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ABSTRACT

Self-consolidating concrete (SCC), with its ability to flow without vibration,
minimize construction labor and achieve superior finish quality, is very attractive to the
concrete industry. However, its acceptance in the U.S. has been slow. Particularly in
bridge applications, where questions and concerns about design and construction issues
perceived to influence the performance of members built with SCC have prevented
Departments of Transportation (DOT) from accepting SCC. With support from the
FHWA and the Michigan DOT, the demonstration project, summarized in this report, has
permitted the evaluation of the aforesaid concerns.

The M-50/US-127 Bridge over the Grand River, B02 of 38071 (Jackson,
Michigan) features SCC prestressed box beams on half of its structure (3 beams). The
demonstration project considered the evaluation of three different mix design approaches
to SCC together with a reference normally consolidated concrete mix (NCC). Before the
SCC beams were accepted for implementation, their performance was evaluated through
full-scale (27” x 36” x 52°) structural testing to ensure that their flexural and shear
performance was equal to or better than that exhibited by the NCC beams. All of the SCC
beams met the nominal flexure and shear design capacities and their performance with
respect to the NCC beams was found to be essentially the same. The SCC beams were
thus approved for use on the demonstration bridge and construction was completed in
October 2005.

To evaluate of long-term performance, a field monitoring system composed of
thermocouples and strain gages was placed on the SCC beams and one of the NCC beams
at different cross-sections along their lengths and one year of recorded data, from
December 2005 to December 2006, has been studied. The data shows that while some
variations exist in the initial strain levels of the girders (due to concrete variations such as
shrinkage and elastic modulus), the variation of strain once the bridge was in service
seems to be very similar for all girders. However, it is recognized that the monitoring
process has been in place for slightly over a year. Evaluation of true long-term
performance will require acquisition of data for several more years before more sound

conclusions on the long-term behavior of SCC prestressed elements can be reached.
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1 PROJECT OVERVIEW AND INTRODUCTION

1.1 Summary

Self-consolidating concrete (SCC) is a recent development in the concrete
industry that offers many benefits to both producers and consumers of concrete
structures, including government Departments of Transportation. The benefits of SCC
are almost entirely related to its fresh properties. Its ability to flow through dense steel
reinforcing schemes and fill intricate formwork without the aid of vibration make SCC a
popular alternative to normally consolidated concrete (NCC). Properly proportioned
SCC can consolidate under its own weight while remaining homogenous through all
phases of the construction process. When SCC is used effectively, the end result is a high
quality product that performs as well as its NCC counterpart. However, the mix design
modifications that are required to produce the benefits of SCC have led to questions
about the hardened performance of the finished products. Because of this, the Michigan
Department of Transportation (MDOT) was interested in assessing the feasibility of using
SCC in highway bridges. The research project reported in this report was developed to
investigate the complete construction process using SCC, including the development of
representative SCC mix designs, evaluation of the bond of the prestressing strand with
SCC, evaluation of the production process, and finally the production and construction of
a demonstration bridge using beams cast with SCC.

The M-50/US-127 bridge over the Grand River (B02 of 38071) in Summit
Township south of Jackson Michigan was selected as the right candidate for its
replacement with a demonstration bridge utilizing SCC in the bridge beams. The
demonstration bridge, shown in Figure 1, consists of six simply supported 27 in. x 36 in.
spread box beams with a span of 50 ft. A schematic of the bridge is shown in Figure 2.



Figure 1. M 50/US 127 Demonstration Bridge using SCC Beams
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Figure 2. Schematic of Demonstration Bridge




Three SCC mix designs, which attempt to bound current SCC mix design
practice, were developed for this project. A fourth mix design, an NCC mix, was used as
an experimental control. Three identical box beams were cast from each of the four mix
designs. Of the three beams from each mix design, one was instrumented for long term
monitoring of strain and temperature and was placed in the demonstration bridge. The
remaining two beams from each mix design were instrumented for experimental
evaluation. The experimental evaluation of the full-scale prestressed beams was done at
Michigan State University’s (MSU) Civil Infrastructure Laboratory prior to the
construction of the demonstration bridge. Two four-point bending tests were conducted
for these evaluations. The two tests evaluated the flexural and shear performance of the
beams. An additional five NCC beams were cast without any instrumentation. Two of
these beams were used in the construction of the demonstration bridge. The remaining
three NCC beams were cast to replace the SCC beams in the event that their laboratory
performance was inadequate. A total of 17 beams, 8 NCC and 9 SCC, were cast for this
project at the Fabricator’s precast plant in Michigan in the months of June and July of
2005.

1.2 Research Objectives

There were three objectives to this research project. Each objective was designed
to help MDOT determine the feasibility of using SCC in highway bridges. The
objectives were:

= To evaluate the short term performance of SCC beams,
= To evaluate the long term performance of SCC beams, and

= To evaluate the production process and quality control for the

manufacturing of SCC beams.

The short-term evaluation of SCC beams through full-scale tests of replica bridge beams
was done to ensure that the capacity demands in the bridge system were safely met by
these members. Both the shear and flexural capacities were experimentally determined
through structural testing to evaluate the short-term performance of the SCC beams with

respect to the baseline NCC beams. The long-term evaluation of SCC beams includes



monitoring strain and temperature from the demonstration bridge. The collected data is
providing important information about any prestressing force losses in the beams that
could be attributed to different creep and shrinkage behavior of SCC. Finally the
production process evaluation included assessment of the mix design development, and
quality monitoring of the concrete production and finished beams. Also included in this
research effort was an evaluation of the production process of SCC prestressed beams to

define any necessary changes in order to better use SCC.

1.3 Scope and Organization

This report presents the research work related to the implementation of SCC in
bridge beams of a demonstration bridge for MDOT through a Federal Highway
Administration (FHWA) Innovative Bridge Research Construction (IBRC) project. The
report is divided into 7 chapters. Chapter 2 presents research on SCC technology
including the historical development of SCC, the effect of various materials on the fresh
properties of SCC, current status and recent developments using SCC, the use of SCC in
precast facilities, and finally outstanding issues regarding the use of SCC. Chapter 3
presents the methods used to produce the mix designs for this project. This chapter
includes information on fresh property evaluations and results from three separate mix
development processes. Chapter 4 looks at the production and quality control of
prestressed box beams using SCC and provides a discussion on production changes that
were necessary to effectively used SCC in the beam production. The experimental
component to the research, consisting of flexural and shear evaluations of SCC and NCC
beams is presented in Chapter 5. Chapter 6 presents the field-monitoring program and
representative results for the long-term evaluation of the SCC box beams in the
demonstration bridge. Finally, Chapter 7 presents the conclusions reached from this

research project.



2 SELF-COMPACTING CONCRETE TECHNOLOGY

2.1 Historical Overview

SCC was developed in Japan in the early 1980’s by Okamura and his colleagues
in response to the decline in the skilled labor force in Japan [13]. The inability to find
adequate labor was leading to durability problems in concrete structures caused by either
over or under consolidation. In developing SCC, Okamura wanted to create a durable
concrete that was easy to place and finish independent of the quality of the labor [8] [37].
If successful, Okamura believed SCC would produce products of consistently superior
quality than NCC.

Like all new products, SCC was slow in gaining popularity. SCC was first
successfully produced in 1988 and the first presentation on SCC was at the 2" East Asia
and Pacific Conference on Structural Engineering and Construction in 1989 [13][22].
However, the first large-scale commercial use of SCC did not occur until 1998. In that
year SCC was used in the anchorages for the Akashi-Kaikyo Bridge in Japan [36]. In this
project, SCC was pumped 600 ft from the on site batching plant to the casting area. The
reduction of the construction period from an estimated 2.5 years with NCC to 2 years
with SCC showed the significant time savings that could be achieved when SCC was
used [13][36]. By the year 2000, 10,800,000 ft® of SCC was being used annually in
Japan. This volume of concrete was split nearly equally between ready mix applications
and precast production [39].

As knowledge of SCC became more available, its use began spreading from Japan
through Asia and into Europe. Countries such as Korea, Thailand, Sweden, the
Netherlands, and Canada began to research and use SCC in the mid 1990’s [13].
According to Daczko and Vachon [13], the spread of SCC in Europe did not develop
because of concerns about the quality of conventional concrete, but instead was spurred
mainly by the economic benefits of SCC recognized by large construction and precast
companies. As the use of SCC became more popular in the mid 1990’s, several
European-wide research projects and committees were formed to help the development
process. One such committee, specifically for the study of SCC, was formed by the
International Union of Laboratories and Experts in Construction Materials, Systems, and

Structures (RILEM from the French name) [17][39]. One project that developed from



these groups was a bridge in Sweden cast completely of SCC. This project differed from
the use of SCC in the bridge in Japan in that the entire bridge was made using SCC. The
use of SCC in this project resulted in a cost savings and a reduction in pollution during
the bridge construction [17][39]. According to Goodier [17] nearly all of Europe was
using or studying SCC by 2003. As the use of SCC became more prevalent in Europe
many countries began adopting guidelines for the use of SCC. By the year 2003
guidelines, or a draft of guidelines, were in place in Austria, Finland, France, Germany,
Italy, Netherlands, Norway, Sweden, and for Europe in general [17].

SCC has developed slower in the United States than in Europe. Beginning around
the year 2000, US precast/prestressed product producers as well as admixture companies
began to push for the ability to use SCC in their projects. According to Daczko and
Vachon [13], and Ouchi et. al. [39] the spread of SCC in the US was motivated by
economic interests similar to those seen in Europe. Research on SCC in the US grew
quickly as was evidenced by the first North American Conference on Self-Consolidating
Concrete, held at Northwestern University in 2002 [17]. Goodier [17] reports in his
survey of the growth of SCC that estimated volumes of 108,000-135,000 ft® per day of
SCC were being used at precast plants in North America in 2003. Because of the rapid
growth of SCC in the US, a FAST team was created by PCI (Precast/Prestressed
Concrete Institute) with the intention of developing a guideline for the use of SCC.
Interim Guidelines for the Use of SCC in Precast/Prestressed Construction was published
by PCl in 2003 [22].

2.2 Theoretical Considerations

SCC is unique because of its fresh, or plastic, behavior. The ability to fill
formwork and consolidate under its own weight, without external energy, not only
defines SCC, but governs the proportioning of SCC mix designs as well. Concrete in
general can be tailored to achieve performance standards. When developing a traditional
NCC mix design, most of the focus is placed on tailoring the mix design to satisfy the
hardened property requirements. Factors such as the water to cement ratio (w/c), coarse
aggregate content (CAC), sand to past ratio (s/pt), and admixtures (mineral and chemical)
use are adjusted to control the strength, stiffness or the durability of the finished product.



In the case of SCC, these same factors are varied to additionally control the fluidity and
segregation resistance of the fresh concrete. However, tailoring SCC mix designs to
achieve specified hardened properties, while still necessary, is no longer the primary
driving force of an SCC mix design selection.

The widely known benefits of SCC come from the fresh property performance of
the concrete. The fresh properties are governed by three factors: filling ability, passing
ability, and segregation. The filling ability of SCC is its ability to fully fill formwork
without the use of vibration. This includes flowing around obstacles including dense
reinforcing steel schemes and form block outs. The passing ability of SCC is its ability to
flow around and through obstacles without segregating or experiencing aggregate
blocking. The segregation resistance of SCC is defined as the ability to resist segregation
of its coarse aggregate components through all phases of the construction process
including transportation from the batching plant to casting site, placement in the
formwork, and finishing of the product [22].

The successful development of these three factors can lead to an increase in
productivity and product quality while reducing the cost of production. The high
workability of SCC and the fact that vibration is unnecessary leads to a reduction in labor
required to produce concrete elements as well as a reduction in the time of production.
The self-consolidating nature of SCC can lead to a higher quality finished product than
can be achieved with NCC. While SCC generally has higher material costs, these costs
are more than compensated for by reductions in labor and increased productivity that
result from using SCC [17][22].

The benefits of SCC do not always come easily or immediately. Like with all
new products, there is a learning curve for using SCC [35]. One of the challenges
associated with proportioning SCC is that there are many different ways to achieve the
desired fresh property performance. Compounding this problem is the difference in
behavior that SCC shows depending on the materials used. SCC is said to be extremely
sensitive to small changes in mix design components and quantities [17][35]. When
different methods are used to develop SCC in research, different results ofte