follow a consistent pattern like S4 

layer and the movements were not very significant. Therefore, the S4 surface 

layer was found to be the only contributing layer to pavement rutting.   

9) In this study, Level 1 inputs for traffic and materials were developed for the 

calibration of MEPDG rutting models. Significant difference was observed 

between Level 1 and Level 3 (default) traffic inputs. Major differences were 

found in the hourly distribution, monthly adjustment, and vehicle class 

distribution factors, as well as the axle load spectra. 

10) The calibration of MEPDG rutting models is essential for prediction of an 

accurate field performance of a pavement. Statistical analyses performed on 

the calibrated models revealed no significant difference (p-value>0) between 

the measured and predicted rut, indicating a need of local calibration of 

deformation models in Oklahoma. 

11) The calibration factors estimated in this paper at Level 1 were compared with 

the default calibration factors at Level 3. A good correlation was observed 

between the measured and estimated rut at Level 1, indicating the calibration 

significantly improves the rut prediction using the MEPDG rut models. 

12) The final calibration coefficients were found to be: 𝛽𝑟1 = 2, 𝛽𝑟2 = 1, 𝛽𝑟3 = 0.9 for 

asphalt layers; 𝛽𝐺𝐵 = 1 for aggregate base layer, and 𝛽𝑆𝐺 = 0.5 for natural 

subgrade, while the default values of these factor at Level 3 are set to 1. 
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13) The sensitivity of the different calibration factors was studied and it was found 

that the most sensitive calibration coefficient was 𝛽𝑟3 followed by 𝛽𝑟1 related to 

asphalt layer. 

Based on this study, the following recommendations are made for future studies: 

1) Although this specific test section falls approximately in the middle of the state 

of Oklahoma and therefore can be considered somewhat representative for 

Oklahoma, a more robust calibration should be performed using the LTPP 

database and pavement sections available throughout Oklahoma. 

2) Developed axle load spectra and other traffic input parameters should be used 

instead of default values for future design applications. To gain more 

confidence, statewide traffic input parameters should be developed using the 

data from all the WIM stations in Oklahoma.  

3) The OU project team understands that the funding agency is planning to 

rehabilitate the instrumented test section in very near future. Very few research 

studies have been conducted on the performance of the rehabilitated 

pavements. As this test section was closely monitored from the beginning of the 

construction and/or instrumentation to the beginning of the rehabilitation phase, 

the funding agency should utilize a unique opportunity to monitor the 

performance of a rehabilitated pavement and compare that with the virgin 

pavement. Local calibration coefficients in the MEPDG for the rehabilitated 

pavement can also be developed which will be extremely helpful to ODOT in 

the implementation of rehabilitated pavement program.    
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Table 1: Rut Progression on the Test Section 

Date 
Highest Rut (in.) 

Sta. 144 Sta. 235 Sta. 319 Sta. 540 Sta. 738 Sta. 900 

31-May-08 0 0 0 0 0 0 

21-Aug-08 0.2 0.3 0.4 0.3 0.300 0.200 

3-Dec-08 0.3 0.3 0.35 0.2 0.200 0.200 

8-Jan-09 0.3 0.35 0.25 0.2 0.200 0.200 

19-May-09 0.390 0.444 0.425 0.363 0.395 0.280 

28-Oct-09 0.418 0.468 0.444 0.393 0.483 0.310 

16-Feb-10 0.419 0.465 0.431 0.381 0.476 0.307 

10-Mar-10 0.409 0.465 0.429 0.384 0.483 0.304 

18-May-10 0.427 0.469 0.437 0.388 0.501 0.303 

10-Aug-10 0.409 0.424 0.509 0.409 0.612 0.317 

22-Nov-10 0.441 0.439 0.545 0.457 0.678 0.359 

14-Feb-11 0.440 0.400 0.532 0.435 0.653 0.361 

7-Jun-11 0.421 0.405 0.538 0.441 0.663 0.377 

18-Oct-11 0.441 0.485 0.606 0.48 0.714 0.435 

22-Feb-12 0.476 0.461 0.598 0.47 0.712 0.421 

2-May-12 0.479 0.491 0.600 0.456 0.712 0.410 

8-Nov-12 0.487 0.471 0.580 0.457 0.767 0.446 

11-Apr-13 0.487 0.500 0.639 0.463 0.776 0.442 

22-Jul-13 0.501 0.499 0.597 0.473 0.791 0.452 

28-Oct-13 0.520 0.512 0.657 0.486 0.803 0.469 

26-Mar-14 0.515 0.510 0.648 0.486 0.827 0.472 

21-Jul-14 0.544 0.495 0.660 0.525 0.822 0.480 

6-Oct-14   0.548     0.868 0.476 

Most recent recorded highest rut at the test section = 0.868 in. or 22.05 millimeter 

Maximum recorded rut at the test section = 0.868 inch or 22.05 millimeter 

 

*
 bold number denotes highest value recorded at that particular date of data collection 
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Table 2: Average IRI Values on the Test Section 

Date Outer Wheel Path Mid-Lane Inner Wheel Path 

May 19, 2009 65.58 75.72 75.96 

October 28, 2009 64.00 65.51 82.76 

February 16, 2010 69.26 73.84 88.98 

May 18, 2010 66.53 68.92 87.64 

August 10, 2010 69.74 90.94 77.16 

November 22, 2010 77.94 92.98 87.45 

February 14, 2011 78.05 130.85 97.57 

June 7, 2011 76.92 95.63 82.36 

October 18, 2011 77.79 84.09 93.31 

February 22, 2012 99.60 90.48 118.04 

May 2, 2012 105.45 100.00 84.53 

August 21, 2012 104.66 91.62 126.225 

November 8, 2012 138.31 97.68 110.425 

April 11, 2013 137.395 91.26 137.07 

July 22, 2013 103.81 86.19 125.46 

March 26, 2014 136.21 97.56 172.615 

July 21, 2014 179.955 85.64 109.215 

 

Table 3: Summary of the Hamburg Wheel Tracking Tests on Extracted Samples 

Set 
No. 

Min. Deformation (mm) Max. Deformation (mm) 

5,000 
Cycles 

10,000 
Cycles 

15,000 
Cycles 

20,000 
Cycles 

5,000 
Cycles 

10,000 
Cycles 

15,000 
Cycles 

20,000 
Cycles 

1 1.7 1.8 2.0 2.2 3.0 3.1 3.6 3.9 

2 1.5 1.9 2.1 2.4 2.1 2.6 3.1 3.4 

3 1.5 1.7 2.1 2.5 1.8 2.3 3.0 3.8 

4 1.5 1.8 2.0 2.4 1.9 2.3 3.0 4.2 
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Table 4: Summary of the Fatigue Test Results 

Sample ID# 
Strain Level 

 (µ 𝜺) 

T  
(°C ) 

f  
(Hz) 

Initial Stiffness 
(MPa) 

AASHTO - Failure 
Cycles @50% Initial 

Stiffness 

540-1-1 400 20 10 10202 130,119 

540-1-2 400 20 10 9831 127,751 

540-2-1 400 20 10 9705 96,087 

540-2-2 400 20 10 9732 150,976 

738-1-1 400 20 10 11457 95,573 

738-1-2 400 20 10 11062 85,746 

738-2-1 400 20 10 9786 104,916 

900-1-1 400 20 10 9751 104720 

900-1-2 400 20 10 9183 79,997 

900-2-1 400 20 10 8827 66,904 

 

Table 5: Monthly Adjustment Factors 

Month 
Vehicle Class 

4 5 6 7 8 9 10 11 12 13 

January 0.91 0.86 1.24 0.72 0.89 1.05 0.99 1.09 0.95 1.25 

February 0.89 0.81 1.25 0.83 0.86 1.03 1.09 1.07 0.95 1.11 

March 0.96 0.88 1.16 0.98 1.03 1.07 1.10 1.04 0.95 1.03 

April 0.96 0.92 1.29 1.04 1.07 1.06 1.07 1.09 1.06 1.28 

May 0.96 0.92 1.04 1.15 1.08 1.06 1.01 1.07 1.10 1.20 

June 0.98 0.95 0.93 1.18 1.20 1.13 1.17 1.15 1.06 1.06 

July 2.19 2.47 0.78 0.95 1.02 0.64 0.80 0.63 0.68 0.71 

August 0.87 0.96 0.80 1.27 1.10 1.15 1.12 1.05 1.15 0.91 

September 0.87 0.88 0.82 0.88 1.06 1.09 1.05 1.06 1.14 0.95 

October 1.05 0.93 1.24 1.16 1.19 1.12 1.16 1.25 1.20 1.16 

November 0.63 0.65 0.66 0.92 0.73 0.70 0.61 0.62 0.69 0.52 

December 0.73 0.79 0.81 0.93 0.77 0.89 0.83 0.89 1.07 0.81 

 

Table 6: Hourly Distribution Factors 

Hour 

Hourly 

Distribution 

Factor 

Hour 

Hourly 

Distribution 

Factor 

Hour 

Hourly 

Distribution 

Factor 

0 1.93 8 5.65 16 4.92 

1 1.94 9 5.96 17 4.76 

2 2.27 10 5.96 18 4.34 

3 2.83 11 5.87 19 3.91 

4 3.13 12 5.83 20 3.63 

5 3.49 13 5.74 21 3.10 

6 4.15 14 5.60 22 2.57 

7 4.96 15 5.33 23 2.14 
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Table 7: Single Axle Load Spectra 

Axle Load (lb) 
Vehicle Class 

4 5 6 7 8 9 10 11 12 13 

3,000 1.25 7.78 4.63 60.24 10.84 0.49 3.97 0.10 0.10 3.73 

4,000 0.75 20.95 0.38 5.98 14.59 0.78 0.80 0.29 0.22 0.84 

5,000 1.14 30.60 2.24 1.00 25.46 1.87 0.72 1.36 1.14 2.00 

6,000 3.00 15.37 2.90 0.58 14.90 2.09 0.96 4.78 6.03 2.47 

7,000 8.21 5.68 1.97 0.56 7.45 1.48 0.99 5.82 10.20 4.92 

8,000 11.04 4.04 4.32 0.63 6.14 2.44 2.35 6.11 10.58 6.42 

9,000 10.63 3.50 14.42 1.14 6.64 9.64 8.90 11.92 12.36 11.20 

10,000 11.93 2.94 23.48 2.59 4.91 26.73 24.41 15.40 15.91 14.99 

11,000 13.51 2.05 21.66 3.41 2.58 30.20 27.04 11.53 12.88 12.52 

12,000 11.88 1.31 13.28 3.16 1.51 12.72 14.88 9.87 8.34 7.61 

13,000 7.66 1.07 6.32 3.12 1.19 3.19 7.05 9.27 7.58 6.67 

14,000 5.03 0.90 2.28 2.87 0.96 1.31 3.41 7.99 6.46 5.09 

15,000 3.45 0.75 0.91 4.20 0.67 1.20 2.03 5.88 4.24 3.44 

16,000 2.58 0.60 0.47 3.60 0.50 1.35 0.96 4.08 2.01 4.46 

17,000 2.14 0.48 0.26 1.92 0.38 1.42 0.46 2.58 1.05 3.08 

18,000 1.72 0.34 0.16 1.50 0.31 1.26 0.25 1.50 0.49 2.95 

19,000 1.23 0.29 0.12 0.97 0.21 0.83 0.21 0.81 0.20 2.21 

20,000 0.82 0.24 0.06 0.69 0.16 0.49 0.13 0.40 0.09 1.87 

21,000 0.52 0.17 0.04 0.64 0.12 0.23 0.10 0.16 0.04 1.20 

22,000 0.31 0.13 0.03 0.39 0.08 0.11 0.09 0.07 0.01 1.23 

23,000 0.21 0.11 0.02 0.28 0.06 0.06 0.05 0.03 0.01 0.55 

24,000 0.14 0.08 0.00 0.23 0.04 0.03 0.05 0.01 0.02 0.10 

25,000 0.12 0.08 0.01 0.25 0.04 0.02 0.05 0.01 0.01 0.10 

26,000 0.10 0.07 0.01 0.00 0.03 0.01 0.03 0.00 0.01 0.09 

27,000 0.08 0.06 0.01 0.00 0.03 0.01 0.02 0.00 0.00 0.09 

28,000 0.07 0.06 0.00 0.04 0.03 0.01 0.00 0.00 0.00 0.00 

29,000 0.06 0.05 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 

30,000 0.05 0.04 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

31,000 0.05 0.04 0.00 0.00 0.02 0.00 0.02 0.00 0.01 0.00 

32,000 0.04 0.03 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

33,000 0.05 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

34,000 0.04 0.03 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 

35,000 0.04 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

36,000 0.04 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.09 

37,000 0.03 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

38,000 0.03 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

39,000 0.03 0.02 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.09 

40,000 0.03 0.01 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 

41,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 8: Tandem Axle Load Spectra 

Axle Load (lb) 
Vehicle Class 

4 5 6 7 8 9 10 11 12 13 

6,000 0.76 0.00 1.61 95.47 4.18 0.75 0.49 0.00 0.09 1.04 

8,000 1.03 0.00 5.55 0.00 8.99 1.81 0.19 0.00 0.08 1.24 

10,000 2.75 0.00 7.61 0.00 8.84 4.03 0.55 0.00 0.73 2.53 

12,000 3.07 0.00 8.75 0.00 12.56 6.97 2.93 0.00 4.44 2.95 

14,000 4.92 0.00 16.20 0.00 17.92 9.78 4.85 0.00 10.15 4.00 

16,000 7.66 0.00 16.38 0.00 15.44 7.81 6.22 0.00 16.46 5.97 

18,000 7.18 0.00 9.27 0.00 10.97 6.04 10.70 0.00 21.34 8.47 

20,000 6.06 0.00 4.41 0.00 7.32 5.21 11.02 0.00 21.60 11.14 

22,000 5.63 0.00 2.64 0.00 4.98 4.75 9.99 0.00 15.08 9.41 

24,000 6.08 0.00 2.25 0.00 3.41 4.54 8.19 0.00 6.71 12.12 

26,000 7.94 0.00 2.05 0.00 2.15 4.89 8.31 0.00 2.08 11.78 

28,000 9.37 0.00 2.14 0.76 1.33 6.31 8.30 0.00 0.76 5.11 

30,000 8.93 0.00 2.62 1.19 0.72 8.85 7.70 0.00 0.25 3.85 

32,000 6.82 0.00 3.73 0.00 0.38 10.47 6.86 0.00 0.07 4.06 

34,000 5.50 0.00 4.14 1.39 0.22 9.10 4.90 0.00 0.04 2.07 

36,000 4.79 0.00 3.91 0.00 0.17 5.34 3.07 0.00 0.04 3.33 

38,000 3.84 0.00 2.97 0.00 0.11 2.20 2.46 0.00 0.03 4.03 

40,000 2.77 0.00 1.77 1.19 0.07 0.74 1.29 0.00 0.03 2.38 

42,000 1.99 0.00 1.01 0.00 0.03 0.23 0.55 0.00 0.00 0.70 

44,000 1.18 0.00 0.56 0.00 0.04 0.09 0.50 0.00 0.00 0.42 

46,000 0.78 0.00 0.26 0.00 0.01 0.04 0.43 0.00 0.00 0.45 

48,000 0.39 0.00 0.10 0.00 0.03 0.02 0.22 0.00 0.01 0.39 

50,000 0.22 0.00 0.04 0.00 0.02 0.01 0.09 0.00 0.00 0.61 

52,000 0.12 0.00 0.02 0.00 0.01 0.01 0.03 0.00 0.00 0.46 

54,000 0.11 0.00 0.02 0.00 0.01 0.01 0.10 0.00 0.00 0.00 

56,000 0.05 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.00 

58,000 0.02 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 

60,000 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.69 

62,000 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 

64,000 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 

66,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

68,000 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.23 

70,000 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

72,000 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

74,000 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.23 

76,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

78,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

80,000 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.23 

82,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 9: Dynamic Modulus Data for S3 and S4 Mixes 

S3 Mix (Dynamic Modulus, psi) 

Temp (°F) 0.1 Hz 0.5 Hz 1 Hz 5 Hz 10 Hz 25 Hz 

10 2,194,482 2,395,862 2,472,903 2,629,875 2,688,509 2,758,336 

40 995,548 1,307,273 1,464,214 1,817,892 2,013,348 2,025,775 

70 306,328 494,014 571,255 822,116 901,579 948,270 

100 86,215 126,454 156,197 255,138 301,891 361,526 

130 40,825 51,128 60,620 86,963 121,483 153,106 

S4 Mix  (Dynamic Modulus, psi) 

Temp (°F) 0.1 Hz 0.5 Hz 1 Hz 5 Hz 10 Hz 25 Hz 

10 1,976,749 2,248,836 2,361,669 2,610,177 2,710,590 2,836,667 

40 761,210 1,059,477 1,180,146 1,404,441 1,513,592 1,662,424 

70 210,084 352,080 416,131 600,179 659,885 745,122 

100 65,742 95,197 115,086 181,825 213,554 261,165 

130 30,947 43,577 49,294 71,907 85,008 98,958 

 

Table 10: DSR test data on PG 64-22 

Temperature (°F) 
Angular Frequency = 10 rad/sec 

G* (Pa) δ (°) 

142 6153 77 

147 3930 18 

153 2713 79 

 

Table 11: SSE and R2 of the Rutting Model for different Calibration Coefficients 

Trial 

# 
𝜷𝒓𝟏 𝜷𝒓𝟐 𝜷𝒓𝟑 𝜷𝑮𝑩 𝜷𝑺𝑮 SSE R

2
 

1 1 1 1 1 1 0.035 0.8941 

2 1 1 0.75 1 0.5 1.015 -0.0780 

3 1 1 0.9 1 0.5 0.408 0.7579 

4 1 1 0.95 1 0.5 0.168 0.8661 

5 1 1 1.1 1 0.5 1.087 0.9261 

6 1 1 1.2 1 0.5 10.513 0.8894 

7 2 1 1 1 0.5 1.218 0.9321 

8 2 1 0.75 1 0.5 0.601 0.4645 

9 2 1 0.95 1 0.5 0.210 0.926 

10 2 1 0.9 1 0.5 0.013 0.8941 
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Figure 1: Rut Progression on the Test Section 

 

(a) Transverse Crack at 4-ft. from Start  (b) Longitudinal cracks from 24-ft to 32-ft. 

Figure 2: Crack Mapping on the Test Section 
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(a)        (b) 

Figure 3: Marking and Coring to Observe Field Cracking 

 

Figure 4: Asphalt Modulus-Temperature Relationship up to July, 2014 
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Figure 5: Asphalt Modulus-Temperature Relationship up to May, 2012 

 

Figure 6: Average IRI Values for the Test Section 
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Figure 7: VSB Rut Prediction Model 

 

Figure 8: SSB Rut Prediction Model 
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Figure 9: Core Locations at Different Stations 

 

Figure 10: Block Sample Locations at Different Stations 
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(a)       (b) 

Figure 11: Extraction of Cylindrical Samples from the Test Section 

 

(a)       (b) 

Figure 12: Extraction of Block Samples from the Test Section 
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Figure 13: Hamburg Wheel Tracking (HWT) Testing Device 

 

Figure 14: A set of Sample Tested in the HWT 
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(a)         (b) 

 

(c)        (d) 

Figure 15: Rut Tests on Extracted Samples 

 

Figure 16: Setup for Four Point Fatigue Test 
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Figure 17: Fatigue Test Samples 

 

Figure 18: Marking on the Test Section Before Trenching 
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Figure 19: Cutting of Trench using Saw-cutting Machine 

 

Figure 20: Removal of Pavement Materials using Back-hoe 
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Figure 21: Rut Measurements using Face Dipstick® 

 

Figure 22: Marking of Different Pavement Layers 
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Figure 23: Depth Measurements of Different Layers 

 

Figure 24: Average Profile of Pavement layers at Station 235 
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Figure 25: Average Profile of Pavement layers at Station 738 

 

Figure 26: Average Profile of Pavement layers at Station 900 
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Figure 27: Vehicle Class Distribution on the Test Section 

 

(a)                                                                    (b) 

Figure 28: Single (a) and tandem (b) ALS for Class 9 vehicles 
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(a)        (b) 

 

(c) 

Figure 29: Comparison of traffic input parameters between Level 3 and Level 1 
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(a) 

 

(b) 

Figure 30: Comparison of ALS for Level 3 and Level 1 for (Class 9) (a) single (b) tandem 
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Figure 31: Measured and Predicted Rut after Calibration 
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