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PREFACE 
 
The Kansas Department of Transportation’s (KDOT) Kansas Transportation Research and New-
Developments (K-TRAN) Research Program funded this research project. It is an ongoing, 
cooperative and comprehensive research program addressing transportation needs of the state of 
Kansas utilizing academic and research resources from KDOT, Kansas State University and the 
University of Kansas. Transportation professionals in KDOT and the universities jointly develop 
the projects included in the research program. 
 
 
 

NOTICE 
 
The authors and the state of Kansas do not endorse products or manufacturers. Trade and 
manufacturers names appear herein solely because they are considered essential to the object of 
this report.  
 
This information is available in alternative accessible formats. To obtain an alternative format, 
contact the Office of Public Affairs, Kansas Department of Transportation, 700 SW Harrison, 2nd 
Floor – West Wing, Topeka, Kansas 66603-3745 or phone (785) 296-3585 (Voice) (TDD). 
 
 
 

DISCLAIMER 
 
The contents of this report reflect the views of the authors who are responsible for the facts and 
accuracy of the data presented herein. The contents do not necessarily reflect the views or the 
policies of the state of Kansas. This report does not constitute a standard, specification or 
regulation. 
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Abstract 

Two field tests were conducted to investigate the field performance of steel-reinforced 

high-density polyethylene (SRHDPE) pipes during installation and under traffic loading. One 

test site was located on E 1000 road in Lawrence, KS, which is close to Clinton Lake. Three 

SRHDPE pipes with a diameter of 3 ft and a length of 24 ft were buried in a 6 ft wide trench with 

2 ft thick soil cover. This test site had two test sections: one section was filled with Aggregate 

Base Class 3 aggregate (AB3) and the second section was filled with crushed stone. The second 

field study was conducted at a Kansas Department of Transportation (KDOT) storage yard in 

Kansas City, KS. Four 6 ft long SRHDPE pipes with a diameter of 2 ft were connected and 

buried in a trench with a dimension of 4.6 ft wide × 27.5 ft long × 4.2 ft deep. Two types of 

backfill material were also used in the trench, namely, AB3 aggregate and crushed stone. Earth 

pressures, pipe deflections, and pipe strains on plastic valley, plastic cover, and steel ribs were 

monitored during pipe installation and under static loading on both test sites. The test results 

from the pipe installation and static loading showed that (1) the vertical arching factor (VAF) on 

the top of the pipe was approximately 1.1 and the lateral earth pressure coefficient was 

approximately 0.65; (2) the peaking deflection was observed in both field tests in a range of 0.25 

to 1.80% (the peaking deflection in the AB3 section was greater than that in the crushed stone 

section); (3) the maximum strain of the pipe occurred on the plastic valley in the longitudinal 

direction at the pipe crown, which was in a range of 0.4-0.6% and much lower than the strain 

limit of 5% suggested by the American Association of State Highway and Transportation 

Officials (AASHTO, 2012); and (4) the Giroud and Han (2004) method and the AASHTO 

(2012) method could reasonably estimate the earth pressure on the pipe under static loading, 

while the Iowa Formula could estimate the pipe deflection during installation and caused by 

static loading. 

The earth pressures, the pipe deflections, and the strains of the pipes in the Lawrence site 

were monitored for 680 days and all increased with time. Two empirical correlations were 

proposed to calculate the VAF and the pipe stiffness factor at a given time. 

The AASHTO (2012) design methods for metal pipes and high-density polyethylene 

(HDPE) pipes were modified for SRHDPE pipes based on the laboratory and field test results. A 

design procedure for SRHDPE pipes is proposed and illustrated by a design example.  
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Chapter 1: Introduction 

1.1 Background 

High density polyethylene (HDPE) pipes have been widely used worldwide for several 

decades due to their light weight, low cost, and chemical resistance (Masada & Sargand, 2007). 

More than 54% of natural gas pipeline projects all over the world have used HDPE pipes. In the 

United States, this percentage is even higher than 90%. However, HDPE pipes also have some 

disadvantages, including low strength, limited pressure rating, and high potential buckling, 

which limit the usage of HDPE pipes in some specific working conditions. 

Metal pipe is another popularly used pipe type in the practice, which has a high load 

carrying capacity for dead and live loads. However, corrosion is a major problem for metal pipes. 

The corroding process of metal pipes depends on the following factors: (1) the material 

properties of pipes; (2) the chemical properties of the soil surrounding the pipes; (3) the 

groundwater properties and conditions; and (4) the fluid transmitting in the pipes. Corrosion is a 

result of electrochemical electron exchanges between metals and solutions (Centers for Disease 

Control and Prevention, 2013).  

Steel-reinforced high-density polyethylene (SRHDPE) pipes combine the advantages of 

metal and HDPE pipes to overcome their disadvantages (Khatri, Han, Parsons, et al., 2013; 

Corey, Han, Khatri, & Parsons, 2014; Wang et al., 2015). Figure 1.1 shows the schematic 

representation of an SRHDPE pipe section. The steel rib is used to enhance the load-carrying 

capacity of the pipe, and the plastic cover for the steel ribs prevents possible corrosion. Based on 

the document published by the American Concrete Pipe Association, SRHDPE pipe is being 

marketed nationwide for storm drainage systems (ACPA, 2009). The State of Kansas planned to 

spend $9.8 million USD to replace and repair the pipeline system between 2013 and 2016 

(KDOT, 2012). Due to the advantages of the SRHDPE pipes, they can be an alternative pipe type 

to be used for replacement of corroded pipes in the pipeline system. ASTM International 

published a specification for SRHDPE pipes to be used for non-pressure drainage and sewerage 

purposes. This specification covers the requirements and test methods for materials, dimensions, 
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workmanship, impact resistance, pipe stiffness, flattening, buckling tensile strength, shipment, 

and storage for SRHDPE pipes (ASTM F2562, 2008). 

 

 
Figure 1.1: Schematic Representation of a Cross Section of the Corrugated SRHDPE Pipe  
After ASTM F2562 (2008) 

 
1.2 Problem Statement 

Several national standards and specifications have been developed for design, 

installation, and materials for precast concrete pipe, corrugated metal pipes, and HDPE pipes. 

Table 1.1 lists the coverage of these standards and specifications. However, no nationally 

accepted installation standard or design method is available for SRHDPE pipes, which limits 

their usage. Even though ASTM F2562 (2008) provides the requirements for the SRHDPE pipe 

product, it does not provide engineers any guidance or instructions on how to design SRHDPE 

pipes during installation and under traffic loading. 

 
Table 1.1: Specifications for Different Types of Pipes  

Specifications Material Construction & Installation Trench Width 

Concrete Pipe ASTM C78, AASHTO-
M170, ASTM C14 

ASTM C1479, AASHTO LRFD 
Bridge Construction 

Specifications (Sec. 27) 

ASTM C1479, AASHTO 
Section 27 

HDPE Pipe ASTM F2306, AASHTO 
M294 

ASTM D2321, AASHTO LRFD 
Bridge Construction 

Specifications (Sec. 30) 
AASHTO Section 30 

SRHDPE Pipe ASTM F2562 Not Available Not Available 

Source: ACPA (2009) 
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Moser and Folkman (2008) summarized that flexible pipe design is mainly based on the 

following three parameters: (a) load; (b) soil stiffness in the pipe zone; and (c) pipe stiffness. 

Load transfer mechanism of buried pipes is attributed to trench width, soil cover depth, and 

backfill and its compaction degree. Soil stiffness in the pipe zone also depends on the backfill 

properties and the compaction and construction procedures. In addition, long-term reduction in 

HDPE pipe stiffness is always considered in HDPE pipe design due to the material relaxation 

and temperature effect. However, no existing method is available for the SRHDPE pipe 

installation design and long-term behavior evaluation. Therefore, lack of applicable 

specifications for the SRHDPE design has limited the usage of the SRHDPE pipe. 

Laboratory research on the performance of the SRHDPE pipe was conducted in the 

previous research project (i.e., Phase I; Khatri, Han, Corey, & Parsons, 2013). A series of tests, 

including parallel plate load test, creep test, stub compression tests, and pipe bending test, were 

conducted to determine the mechanical properties of the SRHDPE pipe. Large-scale box tests 

were also conducted to investigate the mechanical behavior of the SRHDPE pipe under static and 

dynamic loadings. Some recommendations were provided based on the test results. Laboratory 

conditions are not necessary the same as those in field due to possible boundary effect, moisture 

and temperature variations, different construction equipment, traffic loading, and time effect. 

Therefore, field tests are necessary to verify laboratory test results and establish a design 

procedure for the SRHDPE pipe. 

 
1.3 Objectives 

The objective of this research was to use the test data obtained from the field study to 

verify/improve the design procedure for the SRHDPE pipes during installation and traffic 

loading. This objective has been achieved by the following tasks: 

• To develop compaction and installation parameters for design of SRHDPE 

pipes during installation; 

• To investigate the load distribution around the SRHDPE pipe and develop 

a design procedure to calculate required parameters; 
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• To evaluate the field performance of the SRHDPE pipe with time and 

establish evaluation criteria for long-term performance of SRHDPE pipes 

in field. 

 
1.4 Research Methodology 

The research methodology adopted for this research includes: (1) a literature review on 

pipe installation, load transfer mechanism above buried pipes, and long-term behavior of HDPE 

pipes, (2) laboratory tests to determine the properties of the backfill materials (i.e., Aggregate 

Base Class 3 [AB3] and crushed stone) used in the field tests, (3) two field tests to investigate the 

performance of the SRHDPE pipes during installation and traffic loading, (4) long-time 

monitoring of pipes in one field test to investigate the long-term performance of the SRHDPE 

pipe, and (5) establishment of the design procedures through modification and improvement of 

the American Association of State Highway and Transportation Officials (AASHTO, 2012) 

design method.  

 
1.5 Organization of Report 

The research report includes eight chapters. Chapter 1 is the introduction and the 

background of this research. Chapter 2 focuses on the literature review. Chapter 3 presents the 

field installation test in Lawrence, KS. Chapter 4 presents the field installation test in a KDOT 

storage yard in Kansas City, KS. Chapter 5 discusses the evaluation of the long-term 

performance of the SRHDPE pipe based on the monitoring data of the tested pipes in the field. 

Chapter 6 presents the design procedures by modifying the AASHTO (2012) design method for 

buried pipes. Chapter 7 presents the conclusions and recommendations from this research. 
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Chapter 2: Literature Review 

2.1 Introduction 

Based on the objective of this research, the literature review includes the following 

sections: (a) installation of pipes; (b) load transfer mechanism above buried pipes; (c) long-term 

behavior of flexible pipe considering material relaxation and stiffness reduction; (d) existing 

research on the SRHDPE pipe; and (e) performance limits of buried pipes used in the pipe 

installation design.  

 
2.2 Installation of Pipes 

Researchers have investigated the following aspects of the pipe installation: (a) 

determination of the trench width and/or soil cover thickness (e.g., Katona, 1988; Moser & 

Folkman, 2008); (b) backfill material selection and compaction (e.g., Molin, 1981); and (c) stress 

and strain evaluation of the pipes after construction (Meyerhof & Baikie, 1963; Moser & 

Folkman, 2008). These investigations may be attributed to the following reasons: (1) trench 

width and soil cover thickness are related to the load transfer mechanism during pipe service and 

they are essential for buried pipe design and evaluation; (2) backfill material provides support for 

flexible pipes and is therefore important for their performance (compaction is mainly responsible 

for peaking deflection of a pipe and enhances its capacity to carry more loads); and (3) stresses 

and strains of a pipe after construction serve as the initial condition of the pipe before being 

subjected to service loading (the initial condition is essential to evaluate the pipe behavior during 

service loading, especially possible failure). 

2.2.1 Trench Width and Soil Cover Thickness 

Marston and Anderson (1913) proposed the following equation to calculate the load at 

the top of a rigid pipe in a ditch condition: 
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 d d c dW C B Bγ=  Equation 2.1 

Where: 

dW = the load at the crown of the pipe 

dC = the load coefficient for ditch pipes 

γ  = the unit weight of backfill 

cB = the horizontal breadth of the pipe (i.e., the diameter of the pipe) 

dB = the horizontal width of the ditch at top of the pipe 

 

Equation 2.1 shows that the vertical load on the top of the pipe is proportional to the 

width of the trench. It reflects the soil arching effect in the soil cover, i.e., the narrower trench 

can induce more reduction in the vertical load on the pipe top. Under this condition, the load on 

the rigid pipe would increase from the prism load due to the negative soil arching effect. They 

found that when the trench width is equal to or greater than a specific value, the ditch condition 

can be treated as the embankment condition. The trench width when the ditch condition turns 

into the embankment condition is referred to as the transition width. 

ASTM C1479 (2013) and AASHTO (2012) required that the trench width for a rigid pipe 

should be equal to four-thirds of the pipe outside diameter. Space for compaction at both sides of 

the pipes should be adequate. ASTM D2321 (2014) suggests that the minimum width of the 

trench for a thermoplastic pipe should be not less than the greater of the pipe outside diameter 

plus 15.7 inches or pipe outside diameter times 1.25 plus 11.8 inches. AASHTO (2012) 

recommended that the trench width for an HDPE pipe should be 1.50 times the pipe outside 

diameter plus 11.8 inches.  

Adequate soil cover thickness not only ensures the safety of the pipe subjected to 

compaction loads above the pipe but also limits the load distribution mechanism around the 

buried pipe. Based on Boussinesq’s solution, Moser and Folkman (2008) concluded that the live 

load effect induced by an AASHTO H-20 truck above a buried pipe can be neglected when the 

soil cover thickness is greater than 8 ft. AASHTO (2012) suggested that the negligible depth of 

the live load caused by an H-25 truck is 10 ft. Katona (1988) proposed an empirical formula to 

determine of the minimum soil cover thickness for a pipe subjected to various standard 
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AASHTO truck loadings without considering the effect of the pavement. Table 2.1 summarizes 

the minimum soil cover thickness from the KDOT (2007) specification. ASTM D2321 (2014) 

provides the minimum soil cover thickness requirements for different types of backfill material. 

For a good soil (referred to as Class I), a soil cover thickness of 2 ft or equivalent to one diameter 

of the pipe is required before construction vehicles are allowed to pass, while for a Class III soil, 

the soil cover thickness should be at least 3 ft or one diameter of the pipe. A 4 ft thick soil cover 

should be placed before hydro-hammer compaction. 

 
Table 2.1: Minimum Cover Over the Top of the Pipe  

PE and PVC 
Diameter 

(ft) 

Axle Load (kips) 

18 to 50 50 to 75 75-110 110 to 150 

Required Soil Cover (ft) 

1 to 3 2 2.5 3 3 

3.7 to 4 3 3 3 4.5 

4.5 to 5 3 3 3.5 4.5 
Source: KDOT (2007) 

 

2.2.2 Backfill Material 

Properties of backfill material are essential to the performance of flexible pipes. For 

flexible pipes, cohesionless backfill materials are strongly suggested. However, silty sand and 

clayey sand may be also acceptable for economic purposes for pipes under low to moderate loads 

(Molin, 1981). For cohesive soil, compaction should be operated at the optimum moisture 

content (Rogers, Fleming, Loeppky, & Faragher, 1995; ASTM A798, 2013; ASTM D2321, 

2014).  

Different types of soils are commonly classified based on the Unified Soil Classification 

System (USCS; see ASTM D2487, 2011). The soil types defined in the USCS are divided into 

five classes according to the thermoplastic pipe design (ASTM D2321, 2014). Table 2.2 lists the 

backfill material classifications for thermoplastic pipes.  
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Table 2.2: Backfill Material Classifications for Thermoplastic Pipes 
Backfill class I II III IV V 

Soil Type 
Symbols 

Manufactured 
Angular 
Granular 
Material 

GW GM ML OL 

GP GC CL OH 

SW SM MH PT 

SP SC CH  
Note: All symbols listed in this table follow the definitions in ASTM D2487 (2011). 
Source: ASTM D2321 (2014) 

 

ASTM C1479 (2013) defined the backfill categories for rigid pipe design. It combined 

the USCS system with the AASTHO soil classification system (AASHTO M145, 2003) and 

proposed four categories of backfill material for rigid pipes as shown in Table 2.3. 

 
Table 2.3: Backfill Material Categories for Rigid Pipes 

Soil category USCS AASHTO 

I SW, SP, GW, GP A-1, A-3 

II GM, GC, SM, SC, CL, ML, CL-ML with 
30% or more retained on #200 sieve 

A-2-4, A-2-5, A-2-6, or A-4, or A-6 with 
30% or more retained on #200 sieve 

III CL, ML, CL-ML with less than 30% 
retained on #200 sieve 

A-2-7, or A-4, or A-6 with less than 30% 
retained on #200 sieve 

IV MH, CH, OL, OH, PT A-5, A-7 
Note: All symbols listed in the above table follow the definitions in ASTM D2487 (2011) and AASHTO M145 (2003).  
Source: ASTM C1479 (2013) 

 

The stiffness of a flexible pipe influences the compaction effect of backfill soil because 

more deflection of the pipe causes more stress relaxation in the pipe. The AASHTO (2012) 

requires a minimum pipe stiffness to minimize this distortion of flexible pipes during installation. 

Over-compacted soil could limit the lateral deformation of the pipe after construction so that it 

increased the possibility of pipe buckling at the pipe crown (Cameron, 2006). Initial peaking 

deflection of flexible pipes, if not excessive, is favorable (Webb, McGrath, & Selig, 1996). The 

non-symmetric backfilling at two sides of the pipe could cause distortion of the pipe (Rogers et 

al., 1995; Cameron, 2006). The clear spacing of the profile ribs for profile pipes should be 

smaller than 0.6 or larger than 2.6 times the maximum size of backfill soil to prevent potential 
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voids around the pipe (Sargand, Masada, & Hurd, 1996). The particle size of the bedding soil 

should be smaller than 1.25 inches (AASHTO, 2012). 

Controlled Low Strength Material (CLSM), known as flowable fill, is also used as the 

backfill material in pipeline projects. Typical mix of CLSM uses sand, fly ash, and water; 

however, cement content is on the order of 50 – 100 lbs/yd3, which is extremely low relative to 

structural concrete mixes (Howard, 1996). 

The trench width and backfill material are essential for buried pipe design. However, for 

SRHDPE pipes, no specification is available for design. It is necessary to investigate the width 

and backfill effects on the mechanical behavior of the SRHDPE pipes. 

2.2.3 Compaction Techniques and Simulation Methods 

Compaction is important for installation of buried pipes, especially for flexible pipes. 

Compaction has been recognized as the source for increasing the load carrying capacity of a 

flexible pipe due to its low stiffness (Katona, 1978). Vibratory plate compactor and rammer are 

two commonly used compactors in pipe installation. A rammer has a smaller size of foot and 

higher compaction pressure and is normally used for hunch zone compaction. Duncan, Williams, 

Sehn, and Seed (1991) proposed a method to estimate the earth pressure induced by compaction 

using different models of compactors from different manufactures.  

Duncan et al. (1991) explained the mechanism of compaction as follows: (1) during 

compaction, both the vertical and horizontal stresses in soil increase due to the weight of the 

compactor and the dynamic force generated by the compactor; (2) when the compactor moves 

away, the increment of the vertical stress becomes zero; however, the horizontal earth pressure 

decrease to a certain value, which is referred to as the residual horizontal stress. Several 

investigators (e.g., Duncan & Seed, 1986; Seed & Duncan, 1986; Filz & Duncan, 1996; Chen & 

Fang, 2008; Yang, Han, Leshchinsky, & Parsons, 2012) developed different methods to simulate 

the compaction-induced stresses in different types of applications, for example, retaining walls 

and buried culverts. These methods can be grouped into two types and are briefly discussed 

below: 
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2.2.3.1 Hysteretic K0 Method 

The hysteretic K0 method was originally proposed by Duncan and Seed (1986). They 

assumed the multiple cycles of loading and unloading happened under a K0-condition; in other 

words, the lateral stress increment is proportional to the vertical stress increment by a factor of 

K0. They treated the compaction-induced residual horizontal stress as an over-consolidation case, 

and the lateral earth pressure coefficient can be modified from K0 considering the over-

consolidation effect. Figure 2.1 presents the basic concept of the K0 hysteretic method, which 

can explained by the following stress path: (a) the initial stress condition in the soil can be 

represented as Point A in Figure 2.1 due to the overburden pressure caused by the placement of 

the backfill lift; (b) during the compaction, both the vertical and horizontal stresses increase to 

Point B following the K0 line; (c) when the compaction load moves away, the stress condition 

moves to Point C following the Kp line; (4) the vertical stress continues to decrease following the 

Kp line to Point D at the same vertical pressure of Point A. During the compaction, the maximum 

increase of the horizontal stress is ∆, and the residual horizontal stress can be expressed as β∆ , 

where β is fraction of ∆ in fully reloading. They also proposed simplified steps which allow hand 

calculations by this method. These steps are briefly described as follows: 

• Determine the maximum increase of the horizontal stress using 

Boussinesq’s solution by the compaction load. A factor between zero and 

one should be multiplied by the maximum horizontal stress increase to 

obtain the residual horizontal stress increase; 

• Calculate the residual horizontal stress as the summation of the residual 

horizontal stress increase and the horizontal stress at rest; and 

• The near surface horizontal stress should be limited to the Rankine passive 

lateral earth pressure. 
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Figure 2.1: Basis Concept of the Hysteretic K0 Method 
Source: Duncan & Seed (1986) 

 

Seed and Duncan (1986) incorporated the hysteretic K0 method into the FE analysis to 

analyze the compaction effect in retaining walls and buried culverts. In their model, the 

compaction-induced horizontal stress was applied to the mesh to simulate the compaction. They 

ignored the relaxation of the residual horizontal stress due to the deformation of the mesh. This 

method was also evaluated by Filz and Duncan (1996) through laboratory and field tests. Chen 

and Fang (2008) developed a laboratory-scale model test to investigate the compaction effect on 

sand without any consideration of movement of the wall behind the sand. They compared the 

measured data, the Jaky at-rest earth pressure line, the Rankine active earth pressure line, and the 

Rankine passive earth pressure line. They concluded that in the compaction zone, the lateral 

stress could be calculated using the Rankine passive earth pressure theory, while below the 

compaction zone, the lateral stress was close to the Jaky at-rest earth pressure. Yang et al. (2012) 

modified the hysteretic K0 method and allowed the stress path to cross the Rankine passive earth 

pressure line to consider the geocell reinforcement effect during the compaction.  

The hysteretic K0 method uses the concept of the over-consolidation ratio to consider the 

compaction-induced horizontal stress. In this method, the compaction effect is expressed by an 
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equivalent over-consolidation ratio. This method has proven difficult to analyze the elastic-

plastic behavior of the soil during compaction (Elshimi & Moore, 2013).  

2.2.3.2. Additional Surcharge Method 

Additional surcharge method is a more straight forward method. One should apply 

additional surcharge load to the soil to simulate the compaction; however, the load has to be 

maintained all the way even after the completion of the compaction. Katona (1978) proposed to 

apply a temporary surcharge on the surface of the newly placed layer to simulate the compaction 

around the pipe. This surcharge remains after the compaction, which is not real in the 

engineering practice. In order to solve this problem, Katona suggested applying a pressure in the 

opposite direction on the placed layer before the placement of the next layer. This method was 

named as the “squeeze layer method.” However, the above two methods could not create a 

comparable lateral movement of soil during compaction because of the use of the elastic model. 

Furthermore, the additional load could not be removed; otherwise the residual deformation 

would become zero. The lateral earth pressure coefficient during the compaction is assumed as 

K0, which is not accurate because the soil moves towards the pipe. Taleb and Moore (1999) 

proposed to apply horizontal pressure directly on the soil to simulate the compaction. The 

magnitude of the earth pressure can be calculated as the vertical earth pressure times the passive 

lateral earth pressure coefficient. Elshimi and Moore (2013) considered the possible relaxation of 

the horizontal pressure caused by the deformation of the flexible pipe and suggested to use 2 as 

the lateral earth pressure coefficient. The applied horizontal load should be maintained after the 

completion of compaction. McGrath, Selig, Webb, and Zoladz (1999) summarized the above-

mentioned techniques as shown in Figure 2.2 and assessed the advantages and disadvantages of 

each method. Katona (2015a, 2015b) modified the Duncan-Selig soil model to simulate the 

plastic-like behavior of soil during compaction and incorporated the modified model into the 

Culvert Analysis and DEsign (CANDE) software for different types of pipes to demonstrate the 

effectiveness of this model. 
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Even though the above methods can simulate the compaction-induced stresses, they 

cannot address the following three characteristics of compaction behavior: 

• Applied load should be removed after the completion of the compaction 

for each layer; 

• Residual horizontal stress and strain should remain after the compaction 

load is removed;  

• Pipe interacts with soil during the compaction. In other words, the 

deformation of the pipe is induced by the lateral deformation of the 

surrounding soil. 

 

 

 
 

(a) Placement of a new layer; (b) Applying vertical pressure method; (c) Squeeze layer method; and (d) Applying 
horizontal pressure method 
Figure 2.2: Compaction Models for Buried Pipes by Applying Additional Pressure 
Modified from McGrath et al. (1999) 
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2.3 Load Transfer Mechanism Above Buried Pipes 

2.3.1 Loads and Deflections of Pipes During Installation 

Several methods have been proposed to estimate the earth pressure at the top of pipes 

(Marston & Anderson, 1913; Spangler, 1941; McGrath et al., 1999; Sargand, Masada, & Schehl, 

2001; Sargand et al., 2002; Sargand, Masada, Tarawneh, & Gruver, 2008; Corey et al., 2014). 

Marston and Anderson (1913) developed a theoretical solution for the vertical load transferred to 

the top of a pipe considering the friction between the soil above the pipe and the trench walls. 

Marston (1930) investigated the earth pressures on pipes buried in an embankment. He suggested 

that the embankment height could be increased by introducing a compressible layer over the pipe 

to enhance the soil arching effect. Spangler (1941) assumed a horizontal passive earth pressure 

distributed like a parabolic at the side of the flexible pipe, and the magnitude of this horizontal 

pressure was a function of the soil stiffness and the pipe horizontal deflection. Spangler (1962) 

considered the complete and incomplete projection conditions to calculate the earth pressures on 

the top of pipes buried in an embankment. However, the Marston-Spangler theory likely 

overestimates the earth pressure at the top of the pipe by the following reasons: (1) the backfill 

above the pipe was assumed at an active state, thus underestimating the friction between the 

trench wall and the backfill material, and (2) the cohesion of the backfill soil was neglected 

(Schofield, 1980; Moser & Folkman, 2008; McAffee & Valsangkar, 2008). In addition, the 

existing methods (Marston, 1930; Spangler, 1941, 1962) using the Marston-Spangler theory 

require 10 empirical parameters. Determination of each parameter includes uncertainty. 

Therefore, the uncertainty of earth pressure estimation could be enlarged (Moser & Folkman, 

2008). Höeg (1968) investigated the pipe-soil interaction and found that the influence zone of the 

pipe-soil interaction was one to two times the rigid pipe diameter. Meyerhof and Adams (1968) 

developed a formula for the earth pressure on a buried rigid pipe similar to the Marston-Spangler 

theory. They assumed that the lateral earth pressure coefficient of the soil above the rigid pipe 

was 0.95. The American Water Works Association (Lischer, 1969) adopted a simplified 

approach based on the Marston-Spangler theory. In this method, the product of the settlement 

ratio (rsd) and the projection ratio (p) was estimated as 0.75. The frustum calculation method 

(Matyas & Davis, 1983; Li, 2009) assumed the soil load on a buried rigid pipe was equal to the 
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weight of the soil column above the pipe. The China Association for Engineering Construction 

Standardization (CECS, 2004) simplified the earth pressure acting on the top of a buried flexible 

pipe as that equal to the geostatic stress of the overburden soil. AASHTO (2012) has widely been 

used in the design of buried pipes in the United States. This standard includes two methods to 

calculate the earth pressure on the top of the pipe: (1) the soil prism pressure, which is equal to 

the overburden stress at the top of the pipe level; and (2) the soil arch pressure, which is equal to 

the overburden stress multiplied by the vertical arching factor (VAF). The VAF can be 

calculated by an empirical method, which was originally proposed by McGrath (1998). The 

vertical load on the top of the pipe can be calculated as follows: 

 

 spW VAF W= ×  Equation 2.2 

 

For a fully-bonded interface between pipe and soil (McGrath et al., 1999): 
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For a free-slip interface between pipe and soil (McGrath et al., 1999; AASHTO, 2012): 
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=

 Equation 2.5 
Where: 

Wsp = the soil prism load above a pipe 

SH = the hoop stiffness parameter 

Ms= the constrained modulus of elasticity of soil 

E = the Young’s modulus of elasticity of the pipe material 

A = the wall cross-sectional area of the pipe 

R = the radius of the pipe. 
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The load on a pipe during installation can cause the deflection of the pipe. Spangler 

(1941) considered the following reasons for the ability of a flexible pipe to carry the load: (1) the 

redistribution of the load around the pipe, and (2) the passive pressure at sides of the pipe 

induced by the outward movement of the pipe against the trench walls. The pipe deflection 

results in the above two benefits. Spangler proposed the Iowa Formula to calculate the deflection 

of a flexible pipe as expressed in Equation 2.6.  

 

 
3

40.061
L cD KW rX

EI er
D =

+
 Equation 2.6 

Where: 

LD = the deflection lag factor 

K = a bedding constant 

Wc = Marston’s load 

r = the mean radius of a pipe 

E = the modulus of elasticity of pipe material 

I = the moment of inertia of pipe wall 

e = the modulus of passive resistance of side fill  

X∆ = the horizontal deflection or change in pipe diameter. 

 

The modulus of passive resistance of the side fill e in Equation 2.6 was difficult to 

determine since it was not a soil property. Watkins and Spangler (1958) modified the Iowa 

Formula by introducing a new parameter referred to as the modulus of reaction instead of e. 

They also developed a test method to determine the modulus of reaction. However, great efforts 

have been made by researchers attempting to measure the modulus of reaction without much 

success. A more reliable method of estimating the modulus of soil reaction was proposed by 

Howard (1996) using the back-calculation method. The deflections, strains, buckling 

deformations, bending, and hoop stresses can be calculated and used as the design criteria for 

buried flexible pipes using the above methods (Spangler, 1941; Watkins & Spangler, 1958). 

However, these methods assumed the deformation of the pipe was only caused by the 

overburden pressure of the soil cover and the weight of a superstructure above the buried pipe. 

Design methods, including Spangler (1941), Watkins and Spangler (1958), CECS (2004), and 
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AASHTO (2012), do not consider the initial deformation of the pipe caused by the compaction 

during backfilling. The Spangler (1941) method assumed the pipe deformed like a horizontal 

ellipse; however, a vertical ellipse was observed once the installation effect was considered 

(Arockiasamy, Chaallal, Limpeteeprakarn, 2006; Mai, Hoult, & Moore, 2014). Sargand et al. 

(1996), McGrath (1998), and Masada and Sargand (2007) pointed out that the flexible pipe 

deformed into a shape like a vertical ellipse when the backfilling and compaction were below the 

pipe crown level. The shape of the pipe gradually returned to be round when the backfilling was 

above the pipe crown level. This phenomenon was referred to as “peaking behavior,” which is 

beneficial for improving the load carrying capacity of the flexible pipe verified by field test 

results. Masada and Sargand (2007) proposed a theoretical formula to calculate the peaking 

deflection as shown in Equation 2.7: 

 

 04.7
3.874( )

cy P K r
D PS

γD +
=  Equation 2.7 

Where: 

y∆ = the vertical deflection of the pipe 

D = the diameter of the pipe 

0K  = the lateral earth pressure coefficient at rest 

r = the radius of the pipe 

γ = the unit weight of the backfill material 

PS = the pipe stiffness. 

 

2.3.2 Load Transfer Mechanism of Buried Pipes in Service 

Buried pipes have been commonly used for drainage in highway and railway projects, 

which are often subjected to traffic loading. Boussinesq’s solution is a basic formula commonly 

used to calculate the additional stress in the soil cover of the pipe at different depth. Hall and 

Newmark (1977) developed a load coefficient based on Boussinesq’s solution for calculating the 

concentrated load on a pipe: 
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s
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=  Equation 2.8 

Where: 

Wsc = the load per length on the pipe 

P = the concentrated load 

L = the effective length of the pipe 

Cs = a load coefficient, which is a function of the trench width and the soil cover 

thickness 

F’ = an impact factor (typically 1.0-1.5 for pipes under highways) 

 

Antaki (1997) suggested that the pressure on the top of the pipe induced by the surface 

load can be calculated using the following equation: 
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Where: 

pp = the pressure transmitted to the pipe 

Ps = the concentrated load on the road surface 

H = the soil cover thickness 

ds = the offset distance from the pipe to the line of the load application on the 

surface. 

 

Moser and Folkman (2008) suggested that the total load on the pipe was the surface load 

plus the weight of the soil cover. Typically, the weight of the soil cover is ignored. The surface 

load transferred to the top of the pipe with a distribution angle of θ = 45o – φ/2 (φ is the soil 

friction angle). In practice, the pressure on the pipe top can be simply calculated as follows with 

a friction angle of 27o: 
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 Equation 2.10 

Where: 

p = the pressure on the pipe top 

W = the surface load 

B = the width of the stress distribution area 

H = the soil cover thickness 

L = length of the stress distribution area 

 

AASHTO (2012) suggested the live load transferred to the pipe with the distribution 

width based on the AASHTO H-25 truck load as shown in Table 2.4. The live load distribution 

coefficient was also suggested in AASHTO (2012) as the lesser of the ratio of the distribution 

width to the outside diameter of the pipe and one.  

 
Table 2.4: Live Load Distribution Under the AASHTO H-25 Truck 

Soil cover thickness (ft) Live load transfer to pipe (psi) Live load distribution width (ft) 

1 15.6 2.3 

2 7.0 4.0 

3 5.2 5.5 

4 3.5 7.2 

5 2.2 8.8 

6 1.7 10.3 

7 1.6 12 

8 0.9 13.6 

10 negligible N/A 

12 negligible N/A 
Source: AASHTO (2012) 

 

Giroud and Han (2004) suggested an approximate solution for the vertical pressure 

distribution angle from a base course to a subgrade based on Burmister’s layered elastic solution 

as follows: 
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Where: 

α1 = the pressure distribution angle in the base coarse 

αo = the reference pressure distribution angle for a uniform medium defined by E1 

= E2, E1 = the modulus of elasticity of the base coarse, and E2 = the 

modulus of elasticity of the subgrade 

The reference distribution angle for a uniform medium can be taken as 27o (i.e., 

2:1 distribution) 

 

The above-mentioned methods are mainly based on elastic solutions. The compatibility 

of pipe and soil (i.e., the soil deformation and the pipe deflection) was not considered. In other 

words, if the deflection of the pipe is larger than the deformation of the surrounding soil, more 

load will transfer to the surrounding soil; if the deflection of the pipe is smaller than the 

deformation of the surrounding soil, the pipe will carry more load. These phenomena are referred 

to as the soil arching effect. 

 
2.4 Long-Term Behavior of HDPE Pipes 

AASHTO (2012) proposed a method to calculate the vertical load on the top of the pipe 

as shown in Equations 2.2 to 2.4. In Equation 2.4, the hoop stiffness depends on the elastic 

modulus of the pipe material. For HDPE pipes, the pipe material is polyethylene. The 

recommended short-term modulus of polyethylene is 110 ksi while its long-term modulus is only 

22 ksi. Consequently, load would gradually transfer from the pipe to the surrounding soil 

considering the soil arching effect. However, it has to be pointed out that the soil arching effect 

may lose with elapsed time. In practice, the soil prism load is widely used as the design load for 

flexible pipes. The long-term behavior of HDPE pipe is more critical for the HDPE pipe design. 

A series of research was conducted by Hsuan and her co-workers for the Florida Department of 

Transportation (FDOT) on the long-term behavior of the HDPE pipe material (Hsuan & Zhang, 

2005; Hsuan & McGrath, 2005). They used accelerated creep tests to simulate the HDPE pipe 

under different environments and temperatures. The recommended short-term and long-term 
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tensile strengths of the HDPE material are 3 and 0.9 ksi, respectively; while their short-term and 

long-term moduli are the same as those suggested by AASHTO (2012).  

Khatri (2012) conducted a creep test on an SRHDPE pipe section in the air for 1 month 

under a constant temperature of 27oC. He found that the pipe stiffness decreased by 25% with 

time. No stiffness reduction factor is available for the current SRHDPE pipe design. 

 
2.5 Previous Research on SRHDPE Pipes 

Moser and Folkman (2008) buried SRHDPE pipes in the field with different pipe 

diameters, while the soil compacted was 87% of standard proctor density. The test results 

indicated that the SRHDPE pipes had a similar behavior with the low stiffness metal corrugated 

pipes. Moore (2009) performed stub compression and hoop compression tests on SRHDPE pipe 

samples or sections with diameters of 2 and 5 ft. He found that the helically-wounded steel ribs 

provided sufficient safety for the SRHDPE pipes at required buried depths. To evaluate the 

performance of a deeply buried pipe system, large-scale buried pipe tests were also conducted on 

2 and 5 ft diameter pipes. The pipe deflected like a conventional buried metal culvert and the 

deflection was less than the limit of 5%. He concluded that the AASHTO method for the flexible 

steel pipe can be used to design the SRHDPE pipe to meet the deflection requirement. 

One steel-reinforced pipe and one conventional HDPE pipe were installed with crushed 

stone as a backfill on the Manhead Road by the Utah Department of Transportation (UDOT; 

Folkman & Rowley, 2013). The diameter of both pipes was 2 ft. These two pipes were installed 

in parallel at clear spacing of 5 inches using the same installation method. The thickness of the 

soil cover over both pipes was approximately 3 ft. The vertical and horizontal deflections of the 

pipes were measured immediately after the installation and during the service life. The 

conventional HDPE pipe had larger deflections than the steel reinforced HDPE pipe. The 

maximum average vertical and horizontal deflections were -1.99% and 2.24%, respectively, for 

the SRHDPE pipe, while the conventional HDPE pipe had -4.24% vertical and 4.06% horizontal 

deflections after 1 month of installation. In addition, the maximum average vertical and 

horizontal deflections were -1.63% and 1.78%, respectively, for the SRHDPE pipe, while the 

HDPE pipe had -4.19% vertical and 3.97% horizontal deflections after 1 year of installation. 
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Three SRHDPE pipes with a diameter of 8 ft and a length of 100 ft were installed in Fort 

Benning, Georgia (Hardert, 2011). The thickness of the soil cover was 16.2 ft. The vertical and 

horizontal diameter changes in 1 year were 1.54 and 1.18 inches, respectively. 

Research on SRHDPE pipes has also been conducted at the University of Kansas. Khatri 

(2012, 2014) did a series of laboratory tests to determine the mechanical properties of the 

SRHDPE pipe. Khatri, Han, Parsons, et al. (2013) conducted parallel plate load tests on the 

SRHDPE to determine the pipe stiffness. Corey et al. (2014) conducted large-scale box tests to 

evaluate the protection effect of the geogrid on the shallow buried SRHDPE pipes. Khatri, Han, 

Corey, Parsons, and Brennan (2015) investigated the installation effect of the SRHDPE pipe in a 

large test box. 

 
2.6 Performance Limits 

Buried pipes should first survive during installation. There are the performance limits for 

a pipe during installation, which are related to stress, strain, deflection, and buckling of the pipe. 

The following performance limits are usually considered in the buried pipe design (Moser & 

Folkman, 2008): 

2.6.1 Wall Crushing (Primary Performance Limit for Rigid Pipes and Stiffer 
Flexible Pipes) 

This performance limit describes the stress condition in the pipe reaches the yield stress 

or the ultimate stress of the pipe material. Wall crushing check can be easily conducted by 

comparing the compressive stress in the pipe with the yield strength of the pipe. The compressive 

stress in the pipe can be calculated as follows: 

 

 
2

v
rc

P D
A

σ =  Equation 2.12 

Where: 

rcσ = the compressive stress of the pipe 

vP  = the vertical soil pressure as shown in Figure 2.3 

D  = the pipe diameter 

A  = the cross section area of the pipe wall per unit length. 
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Figure 2.3: Schematic of the Wall Crushing  
Source: Moser & Folkman (2008) 

 

Wall crushing can also be influenced by the bending stress in the pipe wall. The bending 

stress is: 
 

 𝜎𝜎𝑏𝑏 = 𝑀𝑀𝑀𝑀
2𝐼𝐼

 Equation 2.13 

Where: 

bσ  = the bending stress in the pipe 

M = the bending moment per unit length 

t  = the thickness of the pipe wall 

I  = the moment of inertia of pipe wall per unit length 

 

2.6.2 Wall Buckling 

Wall buckling can occur when the pipe stiffness is not sufficient. Wall buckling may 

control the design when the buckling strain is greater than the strain limit of the pipe wall. 

For a circular ring (without buried in a soil) in a plane stress condition subjected to 

uniform external pressure, its critical buckling pressure is:  
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=
 Equation 2.14 

Where: 

Pcr = the critical buckling pressure 

E = the elastic modulus of the ring 

I = the moment of inertia 

R = the radius of the ring 
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For a long tube, its elastic modulus should be changed to: 

 
 𝐸𝐸𝐿𝐿 = 𝐸𝐸

1−𝜈𝜈2
 Equation 2.15 

Where: 

EL = the elastic modulus of the long tube 

E = the elastic modulus of the tube material 

v = the Poisson’s ratio of the long tube 

 

The moment of inertia of the pipe is: 

 

 
3

12
tI =  Equation 2.16 

Where: 

I = the moment of inertia of the pipe wall 

t = the thickness of the pipe wall. 

 

When Equations 2.15 and 2.16 are substituted into Equation 2.14, it becomes: 
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 Equation 2.17 

 

The limiting value of Pcr should be less than 
3

34
Et
R  or yt

R
σ , where yσ  is the yield stress 

of the pipe material. 

The above equation of the buckling pressure is only valid for the pipe submerged in 

water. For pipes buried in the soil, Meyerhof and Baikie (1963) developed the following 

equation: 
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 Equation 2.18 

Where: 

E’ = the soil reaction modulus, which is equal to the soil constrained modulus 
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Equation 2.18 can also be rewritten as: 
 

 𝑃𝑃𝑐𝑐𝑐𝑐 = 1.15 �𝐸𝐸′𝑃𝑃𝑏𝑏,  
3
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 =  −  
 Equation 2.19 

Where: 

D = the diameter of the pipe 

 

Test results showed that the above equation worked well for steel pipes; however, it was 

conservative for plastic pipes (Moser & Folkman, 2008). The more exact approach for pipe 

buckling is: 
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Where: 

aq  = the allowable buckling pressure 

FS = the design factor of safety, 2.5 (h/D > 2) and 3.0 (h/D > 2), in which h is the 

soil cover thickness and D is the pipe diameter 

WR = the water buoyancy factor, 1 0.33 w
W

hR
h

 = −  
 

, in which wh  is the height 

of the groundwater surface above the top of the pipe 
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2.6.3 Buckling Check for the Pipe Installation 

If a live load is considered, the following equation should be required for pipe 

installation: 

 c L
w w w a

W Wh R q
D D

γ + + ≤  Equation 2.21 

Where: 

cW = the vertical soil load on the top of the pipe per length 

LW  = the live load above the top of the pipe 
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Equation 2.21 is not valid for the condition when a large diameter pipe is buried 

shallowly below the groundwater surface. 

2.6.4 Over-Deflection 

Over-deflection was defined as the deflection larger than 7.5% at a factor of safety of 4. 

The design deflection limit is recommended as 5% in most standards considering a factor of 

safety of 4. 

2.6.5 Strain Limit 

Strain is related to the deflection of a pipe. Strain limit can be satisfied by controlling the 

deflection limit during installation. Brittle, composite pipe, or deeply buried pipe is often 

controlled by a strain limit. 

The strain described in the strain limit is referred to as the total circumferential strain, 

which includes bending strain, ring compression strain, hoop strain due to internal pressure, and 

strain due to Poisson’s ratio effect in the longitudinal direction. For gravity sewer pipes, the 

bending strain is typically the largest and other types of strain may be negligible. 

2.6.5.1 Bending Strain 

If a pipe is assumed to deform elliptically, the bending strain of the pipe can be calculated 

as: 

 

 
3

1 2

y
t D

yD
D

ε
D 

  = ±   D   − 

 Equation 2.22 

Where: 

ε = the maximum strain in the pipe due to ring bending 

t = the pipe wall thickness 

y∆ = the pipe diameter change in the vertical direction 

D = the pipe diameter 

 

 

 



27 

For profile wall pipes, Equation 2.22 can be simplified into: 

 

 6 t y
D D

ε D  = ±   
  

 Equation 2.23 

 
In Equation 2.23, the ratio of the pipe deflection to the pipe diameter (Δy

D
) is assumed as 

0.25. 

2.6.5.2 Compression Strain.  

From Equation 2.12, the compression strain of the pipe is: 
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 Equation 2.24 

Where: 

εrc = the compression strain 

Pv= the vertical soil pressure as shown in Figure 2.3 

D  = the pipe diameter 

t = the thickness of the pipe wall 

A = the cross section area of the pipe wall per unit length 

 

2.6.5.3 Circumferential Strain Due to Poisson’s Ratio Effect 

The circumferential strain can be calculated as follows: 

 
 εc = υεL Equation 2.25 

Where: 

εc = the circumferential strain 

Lε  = the longitudinal strain 

v = the Poisson’s ratio of the pipe wall 
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2.6.6 Delamination 

Reinforced pipes may experience delamination when subjected to a ring deflection due to 

the radial tension and inter-laminar shear.  The radial tensile stress is given by: 

 

 ( )r
T

t R y
σ =

+
 Equation 2.26 

Where: 
y

c

T daσ
−

= ∫  

rσ = the radial tensile stress 

t  = the pipe wall thickness 

R = the pipe radius 

y = the distance from the neutral axis to the point in question 

c = t/2 

σ  = the stress in the tangential direction as function of the position in the 

pipe wall (My/I); da = (dy) × (unit length) 
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Chapter 3: Field Performance of the SRHDPE Pipes 
Field Test I 

3.1 Introduction 

To evaluate the field performance of the SRHDPE pipe, two field tests were conducted in 

this research. This chapter presents the first field test, which is located close to Clinton Lake in 

Lawrence, KS, as shown in Figure 3.1. This field test is referred to as the Lawrence field test. 

The pipes were installed on E 1000 Road. The E 1000 Road is a two-way single-lane and high-

volume road. The test road section consisted of a 24-ft-wide roadway with 2% grade on each 

side, a 6-ft-wide shoulder with 4% grade on each side, and an embankment beyond the shoulder 

with 6:1 grade on each side (Figure 3.2). The SRHDPE pipes were installed to replace corroded 

steel pipes. To investigate field performance of the SRHDPE pipes during installation and 

service, the test section was instrumented with displacement transducers, earth pressure cells, 

and strain gauges, and has been monitored for almost two years. 

 

 

 
Figure 3.1: Location of the First Test Site 
Source: Google (n.d.) 
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Figure 3.2: Road Section in the Field Test 

 

 
3.2 Properties of the Backfill Material 

The roadway section was divided into two test sections, in which crushed stone and AB3 

aggregate were used, respectively. Crushed stone, used as bedding and backfill materials in one 

of the sections in the Lawrence field test, was poorly graded based on the USCS. Figure 3.3 

shows the grain size distribution of the crushed stone. It had a mean size of 0.50 inches, a 

uniformity coefficient Cu of 1.28, and a curvature coefficient Cc of 0.95. The minimum and 

maximum unit weights of the crushed stone were 87 and 100 pcf, determined by conducting the 

minimum and maximum density tests (ASTM D4254, 2014; ASTM D4253, 2014). Plate loading 

tests were conducted on the fill material in a wooden box with a dimension of 32 inches long × 

32 inches wide × 18 inches high to determine the modulus of the crushed stone. The modulus of 

the crushed stone compacted at the relative density of 79% was determined as 1,700 psi from the 

plate loading test. The peak friction angle of the crushed stone was 53°, obtained by large direct 

shear tests (ASTM D3080, 2011). The test results of the large direct shear test are shown in 

Figure 3.4. 
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Figure 3.3: Grain Size Distribution of the Crushed Stone 

 

 

AB3 aggregate were used as bedding and backfill materials in the second section in the 

Lawrence field test. The grain size distribution of the AB3 aggregate is shown in Figure 3.5. The 

AB3 aggregate was well-graded with a mean size of 0.1 inches, a uniformity coefficient Cu of 

55, and a curvature coefficient Cc of 1.043. The fine particles of the AB3 aggregate had a liquid 

limit of 18. Figure 3.6 shows the compaction curve of the AB3 aggregate by the standard Proctor 

compaction tests per ASTM D698 (2012), which resulted in a maximum dry density of 141 pcf 

at the optimum moisture content of approximately 8%. The modulus of AB3 aggregate 

compacted at the optimum moisture content was 2,675 psi. The peak friction angle of the AB3 

aggregate was 52.4o determined using large direct shear tests. 

 



32 

 
(a) Shear Stress vs. Displacement Curves 

 

 
(b) Shear vs. Normal Stress 

 
Figure 3.4: Large Direct Shear Box Tests for the Crushed Stone 
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Figure 3.5: Grain Size Distribution of the AB3 Aggregate Used in the Lawrence Field Test 

 

 

 

Figure 3.6: Standard Proctor Compaction Curve of the AB3 Aggregate Used in the 
Lawrence Field Test 

 

 



34 

3.3 Test Site, Test Pipes, and Instrumentation 

3.3.1 Test Site Condition 

In the field test, the total run of the pipe was divided into two sections from the center of 

the roadway. Section A was backfilled with AB3 aggregate as both bedding and backfill 

materials on the western end, while Section B was with crushed stone as both bedding and 

backfill materials on the eastern end. Figure 3.7 shows the longitudinal and cross sections of the 

test. The test sections had a rectangular trench of 6 ft wide and 5 ft 8 inches deep in in-situ soil. 

The trench consisted of 6-inch-thick bedding material, 3 ft backfill, and 3 ft soil cover including 

a 9-inch-thick hot mix asphalt (HMA) base and a 2-inch-thick HMA surface. Three pipes with 

the length of 24 ft were installed in the trench. Section A had the AB3 aggregate as the backfill 

material up to the HMA base (Figure 3.7b); however, Section B had the same HMA base and 

surface and a 6 inch thick AB3 aggregate on the top of the crushed stone (Figure 3.7c). 

3.3.2 Test Pipe 

SRHDPE pipes of 36 inches in diameter were tested in the Lawrence field test. Three 24 

ft long SRHDPE pipes with bell and spigot (with gasket) ends were provided by Contech 

Construction Products, Inc. Both the bell and spigot are reinforced with steel that is fully encased 

in stress-rated high-density polyethylene as shown in Figure 3.8. SRHDPE pipes were inspected 

and found that the pipes had glossy appearance, no chalking, no sticky or tacky materials, and no 

blisters, voids, or other defects. 
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(a) Longitudinal Section of the Test Section 

 
(b) Section 2-2 (Section 2) 

 
(c) Section 3-3 (Section 3) 

 
Figure 3.7: Field Test Sections in the Lawrence Site 
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Figure 3.8: Test SRHDPE Pipes with Bell and Spigot Joints in the Field Test 

 

3.3.3 Instrumentations 

The instrumentation plan was developed to collect the data required to accurately 

characterize the structural performance of the pipe. The results from the laboratory tests in the 

first phase of this project indicated that the most significant pipe response would be near the 

crown and springline, thus the instrumentation was focused on these two positions. Figure 3.7a 

shows four different instrumented sections. For the Section A (i.e., the AB3 aggregate section), 

the pipe was instrumented as Sections 1 and 2, whereas for the Section B (i.e., the crushed stone 

section), the pipe was instrumented as Sections 3 and 4. Section 2 in the Section A and Section 3 

in the Section B were instrumented under the traffic wheel paths close to the centerline of the 

roadway. Sections 2 and 3 were instrumented extensively to capture deflections using 

displacement transducers, strains on pipes using strain gages, and earth pressures around the pipe 

using vibrating wire type pressure cells. In addition, Sections 1 and 4, which were close to the 

shoulder, had only one vibrating wire pressure cell installed at the crown of the pipe under each 

path. Three SRHDPE pipes, each of 24 ft long, were used for the 72 ft pipe run. The middle pipe 

was laid under the roadway. 

Four displacement transducers, two on each test section (Sections 2 and 3), were used to 

measure the changes in vertical and horizontal diameters during installation and service vehicles. 
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The displacement transducers were manufactured by Tokyo Sokki Kenkyujo, Co., Ltd, Japan. 

The holes were drilled through the pipe walls to fix the transducers on the pipes as shown in 

Figure 3.9. 

 

 
Figure 3.9: Displacement Transducers Inside the Pipe Section in the Field 

 

Uniaxial foil-type electrical resistance (C2A-13-250 LW-120) strain gages, manufactured 

by the Vishay Precision Group, were used to measure the circumferential, radial, and 

longitudinal strains of the pipe at various locations as shown in Figure 3.10. For both pipe 

sections (Sections 2 and 3), the strain gages were installed outside and inside of the pipe on steel 

and plastic surfaces. The symbols, locations, and orientations of the strain gages were fixed on 

the pipe in the field test as shown in Figure 3.11a to d. In addition, six more strain gages on each 

section (Sections A and B) labeled with a double prime (″) symbol were placed on the plastic, 

inside and outside of the pipe, between the ribs (i.e., valley) to measure the strains in the plastic 

at the pipe crown as shown in Figure 3.11e. These six strain gages were placed along the pipe 

run to the centerline of the roadway. For example, the strain gages notations (G”CL3 and G”CL4) 

with a double prime symbol represent the strains at the pipe crown on plastic in the longitudinal 

direction from the instrumented section to the roadway centerline. 
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Figure 3.10: Strain Gages Fixed Outside of the Pipe in the Field 

 

 

 
 

(a) On the Steel at Ribs 

 
Figure 3.11: Symbols, Locations, and Orientations of the Strain Gages on the Pipe  
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(b) On the Plastic at Ribs 

 

 
 

(c) In the Longitudinal Direction on the Plastic at Valley 

 
Figure 3.11: Symbols, Locations, and Orientations of the Strain Gages on the Pipe 
(Continued) 
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(d) Strain Gages on the Plastic Surface 

 

 
(e) On the Longitudinal Direction 

 
Figure 3.11: Symbols, Locations, and Orientations of the Strain Gages on the Pipe 
(Continued) 

 

Twelve vibrating wire pressure cells (model 4810), manufactured by Geokon with a 

capacity of 51 psi were installed around the pipe under the wheel paths of the vehicles. Sections 

2 and 3 had five pressure cells each, whereas Sections 1 and 4 had one pressure cell each at the 

crown of the pipe. The notations, locations, and orientations of the pressure cells are presented in 
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Figure 3.12. The subscripts of the notations represent the positions at which the earth pressure 

cells were placed. The subscript letters I, S, W, and C stand for invert, springline, wall, and 

crown of the pipe, respectively, whereas the numerical value gives the horizontal distance from 

the position defined by the subscript letter. For example, the notations, EC0 and EC12, represent 

earth pressure cells placed at the crown and at 12 inches horizontal distance from the crown 

towards the trench wall, respectively. Pressure cells, E’S0, and E’S18, labeled with a prime (′) 

symbol, were installed for the horizontal earth pressure measurements, whereas the remaining 

pressure cells without the prime (′) symbol were installed for the vertical earth pressure 

measurements. 

 

 
Figure 3.12: Earth Pressure Cells Around the Pipe Section 

 

Two smart dynamic DC-204R data recorders were used to record data for four 

displacement transducers and four strain gages. A CR1000 data logger produced by Campbell 

Scientific was used to measure earth pressures around the pipe from the vibrating wire pressure 

cells and strains at various locations on the steel and plastic. The power to the data recorders and 

computers was supplied using batteries and a generator. 
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3.4 Pipe Installation and Static Loading 

3.4.1 Exhumation of the Corroded Corrugated Metal Pipe 

An existing corrugated metal pipe of 24 inches diameter on the E 1000 Road at 

Lawrence, KS, because of the excessive corrosion was to be replaced with SRHDPE pipes of 36 

inches in diameter. Figure 3.13 shows the corroded corrugated metal pipe before replacement. 

The existing metal pipe was found having lost most of its invert portions due to the corrosion. 

The test sections were constructed by the Douglas County Public Work. 
 

 
Figure 3.13: The Corroded Corrugated Metal Pipe Before Replacement 

 

A 2000 model Case 9030B excavator was used to dig out the existing HMA base and 

surface and the rectangular trench of 6 ft wide as shown in Figure 3.14. The width of the trench 

was chosen according to the KDOT (2007) specifications for pipe and culvert to provide 

sufficient working space for compaction equipment to properly and safely place and compact 

bedding, hunching, and backfill materials. A minimum trench width was maintained not to be 

less than the greater of either 1.5 times the pipe outside diameter plus 12 inches or the pipe 

https://www.google.com/search?q=2000+model+Case+9030B+excavator&client=firefox-a&hs=wMQ&rls=org.mozilla:en-US:official&tbm=isch&tbo=u&source=univ&sa=X&ei=R5JaU_T2FcTgyQHp44CICQ&ved=0CEQQ7Ak&biw=1680&bih=946
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outside diameter plus 12 inches on each side suggested by ASTM D2321 (2014). The existing 

corrugated metal pipe was exhumed. The in-situ soil was found to be clayey soil at a moisture 

content of 24%. After the trench was excavated, the centerline of the roadway was marked as 

shown in Figure 3.15, and the placement of the bedding materials in both western and eastern 

sections (Sections A and B) was started. 

 

 
Figure 3.14: Excavation of a Trench 

 

 
Figure 3.15: Marking the Centerline Before the Placement of Bedding Materials 
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3.4.2 Bedding 

AB3 aggregate and crushed stone were dumped from the height of approximately 5 to 6 

ft into the trench using the excavator on the western and eastern test sections, respectively, and 

were leveled as shown in Figure 3.16. The bedding materials were not compacted on both test 

sections. The wheel paths on both sections were marked in order to locate the sections to be 

instrumented as shown in Figure 3.17. All earth pressure cells were connected to the data 

acquisition system. The earth pressure cells EI0 were installed in the bedding materials on both 

test sections (Sections 2 and 3) under the wheel paths close to the centerline of the road at the 

invert of the pipe before the placement of the pipe in the trench as shown in Figure 3.18. Before 

each earth pressure installation, the trench bottom surface was leveled using sand and the 

pressure cell was placed, checked level with a sprit level, and then covered by the sand. The 

pressure cells were covered by sand to minimize the effect of non-uniform contacts of the 

backfill materials on the sensor surfaces of the pressure cells. 

 

 

 
Figure 3.16: Placement of the Bedding Materials 

 

https://www.google.com/search?q=2000+model+Case+9030B+excavator&client=firefox-a&hs=wMQ&rls=org.mozilla:en-US:official&tbm=isch&tbo=u&source=univ&sa=X&ei=R5JaU_T2FcTgyQHp44CICQ&ved=0CEQQ7Ak&biw=1680&bih=946
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Figure 3.17: Marking of the Locations of the Wheel Paths 

 

 
Figure 3.18: An Earth Pressure Cell Installed at the Invert Of The Pipe 

 

3.4.3 Placement of Pipe 

After the placement of the bedding materials, galvanized steel end sections were 

connected to the ends of the pipes as shown in Figure 3.19. Each pipe was placed in the trench 

using the excavator (Figure 3.20). The pipes were connected to each other with the help of 

attached bell and spigot (with gasket) ends. The instrumented (middle) pipe was connected 

https://www.google.com/search?q=2000+model+Case+9030B+excavator&client=firefox-a&hs=wMQ&rls=org.mozilla:en-US:official&tbm=isch&tbo=u&source=univ&sa=X&ei=R5JaU_T2FcTgyQHp44CICQ&ved=0CEQQ7Ak&biw=1680&bih=946
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carefully so that the displacement transducers fixed on the pipe inside to measure vertical 

deflections of the pipe oriented vertically. Figure 3.21 shows the pipes in the trench before 

backfilling. All the sensors, strain gages, and displacement transducers were connected to two 

separate DC-204R and the CR 1000 data acquisition system. The recorders were then adjusted 

and balanced to set all the initial values to zero. 

 

 
Figure 3.19: Galvanized Steel End Sections 

 

 
Figure 3.20: Placement of a Pipe into the Trench 
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Figure 3.21: Fully-Instrumented Pipes in the Trench 

 

3.4.4 Backfilling and Soil Cover 

AB3 aggregate and crushed stone were used as backfill materials. The backfilling was 

performed in layers of approximately 6 to 9 inches lift thick after compaction. A vibratory plate 

compactor, Wacker WP1550AW, was used for compaction of the crushed stone, whereas a 

tamping hammer, Multiequip MT65H, was used for compaction of the AB3 aggregate. The 

vibratory plate compactor, Wacker WP1550AW, consisted of a base plate of 23 inches × 19.5 

inches size with the operating weight of 194 lbs, vibrated at a frequency of 100 Hz. The tamping 

hammer, Multiequip MT65H, consisted of a shoe size of 11 inches × 13 inches with the impact 

force of 2,450 to 2,900 lbs/blow, which can apply 590 to 695 blows in a minute. The vibratory 

plate compactor and the tamping hammer were used for the compaction of the backfills and the 

soil covers (up to a height of 26 inches above the crown of the pipe) as shown in Figure 3.22. For 

the AB3 aggregate backfill on the western test section (Section A), light compaction was used up 

to the springline to avoid excessive uplifting of the pipe. Compaction directly above the pipe 

surface was avoided to prevent possible damage of the pipe due to the compaction equipment. 

The backfilling was done in equal lifts on both sides of the pipe so as not to disturb the pipe 

alignment. Figure 3.23 shows the backfills placed up to the springline. To dump AB3 aggregate 

and crushed stone up to a height of 6 inches above the crown, the excavator was used. After that, 

https://www.google.com/search?q=2000+model+Case+9030B+excavator&client=firefox-a&hs=wMQ&rls=org.mozilla:en-US:official&tbm=isch&tbo=u&source=univ&sa=X&ei=R5JaU_T2FcTgyQHp44CICQ&ved=0CEQQ7Ak&biw=1680&bih=946
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a Bobcat 2006 Model S300 was used to dump and level the soils as shown in Figure 3.24. The 

top 6 inches of AB3 aggregate was placed and compacted throughout the test section using the 

tamping hammer and then a smooth wheel vibratory roller, 2005 Model Hamm HD13. The 

vibratory roller, which has the operating weight of 8,741 lbs, compacts soils with the centrifugal 

force of 14 kips for a high amplitude and 9 kips for a low amplitude vibrating at a frequency of 

60 to 51 Hz. Figure 3.25 shows the compacted AB3 aggregate surface before the placement of 

the HMA base. During the backfilling, the earth pressure cells were installed around the pipe for 

each test section as shown in Figure 3.26. The readings of the strain gages, displacement 

transducers, and earth pressure cells were taken using the data recorders after completion of each 

lift during backfilling. 

 

 

 
(a) Eastern Test Section (Section B) 

 
Figure 3.22: Backfilling and Compaction with a Vibratory Plate Compactor and a Tamping 
Hammer  
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(b) Western Test Section (Section A) 

 
Figure 3.22: Backfilling and Compaction with a Vibratory Plate Compactor and a Tamping 
Hammer (Continued) 

 

 

 
Figure 3.23: Backfilling up to the Springline 
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Figure 3.24: A Bobcat Used to Dump and Level Soils 

 

 

 
Figure 3.25: The Compacted AB3 Surface Before the Placement of the HMA Base 
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(a) At the Pipe Springline 

 

 
(b) At the Pipe Crown 

 
Figure 3.26: Earth Pressure Cells, Es0 and Es18 Placed at the Springline and EC0 and EC12 at 
the Crown 

 

 

 



52 

3.4.5 Loading 

After the compaction of the top 6-inch-thick AB3 aggregate, the wheel paths of vehicles 

were marked on the surface for each test section to apply a truck load on the pipe, as shown in 

Figure 3.27. A dump truck, 2004 International 7400 6x4, weighing 13.7 tons (empty) loaded 

with the HMA base course material of 15.2 tons, was used as the test truck (Figure 3.27) to apply 

the load on the pipe to monitor the effects of the construction vehicles on the pipe. The test truck 

consisted of two physical axles: a front steering axle and tandem axles at the end. Seventy-two 

percent of the total gross weight of 29 tons (sum of the weights of the empty truck and the loaded 

material) was carried by the rear axle, and the remaining 28% was shared by the front axle. The 

axle configuration and the load on each axle are shown in Figure 3.28. Based on the empty 

weight of 13.7 tons of the truck and the ground vehicle weight rating (GVWR) of around 28 

tons, the maximum axle load capacities were 10 and 23 tons for front and rear axles, 

respectively. 

 

 
Figure 3.27: Test Truck Used to Load the Pipe 

 

The static truck load was applied on both the western and eastern test sections (Sections 

A and B) with the rear axle: a back axle at the center between the trench wall and the pipe crown, 

a back axle above the pipe crown, and a middle axle above the pipe crown, as shown in Figures 

3.28 and 3.29. The contact area calculated for each rear wheel load of 5.25 tons at the axle 
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pressure of 120 psi was found to be 87.5 in2. For each loading step, the truck was kept for a 

while until all readings from the displacement transducers were stable and recorded. After the 

truck static load, the truck was run over the pipe at a slow speed in order to capture the effect of 

the moving construction vehicle on the pipe.  

 

 

 
Figure 3.28: Axle Load Configuration of the Test Truck 

 

 

 
(a) The Back Axle at the Center Between the Trench and the Crown 

 
Figure 3.29: Application of Static Loads by the Test Truck 
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(b) The Back Axle Above the Crown 

 

 
(c) The Middle Axle Above the Crown 

 
Figure 3.29: Application of Static Loads by the Test Truck (Continued) 

 

3.4.6 HMA Base and HMA Surface Preparation 

After the truck load was applied on the unpaved road, an 8-inch-thick HMA base was 

placed using the dump truck (Figure 3.30), leveled using the Bobcat (Figure 3.31), and 

compacted uniformly in a single layer by the vibratory roller (Figure 3.32) for several passes. 
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After the HMA base, the HMA material was placed, leveled, and compacted to produce a 2-inch-

thick surface course. 

 

 

 
Figure 3.30: Placement of HMA Material by Truck 

 

 
Figure 3.31: Leveling of HMA Material Using a Bobcat 
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Figure 3.32: Compaction of the HMA Base by a Vibratory Roller 

 

A sketch of the cross section of the test section is shown in Figure 3.33, which presents 

the compaction schedule of the backfill and the base course, and also includes the locations of 

the earth pressure cells. 

 

 
Figure 3.33: Construction and Instrumental Details of a Test Section in the Field 
Including the Soil Lifts and the Earth Pressure Cells 
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3.4.7 Quality Control 

The installation of the pipe on this E1000 Road was planned to finish in two days. It was 

scheduled to open the road for traffic in the afternoon on the second day. This resulted in a very 

busy schedule for the installation of the pipe. To save the time, the installation of the strain gages 

and the displacement transducers on the pipes was done at a warehouse prior to the field work 

while the pressure cells were installed on the site. To control the quality of the construction, 

instead of slow and tedious field tests, non-destructive Light Weight Deflectometer (LWD) tests 

were conducted over the compacted crushed stone and the AB3 aggregate at various locations 

during the preparation of the test sections, as shown in Figure 3.34. The dynamic deformation 

moduli (Evd) obtained from LWD tests (using a 1 ft diameter plate) were in a range of 2,700 to 

3,700 psi with an average value of 3300 psi for the AB3 section, and 2,460 to 3,480 psi with an 

average value 2900 psi for the crushed stone section. 

 

 
Figure 3.34: LWD Test on the Compacted AB3 Aggregate 

 

In addition, Dynamic Cone Penetration (DCP) tests were carried out following the ASTM 

D6951 (2003) on both sides of the backfill next to the pipe on the western test section (Section 

A) after the compaction of the backfill up to the pipe haunch. The DCP tests were also conducted 
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before the placement of the HMA base at two different locations on the western test section 

(Section A) and at two locations on the eastern section (Section B). On the eastern test section 

(Section B), the DCP rod was penetrated to a depth of 6 inches to the crushed stone. The CBR 

profiles of the test section (Section A) obtained from the DCP tests are shown in Figure 3.35. 

The average CBR values of the compacted and light compacted AB3 aggregate, resulting from 

the DCP tests, were approximately 25% and 12%, respectively. 

 

 
Figure 3.35: CBR Profiles on the Western Test Section 

 

The densities of the AB3 aggregate compacted in the field were determined later by 

constructing test sections at the Big Spring Quarry at Lawrence, KS. A test section of compacted 

AB3 material was constructed by compacting the material using the vibratory plate compactor 

until the desired CBR values of 25% from the DCP tests and the dynamic deformation moduli 
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(Evd) value (3,200 psi for the compacted AB3 section) from LWD tests were obtained. The 

densities of the compacted AB3 sections determined by the sand cone method following the 

ASTM D1556 (2007) were found to be 127 pcf at approximately 7% moisture content. 

The densities of crushed stone compacted in the field were determined later in the 

laboratory at KU. A small box of 2 ft 7.5 inches long × 2 ft 7.5 inches wide × 3 ft high was used 

as shown in Figure 3.36. A 2 ft thick compacted crushed stone material was constructed by 

compaction using the vibratory plate compactor until the desired dynamic deformation moduli 

(Evd) value of 2,900 psi from LWD tests were obtained. To determine the densities of 

uncompacted AB3 aggregate and crushed stone beddings, each material was dumped from the 

height of around 5 ft and leveled in the box. The densities of the uncompacted AB3 aggregate, 

uncompacted crushed stone, and compacted crushed stone materials determined by the weight-

volume method were found to be 110, 94, and 97 pcf, respectively. 

 

 
Figure 3.36: A Test Box Used for Density Determination 

 
3.5 Analysis of Test Results During Pipe Installation 

3.5.1 Earth Pressure-Test Section A 

Figure 3.37 shows the measured earth pressures developing around the pipes against the 

levels of construction (labeled as 1 to 9, as shown in Figure 3.33). The pressures measured 

around the pipe in the field had similar trends to the pressures measured around the pipe in the 
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laboratory tests. The earth pressure cells, 1EC0, 2EC0, and 2EC12, fixed at the crown in Section 1, 

at the crown in Section 2, and at 12 inches away from the crown to the trench wall measured 

similar vertical earth pressures during the installation. The vertical earth pressures recorded by 

the pressure cell fixed at the invert (EI0) were higher than the crown pressures. 

 

 
Figure 3.37: Measured Earth Pressures Around the Pipe During Installation in Test 
Section A 

 

The overburden pressure EC0, cal (i.e., the unit weight of the soil [γs] × the thickness of the 

soil from the crown [H]) was calculated at the crown of the pipe. The vertical earth pressures 

measured at the crown by the earth pressure cells (1EC0 and 2EC0) were then compared with the 

calculated overburden pressures as shown in Figure 3.38. The vertical arching factors (VAFs), 

calculated as the ratio of the measured pressure to the overburden pressure at the crown, are 

shown in Figure 3.38. The VAFs varied from 1.0 to 1.41 with an average value of 1.20. Based on 

the vertical arching factor and the hoop stiffness described by McGrath (1998), the SRHDPE 

pipe behaved similarly to a corrugated steel pipe. In addition, the vertical arching factors 

calculated using the Burns and Richard no-slip and full-slip solutions resulted in VAFs of 1.39 

and 1.01, respectively. In this calculation, the hoop stiffness needed for the Burns and Richard 

solutions was estimated based on the constrained modulus (Ms = 3,900 psi) of the backfill (i.e., 
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the AB3 aggregate), the radius of the pipe (36 inches), the area of the steel reinforcement (0.056 

in.2/ft), and the modulus of elasticity of the steel reinforcement (29,000 ksi). The constrained 

modulus, Ms, of the AB3 aggregate was back-calculated from the modulus of elasticity of the 

AB3 aggregate determined from the small plate loading test in the laboratory. The vertical 

arching factors (VAFs) from the measurement of the earth pressures on the crown were in 

between the vertical arching factors obtained from the Burns and Richard solutions for the no-

slip and full-slip cases, as shown in Figure 3.38. Therefore, the SRHDPE pipe should be 

designed based on a no-slip condition to be conservative for the VAF value. 

 

 
Figure 3.38: Comparison of Measured and Calculated Pressures at the Crown During 
Installation in Test Section A 

 

Figure 3.39 shows the measured lateral pressures, E’S0 and E’SW, at the springline near 

the pipe surface and at the trench wall and the calculated overburden pressures at the springline. 

Figure 3.40a shows the coefficients of lateral earth pressure (K) at the springline, calculated as 

the ratio of the measured lateral pressures to the calculated overburden pressures. The lateral 

earth pressure coefficients were higher at the level of construction 4 (i.e., at the pipe crown) and 
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decreased with the increased fill height. After the level of construction 6, the lateral pressure 

coefficients were constant. This type of behavior was also observed in the laboratory test results 

in the first phase of this project. Figure 3.40b compares the measured coefficients at the 

springline with the lateral earth pressure coefficient (Kp), calculated using the friction angle and 

the cohesion of the AB3 aggregate. The friction angle of 52.4o and the AB3 aggregate reported 

by Yang (2010) was used for the calculation of the passive earth pressure coefficient using the 

Rankine pressure coefficient with cohesion. The measured coefficients (K) were found to be 

much lower than the Rankine passive pressure coefficient (Kp). 

 

 
Figure 3.39: Measured and Calculated Lateral Earth Pressures at the Springline in Test 
Section A 
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(a) Lateral Earth Pressure Coefficients at the Springline 

 

 
(b) Comparison to the Passive Lateral Earth Pressure Coefficients (Kp) 

 
Figure 3.40: Lateral Earth Pressure Coefficients (K) at the Springline in Test Section A 
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3.5.2 Earth Pressure-Test Section B 

Figure 3.41 shows the earth pressures developing around the pipes against the levels of 

construction. The earth pressure cells, EC0 and EC12, fixed at the crown and 12 inches away from 

the crown, measured similar earth pressures during the installation. The vertical pressure 

recorded by the pressure cell fixed at the invert (EI0) was lower than the pressure measured at the 

pipe crown. 

 

 
Figure 3.41: Measured Earth Pressures Around the Pipe During Installation in Test 
Section B 

 

The overburden pressure EC0, cal (i.e., the unit weight of the soil [γs] × the thickness of the 

soil from the crown [H]) was calculated at the crown of the pipe. The vertical earth pressures 

measured at the crown by the earth pressure cells (1EC0 and 2EC0) were then compared with the 

calculated overburden vertical pressures, as shown in Figure 3.42. The vertical arching factors 

(VAFs), calculated as the ratio of the measured pressure to the calculated pressure at the crown, 

are shown in Figure 3.42. The VAFs varied from 0.97 to 1.21 with average value of 1.1. Based 

on the vertical arching factor and the hoop stiffness described by McGrath (1998), the SRHDPE 

pipe behaved similarly to a corrugated steel pipe. In addition, the vertical arching factors 

calculated using the Burns and Richard no-slip and full-slip resulted in VAFs of 1.41 and 1.02, 
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respectively. In this calculation, the hoop stiffness needed for the Burns and Richard solutions 

was estimated based on the constrained modulus (Ms = 2,520 psi) of the backfill (i.e., the crushed 

stone), the radius of the pipe (36 inches), the area of the steel reinforcement (0.3575 in2/ft), and 

the modulus of elasticity of the steel reinforcement (29,000 ksi). The constrained modulus, Ms, 

of the crushed stone was back-calculated from the modulus of elasticity determined from the 

small plate loading test in the laboratory. The vertical arching factors (VAFs) from the 

measurement of the earth pressures on the crown were in between the vertical arching factors 

obtained from the Burns and Richard solutions for the no-slip and full slip cases, as shown in 

Figure 3.42. Therefore, the SRHDPE pipe should be designed based on a no-slip condition to be 

conservative for the VAF value. 

 

 
Figure 3.42: Comparison of Measured and Calculated Pressures at the Crown During 
Installation in Test Section B  

 

Figure 3.43 shows the measured lateral pressures, E’S0 and E’SW, near the pipe surface 

and at the trench wall and the calculated overburden pressures at the springline of the pipes. 

Figure 3.44a shows the coefficients of lateral earth pressure (K) at the springline calculated as 

the ratio of the measured lateral pressures to the overburden pressures. Figure 3.44b compares 
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the measured coefficients at the springline with the lateral earth pressure coefficients, Ka, Ko, and 

Kp, calculated using the friction angle of the crushed stone of 53o.  

The measured coefficients (K) were found to be close to K0. The coefficient (K) was the 

highest at level 4 (i.e., when the fill height reached the crown of the pipe) and then decreased to a 

value close to the coefficient Ko. The higher values of the coefficients (K), when the construction 

levels were close to the pipe, might be due to the higher effect of the compaction on the pipe. 

 

 

 
Figure 3.43: Measured Lateral and Overburden Pressures at the Springline in Test 
Section B 
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(a) Lateral Earth Pressure Coefficient at the Springline 

 

 
(b) Comparison to the Active, At Rest, and Passive Lateral Earth Pressure Coefficients 

 
Figure 3.44: Lateral Earth Pressure Coefficients (K) at the Springline in Test Section B 
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3.5.3 Deflections-Test Section A 

The deflections of the pipe (or the changes in the inside diameters) against the levels of 

construction in Test Section A of the field test had similar behavior to the deflections of the pipes 

in the laboratory tests. The pipe exhibited peaking deflections during the backfilling, as shown in 

Figure 3.45. When the backfill height was at the same elevation as the pipe crown, the vertical 

diameter (∆DVC) was increased by an average of 0.15 inches (0.41%) while the horizontal 

diameter (∆DHC) was reduced by an average of 0.20 inches (-0.56%). When the compaction of 

the lifts was above the pipe crown level, the vertical diameter (∆DVC) started decreasing and the 

horizontal diameter (∆DHC) started increasing as the compaction commenced further. At the end 

of the construction of the test section, the net decreases in the vertical and horizontal diameters 

(∆DHC and ∆DHC) were 0.0015 inches (-0.0044%) and 0.095 inches (0.269%), respectively. The 

vertical deflection of the pipe (∆DVC) was approximately equal to the horizontal deflection 

(∆DHC) during the backfilling up to the pipe crown, as shown in Figure 3.46. 

 

 

 
Figure 3.45: Measured Deflections of the Pipe During the Installation in Test Section A 
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Figure 3.46: Relations Between the Measured Vertical and Horizontal Deflections During 
the Installation in Test Section A 

 

 

The peaking deflection calculated using the method proposed by Masada and Sargand 

(2007) was 1.37%, which was higher than the measured peaking deflection (0.43%). The lateral 

pressure (Pc) generated by the rammer compaction for the sand backfill as 0.39 psi/in. was 

selected for the AB3 aggregate section to calculate the peaking deflection. The contribution of 

the backfill cohesion to the peaking deflection was neglected. The horizontal deflection of the 

pipe (∆DHC) measured during the backfilling was also compared with the horizontal deflection 

calculated using the Iowa Formula as shown in Figure 3.47. The bedding constant (k) of 0.1, the 

VAF of 1.20, the unit weight of the AB3 aggregate (136 pcf), and the modulus of elasticity of 

2,675 psi were used to calculate the horizontal deflection (∆DHC). In the horizontal deflection 

calculation, the effect of the compaction effort on the pipe during the installation was ignored 

because of the unknown pressure increase caused by the compaction equipment during the 

installation of the pipe. The measured horizontal deflections (∆DHC) were higher than the 

calculated ones. The higher horizontal deflections might not include the effect of the compaction 

effort (i.e., neglecting the peaking behavior) during the installation in the horizontal deflection 

calculation. 
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Figure 3.47: Comparison of the Measured and Calculated Horizontal Deflections by the 
Iowa Formula in Test Section A 

 

To investigate the impact caused by the compactors and construction vehicles to the pipe, 

the data were continuously recorded once the pipe was placed in the trench. The displacement 

transducers which were instrumented to measure the deflections of the pipe were selected to 

collect the response of the pipe during the construction of the test sections. The data sample 

interval of 10 msec was set on the transducers to read the immediate response of the pipe. The 

responses of the pipe measured using other sensors, such as the pressure cells and the strain 

gages, were collected at 1 minute intervals. During the installation of the pipe, the maximum 

deflections of the pipe caused by the tamping hammer, Multiequip MT65H, were noticed during 

the backfill compaction at the shoulder, as shown in Figure 3.48, and during the compaction of 

the soil cover above the crown of the pipe. Figure 3.48 shows that the tamping hammer produced 

an immediate decrease in the horizontal diameter of around 0.23% and an increase in the vertical 

diameter of 0.19%. The deformation response of the pipe was also collected when the smooth 

wheel vibratory roller, 2005 Model Hamm HD13, was run above the top of the pipe before the 

placement of the HMA base, as shown in Figure 3.49. The maximum immediate decrease in the 

vertical diameter of 0.08% was measured. 
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Figure 3.48: Deflections Produced by the Tamping Hammer During the Compaction at the 
Pipe Shoulder in Test Section A 

 

 
Figure 3.49: Deflections Produced by the Smooth Wheel Vibratory Roller During the 
Compaction Before Placing the HMA Base in Test Section A 

 

3.5.4 Deflections-Test Section B 

The pipe during the backfilling exhibited peaking deflections similar to those in both 

laboratory and field tests discussed above, as shown in Figure 3.50. When the backfill height was 

at the same elevation with the pipe crown, the vertical diameter (∆DVC) was increased by an 

average of 0.3 inches (0.85%), while the horizontal diameter (∆DHC) was reduced by an average 

of 0.30 inches (-0.87%). When the compaction of the lifts was above the pipe crown, the vertical 
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diameter (∆DVC) started decreasing and the horizontal diameter (∆DHC) started increasing as the 

compaction commenced further. At the end of the construction of the test section, the net 

increase in the vertical diameter and the decrease in the horizontal diameter (∆DVC and ∆DHC) 

were 0.11 inches (0.30%) and 0.13 inches (-0.89%), respectively. The vertical deflection of the 

pipe (∆DVC) was approximately equal to the horizontal deflection (∆DHC) during the installation 

of the pipe, as shown in Figure 3.51. 

The peaking deflection calculated using the method proposed by Masada and Sargand 

(2007) was 0.37%, which was lower than the measured peaking deflection (0.87%). The lateral 

pressure (Pc) generated by the vibratory plate compactor for the crushed stone backfill was 

selected as 0.06 psi/in. to calculate the peaking deflection. The lateral earth pressure coefficient 

at rest (Ko) was calculated as Ko = 1- sin ϕ, where ϕ is the friction angle of 52.4o. The horizontal 

deflection (∆DHC) of the pipe measured during the backfilling was also compared with the 

horizontal deflection using the Iowa Formula, as shown in Figure 3.52. The bedding constant (k) 

of 0.1, the VAF of 1.10, the unit weight of the crushed stone (97 pcf), and the modulus of 

subgrade reaction of 3,780 psi were used to calculate the horizontal deflection (∆DHC). In the 

horizontal deflection calculation, the effect of the compaction effort on the pipe during the 

installation was ignored because of the unknown pressure increase caused by the compaction 

equipment during the installation of the pipe. The measured horizontal deflections (∆DHC) were 

higher than the calculated. The higher calculated horizontal deflections might not include the 

effect of the compaction effort during the installation of the pipe. 
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Figure 3.50: Measured Deflections of the Pipe During the Installation in Test Section B 

 

 

 
Figure 3.51: Relations Between the Measured Vertical and Horizontal Deflections During 
the Installation in Test Section B 
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Figure 3.52: Comparison of the Measured and Calculated Horizontal Deflections by the 
Iowa Formula in Test Section B 

 

 

To investigate the impact caused by the compactors and construction vehicles to the pipe 

in Test Section B, the data were continuously recorded as described above for Test Section A. 

During the installation of the pipe, the maximum deflections of the pipe caused by the vibratory 

plate compactor, Wacker WP1550AW, were also noticed during the backfill compaction at the 

shoulder, as shown in Figure 3.53, and during the compaction of the soil cover above the crown 

of the pipe as discussed earlier. Figure 3.53 shows that the deflection produced by the vibratory 

plate compactor in Test Section B was less than that produced by the tamping hammer in Test 

Section A. This result indicates that the vibratory plate compactor was less severe to the pipe as 

compared with the tamping hammer. The deformation response of the pipe was also collected 

when the smooth wheel vibratory roller, 2005 Model Hamm HD13, was run above the top of the 

pipe before the placement of the HMA base, as shown in Figure 3.54. The maximum immediate 

decrease in the vertical diameter of 0.083% was measured during the compaction using the 

smooth wheel vibratory roller. 
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Figure 3.53: Deflections Produced by the Vibratory Plate Compactor During the 
Compaction at the Pipe Shoulder in Test Section B 

 

 
Figure 3.54: Deflections Produced by the Smooth Wheel Vibratory Roller During the 
Compaction Before the Placement of the HMA Base in Test Section B 

 

3.5.5 Strains-Test Section A 

Most strain gages (47 out of 52 strain gages ) used in this test performed well during the 

installation of the pipe, except the strain gages GSR2, G”SL1, G”CL5, and G”SL1, fixed in Test 

Section A, and the strain gage GSR1, fixed in Test Section B. All strain gages which did not work 



76 

during the installation of the pipe were fixed later and started working for the long-term 

monitoring of the pipe. The long-term performance data will be presented in Chapter 6. 

The adjusted strains according to Brachman, Moore, and Munro (2008) are plotted 

against the levels of construction in Figures 3.55 to 3.57. 

 

 
Figure 3.55: Measured Strains on the Steel Surface During the Installation in Test Section 
A 

 

 

 
Figure 3.56: Measured Strains on the Plastic Ribs During the Installation in Test Section 
A 
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(a) Strains on Plastic Beneath the Wheel Path 

 

 
(b) Strains on Plastic Away From the Wheel Path to Centerline of the Roadway 

 
Figure 3.57: Measured Strains on the Plastic at Inside and Outside Pipe Walls During the 
Installation in Test Section A 

 

The circumferential strains (Figure 3.55) developing on the steel of the pipe in the field in 

Test Section A had similar values to the strains on the steel in the laboratory tests. The strain 

gages, GSC1 and GSC2 at the springline and GCC1 and GCC2 at the crown, showed an increase in 

tensile strains until the backfill reached the pipe springline (i.e., Level 2 of construction). All 
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strain gages (except GCC1) showed an increase in compressive strains with the increase in soil 

lifts. Strain gage GCC1 showed the increase in tensile strains up to Level 5 of construction. After 

that, strain gage GCC1 indicated the increase in the compressive strains. The maximum 

circumferential strain of 0.034% (GCC1, tensile strain) and the maximum circumferential strain of 

0.007% (GSC2, compressive strain) developed during the installation. The strain gages fixed on 

both sides of a steel rib at any particular location (for example, GSC1 and GSC2 at the springline at 

the rib), gave similar values (i.e. there was no sudden change in strain values). This result 

indicates that the out-of-plane buckling of the steel ribs observed during the parallel plate load 

tests at a high level of load in the laboratory did not occur during the installation of the pipe in 

the field. 

Figure 3.56 shows the radial strains on the plastic at the ribs against the levels of 

construction. The strains developing on the plastic were higher in magnitude than the strains on 

the steel. All strain gages showed an increase in compressive strains until the backfill was at the 

springline (i.e., Level 2 of construction) and started increasing in tensile strains with the increase 

in soil lifts. A maximum compressive strain of 0.34% was recorded during the installation. 

The strains measured by the strain gages on the plastic wall inside and outside are shown 

in Figure 3.57. Figure 3.57a shows the strains at the crown, springline, and invert of the pipe 

under the wheel path, whereas Figure 3.57b shows the strains at the pipe crown at various 

locations from the pipe crown to the centerline of the roadway. Most strain gages fixed on the 

pipe outside experienced the increase in compressive strains, whereas most strain gages on the 

pipe inside experienced the increase in tensile strains after the backfill was at the springline (i.e., 

Level 2 of construction). The strain gages affixed on the pipe inside walls experienced more 

tensile strains than those on the outside walls. The magnitudes of the strains on the pipe walls 

were higher than the strains on the steel and higher than or close to the plastic at the ribs. The 

maximum tensile strain of 0.3% (G”CL4) was recorded on the pipe wall during the installation. 

3.5.6 Strains-Test Section B 

The adjusted strains according to Brachman et al. (2008) are plotted against the levels of 

construction in Figures 3.58 to 3.60. 
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Figure 3.58: Measured Strains on the Steel During the Installation in Test Section B 

 

 
Figure 3.59: Measured Strains on the Plastic Ribs During the Installation in Test Section 
B 

 

The circumferential strains (Figure 3.58) developing on the steel of the pipe in the field in 

Test Section B had similar values to the strains on the steel in the laboratory and field (Test 

Section A) tests. The strain gages, GCC1 and GCC2 at the crown, showed an increase in tensile 

strains until the backfill reached the pipe springline (i.e., Level 2 of construction). All strain 
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gages showed a decrease in compressive strains up to the top of the pipe and an increase in 

tensile strains with soil lifts as the construction commenced further. The maximum 

circumferential strain of 0.02% (GCC2, tensile strain) and the maximum circumferential strain of 

0.012% (GCC1, compressive strain) developed during the installation. 

 

 
(a) Strains on Plastic Beneath the Wheel Path 

 

 
(b) Strains on Plastic Away From the Wheel Path to Centerline of the Road Way 

 
Figure 3.60: Measured Strains on the Plastic at Inside and Outside Pipe Walls During the 
Installation in Test Section B 
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Figure 3.59 shows the radial strains on the plastic at the ribs against the levels of 

construction, and the strains were similar to the strains obtained on the plastic ribs in the 

laboratory and field (Test Section A) tests. The strains developing on the plastic were higher in 

magnitude than the strains on the steel. All strain gages showed an increase in compressive 

strains until the backfill was at the springline (i.e., Level 2 of construction) and started increasing 

in tensile strains with the increase in soil lifts. A maximum compressive strain G’CR2 of 0.27% 

was recorded during the installation. 

The strains measured by the strain gages on the plastic wall inside and outside are shown 

in Figure 3.60. Figure 3.60a shows the strains at the crown, springline, and invert of the pipe 

under the wheel path, whereas Figure 3.60b shows the strains at the pipe crown at various 

locations from the pipe crown to the centerline of the roadway. Most strain gages affixed on the 

pipe outside experienced an increase in compressive strains, whereas most strain gages on the 

pipe inside experienced an increase in tensile strains after the backfill was at the springline (i.e., 

Level 2 of construction). The strain gages affixed on the pipe inside walls experienced more 

tensile strains than those on the outside walls. The magnitudes of the strains on the pipe walls 

were higher than the strains on the steel and higher than or close to the plastic at the ribs. The 

maximum strain of 0.32% (G”CL7, tensile strain) was recorded on the pipe wall during the pipe 

installation. 

 
3.6 Analysis of Test Results Under Static Loading 

3.6.1 Earth Pressure-Test Section A 

Before the placement of the HMA base material, the dump truck of 13.72 tons (empty) 

loaded with HMA base course material of 15.2 tons was used as the test truck. The contact area 

calculated for each rear wheel load of 5.25 tons with the tire pressure of 120 psi was found to be 

87.5 in2. The static truck load was applied on both the western and eastern test sections (Sections 

A and B) with three different loading configurations: (a) back axle above the pipe crown, (b) 

back axle at the center between the pipe crown and the trench wall, and (c) middle axle above the 

pipe crown. For each loading step, the truck was kept for a while until all readings from the 
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displacement transducers that were attached inside the pipe to measure the changes in the 

diameter of the pipe became stable. 

Figure 3.61 shows the positions of the truck wheels when the truck loads were applied on 

Test Section A. Figure 3.62 shows the measured earth pressures around the pipe against the time 

elapsed both in Test Sections A and B with the truck loadings on Test Section A. Since Test 

Sections A and B were next each other, the load applied on Test Section A had some influence 

on Test Section B. When the truck load was applied directly above the instrumented section 

(Section 2) close to the centerline on Test Section A, there were no or little change in the earth 

pressures around the pipe at the instrumented section (Section 3) of the pipe in Test Section B. It 

is shown that the truck load applied above the instrumented section close to the centerline of the 

roadway (Section 2) in Test Section A had no or negligible effect on the instrumented section 

(Section 3) close to the centerline of the roadway in Test Section B. 

When the back axle was placed above the crown (Figure 3.61a), the pressure cells at the 

crown, 1EC0 and 2EC0, in Sections 1 and 2 on the western test section (Section A) recorded the 

equal highest vertical earth pressures of 10.03 psi. The vertical earth pressure at 12 inches away 

from the center (2EC12) was 3.71 psi, which was 0.37 times the pressure at the pipe crown (2EC0). 

The horizontal pressure at the pipe springline (2E’S0) was 0.16 times the vertical earth pressure at 

the crown (2EC0). The ratio of the horizontal pressure at the springline (2E’S0) to that at the 

trench wall (2E’SW) was 1.32. The vertical earth pressure at the invert (2EI0) was 1.51 psi, which 

was 0.15 times the pressure at the pipe crown (2EC0). When the back axle between the pipe 

crown and trench wall (Figure 3.61b) and the middle axle above the pipe crown (Figure 3.61c) 

were applied, there was not much variation (little higher) in the earth pressures measured around 

the pipe as compared with those measured with the back axle above the pipe crown (Figure 

3.61a) as shown in Figure 3.62. 
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                (a) Back Axle Over the Crown            (b) Back Axle in Between the Crown and Trench Wall 

 

 

    (c) Middle Axle Over the Crown 

 
Figure 3.61: Axle Loads on the Pipe in Test Section A  
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Figure 3.62: Measured Earth Pressures Around the Pipe Under Truck Loading on Test 
Section A 

 

 

3.6.2 Earth Pressure-Test Section B 

Figure 3.63 shows the positions of the wheels when the truck loads were applied on Test 

Section B. In Test Section B, when the back axle was applied between the pipe crown and the 

trench wall (Figure 3.63a) the middle axle was on the surrounding soil, whereas in Test Section 

A, the middle axle was on the trench (Figure 3.63b). This loading configuration in Test Section 

B was different from that in Test Section A when the back axle was applied between the pipe 

crown and the trench wall. Figure 3.64 shows the measured earth pressures around the pipe 

against the time elapsed in both Test Sections A and B with the truck loadings. When the truck 

load was applied on Test Section B, there was no or little change in the pressures measured 

around the pipe at the instrumented section (Section 2) of the pipe in Test Section A. It is shown 

that the truck load applied on Test Section B had no or negligible effects on the pipe in Test 

Section A.  

When the back axle was placed between the pipe crown and the trench wall (Figure 

3.63a), the pressure cell 3EC12 placed at 12 inches away from the pipe crown in Section 3 in Test 
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Section B recorded the highest vertical earth pressures of 8.18 psi. The vertical earth pressure at 

the pipe crown 3EC0 showed 0.97 psi. When the back axle was placed above the crown (Figure 

3.63b), the earth pressures measured around the pipe in Test Section B were similar to those 

obtained with the back axle above the crown in Test Section A. The pressure cells placed at the 

crown, 4EC0 and 3EC0, in Sections 4 and 3 on the eastern test section (Section B) recorded the 

highest pressures of 8.91 and 8.35 psi, respectively. The vertical earth pressure at 12 inches away 

from the center (3EC12) was 5.01 psi, which was 0.6 times the pressure on the pipe crown (3EC0). 

The horizontal earth pressure at the pipe springline (3E’S0) was 0.11 times the vertical earth 

pressure on the crown (3EC0). The ratio of the horizontal pressure at the springline (3E’S0) to that 

at the trench wall (3E’SW) was 1.16. The vertical earth pressure at the invert (3EI0) was 1.04 psi, 

which was 0.12 times the pressure on the pipe crown (3EC0). For the middle axle above the pipe 

crown (Figure 3.63c), the earth pressure distribution around the pipe was similar to that for the 

back axle applied above the crown (Figure 3.63b). 
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  (a) Back Axle Between the Crown and Trench Wall                  (b) Back Axle Over the Crown   

 

 

   (c) Middle Axle Over the Crown 

 
Figure 3.63: Axle Loads on the Pipe in Test Section B  
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Figure 3.64: Measured Earth Pressures Around the Pipe Under Truck Loading on Test 
Section B 

 

Table 3.1 shows the comparison of the earth pressure distributions around the pipe in 

Test Section A (with the AB3 aggregate as backfill) and Test Section B (with the crushed stone 

as backfill). When the truck load was applied with the back and middle axles over the pipe crown 

in Test Sections A and B, the measured earth pressures around the pipe in Test Section A were 

higher than those in Test Section B, except the earth pressure at 12 inches away from the pipe 

(3EC12). For example, the earth pressures at the crown (3EC0) in Test Section B were lower than 

those in Test Section A, whereas the earth pressures at 12 inches from the crown of the pipe 

(3EC0) in Test Section A were higher than those in Test Section B. The possible reason is the side 

fill of the pipe in Test Section A is stiffer than that in Test Section B, and thus the side fill in Test 

Section A can provide more support to the pipe in the horizontal direction which results in stiffer 

pipe in Test Section A. Therefore, the earth pressure at the pipe crown in Test Section A is 

higher than that in Test Section B. When the back axle was applied between the crown and the 

trench wall, the earth pressure distributions around the pipe were not directly comparable 

between Test Section A and Test Section B because of the different loading configurations. 
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Table 3.1: Comparison of the Earth Pressures (psi) Measured Around the Pipe in the 
Field Test 

Sections Positions Symbols Back axle at 
the crown 

Back axle between the 
crown  

and trench wall 

Middle axle 
at the crown 

Se
ct

io
n 

A
 Crown 

1EC0 9.95 1.87 10.33 

2EC0 9.75 2.45 9.95 

2EC12 3.72 10.06 3.66 

Springline 
2ESW 1.20 0.82 1.48 

2ES0 1.60 2.16 2.13 

Invert 2EI0 1.47 1.95 1.74 

Se
ct

io
n 

B
 Crown 

4EC0 8.91 0.96 8.64 

3EC0 8.35 0.99 7.96 

3EC12 5.02 7.63 4.99 

Springline 
3ESW 0.79 0.45 1.02 

3ES0 0.91 1.15 0.66 

Invert 3EI0 1.04 0.64 1.17 

 

The vertical earth pressures on the top of the pipe under the applied truck load with back 

and middle axles above the crown in each test were also calculated using two approximate 

methods: the simplified distribution methods in AASHTO (2012) and proposed by Giroud and 

Han (2004). The moduli of elasticity of the AB3 aggregate needed by the Giroud and Han 

method for the calculation of the earth pressures was determined from the small plate loading 

test. When the truck axle load was applied directly above the pipe crown, the pressure induced 

by the second axle load (at 3 ft distance apart) on the top of the pipe was found to be very small 

using the Foster and Ahlvin (1954) method under a uniformly loaded circular area. For example, 

when the back axle was applied above the pipe crown, the pressure on the pipe crown due to the 

middle axle load was found to be 0.24 psi, which was considered small or negligible. Therefore, 

in the calculation of the earth pressures on the top of the pipe using the approximate methods, the 

effect of the second axle load was neglected. The calculated earth pressures are then compared 

with the average earth pressures of EC0 and EC12 measured on the top of the pipe in Table 3.3. 

The measured pressures at the crown of the pipe were lower than those calculated using the 
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Giroud and Han (2004) method as well as the AASHTO (2012) method. In other words, the 

Giroud and Han method and the AASHTO method are conservative in estimating the distributed 

pressure on the pipe crown by the applied load on the surface. 

 
Table 3.2: Comparison of the Measured and Calculated Earth Pressures (psi) Around the 

Pipe in the Field Test Using Foster and Ahlvin (1954) Method 

Section Location 

Back Axle at the Crown 
Back Axle between the 
Crown and the Trench 

Wall 
Middle Axle at the Crown 

Measured Calculated Measured Calculated Measured Calculated 

Se
ct

io
n 

A
 

1EC0 9.95 8.82 1.87 4.16 10.33 8.82 

2EC0 9.75 8.82 2.45 4.16 9.95 8.82 

2EC12 3.72 4.8 10.06 9.08 3.66 5.82 

Se
ct

io
n 

 B
 

4EC0 8.91 8.82 0.96 2.08 8.64 8.82 

3EC0 8.35 8.82 0.99 2.08 7.96 8.82 

3EC12 5.02 5.82 7.63 8.58 4.99 4.8 

 
Table 3.3: Comparison of the Average Measured Crown Pressures (psi) with AASHTO 

(2012) and Giroud and Han (2004) Methods 

Section 
Measured  AASHTO (2012) Giroud and Han (2004) 

Back Axle at the Crown 

Section A 6.7 9.2 8.9 

Section B 6.7 9.2 9.2 

 
Middle Axle at the Crown 

Section A 6.8 9.2 8.9 

Section B 6.5 9.2 9.2 

 

3.6.3 Deflections-Test Section A 

The deflections of the pipe (or the changes of the inside diameters) with truck axle 

loadings against the time elapsed both in Test Sections A and B are shown in Figure 3.65. When 

the truck load was applied directly above the instrumented section (Section 2) close to the 

centerline on Test Section A, there were no or little changes in the diameter of the pipe in the 
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instrumented section (Section 3) of the pipe in Test Section B. It is shown that the truck load 

applied above the instrumented section close to the centerline of the roadway (Section 2) in Test 

Section A had no or negligible effects on the instrumented section (Section 3) close to the 

centerline of the roadway in Test Section B.  

When the truck load was applied above the pipe, the vertical diameter of the pipe (∆DV) 

decreased while the horizontal diameter of the pipe (∆DH) increased. Figure 3.65 also shows that 

the horizontal deflection of the pipe (∆DH) was less than the vertical deflection (∆DV). The 

maximum deformation of the pipe was pronounced when the middle axle load was applied above 

the pipe crown. The deflections of the pipe which occurred with the middle axle above the pipe 

crown were slightly higher or close to those occurring when the back axle was above the pipe 

crown. The back axle placed between the pipe crown and the trench wall induced smaller 

deflections of the pipe than those under the back and middle axles above the pipe crown. When 

the middle axle was placed above the pipe crown, the decrease in the vertical diameter and the 

increase in the horizontal diameter of the pipe in Test Section A (∆DV and ∆DH) were 0.071 

inches (0.20% of the initial diameter) and 0.028 inches (0.08% of the initial diameter), 

respectively. The vertical deflections of the pipe (∆DV) were 2.53 times the horizontal 

deflections of the pipe (∆DH). After the completion of the static loading, the truck was run over 

the pipe at a slow speed and the deflections of the pipe were even higher than those at the static 

truck loading, as shown in Figure 3.65. The decrease in the vertical diameter and the increase in 

the horizontal diameter of the pipe in Test Section A (∆DV and ∆DH) were 0.088 inches (0.24% 

of the initial diameter) and 0.039 inches (0.11% of the initial diameter) when the truck was run at 

the slow speed, respectively. 
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Figure 3.65: Deflections of the Pipe Under the Truck Loading in Test Section A 

 

3.6.4 Deflections-Test Section B 

The deflections of the pipe (or the changes of the inside diameters) with the truck axle 

loadings against the time elapsed both in Test Sections A and B are shown in Figure 3.66. The 

deflection of the pipe in Test Section B was similar to that in Test Section A. When the truck 

load was applied on Test Section B, there were no or little changes in the diameter of the pipe in 

Test Section A. 

The maximum deflection of the pipe was pronounced when the back axle was placed 

above the pipe crown. The deflection of the pipe occurring with the back axle above the crown 

was slightly higher or close to that when the middle axle was above the pipe crown. The back 

axle placed between the pipe crown and the trench wall induced smaller deflections of the pipe 

than those under the back and middle axles above the pipe crown. When the back axle was 

placed above the pipe crown, the decrease in the vertical diameter and the increase in the 

horizontal diameter of the pipe in Test Section B (∆DV and ∆DH) were 0.05 inches (0.14% of the 

initial diameter) and 0.016 inches (0.045% of the initial diameter), respectively. The vertical 
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deflections of the pipe (∆DV) were 3.22 times the horizontal deflections at the center of the pipe 

(∆DHC). After the completion of the static loading, the truck was run over the pipe at a slow 

speed and the deflections of the pipe were even slightly higher than those at the static truck 

loading, as shown in Figure 3.66. The decrease in the vertical diameter and the increase in the 

horizontal diameter of the pipe in Test Section A (∆DVC and ∆DHC) were 0.053 inches (0.15% of 

the initial diameter) and 0.02 inches (0.057%) of the initial diameter) when the truck was run at 

the slow speed, respectively. 

 

 
Figure 3.66: Deflections of the Pipe Under the Truck Loading in Test Section B 

 

Table 3.4 shows the comparison of the deflections of the pipe in Test Section A (with the 

AB3 aggregate as the backfill) and Test Section B (with the crushed stone as the backfill). For 

the truck load applied with the back or middle axle over the pipe crown, the measured 

deflections of the pipe in Test Section A were larger than those in Test Section B. These 

differences might result from more stress concentration on the pipe crown in Test Section A. 

When the back axle was applied between the crown and the trench wall, the deflections of the 

pipe were not directly comparable between Test Section A and Test Section B because of the 
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different loading. The vertical to horizontal deflection ratios (∆DV/∆DH) for the pipe varied from 

2.55 to 3.22 when the back and middle axles were placed above the pipe, and are presented in 

Table 3.4. 

 
Table 3.4: Comparison of the Deflections of the Pipe 

Sections Symbols 
(unit) 

Back Axle 
at the 
Crown 

Back Axle in between the 
Crown and Trench Wall 

Middle Axle at 
the Crown 

Moving 
Truck Load 

Section A 

ΔDV (in.) 0.201 0.053 0.204 0.244 

ΔDH (in.) 0.078 0.051 0.080 0.173 

Ratio 2.570 1.030 2.550 1.410 

 ΔDH (in.) 
(calculated) 0.191 0.169 0.1936 - 

Section B 

ΔDV (in.) 0.145 0.056 0.126 0.148 

ΔDH (in.) 0.045 0.019 0.045 0.057 

Ratio 3.220 2.940 2.800 2.590 

 ΔDH 
(calculated) 0.375 0.332 0.379 - 

 

Table 3.4 also shows the calculated horizontal deflections (∆DH) using the Iowa Formula. 

The calculated horizontal deflections (∆DH) of the pipe under the truck load in Test Sections A 

and B were based on the bedding constant (k) of 0.1, the earth pressure on the crown (i.e., under 

the applied truck load), and the moduli of subgrade reaction of 5,950 psi for the compacted AB3 

aggregate and 3,700 psi for the compacted crushed stone. The moduli of the subgrade reaction 

for the AB3 aggregate and the crushed stone were determined based on the LWD test. The 

average values of the measured earth pressures on the crown (EC0) and at 12 inches away from 

the crown (EC12) were calculated (Table 3.3) and used for the deflection calculation. It is shown 

that the Iowa Formula over-predicted the deflections of the pipe during all applied truck 

loadings. 
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3.6.5 Strains-Test Section A 

The measured strains on steel ribs and the adjusted strains on plastic according to 

Brachman et al. (2008) are plotted against the time elapsed, as shown in Figures 3.67 to 3.69, 

when the truck load was applied. 

Since the maximum strains at the steel ribs recorded in the laboratory tests were in the 

circumferential direction at the pipe crown and the springline, the strain gages were only placed 

in the circumferential direction at the pipe crown and the springline in the field test. The strains 

measured on the steel at the ribs are shown in Figure 3.67. All strain gages, GSC1 and GSC2 at the 

springline and GCC1 and GCC2 at the crown in the circumferential direction, showed an increase in 

the compression strains under the applied truck load. The maximum circumferential strain of 

0.0115% (GCC1, compressive strain) was recorded at the steel rib in the pipe crown when the 

middle axle was placed above the pipe crown. The strain gages at the steel rib in the springline 

showed the maximum circumferential strain of 0.00416% (GSC2, compressive strain) when the 

middle axle was above the pipe crown. For the back axle placed above the pipe crown, the 

measured strains were close to or slightly lower than those recorded for the middle axle placed 

above the pipe crown. The strain gages fixed on both sides of the steel rib at any particular 

location gave similar values (i.e., there were no sudden changes in the strain values). This result 

indicates that the out-of-plane buckling of the steel ribs did not occur during the truck loading. 

The maximum strains, which were observed at the springline in the circumferential direction, are 

compared with the calculated values in Table 3.5. The strains on the steel were calculated 

assuming the pipe carried all the applied loads on the top of the pipe (i.e., neglecting the side 

resistance from the fill at the springline). The calculated strains were higher than the measured 

strains. 
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Figure 3.67: Measured Strains on the Steel Ribs in Test Section A 

 

 
Table 3.5: Comparison of the Calculated and Measured Strains of the Pipe in the Field  

Sections Symbols Back Axle at the 
Crown 

Back Axle in between 
the Crown  

and Trench Wall 

Middle Axle at 
the Crown 

Section A 
G_SC 

Calculated -0.01093 -0.0096 -0.01106 

Measured -0.004360 0.0025 0.00416 

G'_CR 
Calculated 0.03960 0.0351 0.04010 
Measured 0.032100 0.0124 0.03800 

Section B 
G_SC 

Calculated -0.010800 -0.00693 -0.010500 
Measured N/A N/A N/A 

G'_CR 
Calculated 0.039440 0.02530 0.038200 
Measured 0.03800 0.033 0.037100 

 

Figure 3.68 shows the radial strains on the plastic cover at the ribs against the applied 

truck load. The strains developing on the plastic were higher in magnitude than the strains on the 

steel. Most of the strain gages showed an increase in tensile strains. The maximum radial strain 

on the plastic surface at the rib occurred at the pipe crown under the truck loadings. The 

maximum radial strain of 0.0369% (G’CR1, tensile strain) was recorded at the plastic rib at the 
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pipe crown when the middle axle was placed above the pipe crown. The strain gages on the 

plastic at the plastic rib in the pipe springline and invert showed the maximum radial strains of 

0.0195% (G’SR1, tensile strain) and 0.0143% (G’IR1, tensile strain), respectively, when the middle 

axle was above the pipe crown. For the back axle placed above the pipe crown, the measured 

strains were close to or slightly lower than those recorded for the middle axle placed above the 

pipe crown. The strain gages fixed on both sides of the steel rib at any particular location gave 

similar values (i.e., there were no sudden changes in the strain values). This result indicates that 

the out-of-plane buckling of the steel ribs did not occur during the truck loading. 

 

 
Figure 3.68: Measured Strains on the Plastic at Ribs in Test Section A 

 

Since the maximum earth pressures and the strains (on the plastic) during the truck 

loading were observed on the top of the pipe at the crown, the strains on the plastic cover at the 

ribs in the radial direction at the pipe crown were calculated and compared with the measured 

strains. The comparison between the measured and calculated strains in the plastic cover on the 

rib at the pipe crown is presented in Table 3.5. The calculated strains were close to the measured 

strains when the back or middle axle was applied above the pipe crown. The measured strains at 

the plastic cover at the plastic rib in the crown were lower than the calculated strains for the back 

axle between the crown and the trench wall. 
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Figure 3.69 shows the strains measured by the strain gages on the plastic wall inside and 

outside the pipe. The magnitudes of the strains on the pipe walls were higher than the strains on 

the steel and the plastic at the ribs. Figure 3.69a shows the strains measured by the strain gages at 

the instrumented section (Section 2) close to the centerline of the roadway beneath the truck 

wheel path. The maximum strains were recorded at the pipe crown. At the pipe crown, both 

strain gages placed on the plastic inside and outside the pipe showed the tensile strain. This 

indicates that the plastic pipe wall behaved as the membrane element. However, the strain gage 

affixed on the plastic inside showed the higher tensile strain than the strain recorded by the strain 

gage on the plastic outside. This also indicates that the plastic wall between the ribs behaves as a 

beam element. Therefore, from the above two findings it is clear that the plastic pipe wall had the 

combined action of bended beam and tensioned membrane. The strains on the plastic wall at the 

invert and the springline were small as compared with those recorded on the pipe crown. The 

maximum tensile strain of 0.169% was recorded by the strain gage G”CL2 under the back axle 

load above the pipe crown. A numerical model is needed to investigate the load transfer 

mechanism of the plastic wall (i.e., the valley) further. 

Figure 3.70 shows the strains measured by the strain gages on the plastic wall inside and 

outside at the crown against the distance of the strain gages from the instrumented section 

(Section 2) in Test Section A. The strains measured along the longitudinal direction of the pipe at 

different distances from the instrumented section showed the similar behavior for all three 

configurations of the truck loading. The maximum strains at the pipe wall were recorded at the 

instrumented section beneath the applied truck axle. These maximum strains might be due to the 

concentration of the truck axle load on the pipe crown beneath the point of application of the 

axle load. The strains measured on the outside plastic wall along the pipe run were lower than 

those measured inside on the plastic wall to a distance of approximately 36 inches from the 

instrumented section. After the distance of 36 inches along the pipe run, the strains on the outside 

wall were measured higher than those on the inside wall. The maximum strains of 0.125% 

(G”CL2, tensile strain) and 0.024% (G”CL2, tensile strain) were recorded during the truck loadings. 
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(a) Strains on Plastic Beneath the Wheel Path 

 

 
(b) Strains on Plastic Away From the Wheel Path to the Centerline of the Roadway 

 
Figure 3.69: Measured Strains on the Inside and Outside Plastic Walls of the Pipe in Test 
Section A  
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Figure 3.70: Measured Strains on the Inside and Outside Plastic Walls of the Pipe in Test 
Section A 

 

3.6.6 Strains-Test Section B 

The measured strains from the strain gages attached on the plastic surface of the pipe at 

the instrumented section (Section 3) of Test Section B were adjusted according to Brachman et 

al. (2008) and are plotted against the time elapsed during the truck loading as shown in Figures 

3.70 to 3.71. 

Two strain gages attached on the steel at the pipe springline did not work during the 

installation of the pipe. Two strain gages, GCC1 and GCC2 at the crown in the circumferential 

direction, showed an increase in the compression strain under the applied truck load, as shown in 

Figure 3.71. The maximum circumferential strain of 0.00378% (GCC1, compressive strain) was 

recorded at the steel rib at the pipe crown when the back axle was placed above the pipe crown. 

For the middle axle placed above the pipe crown, the measured strains were close or slightly 

lower than those recorded for the back axle placed above the pipe crown. The strain gages fixed 
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on both sides of the steel rib at any particular location gave similar values (i.e., there were no 

sudden changes in the strain values). The calculated strains at the springline in the 

circumferential direction are presented in Table 3.5.  

 

 
Figure 3.71: Measured Strains on the Steel Ribs in Test Section B 

 

Figure 3.72 shows the radial strains on the plastic cover at the ribs against the applied 

truck load. The strains developing on the plastic were higher in magnitude than the strains on the 

steel. Most of the strain gages showed an increase in tensile strains except the strain gage G’IR2 at 

the pipe invert. The maximum radial strains on the plastic cover at the ribs occurred at the pipe 

crown under the truck loadings. The maximum radial strain of 0.037% (G’CR2, tensile strain) was 

recorded on the plastic cover at the rib at the pipe crown when the middle axle was placed above 

the pipe crown. The strain gages on the plastic cover at the rib at the pipe springline and invert 

showed the maximum radial strains of 0.0113% (G’SR2, tensile strain) and 0.0168% (G’IR1, 

tensile strain), respectively, when the middle axle was above the pipe crown. For the back axle 

placed above the pipe crown, all measured strains were close or slightly lower than those 

recorded for the middle axle placed above the pipe crown. The strain gages fixed on both sides of 
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the steel rib at any particular location gave similar values (i.e., there were no sudden changes in 

the strain values). 

 

 
Figure 3.72: Measured Strains on the Plastic at Ribs in Test Section B 

 

The maximum earth pressures and the strains (on the plastic) during the truck loading 

were observed on the top of the pipe at the crown. Therefore, the strains on the plastic cover at 

the ribs in the radial direction at the pipe crown were calculated and compared with the measured 

strains as provided in Table 3.5. The calculated strains were close to the measured strains when 

the back or middle axle was applied above the pipe crown. The measured strains were lower than 

the calculated strains at the plastic cover at the rib on the crown for the back axle between the 

crown and the trench wall. 

Figure 3.73 shows the strains measured by the strain gages on the plastic walls inside and 

outside the pipe. The magnitudes of the strains on the pipe walls were higher than the strains on 

the steel and plastic at the ribs. Figure 3.73a shows the strains measured by the strain gages at the 

instrumented section (Section 3) close to the centerline of the roadway beneath the truck wheel 

path in Test Section B. The maximum strains were recorded at the pipe crown. The strains on the 
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plastic wall at the invert and springline were small as compared with those recorded on the pipe 

crown. The maximum tensile strain of 0.0.063% was recorded by the strain gage G”CL2 under the 

middle axle load above the pipe crown. At the pipe crown, the strain gages placed on the plastic 

inside showed the tensile strains, whereas the strain gages placed outside the pipe showed the 

compressive strains under the truck loadings. However, the magnitudes of the strains were higher 

in the strain gages attached on the pipe outside than those on the pipe inside. Most strain gages 

placed on the plastic wall between the ribs showed the similar behavior to the strain gages 

attached at the pipe crown beneath the applied truck loadings, as shown in Figure 3.73. This 

result indicates that the plastic pipe wall had the combined beam and tensioned membrane effect. 

Figure 3.74 shows the strains measured by the strain gages on the plastic walls inside and 

outside at the crown against the distance of the strain gages from the instrumented section 

(Section 3) in Test Section B. The strains measured along the longitudinal direction of the pipe 

run at different distances from the instrumented section showed similar behavior for all three 

configurations of the truck loading. The strains of the plastic walls measured by the strain gages 

in Test Section B showed the maximum strains were not close to the instrumented section below 

the point of application of the axle load (as recorded in Test Section A), but were approximately 

24 inches away from the instrumented section. The measured strains were uniform near the 

instrumented section. Similar to Test Section A, the measured strains were higher on the inside 

pipe wall than those on the outside to at a distance of approximately 36 inches. After the distance 

of approximately 36 inches, the higher strains were measured on the outside pipe wall than those 

on the inside pipe wall. These may result from the concentration of the truck axle load at the pipe 

crown beneath the point of application of the axle load. The strains measured on the outside 

plastic wall along the pipe run were lower than those measured inside on the plastic wall to a 

distance of approximately 36 inches from the instrumented section. After the distance of 36 

inches along the pipe run, the strains on the outside wall were measured higher than those on the 

inside wall. The maximum strains of 0.153% (G”CL6, tensile strain) and 0.037% (G”CL6, 

compressive strain) were recorded during the truck loadings. 

 

 



103 

 
(a) Strains on Plastic Wall (i.e., Valley) Beneath the Wheel Path 

 

 
(b) Strains on Plastic Wall (i.e., Valley) Away From the Wheel Path to Centerline of the Roadway 

 
Figure 3.73: Measured Strains on Inside and Outside Plastic Walls of the Pipe in Test 
Section B 
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Figure 3.74: Measured Strains on the Inside and Outside Plastic Walls of the Pipe in Test 
Section B 

 

Figure 3.75 shows the comparison of the strains measured in the field test on the steel at 

the springline and on the plastic cover at the ribs and pipe walls at the pipe crown in Test Section 

A (with the AB3 backfill and base course) and in Test Section B (with the crushed stone backfill 

and the top 6 inches AB3 aggregate). The measured strains on the steel and plastic cover in the 

field test had the same trends as those obtained on the measured strains in the laboratory tests. 

The strains measured in the field test were much lower than the permissible values for both steel 

and plastic of the pipe. 
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Figure 3.75: Comparison of the Strains Measured on the Steel and Plastic in the Field 
Test 

 
3.7 Conclusions 

Three SRHDPE pipes with a diameter of 36 inches and a total length of 72 ft were 

installed on 1000 E Road close to Clinton Lake in Lawrence, KS, to investigate the field 

performance of SRHDPE pipes. The test site was equally divided into four sections. The AB3 

aggregate was used as the backfill material in two sections, while the crushed stone was filled in 

the other two sections. Earth pressures, deflections, and strains of pipes were monitored during 

the pipe installation and the static loading applied by a construction truck after the completion of 

the construction. Based on the test results, the conclusions can be drawn as follows: 

1. Based on the earth pressure measurement around the pipes, the vertical 

arching factor (VAF), defined as the ratio of the measured load to the soil 

prism load on the top of the pipe, varied from 0.97 to 1.46. The average 

value was 1.15 in this field test. Based on the recommendation by McGrath 

(1998), the SRHDPE pipe behaved as a metal pipe. This finding is consistent 

with that from the laboratory tests in the first phase of the project. 
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2. The lateral earth pressure coefficients at the springline of the pipe were 

found between the lateral earth pressure coefficient at rest (i.e., K0) and the 

passive earth pressure coefficient (i.e., Kp). 

3. The peaking behavior induced by the side fill compaction was found both in 

the AB3 section and the crushed stone section. In the AB3 section, the 

measured peaking deflection was 0.43% of the pipe diameter, which was 

smaller than the calculated one of 1.37% using the Masada and Sargand 

(2007) method. In the crushed stone section, the measured peaking 

deflection was 0.87% of the pipe diameter, which was larger than the 

calculated one of 0.37%. The final deflections of the pipes in both sections 

after installation were smaller than 0.5% in vertical and horizontal 

directions, which were much smaller than the deflection limit of 5% for 

thermoplastic pipes suggested by AASHTO (2012). 

4. The maximum strain observed during the pipe installation of 0.32% occurred 

on the pipe plastic wall, which was lower than the long-term service strain 

limit of 5% for flexible pipes suggested by AASHTO (2012).  

5. The maximum earth pressure induced by the static loading occurred at the 

pipe crown. The Foster and Ahlvin (1954) method reasonably calculated the 

earth pressure on the crown as compared with the measured earth pressure. 

However, the Foster and Ahlvin method is not always conservative. The 

calculated earth pressures by the AASHTO (2012) method and the Giroud 

and Han (2004) method were slightly higher than the measured; therefore, 

they can be used to predict the earth pressures on the crown of the SRHDPE 

pipe under static loading with a certain factor of safety.  

6. The maximum deflection of the pipe induced by the truck loading was 

0.67% the pipe diameter. The vertical deflection of the pipe was 2 to 3 times 

the horizontal deflection during the truck loading. The maximum strain of 

0.153% was recorded on the plastic wall in the longitudinal direction under 

the truck loadings.  
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Chapter 4: Field Performance of the SRHDPE Pipes 
Field Test II 

4.1 Introduction 

In the last chapter, a field test was conducted in Lawrence, KS, to investigate the 

SRHDPE pipe with a diameter of 36 inches during the installation. It is hard to know whether 

any damage to the pipes was caused by the installation since these pipes are in service. The 

second field test was conducted in Kansas City, KS, to evaluate possible damage to the pipes 

during installation as well as the field performance of the SRHDPE pipe. The diameter of the 

pipes used in this field test was 24 inches, which is the same as that used in the laboratory tests in 

Phase I, but different from that used in the first field test. Figure 4.1 shows the location of the 

second field test site, which is located at the right side of the Interstate Highway I-635 towards 

the Missouri River, close to the state line of Kansas and Missouri. This test site was a KDOT 

storage yard, which is referred to as the Kansas City field test in this report. This site was 

relatively flat and no groundwater was observed during the trench excavation. 

 

 

 
Figure 4.1: Location of the Second Field Test Site 
Source: Google (n.d.) 
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4.2 Properties of Backfill Material 

Two types of backfill material were also used in the Kansas City field test: AB3 

aggregate and crushed stone. Figure 4.2 presents the particle size distribution curves of these two 

backfill materials. The coefficients of uniformity for the AB3 aggregate and the crushed stone 

were 15.0 and 1.9, respectively while the coefficients of curvature for the AB3 aggregate and the 

crushed stone were 1.03 and 1.32, respectively. The liquid limit and the plasticity index of the 

particles passing the No. 40 sieve size in the AB3 aggregate were 20 and 13, respectively; 

therefore, it can be classified as CL-ML based on the Unified Soil Classification System (USCS) 

plasticity chart. Based on the ASTM D2487 (2011), the AB3 aggregate can be classified as well-

graded gravel (GW-GC), while the crushed stone can be classified as poorly-graded gravel (GP). 

Figure 4.2 clearly shows that the AB3 aggregate had a much wider range of particle sizes than 

the crushed stone. The maximum dry density of the AB3 aggregate was determined as 136.5 pcf, 

and its optimum moisture content was 7.2% using the modified Proctor tests per ASTM D1557 

(2012). Figure 4.3 shows the compaction curve of the AB3 aggregate. The maximum density of 

the crushed stone was 99.2 pcf following ASTM D4253 (2014). Plate loading tests were 

conducted on the fill material in a wooden box with a dimension of 32 inches long × 32 inches 

wide × 18 inches deep to determine their moduli of the subgrade reaction. The loading plate was 

a circular plate with a diameter of 6 inches. Figure 4.4 shows the load-settlement curves obtained 

in the plate loading tests. From Figure 4.4, the moduli of the AB3 aggregate and the crushed 

stone can be calculated as 3,414 and 2,842 psi, respectively. In other words, the moduli of the 

AB3 aggregate was higher than that of the crushed stone because the AB3 aggregate had a wide 

range of particle sizes, which could form a denser state. Triaxial compression tests were used to 

determine the shear strength parameters at three confining pressures of 5, 10, and 20 psi. The 

height of the samples was 8 inches, while the diameter of the samples was 4 inches. The samples 

for the AB3 aggregate were prepared at the optimum moisture content (i.e., 7.2%), while the 

crushed stone samples were tested in dry condition. Figures 4.5 and 4.6 show the stress-strain 

curves of the AB3 aggregate and the crushed stone, respectively. Figure 4.7 shows the Mohr 

circles of the AB3 aggregate and the crushed stone, respectively. The friction angle of both 

materials was 45o. 
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Figure 4.2: Particle Size Distribution Curves of the AB3 Aggregate and the Crushed Stone 

 

 

 
Figure 4.3: The Compaction Curve of the AB3 Aggregate 
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Figure 4.4: Plate Loading Test Results of the AB3 Aggregate and the Crushed Stone 

 

 

 
Figure 4.5: Stress-Strain Curves of the AB3 Aggregate from the Triaxial Compression 
Tests at Different Confining Pressures  
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Figure 4.6: Stress-Strain Curves of the Crushed Stone from the Triaxial Compression 
Tests at Different Confining Pressures 

 

 

 
(a) AB3 Aggregate 

 
Figure 4.7: Mohr’s Circles of the AB3 Aggregate and the Crushed Stone 
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(b) Crushed Stone 

 
Figure 4.7: Mohr’s Circles of the AB3 Aggregate and the Crushed Stone (Continued) 

 

 
4.3 Test Site, Test Pipes, and Instrumentation 

4.3.1 Test Site  

A 4.6 ft wide × 27.5 ft long × 4.2 ft deep trench was excavated on the site. The bottom of 

the trench was leveled before backfilling. The side walls of the trench were vertical during and 

after the excavation. Figure 4.8 presents the installation plan of the SRHDPE pipes in Sections A 

and B. Two pipes were buried in the AB3 aggregate in Section A, while the other two pipes were 

installed in the crushed stone in Section B. The following procedure was followed for the 

installation: (1) before the installation of the pipe in the trench, Zone I was filled and compacted 

to form a 6 inch thick bedding layer both in Sections A and B; (2) the connected SRHDPE pipes 

were placed into the trench and Zone II was filled and compacted to reach the springline level of 

the pipe (the thickness of Zone II was 11.8 inches); (3) Zone III was filled and compacted with a 

thickness of 11.8 inches to reach the top of the pipe level; (4) Zone IV was filled and compacted 

with a lift thickness of 13.3 inches; and (5) Zone V was filled and compacted with a lift thickness 

of 11.8 inches. Section A was filled with the AB3 aggregate, while Section B was filled with the 

crushed stone in Zones I to IV. Zone V in both sections was filled with the AB3 aggregate as a 

base course layer. Two instrumented rings are shown in Figure 4.8b. 
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(a) 

 

 
(b) 

 
Figure 4.8: Schematic of the Installation Plan (Not to Scale, Unit: Inches) 

 

4.3.2 Test Pipes 

Figure 4.9 shows the schematic cross section of the corrugated SRHDPE pipe. This pipe 

consisted of steel spiral ribs for load carrying and stiffness and high-density polyethylene cover 

and liner for corrosion resistance. The width of the rib including the steel reinforcement and the 

plastic cover was 0.09 inches and the height was 0.67 inches. Steel reinforcement with a 

thickness of 0.06 inches was covered by the plastic material to form the rib, and the center to 

center spacing of the ribs was 1 inch. The diameter of the pipe used in the test was 24 inches and 

the thickness of the valley liner was 0.08 inches. Khatri, Han, Parsons, et al. (2013) reported the 

stiffness of the same SRHDPE pipe from the parallel plate load tests, which was 42.6 psi based 
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on the ASTM D2412 (2011). This SRHDPE pipe is the same as that used in the laboratory study 

by Khatri et al. (2015). 

Soil-tight pipe metal connectors with a dimension of 13 inches wide × 82.5 inches long × 

0.04 inches thick were used to connect the pipes. Before the installation of the connector, a 

rubber band was used to cover the pipe to keep the pipe and the connector tight. Expanding foam 

was filled in the corrugations of the pipe to seal the possible gap between the rubber band and the 

pipe. Each connector was wrapped around the pipe, and two bolts (8.1 inches long and 0.4 inches 

in diameter) attached on the connector were tightened to finish the connection. Figure 4.10 

shows two connected pipes using the soil-tight type connector. 

 

 
Figure 4.9: Schematic of Cross-Section of the Corrugated SRHDPE Pipe (Unit: Inches, 
Not to Scale) 

 

 
Figure 4.10: Two Connected Pipes with a Soil-Tight Type Connector 



115 

4.3.3 Instrumentation 

Figure 4.11 shows the locations of earth pressure cells. KDE-500KPA pressure cells with 

the maximum capacity of 72.5 psi were used in the field test in this study. These pressure cells 

had an outside diameter of 2 inches, a sensing surface diameter of 1.8 inches, and a thickness of 

0.4 inches. Four pressure cells were installed in the instrumented rings in each section as shown 

in Figure 4.8b, and they are labeled as E1, E2, E3, and E4. E1 and E4 were used to measure the 

vertical pressures at the springline and the crown of the pipe, while E2 and E3 were installed to 

monitor the lateral earth pressures at the springline and 6 inches above the springline of the pipe. 

The locations of the pressure cells were determined with the following reasons: (1) E1 and E4 

could be used to analyze the soil arching effect during backfilling and under static loading; (2) 

E2 and E3 could be used to examine the assumption made by Masada and Sargand (2007) that 

the pressure induced by compaction of backfill material is constant with the buried depth of the 

pipe (recognized as the reason for the peaking behavior); and (3) E1 and E2 could be used to 

calculate the coefficient of lateral earth pressure. Figure 4.12 shows the installation of pressure 

cells. The base of the pressure cell was leveled using the Kansas River sand to ensure the 

leveling of the pressure cell during the pipe installation. Then the pressure cell was placed and 

the wires of the pressure cells were covered by a plastic tube with a diameter of 2 inches to 

protect the wires during compaction. Self-made sand bags, which were a geotextile bag filled 

with sand, were placed on the top of the pressure cells to protect the pressure cells during the 

compaction.  
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Figure 4.11: Schematic of the Locations of Pressure Cells 

 

 

 

 
Figure 4.12: Placement of a Pressure Cell 
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Figure 4.13 shows the positions of displacement transducers. Four displacement 

transducers, labeled as L1, L2, L3, and L3’, were installed in the instrumented rings in each 

section as shown in Figure 4.8b. L1 was used to measure the diameter change in the horizontal 

direction and L2 was installed to monitor the deformation of the pipe at 45o from the pipe crown. 

L3 and L3’ were used to evaluate the vertical deflections of the pipe. Between these two 

transducers, L3 was positioned at the valley liner profile, while L3’ was positioned at the steel 

reinforcement profile to investigate a possible deflection difference between the pipe wall and 

the steel reinforcement ribs. Figure 4.14 shows the installed displacement transducers inside of 

the pipe. Four small holes with a diameter of 0.5 inches were drilled in the instrumented pipe at 

the displacement transducer locations, as shown in Figure 4.13. Four steel bars with a diameter 

of 0.5 inches and length of 20 inches were fixed in the pipe through those four holes with nuts 

and washers. Displacement transducers were banded with the steel bars using clamps.  

 

 

 

 
Figure 4.13: Schematic of the Locations of the Displacement Transducers 
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Figure 4.14: Installed Displacement Transducers Inside of the SRHDPE Pipe 

 

 

Uniaxial foil-type electrical resistance (C2A-13-250 LW-120) strain gages, manufactured 

by the Vishay Precision Group, were used to measure the circumferential and radial strains of the 

pipe at various locations as shown in Figure 4.15. The strain gages were installed at three 

elements, namely, the steel ribs, the plastic cover of ribs, and the plastic valley. For each 

element, 12 strain gages were installed at both sides, including four at the pipe crown, four at the 

invert, and four at the springline. Strain gages on the steel rib were labeled as G, while those at 

the plastic cover and plastic valley were named as G’ and G’’, respectively. “C” following G, G’ 

and G’’ denotes the crown. “R” means the strain gage in the radial direction, the second “C” 

means in the circumferential direction, and “L” represents the longitudinal direction (i.e., along 

the pipe). “1” and “2” illustrate the strain gages attached at two sides of the element. For 

example, GCR1 is the strain gage attached in the radial direction on one side of the steel rib at the 

pipe crown. In total, 24 strain gages were installed at each instrumented ring. 
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(a) On steel ribs 

 

 
 

(b) On plastic cover of ribs 
 

 
 

(c) At plastic valley 

 
Figure 4.15: Symbols, Locations, and Orientations of the Strain Gages on the Pipe 
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4.4 Pipe Installation and Static Loading 

4.4.1 Trench Excavation 

A John Deere 310G Loader Backhoe was used to excavate the trench, as shown in Figure 

4.16. The model of the machine was 4045D, and the net and gross power were 73 and 78 hp, 

respectively. The width of the trench was chosen according to the KDOT (2007) pipe and culvert 

specifications so as to provide sufficient working space for compaction equipment in order to 

properly and safely place and compact bedding, hunching, and backfill materials. A minimum 

trench width was maintained so as not to be less than greater of either 1.5 times the pipe outside 

diameter plus 12 inches or the pipe outside diameter plus 16 inches, as suggested by ASTM 

D2321 (2014). Considering the size of the excavator, the trench width was determined as 4.6 ft. 

The average moisture content of the native soil was 21.2%. 

 

 
Figure 4.16: Excavation of a Trench 

 

4.4.2 Bedding 

The AB3 aggregate and the crushed stone were dumped into the trench by the Loader 

Backhoe in two sections. The length for each section was 165 inches (i.e., half the length of the 

trench), and then both sections were compacted by a vibratory compactor SFA 3500 with a 3,500 
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lbs eccentric force, as shown in Figure 4.17. The compaction pressure was 7 psi. The compacted 

thickness of the bedding was 2.5 inches based on the specification from ASTM D2321 (2014). 

Figure 4.18 shows the LWD test conducted on the bedding after the compaction to ensure the 

construction quality. Three tests were conducted in each section. The average modulus of the 

AB3 aggregate section was 1,845 psi, while that of the crushed stone section was 1,768 psi. 

Figure 4.19 presents the sand cone test used to determine the field density. Sand cone tests were 

conducted at three locations in each section. Considering that the gap between particles may 

influence the result in the crushed stone section, sand cone tests in this section were done for 

three times in each location and the average value was used. The average compaction degrees of 

the AB3 aggregate and the crushed stone sections were 88.3% and 85.5%, respectively. 

 

 

 
Figure 4.17: Compaction of the Bedding 
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Figure 4.18: LWD Test on the Bedding 

 

 
Figure 4.19: Sand Cone Tests on the Bedding in the Crushed Stone Section 

 

 

4.4.3 Placement of the Pipe 

After the quality control tests of the bedding were finished, four pipes were lifted up by 

an ALTEC crane and placed into the trench as shown in Figure 4.20. The pipes were lifted up at 

two connectors, which could make the lift force evenly and avoid the bending of the pipes. 

During the placement of the pipes, the wires of the sensors were collected together to prevent the 
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damage of the sensors by the pipe lifting. Figure 4.21 shows the pipes after the placement into 

the trench. Then, all sensors were connected with the data acquistition system and set the initial 

to zero. 

 

 

 
Figure 4.20: Placement of the Pipes 

 

 
Figure 4.21: Pipes Placed on the Bedding 
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4.4.4 Backfilling of Sidefill and Soil Cover 

As shown in Figure 4.8, the sidefill and the soil cover were placed and compacted in four 

lifts. The first lift (i.e., zone II in Figure 4.8) was up to the pipe springline. The AB3 aggregate 

section was filled first and then the crushed stone section. Subsequently, two sections were 

compacted together. A vibratory compactor SFA 3500 was used for the compaction of the main 

zone and a STANLEY TA45 rammer with a working pressure of 1,500 psi was used to compact 

the difficult zones near the pipe and the trench as shown in Figure 4.22. No pipe lift was 

observed during the compaction process. The average elastic moduli determined using the LWD 

tests for the AB3 aggregate section and the crushed stone section were 1,178 and 1,323 psi, 

respectively. The compaction degrees for the AB3 aggregate section and the crushed stone 

section from sand cone tests were 90.8% and 85.5%, respectively. 

 

 
Figure 4.22: The Compaction of Difficult Zones Using the STANLEY TA45 Rammer 

 

The second lift of the backfill was up to the level of the pipe top (i.e., zone III in Figure 

4.8). The construction procedures and the quality control were the same with the first lift. The 

top of the pipe was not compacted. The average elastic moduli determined using LWD tests for 

the AB3 aggregate section and the crushed stone section were 1,318 and 1,439 psi, respectively. 

The compaction degrees for the AB3 aggregate section and the crushed stone section from sand 
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cone tests were 88.4% and 84.3%, respectively. The third lift was up to the bottom of the base 

course layer (i.e., zone IV in Figure 4.8). The construction procedures and the quality control 

were the same with the first two lifts. The average elastic moduli determined using the LWD 

tests for the AB3 aggregate section and the crushed stone section were 2,657 and 2,911 psi, 

respectively. The compaction degrees for the AB3 aggregate section and the crushed stone 

section from sand cone tests were 91.2% and 90.3%, respectively. The base course layer (i.e., 

zone V in Figure 4.8) in both sections was backfilled with the AB3 aggregate. Three lines were 

marked on the ground after the compaction to locate the positions of the pipes for the static 

loadings. The average elastic moduli determined using the LWD tests for the AB3 aggregate in 

Sections A and B were 2,318 and 2,515 psi, respectively. The compaction degrees for the AB3 

aggregate section and the crushed stone section from sand cone tests were 89.8% and 90.5%, 

respectively. 

4.4.5 Static Loading 

To investigate the performance of pipes under the static loading, two static loads were 

applied on the ground surface above the pipe after the completion of the pipe installation. First, 

the back axle of the Loader Backhoe was stopped above the pipe for two minutes, as shown in 

Figure 4.23. The weight of the back axle was 12,800 lbs. The diameter of the rear tire was 52.7 

inches, while the width of the rear tire was 10 inches. The contact area of the rear tire with the 

ground surface was 400 in2. The contact pressure was 32 psi. Then, a CAT 953D crawler loader 

stopped at the ground surface above the pipes and moved over the pipes at a slow speed, as 

shown in Figure 4.24. The operating weight of the CAT 953D was 34,209 lbs. The track shoe 

width was 18.9 inches, and the ground contact area was 3,565 in2. The contact pressure was 9.5 

psi. 
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Figure 4.23: The John Deere 310G Loader Backhoe Above the Pipes 

 

 
Figure 4.24: The CAT 953D Crawler Loader Above the Pipes 

 

4.4.6 Quality Control 

To ensure the quality of construction, the following tests were conducted during the 

compaction of each lift: (1) LWD test; (2) sand cone test; (3) leveling measurement; and (4) DCP 

test. LWD and sand cone tests were described in the construction section. A WILD N3 leveling 

device was used for the leveling measurement to ensure the leveling and thickness of each lift, as 

shown in Figure 4.25. Two DCP tests were conducted after the construction in the AB3 



127 

aggregate section to evaluate the CBR value of the AB3 aggregate after the construction. Figure 

4.26 shows the DCP test results of the AB3 aggregate after the construction. The CBR values at 

two locations were almost consistent in a range of 10 to 20, with the exception of #2 at the depth 

of 30 inches, which was much higher. At that depth, the DCP cone might penetrate on a big 

aggregate particle. The rib gaps were marked before the installation on both instrumented pipes 

as shown in Figure 4.27 to investigate the gap change during the pipe installation. 

 

 
Figure 4.25: Leveling Measurements During the Pipe Installation 

 

 
Figure 4.26: DCP Test Results of the AB3 Aggregate Section After Construction 
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Figure 4.27: Markers of the Rib Gaps Before Installation 

 

4.4.7 Pipe Exhumation 

The pipes were exhumed on the second day of the installation to observe any possible 

damage of the pipes during installation. Figure 4.28 shows an exhumed pipe. 

 

 
Figure 4.28: An Exhumed Pipe  
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4.5 Analysis of Test Results During Pipe Installation 

4.5.1 Earth Pressure 

Figure 4.29a shows the vertical earth pressures at the springline and on the top of the 

pipes in both sections. The measured vertical pressure in Section A was higher than that in 

Section B. The vertical pressure at the top of the pipe increased with the increase of the soil 

cover thickness after the backfill reached the top of the pipe. The soil arching factors, VAF, 

defined as the ratio of the measured vertical pressure (σv) at the top of the pipe to the overburden 

stress (γh), were calculated as 1.10 and 1.47 for Sections A and B at the end of backfilling, 

respectively (σv = 2.2 psi, γh = 136.7 x 1.97 / 144 = 1.9 psi for Section A and σv = 2.5 psi,  γh = 

(99.2 x 1.1 + 136.7 x 1) / 144 = 1.7 psi for Section B). The soil arching factors in both sections 

demonstrated that some overburden stress of the soil cover was transferred from the surrounding 

soil to the pipe due to the negative soil arching effect (i.e, VAF is greater than 1). Figure 4.29b 

shows the lateral earth pressure at the springline and 6 inches above the springline of the pipe. 

From Figure 4.29 the lateral earth pressure coefficient at the springline of the pipe was calculated 

and is shown in Figure 4.30. It illustrates that the lateral earth pressure coefficient decreased with 

the increase of the soil thickness. This finding is the same as that from the laboratory study by 

Khatri et al. (2015). The lateral earth pressure coefficient for the AB3 aggregate was higher than 

that for the crushed stone; however, their difference decreased with the increase of the soil 

thickness and they were approximately equal at the ending of backfilling. The lateral earth 

pressure coefficients in both sections were lower than the passive earth pressure coefficients but 

higher than the earth pressure coefficients at rest. The measured lateral earth pressures at E2 and 

E3 in Section A with the backfilling at the top of the pipe were 1.13 and 0.97 psi, respectively; 

their difference was 0.16 psi. The difference induced by the soil overburden stress (i.e., 5.9 

inches [distance between two pressure cells] × 136.7 pcf [unit weight of AB3] × 0.29 [lateral 

earth pressure coefficient at rest] = 0.15 psi). Therefore, the lateral earth pressures caused by the 

compaction were approximately equal at the positions of E2 and E3. Similarly, for Section B, the 

difference between E2 and E3 was 0.14 psi, which is also close to the difference induced by the 

soil overburden stress (i.e., 5.9 inches × 99.2 pcf × 0.29 = 0.10 psi). This analysis demonstrates 



130 

that the lateral earth pressure induced by the compactor was constant within the range of 40o to 

140o from the pipe crown as suggested by Masada and Sargand (2007). 

 

 
 

(a) Vertical Earth Pressure 

 

 
 

(b) Lateral Earth Pressure 

 
Figure 4.29: Development of Earth Pressures Around Pipes with Soil Thickness  
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Figure 4.30: Lateral Earth Pressure Coefficients at the Springline of the Pipe with Soil 
Thickness 

 

 

4.5.2 Deflections 

In this field study, the increase of the pipe diameter as compared with that of the 

undeformed pipe in all three directions (i.e, vertical, 45o, and horizontal) was defined as positive. 

Figure 4.31a presents the vertical deflections at the valley liner and the steel reinforcement in 

both sections. It is obvious that the vertical diameter was increased before the backfill reached 

the top of the pipe, i.e., the peaking behavior, followed by the decrease of the vertical diameter. 

The peaking deflection of the pipe in Section A (i.e., the AB3 aggregate section) was 

approximately 0.06 inches, while that in Section B (i.e., the crushed stone section) was 0.04 

inches. Masada and Sargand (2007) proposed the following equation to calculate the peaking 

deflection: 
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γ+D
=  Equation 4.1 

Where: 

y∆ = the vertical deflection 

D = the diameter of an undeformed pipe 

cp = the lateral pressure induced by compaction 

0K = the lateral earth pressure coefficient at rest 

r = the radius of the undeformed pipe 

γ = the unit weight of backfill material 

PS = the pipe stiffness 

 

Equation 4.1 shows that the vertical deflection increases with the density of the backfill 

material considering the same friction angles of the AB3 aggregate (i.e., 45o) and the crushed 

stone (i.e., 45o). Since the densities for the AB3 aggregate and the crushed stone were 136.7 and 

99.2 pcf, respectively, the vertical deflection in Section A should be larger than that in Section B. 

The calculated peaking deflections using Equation 4.1 are 0.05 and 0.04 inches, respectively, for 
Sections A and B using the following parameters: cp =0.207 psi as suggested by McGrath et al. 

(1999) for a vibratory plate compactor; 0K = 0.29 (i.e., K0 = 1 - sin 45o = 0.29) for the AB3 

aggregate and 0.29 (i.e., K0 = 1 - sin 45o = 0.29) for the crushed stone; PS  = 42.6 psi; γ = 136.7 

pcf for the AB3 aggregate and 99.2 pcf for the crushed stone; r = 11.8 inches. The measured 

peaking deflections are close to the calculated ones in both sections.  

The vertical deflection at the valley liner was slightly larger than that at the steel 

reinforcement rib. The vertical diameter was reduced by 0.04 inches from the peaked vertical 

diameter in Section A at the end of backfilling, while that in Section B was reduced by 0.14 

inches from the peaked vertical diameter. The larger reduction of the vertical deflection in 

Section B might be attributed to the fact that the crushed stone had a lower modulus of subgrade 

reaction and stress on the surrounding soil due to soil arching. The soil arching effect will be 

further discussed in the “Earth Pressure” section. Figure 4.31b presents the diameter change of 

the pipe at 45o from the pipe crown. It was observed that the diameter at 45o from the pipe crown 

first increased with backfilling (i.e., Zones II and III) in both sections and then decreased with 
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the increase of the soil cover thickness (i.e., Zones IV and V). The test results also show that the 

diameter change in the crushed stone was larger than that in the AB3 aggregate. Figure 4.31d 

shows that the comparison between the horizontal deflection at the valley liner was opposite to 

the vertical one. In other words, when the vertical deflection increased, the horizontal deflection 

decreased, and vice versa. In three directions (i.e., vertical, 45o from the pipe crown, and 

horizontal), the maximum deflections in both sections were 0.1 inches (i.e., 0.4% of the pipe 

diameter), which was much smaller than the typical deflection limit of 5% for the steel and 

HDPE pipes suggested by AASHTO (1998, 2010).  

 

 

 
 

(a) Vertical Deflection (L3=deflection at the valley liner; L3’=deflection at the steel reinforcement) 

 
Figure 4.31: Development of Deflections with Soil Thickness in Three Directions During 
Backfilling 
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(b) Diameter Change at 45o from the Pipe Crown 

 

 
 

(c) Comparison of Vertical and Horizontal Deflections at the Valley Liner 

 
Figure 4.31: Development of Deflections with Soil Thickness in Three Directions During 
Backfilling (Continued) 
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4.5.3 Strains 

4.5.3.1 Test Section A 

Figure 4.32 shows the strains on the steel ribs during the backfilling. “Crown_R” and 

“Crown_C” represent the strains at the crown in the radial and the circumferential directions, 

respectively. “Springline_R” and “Springline_C” denote the strains at the springline in the radial 

and the circumferential directions, respectively. Figure 4.32 illustrates that all the strains at the 

steel ribs increased with an increase of the soil thickness. The magnitude of the strain increase at 

the crown was greater than that at the springline in both the radial and circumferential directions. 

The compaction was directly above the pipe when the backfill above the pipe top level which 

would cause the strain increase at the pipe crown. However, the strain increase at the springline 

was induced by the lateral earth pressure increase, which should be lower than the vertical earth 

pressure increase at the pipe crown. It is worth noting that the maximum strain on the steel ribs 

(i.e., 0.0046%) was much smaller than the typical steel strain at the yield strain of 0.5% 

(Mamlouk & Zaniewski, 2011). It can be concluded that the compaction in Section A did not fail 

the steel ribs. 

 

 

 
Figure 4.32: Strains of the Steel Ribs in Section A During the Pipe Installation 
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The strains at the plastic covers and valleys were adjusted by multiplying a factor of 1.29 

according to Brachman et al. (2008). Figure 4.33 shows the strains on the plastic cover of the 

steel ribs. The strains in the radial direction both at the crown and the springline increased 

slightly; however, the strains in the circumferential direction at both locations increased 

significantly. In other words, the perimeter of the pipe increased with the backfilling and no local 

buckling occurred. The maximum strain of the plastic cover was 0.05% at the pipe springline, 

which was much lower than the long-term strain limit of the thermoplastic pipes of 5% suggested 

by AASHTO (2012).  

 

 
Figure 4.33: Strains of the Plastic Cover in Section A During the Pipe Installation 

 

Figure 4.34 presents the strains of the plastic valley. “Crown_L” and “Springline_L” 

represent the strain in the longitudinal direction at the crown and the springline, respectively. The 

strain gages were fixed on the plastic valley in two directions, namely, the hoop direction and the 

longitudinal direction. This figure shows the strains of the plastic valley increased with an 

increase of the soil thickness. The strains in the longitudinal direction at both the pipe crown and 

the pipe springline were higher than the strains in the hoop direction. The possible explanation is 

that the pipe is reinforced in the hoop direction and the steel ribs can limit the development of the 

strain; however, the pipe in the longitudinal direction is only an HDPE liner, which has a low 
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elastic modulus. The measured maximum strain of the plastic valley was 0.14%, which was 

much higher than the strains of the plastic cover and the steel ribs. The strains of the plastic 

valley were also lower than the 5% long-term strain limit suggested by AASHTO (2012).  

 

 
Figure 4.34: Strains of the Plastic Valley in Section A During the Pipe Installation 

 

The strains of the pipe in the Section A (i.e., the AB3 aggregate section) all increased 

with an increase of the soil cover thickness. The maximum strains on the steel ribs and the plastic 

valley occurred at the pipe crown, while the maximum strain on the plastic cover was located at 

the pipe springline. The strains of the plastic valley were higher than those of the steel ribs and 

the plastic covers; however, they were much lower than the strain limit. The strains of the steel 

ribs were also much lower than the yield strain of the steel (0.5%). In summary, the tested 

SRHDPE pipes in the AB3 section did not have any strain problem during the pipe installation. 

4.5.3.2 Test Section B 

Figure 4.35 shows the strains of the steel ribs in the crushed stone section during the pipe 

installation. The strains at the springline changed slightly; however, the strains at the pipe crown 

changed significantly with the pipe installation. These strains are consistent with the strains of 

the steel ribs in Section A. The compaction of the soil cover should be responsible for the 

increase of the strains at the pipe crown. The strains of the steel ribs in the crushed stone were 2 
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to 4 times those in the AB3 section. The possible reason is that the vertical deflection of the 

pipes in the crushed stone (0.09 inches) was larger than that in the AB3 section (0.007 inches) 

when the backfilling was above the level of the pipe top. 

 

 
Figure 4.35: Strains of the Steel Ribs in Section B During the Pipe Installation 

 

Figure 4.36 presents the strains of the plastic cover in the crushed stone section during the 

pipe installation. The strains of the plastic cover in both directions at the pipe springline 

increased slightly, while those at the pipe crown increased significantly. This finding was 

opposite to that in the AB3 aggregate section. The modulus of the crushed stone was relatively 

lower than that of the AB3 aggregate section based on the plate loading tests and the LWD tests. 

In the crushed stone section, the side fill could provide less support than that in the AB3 

aggregate section to the pipe, which resulted in the lower modulus of the pipe buried in the 

backfill material. Therefore, the earth pressure at the pipe top in the crushed stone section was 

lower than that in the AB3 section. The maximum value of the strain was 0.062%, which was 

approximately 1.5 times that in the AB3 aggregate section, but much lower than the long-term 

strain limit of 5% suggested by AASHTO (2012). 
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Figure 4.36: Strains of the Plastic Cover in the Crushed Stone Section During the Pipe 
Installation 

 

 

Figure 4.37 shows the strains of the plastic valley in the crushed stone section during the 

pipe installation. The strains of the plastic valley were measured in two directions, namely, the 

hoop direction and the longitudinal direction (i.e., along the pipe). The test results demonstrate 

that the strain in the hoop direction increased slightly; however, the strain in the longitudinal 

direction increased significantly. This finding is the same as that in the AB3 section. The 

maximum strain of the plastic valley in the crushed stone section was 0.19%, which was 

approximately 1.5 times that in the AB3 section. However, the strain of the plastic valley was 

much smaller than the strain limit of 5%. 
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Figure 4.37: Strains of the Plastic Valley in the Crushed Stone Section During the Pipe 
Installation 

 

The strains of the pipe in the Section B (i.e., the crushed stone section) at different 

locations increased with the construction. The maximum strains on the steel ribs, the plastic 

covers, and the plastic valley all occurred at the pipe crown. The strains of the plastic valley were 

higher than those of the steel ribs and the plastic covers; however, they were much smaller than 

the strain limit of 5%. The maximum strain of the steel ribs (i.e., 0.02%) was also much smaller 

than the yield strain of steel (0.5%). Even though the strains in the crushed stone section were all 

higher than those in the AB3 section at the same position, no failure happened to any elements in 

the crushed stone section during the pipe installation. 

Figure 4.38 shows the comparison of the measured maximum strains on the plastic in the 

longitudinal and the circumferential directions and the calculated strains in the circumferential 

direction in both sections. Equations 2.23 and 2.24 were used to calculate the strain based on the 

deflection and the load above the pipe. In both sections, the measured strains were larger than the 

calculated ones. The calculated strains are the maximum strain of the plastic in the 

circumferential direction, which is typically recognized as the design criteria. The longitudinal 

strain is often neglected in most pipe design. However, for the SRHDPE pipe, the stiffness in the 

longitudinal direction is much lower than that in the hoop direction. This is why the measured 
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strains in the longitudinal direction were higher than those in other directions in this field test. In 

other words, the longitudinal strain is more critical for the SRHDPE pipe. 
 

 
Figure 4.38: Comparison of the Measured Strains and Calculated Strains on the Plastic in 
Both Sections 

 
4.6 Analysis of Test Results Under Static Loading 

4.6.1 Earth Pressure 

Figure 4.39 shows the earth pressure around the pipe at the end of the construction and 

under the static loading in Section A. Two types of static loading were applied above the pipe, 

namely, the use of the loader backhoe and the use of the crawler loader. The earth pressures at 

the pipe springline and the shoulder increased 2 to 4 psi under static loading from those at the 

end of construction, while the earth pressures at the pipe crown increased 11 and 9 psi under the 

loading of the loader backhoe and the crawler loader, respectively. Figure 4.39 indicates that 

static loading increased the earth pressure at the pipe crown up to 4 times that at the end of the 

construction.  

Figure 4.40 presents the earth pressures around the pipe at the end of construction and 

under static loading in Section B. Static loading increased the earth pressures at the springline 

and the shoulder by 2 to 4 psi from those at the end of construction. This result is the same as 

that for Section A. The earth pressures at the pipe crown were 9.13 and 7.53 psi under the 
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loading of the loader backhoe and the crawler loader, respectively, which are 3.6 and 3 times 

those at the end of the construction. The magnitude of the earth pressure increase by static 

loading in the crushed stone section was lower than that in the AB3 aggregate section. The 

sidefill in Section A could provide support to the pipe due to the high stiffness which could make 

the pipe stiffer than that in Section B, which resulted in the higher earth pressure on the pipe top 

in Section A. 
 

 
Figure 4.39: The Measured Earth Pressures in Section A at the End of the Construction 
and Under Static Loading 

 

 
Figure 4.40: The Measured Earth Pressures in Section B at the End of the Construction 
and Under Static Loading 



143 

Figure 4.41 shows the comparison of the measured earth pressures at the pipe crown with 

the calculated earth pressures in both sections. This figure indicates the calculated pressures in 

both sections by the AASHTO (2012) method are higher than those by the Giroud and Han 

(2004) method. However, the calculated pressures by both methods were close to the measured 

ones. It can be concluded that both methods can be used to predict the earth pressures induced by 

static loading above the SRHDPE pipe. 
 

 
(a) Section A 

 
(b) Section B 

 
Figure 4.41: Comparison of the Measured Earth Pressures at the Pipe Crown with the 
Calculated Ones Under Static Loading 
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4.6.2 Deflections 

Figure 4.42 presents the diameter change of the pipes under static loading in both 

sections. The maximum diameter changes occurred at the plastic valley. The vertical deflections 

were 0.011 and 0.009 inches in the Sections A and B, respectively. The deflections at the steel 

ribs were smaller but close to the deflections at the plastic valley. The horizontal deflections 

were close to the vertical deflections at the plastic valley with an exception of the horizontal 

deflection in Section B, which was 0.02 inches and two times the vertical deflection. In both 

sections, the deflection at the same position under the loading by the loader backhoe was larger 

than that induced by the crawler loader due to their different load magnitudes. The deflections of 

the pipes under static loading in Section A were larger than those in Section B. The possible 

reason is that more load was carried by the pipe in Section A than that in Section B. 

Equation 2.6 (i.e., the Iowa Formula) was used to calculate the deflection caused by static 

loading. The loads on the pipe top used in the calculation were the measured earth pressures 

reported in the earlier section. The deflection lag factor was determined as 1 since the short 

duration of the test. The bedding factor was 0.11 based on the suggestion by Moser and Folkman 

(2008). The pipe stiffness was 46.2 psi based on the parallel plate load tests in Phase I of this 

project. The constrained moduli were 3,414 and 2,842 psi for the AB3 aggregate and the crushed 

stone determined from the plate load tests, respectively. Table 4.1 compares the calculated 

deflections using the Iowa Formula and the measured ones. This table illustrates that the 

calculated results are close to the measured ones. This comparison confirms that the Iowa 

Formula can be used to estimate the deflection of the SRHDPE pipe induced by static loading. 

 
Table 4.1: Comparison of the Calculated and Measured Deflections Under Static Loading 

Section Loading type Measured (in.) Calculated (in.) 

A 
Loader backhoe -0.011 -0.007 

Crawler loader -0.006 -0.007 

B 
Loader backhoe -0.009 -0.008 

Crawler loader -0.008 -0.006 
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(a) Section A 

 
(b) Section B 

 
Figure 4.42: Diameter Changes of the Pipes Under Static Loading 

 

4.6.3 Strains 

The strains at the plastic cover and the plastic valley in this section were also adjusted 

using a factor of 1.29 according to Brachman et al. (2008). Figure 4.43 shows the measured 

strains of the pipe in Section A caused by static loading. The strain changes of the steel ribs at 

the pipe crown were almost three times those at the pipe springline.  The maximum strain on the 
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steel ribs at the pipe crown was 0.004%, which is only one-fiftieth of the steel yield strain limit 

of 0.5%. The strains of the plastic cover induced by static loading ranged from 0.015% to 

0.045%, which are much smaller than the plastic strain limit of 5%. The strains at the pipe crown 

in both the circumferential and the radial directions were larger than the strain in the 

circumferential direction at the springline but close to the strain in the radial direction at the 

springline. The strains of the plastic valley in the longitudinal direction at the pipe crown were 

larger than the strains in the same direction at other locations under both static loadings. The 

maximum strain of the plastic valley in the longitudinal direction was approximately 0.13%, 

which is much smaller than the plastic strain limit of 5%. 

 

 

 
(a) On steel ribs 

 
Figure 4.43: The Measured Strains of the Pipe in Section A 
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(b) On Plastic Cover 

 
(c) On Plastic Valley 

 
Figure 4.43: The Measured Strains of the Pipe in Section A (Continued) 

 

 

Figure 4.44 shows the measured strains of the pipe in Section B caused by static loading. 

Similar to Section A, the strains of the steel ribs at the pipe crown were larger than those at the 

pipe springline. The maximum strain on the steel ribs at the pipe crown was 0.007%, which is 

only one-third of the steel yield strain limit of 0.5%. The strains of the plastic cover caused by 
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static loading ranged from 0.015% to 0.035%, which are much smaller than the plastic strain 

limit of 5%. The strains at the pipe crown in both the circumferential and the radial directions 

were higher than the strain in the hoop direction at the pipe springline but close to the strain in 

the radial direction at the springline. The strains of the plastic valley in the longitudinal direction 

were larger than the strains of steel ribs and plastic covers, which was caused by the lower 

stiffness of the pipe in the longitudinal direction. The maximum strain of the plastic valley was 

approximately 0.15%, which is much smaller than the plastic strain limit of 5%.  

In summary, the strains induced by the loader backhoe at all positions in both sections 

were slightly larger than those caused by the track loader due to their pressure difference. All the 

strains of the pipes induced by static loadings were smaller than their strain limits; therefore, it 

can be concluded that the pipes were safe under these two types of static loadings in this field 

test. 

 

 

 
(a) On Steel Ribs 

 
Figure 4.44: The Measured Strains of the Pipe in Section B 
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(b) On Plastic Cover 

 

 
(c) On Plastic Valley 

 
Figure 4.44: The Measured Strains of the Pipe in Section B (Continued) 

 

 
4.7 Observation of Exhumed Pipes 

The buried pipes were exhumed for visual observations after the installation. No obvious 

damage to the ribs and liners of the pipes was observed. To investigate the deformations of ribs 

during installation, the displacements of ribs at the springline in both sections were monitored. 

Before the installation, 14 ribs at the springline of each of the middle two pipes were marked and 
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the gap distances (i.e., 13 gaps) between two adjacent ribs were measured and recorded. After 

field testing, the gap distances were measured again to evaluate possible distortions of the ribs 

during the installation. Figure 4.45 shows the gap distances before and after the installation in 

both sections. Generally, the gap distance changes in Section B were larger than those in Section 

A. The possible reason is that more large stone particles were pushed into the gaps in Section B 

by compaction than those in Section A. 

 

 
(a) Section A 

 
(b) Section B 

 
Figure 4.45: Displacements of Ribs at the Springline of Pipes in Two Sections 



151 

4.8 Conclusions 

A full-scale field test was conducted to investigate the installation effect on the SRHDPE 

pipes in the AB3 aggregate and the crushed stone with the soil cover thickness of 0.26 inches in 

both sections. The diameter of the pipe was 24 inches. The deflections and strains of the pipes 

and the earth pressures in the backfills were monitored during backfilling and under two types of 

static loadings. The following conclusions can be made from the analysis of the test results: 

1. Based on the measured earth pressures around the pipes, the vertical 

arching factor (VAF), defined as the ratio of the measured load to the soil 

prism load on the top of the pipe, were 1.10 and 1.47 in the AB3 aggregate 

section and the crushed stone section, respectively. This finding was 

similar to that from the Lawrence field test and the laboratory tests in 

Phase I of this project. 

2. The lateral earth pressure coefficients at the springline of the pipe were 

approximately 0.65, which is between the lateral earth pressure coefficient 

at rest (i.e., K0 = 0.29) and the passive earth pressure coefficient (i.e., Kp = 

5.83). 

3. The peaking deflection of the pipe in the AB3 aggregate section was 1.5 

times that in the crushed stone section. However, the vertical diameter of 

the pipe in the crushed stone section decreased by 3.5 times that in the 

AB3 aggregate section at the final level of the backfill. The vertical 

deflection of the pipe at the valley liner was slightly larger than that at the 

steel ribs. The diameter change of the pipe at 45o at the pipe crown in the 

crushed stone section was larger than that in the AB3 aggregate section. 

The horizontal deflection of the pipe during backfilling was opposite to 

the vertical deflection. The maximum deflections of the pipe in the AB3 

aggregate section and the crushed stone section were both much smaller 

than the 5% deflection limit for the steel and HDPE pipes suggested by the 

AASHTO standards. 
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4. During the pipe installation, the maximum strain of 0.15% occurred on the 

pipe plastic valley, which was smaller than the long-term service strain 

limit of 5% for flexible pipes suggested by AASHTO (2012). 

5. The maximum earth pressure induced by static loading occurred at the 

pipe crown. The measured earth pressures were close to the calculated 

ones by the methods proposed by AASHTO (2012) and Giroud and Han 

(2004). Both methods can be used to predict the vertical earth pressure 

above the SRHDPE pipe caused by static loading. The maximum 

deflection of the pipe induced by static loading was 0.02 inches (0.08%) in 

the crushed stone section, while that in the AB3 section was 0.01 inches. 

The maximum pipe strain of 0.1% was recorded under static loadings. 

6. The SRHDPE pipe performed well in the AB3 aggregate and the crushed 

stone during the installation. The displacements of ribs at the springline of 

the pipe in the crushed stone section were larger than those in the AB3 

section based on the observations of the exhumed pipes. 
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Chapter 5: Evaluation of the Long-Term Performance of the 
SRHDPE Pipe 

5.1 Introduction 

As discussed in Chapter 2, the long-term behavior of the HDPE pipe is different from that 

in the short-term due to the creep and degradation of the pipe material with time. The reduction 

of the stiffness of the pipe material in a long-term condition has been included in the calculation 

of the pipe deflection (AASHTO, 2012). Even though most of the load above the SRHDPE pipe 

is carried by the steel ribs, the plastic valley of the pipe shares some load, which may control the 

design. Therefore, the creep and degradation of the HDPE material may influence the long-term 

performance of the SRHDPE pipe. It is necessary to investigate the SRHDPE pipe performance 

in a long-term condition. The pipes installed in the Lawrence field test were monitored 

continuously for 22 months (starting from October 1st, 2013). The observation data include the 

earth pressures around the pipe, the pipe deflections, and the strains of the steel ribs, the plastic 

cover, and the plastic valley. This chapter evaluates the changes of the pipe stiffness, the load 

above the pipe, and the strains of the pipe with time.  

 
5.2 Brief Description of Pipe Monitoring 

The instrumentation of the earth pressures, and the deflections and strains of the pipes are 

the same as that during the pipe installation as described in Chapter 3. Three pipes were divided 

into two sections: Section A and Section B, which are the same as those discussed in Chapter 3. 

The AB3 aggregate was used as the backfill material in Section A, while the crushed stone was 

used in Section B. In each section, two pressure cells were installed at the pipe crown and 

another four pressure cells were located at the springline, the shoulder, the invert, and the trench 

wall, respectively. The strains of the pipes were measured at the plastic valley, the plastic cover, 

and the steel rib. More details about the instrumentation plan of the earth pressures and the 

strains can be found in Figures 3.11 and 3.12. The deflections of the pipes in both sections were 

measured in horizontal and vertical directions during the pipe installation. Two more 

measurements of the pipe deflections using a high precision laser tape Leica D210 (accuracy 

3.9×10-3 inches) were added in each section for the long-term monitoring at 45o from the pipe 
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crown in clockwise and anticlockwise directions. The soil temperature was measured by the 

temperature sensor included in the earth pressure cell to investigate the temperature effect on the 

pipe performance. The measurements were taken more often right after the construction. The 

frequency of measurements decreased to approximately once one month later. So far a total of 29 

readings were collected for each sensor. 

 
5.3 Data Analysis 

5.3.1 Earth Pressure 

5.3.1.1 Temperature Correction Procedures of the Measured Earth 

Pressure 

Figure 5.1 shows the vertical earth pressures at the pipe crown in the crushed stone 

section at a distance of 114 inches from the roadway centerline. This figure shows that the earth 

pressure varied with the temperature. To eliminate temperature effect on the variations of earth 

pressures with time, the earth pressures should be presented at the same temperature. Therefore, 

all the measured earth pressure must be corrected. 

 

 
Figure 5.1: Measured Vertical Earth Pressure and Temperature at the Pipe Crown in the 
Crushed Stone Section at a Distance of 114 Inches 
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As mentioned in Chapter 3, Geokon total pressure cells 4810-350KPA were used in the 

field test to measure the earth pressures around the pipes. The manufacturer provided the 

temperature correction method as follows (Geokon, 2011): 

 

 0( )C M C T Tσ σ= + −  Equation 5.1 
Where: 

Cσ  = the corrected earth pressure 

Mσ  = the measured earth pressure 

C  = the temperature correction factor, which can be determined by Equation 5.2 

T  = the temperature 

0T  = the initial temperature 

 

 3EKDC
R

=  Equation 5.2 

Where: 

E = the elastic modulus of the surrounding medium (3,700 psi for the AB3 

aggregate and 3,480 psi for the crushed stone) 

K = the thermal expansion coefficient of the oil film in the pressure cell 

(0.00044/Fo) 

D = the thickness of the oil film in the pressure cell (0.06 inches for the Geokon 

total pressure cell) 

R = the radius of the pressure cell (4.5 inches for the Geokon total pressure cell). 

Based on Equation 5.2, the temperature correction factor C for the AB3 

aggregate is 0.63 and that for the crushed stone is 0.58.  

 

Based on the correction method provided by the manufacturer, all measured earth 

pressures presented in this chapter were corrected with respect to the temperature at which the 

pressure cells were installed. 

5.3.1.2 Test Section A 

Figure 5.2 shows the measured and corrected vertical earth pressure with time at the pipe 

crown in Section A. The vertical earth pressure at the pipe crown in Section A slightly increased 
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with the time. The vertical earth pressure after 680 days of the construction was approximately 

5.0 psi. The vertical soil arching factor (VAF) was approximately 1.72 (overburden stress = 141 

pcf × 36 inches /12 /144 = 2.9 psi). 

 

 
(a) 38 Inches from the Roadway Centerline 

 
(b) 114 Inches from the Roadway Centerline 

 
Figure 5.2: Corrected Vertical Earth Pressure at the Pipe Crown in Section A 
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Figure 5.3 shows the measured and corrected lateral earth pressures at the pipe springline 

in Section A. The lateral earth pressure at the pipe springline increased to 3 psi within 680 days 

after the construction. Since there is no measured vertical earth pressure at the pipe springline, 

the lateral earth pressure coefficient was calculated as 0.75 using the theoretical overburden 

stress at the springline (K = 3 / (50 inches × 141 pcf / 12 / 144) = 0.75). The lateral earth pressure 

coefficient at the pipe springline in Section A was higher than K0 (i.e., 0.209). 

 

 
Figure 5.3: Corrected Lateral Earth Pressure at the Pipe Springline in Section A 

 

 

Figure 5.4 shows the measured and corrected vertical earth pressures at the shoulder in 

Section A. This figure also shows that the corrected vertical earth pressure at the shoulder 

increased with the time and was approximately 4.6 psi at within 680 days, i.e., the VAF at the 

shoulder was equal to 1.84. 
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Figure 5.4: Corrected Vertical Earth Pressure at the Shoulder in Section A 

 

Figure 5.5 shows the measured and corrected lateral earth pressures at the trench wall. 

The corrected lateral earth pressure at the trench wall was almost constant at 3.0 psi, indicating 

the long-term effect on the trench wall was insignificant. 

 

 
Figure 5.5: Corrected Lateral Earth Pressure at the Trench Wall at the Pipe Springline 
Level in Section A 
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Figure 5.6 shows the vertical earth pressures at the pipe invert. The corrected vertical 

earth pressure was approximately 4.7 psi at the end of monitoring. 

 

 
Figure 5.6: Corrected Vertical Earth Pressure at the Pipe Invert in the Section A 

 

 

5.3.1.3 Test Section B 

Figure 5.7 shows the measured and corrected earth pressures with the time at the pipe 

crown in Section B. The earth pressure at the pipe crown increased with time. The earth pressure 

after 680 days of the construction was approximately 4.5 psi. The VAF was approximately 2.18 

(overburden stress = 99.2 pcf × 36 inches /12 /144 = 2.06 psi). The VAF in Section A was lower 

than that in Section B. The load carried by the pipe in Section A (the AB3 aggregate section) was 

higher than that in Section B (the crushed stone section) due to the higher unit weight of the AB3 

aggregate than the crushed stone. 
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(a) 38 Inches from the Roadway Centerline 

 
(b) 114 Inches from the Roadway Centerline 

Figure 5.7: Corrected Vertical Earth Pressure at the Pipe Crown in Section B 

 

Figure 5.8 shows the measured and corrected lateral earth pressures at the pipe springline 

in Section B. The corrected lateral earth pressure at the pipe springline increased to 

approximately 4 psi at 680 days after the construction. Since there was no measured vertical 

earth pressure at the pipe springline, the lateral earth pressure coefficient was calculated as 1.38 

based on the theoretical overburden stress at the springline (K = 4 / (50 inches × 99.2 pcf / 12 / 

144) = 1.38). 
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Figure 5.8: Corrected Lateral Earth Pressure at the Pipe Springline in Section B 

 

Figure 5.9 shows the measured and corrected vertical earth pressures at the shoulder in 

Section B. This figure also shows that the corrected earth pressure at the shoulder generally 

increased with time and was around 5 psi at 680 days. The VAF at the shoulder was 2.43. 

 

 
Figure 5.9: Corrected Vertical Earth Pressure at the Shoulder in Section B 
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Figure 5.10 shows the measured and corrected lateral earth pressures with time at the 

trench wall. The earth pressure at the trench wall generally increased with time and was 

approximately 3.0 psi, which is lower than that next to the pipe at the same level. The earth 

pressure cell next to the pipe was subjected to additional lateral pressure from the pipe. 

 

 
Figure 5.10: Corrected Earth Pressure at the Trench Wall at the Pipe Springline Level in 
Section B 

 

 

Figure 5.11 shows the measured and corrected vertical earth pressures at the pipe invert. 

The readings after the construction to 300 days were not reliable due to the wire connection 

problem; therefore, they are not provided. After the problem was fixed, the earth pressure was 

almost constant at 3.2 psi.  
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Figure 5.11: Corrected Vertical Earth Pressure at the Pipe Invert in Section B 

 

 

5.3.2 Deflections 

Figure 5.12 shows the pipe deflection with the time in Section A. The pipe deflection in 

the horizontal direction increased up to approximately 0.6%, while that in the vertical direction 

was 0.4% at 680 days. The diameter change at an angle of 45o from the pipe crown decreased 

slightly with the time. These changes indicate that the pipe returned to a round shape after the 

installation due to the traffic loading and the creep of the pipe material. 

Figure 5.13 shows the pipe deflection with time in Section B. The pipe deflections in the 

vertical and horizontal directions increased with the time and reached approximately 0.8% of the 

pipe diameter in 680 days. This deflection increase can be attributed to the increase of the 

vertical earth pressure on the crown and the pipe creep deformation, which will be discussed in 

the next section. The diameter change at an angle of 45o from the pipe crown decreased slightly 

with time.  
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Figure 5.12: Pipe Deflections with Time in Section A 

 

 
Figure 5.13: Pipe Deflections with Time in Section B 

 

The deflections in the vertical and horizontal directions in Section A were smaller than 

those in Section B. The reason for this difference is that the AB3 aggregate in Section A had a 

higher modulus than the crushed stone in Section B and provided more lateral support for the 

pipe.  
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5.3.3 Strains 

5.3.3.1 Test Section A 

Four pairs of strain gages (outside and inside of the pipe) were attached on the plastic 

valley at the pipe crown in the longitudinal direction. Their distances to the roadway centerline 

were 33, 21, 9, and 3 inches, respectively. They are labeled as “L1, L2, L3, and L4” from the 

farthest point to the closest point to the centerline. Strains at the plastic valley and the plastic 

cover in this section were also adjusted using a factor of 1.29 according to Brachman et al. 

(2008). Figure 5.14 shows the longitudinal strains on the plastic valley at the pipe crown in 

Section A. Compared with the temperature curve, the longitudinal strains of the plastic valley at 

the pipe crown were not apparently affected by the temperature. As compared with the 

temperature curve, the longitudinal strains of the plastic valley at the pipe crown were not 

apparently affected by the temperature. For a clear presentation, the variation of the temperature 

is not included in later figures except for the case with an apparent temperature effect. The 

general trend is that the strains increased slightly with the time. The magnitude of the strains 

decreased with an increase of the distance to the centerline. The maximum longitudinal strain on 

the plastic valley at the pipe crown was approximately 0.3% at 3 inches from the roadway 

centerline. 
 

 
Figure 5.14: Longitudinal Strains on the Plastic Valley at the Pipe Crown in Section A 
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Figure 5.15 shows the longitudinal strains on the plastic valley at the pipe springline and 

the invert in Section A. The longitudinal strains at the springline and the invert were not 

influenced by the temperature. The strains at the pipe invert and the springline varied with the 

maximum value of -0.14% to -0.33%. The negative strains indicate that the plastic valley of the 

pipe in the longitudinal direction at the pipe springline and the pipe invert was under 

compression. 

 

 
Figure 5.15: Longitudinal Strains on the Plastic Valley at the Pipe Springline and Invert in 
Section A 

 

Figure 5.16 presents the circumferential strains of the plastic covers at the pipe crown, 

invert, and springline. The strains of the plastic cover varied with the temperature at all three 

locations. The maximum strain variation was 0.79% with a temperature change of 48.6oF (i.e., 

from 41oF to 89.6oF). The strains at the pipe crown changed more significantly than other two 

locations. The strains at the pipe invert were the lowest ones. The strains at the springline and the 

crown increased from negative to positive values. The strains at the pipe invert were always 

negative.  
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Figure 5.16: Circumferential Strains of the Plastic Cover in Section A 

 

 

Figure 5.17 presents the circumferential strains of the steel ribs at the pipe crown and the 

springline in Section A. The measured strains were not affected by the temperature. The strains 

at both the pipe crown and the springline were negative, indicating that the steel ribs were under 

compression. The strains at the pipe springline generally increased with time to 400 days after 

construction and then decreased. The strains at the pipe crown increased with time. The 

maximum strain of the steel ribs in Section A was 0.17% at the pipe crown, which is less than 

the steel yield strain of 0.5%.  
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Figure 5.17: Circumferential Strains of Steel Ribs in Section A 

 

 

5.3.3.2 Test Section B 

Figure 5.18 shows the longitudinal strains at the pipe valley at the pipe crown in Section 

B. There are some variations of the measured strains but generally the strains on the plastic 

valley in the longitudinal direction were almost constant through the observation time. Strains at 

the plastic valley and the plastic cover in this section were also adjusted using a factor of 1.29 

according to Brachman et al. (2008). The magnitudes of the strains decreased with an increase of 

the distance to the centerline, which was consistent with that in Section A. The maximum strain 

on the plastic valley in the longitudinal direction was approximately 0.35% at 9 inches from the 

roadway centerline, which is 1.3 times that in Section A. 
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Figure 5.18: Longitudinal Strains on the Pipe Valley at the Pipe Crown in Section B 

 

Figure 5.19 shows the longitudinal strains of the plastic valley at the pipe springline and 

invert in Section B. The longitudinal strains of the plastic valley at the springline and the pipe 

invert mostly varied within 0.2%. 

 

 
Figure 5.19: Longitudinal Strains on the Pipe Valley at the Pipe Springline and the Invert 
in Section B 
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Figure 5.20 presents the circumferential strains of the plastic covers at the pipe crown, 

invert, and springline. The strains of the plastic covers varied with the temperature at all three 

locations. The maximum strain variation was 0.57% with a temperature change of 48.6oF (i.e., 

from 41oF to 89.6oF). The strains at three locations were similar, and the strains at the pipe crown 

were slightly larger than strains at other locations. Their difference was approximately 0.1%. 

Most measured strains of the plastic covers were negative, indicating that the pipes in the 

circumferential direction in Section B were under compression. 

 

 
Figure 5.20: Circumferential Strains of the Pipe Covers in Section B 

 

Figure 5.21 presents the circumferential strains of the steel ribs at the pipe crown and the 

springline. They were not affected by the temperature. The positive strains at the springline 

illustrated the steel rib at the pipe springline was under tension. The negative strains at the pipe 

crown demonstrated that the steel rib at the pipe crown was under compression. The strains of 

the steel ribs increased with the time. The maximum strain of the steel rib in Section B was 

0.18%, which is lower than the steel yield strain of 0.5%.  
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Figure 5.21: Circumferential Strains of Steel Ribs in Section B 

 

 
5.4 Long-Term Empirical Correlations  

The design service life of a pipeline system is typically 100 years. So far, no field test 

data is available to evaluate the SRHDPE pipe performance in its design service life. A typical 

way to evaluate long-term performance of pipes is to establish an empirical correlation with the 

time based on field data in a relative long time. This method was also adopted in the current 

study. Based on the literature review, two parameters are important for the evaluation of long-

term performance of HDPE pipes: VAF and pipe stiffness. VAF is essential to calculate the load 

above the pipe in the design, which can be used to calculate pipe deflections and strains. Internal 

forces, deflections, and strains of pipes depend on pipe stiffness or relative stiffness between pipe 

and backfill material. The long-term stiffness of HDPE pipes has been investigated by several 

researchers (e.g., Hsuan & Zhang, 2005; Hsuan & McGrath, 2005). Creep and degradation of the 

HDPE material with time influence long-term stiffness of the HDPE pipes. However, the 

stiffness of the SRHDPE pipe is expected to be different from the HDPE pipe since the SRHDPE 

pipe includes steel reinforcements. Therefore, it is necessary to evaluate the SRHDPE pipe 

stiffness under a long-term condition.  
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5.4.1 Vertical Soil Arching Factor 

Figure 5.22 shows the variation of the VAFs with the time in Sections A and B, which 

can be approximately expressed by a linear relationship as follows: 

 
 0.11log( ) 1.20VAF t= + (AB3 aggregate) Equation 5.3a 

 
 0.15log( ) 1.53VAF t= +  (crushed stone) Equation 5.3b 

Where: 

VAF = the vertical soil arching factor at the pipe top 

t = the time after the pipe installation (days) 

 

Based on Equations 5.3a and 5.3b, the VAFs for 50 and 100 years in Section A (the AB3 

aggregate section) are 1.67 and 1.70, respectively, while they are 2.17 and 2.21 in Section B (the 

crushed stone section). 

 

 
(a) Section A 

 
Figure 5.22: Variation of the VAFs With the Time 
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(b) Section B 

 
Figure 5.22: Variation of the VAFs With the Time (Continued) 

 

5.4.2 Pipe Stiffness 

Pipe creep tests can be used to determine the pipe stiffness under a long-term condition. 

Khatri (2012) conducted a creep test on the SRHDPE pipe in air using a loading frame in the 

laboratory for 700 hours. He back-calculated the time-dependent pipe stiffness factor (EI) based 

on the load and the pipe deflection within the test period using Equation 5.4: 

 

 
3 30.149 0.149 FEI R PS R

y
= =

∆
 Equation 5.4 

Where: 

R = the pipe radius 

PS = the pipe stiffness 

F = the load on the pipe 

∆y = the pipe deflection. 

 

Khatri (2012) found the stiffness (EI) factor of the pipe decreased by 25% in 700 hours, 

which can significantly influence the pipe performance. Khatri pointed out that the stiffness 
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reduction with time should be less if the pipe is buried in soil. Therefore, it is important to 

develop a correlation of the pipe stiffness factor (EI) with time based on field data. 

Figure 5.23 shows the variation of the pipe stiffness factor based on the field data 

calculated using Equation 5.4, which can be approximately expressed as follows: 

 
 1.9 log( ) 11.0EI t= − +  (AB3 aggregate) Equation 5.5a 

 
 1.96log( ) 10.8EI t= − +  (crushed stone) Equation 5.5b 

Where: 

EI = pipe stiffness factor (×105 lb∙in.2/in.)  

t = the time after the pipe installation (days) 

 

Based on Equations 5.5a and 5.5b, the pipe stiffness factors at 1 day, 50 years, and 100 

years in the AB3 aggregate section are 1.13×106, 2.90×105, and 2.33×105 lb∙in2/in, respectively, 

while they are 1.08×106, 2.45×105, and 1.86×105 lb∙in.2/in. in the crushed stone section at the 

same time periods. The pipe stiffness factor in the AB3 aggregate section was higher than that in 

the crushed stone section due to the higher soil reaction modulus of the AB3 aggregate as 

compared with the crushed stone. The pipe stiffness factors at 100 years decreased by 79% and 

83% from the initial values at 1 day in the AB3 aggregate section and the crushed stone section, 

respectively. 
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(a) Section A 

 

 

(b) Section B 

 
Figure 5.23: Variation of the Pipe Stiffness Factor with Time for Sections A and B  
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5.5 Conclusions  

The pipes in the Lawrence field test were monitored for 680 days after the construction. 

The variations of the earth pressures around the pipes, the deflections of the pipes, and the strains 

of the pipes with time were analyzed in this chapter. Long-term empirical correlations were 

developed for the vertical soil arching factor (VAF) and the pipe stiffness factor (EI) based on 

the field data. The following conclusions can be made from the analysis: 

1. The earth pressures generally increased at all locations in both sections. 

The VAFs were 1.72 and 2.18 after 680 days of construction in the AB3 

aggregate section and the crushed stone section, respectively. The lateral 

earth pressure coefficients next to the pipes were 0.75 and 1.38 in the AB3 

aggregate section and the crushed stone section, respectively. 

2. The deflections of the pipe generally increased with time in the vertical 

and horizontal directions. The pipe diameter change was insignificant at 

45o from the pipe crown in both sections. The maximum deflections were 

0.6% and 0.8% the pipe diameter in the AB3 aggregate section and the 

crushed stone section, respectively. 

3. The strains of the pipes mostly increased with time at all locations in both 

sections. The maximum strains occurred on the plastic valley in the 

longitudinal direction at the pipe crown, which were 0.30% and 0.35% in 

the AB3 aggregate section and the crushed stone section, respectively.  

4. Long-term empirical correlations were proposed based on the field data 

for vertical soil arching factor (VAF) and the pipe stiffness factor (EI). 

The VAFs would increase to 1.7 and 2.21 in the AB3 aggregate section 

and the crushed stone section in 100 years, respectively. The pipe stiffness 

factors in 100 years would decrease by 79% and 83% from the initial 

value at 1 day in the AB3 aggregate section and the crushed stone section, 

respectively. 
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Chapter 6: Design Procedures for SRHDPE Pipes 

6.1 Introduction 

As mentioned in Chapter 1, no widely accepted design procedure is available for 

SRHDPE pipes even though they combine the advantages of metal pipes and HDPE pipes. Since 

SRHDPE pipes include steel ribs, they can carry more load than HDPE pipes. Based on the 

laboratory and field tests in this study, vertical arching factors (VAF) for SRHDPE pipes in 

granular backfill were greater than 1, which implies SRHDPE pipe cross sections behave like 

metal pipes due to steel ribs. However, the measured peak strains on the plastic valley in field 

tests were the maximum strains, which were higher than the strains of the plastic cover; 

therefore, the strain of the plastic valley controls the strain limit design of plastic components in 

SRHDPE pipes. In other words, design of SRHDPE pipes should consider analysis of steel ribs 

and plastic valley (liner). AASHTO (2012) has recommended design methods for both metal 

pipes and HDPE pipes. In this chapter, these two design methods are summarized and modified 

for design of SRHDPE pipes. 

 
6.2 AASHTO Design Methods 

A load and resistance factor design (LRFD) method is adopted for design of the buried 

structures in the AASHTO (2012) standard. The factored resistance is calculated by: 

 
 r nR Rφ=  Equation 6.1 

Where: 

rR  = the factored resistance 

φ  = the resistance factor 

nR  = the nominal resistance 

The resistance factor for minimum wall area and buckling of metal pipes is 1. The 

resistance factor for thrust and flexure of HDPE pipes is 1, while those for 

soil stiffness and global buckling are 0.9 and 0.7, respectively. 
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6.2.1 Strength Limit State 

The following strength limit states should be analyzed for design of metal pipes and 

HDPE pipes: 

Metal pipe: 

• Wall area 

• Buckling 

• Beam failure 

• Flexibility limit for construction 

• Flexure of box and deep corrugated structures 

HDPE pipe: 

• Wall area (including local buckling) 

• Buckling 

• Flexibility limit 

 

6.2.2 Flexibility Factor Limit  

Table 6.1 provides the flexibility factor limits of metal pipes and HDPE pipes. The 

flexibility factor of metal pipes depends on corrugation sizes while that of HDPE pipes is 

constant. 

 
Table 6.1: Flexibility Factor Limits 

Pipe type Condition Corrugation size (in.) Flexibility factor (in./kip) 

Steel pipe 
- 0.25 43 
- 0.5 43 
- 1.0 33 

Spiral rib metal pipe 

Embankment 0.75×0.75×7.5 217I1/3 
Embankment 0.75×1.0×11.5 140I1/3 

Trench 0.75×0.75×7.5 263I1/3 
Trench 0.75×1.0×11.5 163I1/3 

HDPE pipe - - 95 
Note: I is the moment of inertia of the pipe (in.4/in.). 
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6.2.3 Soil Envelop 

For a trench condition, the minimum trench width should not be less than the greater of 

the pipe outside diameter plus 16 inches or 1.5 times pipe outside diameter plus 12 inches. For an 

embankment condition, the minimum width of the soil envelop on each side of a pipe should be 

not less than the following values: 

1. D/12 ft (D is the outside pipe diameter) when D < 24 inches; 

2. 2.0 ft when 24 inches < D < 144 inches; 

3. 5.0 ft when D > 144 inches. 
 

6.2.4 Soil Cover Thickness 

The minimum soil cover thickness for spiral metal pipes is the greater of D/4 (D is the 

outside diameter of the pipe) or 12 inches, while that for corrugated metal pipes is the greater of 

D/8 or 12 inches. The minimum soil cover thickness of HDPE pipes is the greater of Di/8 (Di is 

the inside diameter of the pipe) or 12 inches under an unpaved condition, while that under a 

paved condition is the greater of Di/2 or 24 inches. 

6.2.5 Pipe Spacing 

The following requirements should be met for clear spacing of multiple pipe lines, S: 

1. S = 1 ft when D < 2.0 ft; 

2. S = D/2 when 2.0 ft < D < 6.0 ft; 

3. S = 3 ft when D > 6.0 ft 
 

6.2.6 Metal Pipe Design 

Metal pipe design requires five key parameters: 
 

6.2.6.1 Thrust 

The factored thrust can be calculated as follows: 
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24L F
DT p  =  

 
 Equation 6.2 

Where: 

TL = the factored thrust per unit length (kip/ft) 

D = the pipe diameter (in.), which is equal to the pipe outside diameter if the pipe 

is round 

pF = the factored vertical crown pressure due to earth and live loads (ksf) 

 

6.2.6.2 Wall Resistance  

The factored axial resistance, without considering buckling, can be calculated as follows: 

 
 n yR F Aφ=  Equation 6.3 

Where: 

Rn = the factored axial resistance 

Fy = the yield strength of metal (ksi) 

A = the wall area (in.2/ft) 

φ = the resistance factor as described in Section 6.2.1 

 

6.2.6.3 Resistance to Buckling 

If 24 m

u

ErD
k F

 <  
 

, the critical buckling stress is: 
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, the critical buckling stress is: 
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 Equation 6.4b 

Where: 

D = the outside diameter of the pipe (in.) 

Em = the modulus of elasticity of metal (ksi) 

Fu = the tensile strength of metal (ksi) 

fcr = the critical buckling stress (ksi) 

r = the radius of gyration of corrugation (in.) 

k = the soil stiffness factor (taken as 0.22) 

 

6.2.6.4 Seam Resistance 

For pipes with longitudinal seams, the factored seam resistance should be greater than the 

factored thrust in the pipe wall, TL, as presented in Equation 6.2.  

6.2.6.5 Handling and Installation Requirements 

Handling flexibility as indicated by a flexibility factor can be determined as follows: 

 

 
2

m

DFF
E I

=  Equation 6.5 

Where: 

FF = the flexibility factor 

D = the pipe outside diameter or span 

Em = the modulus of elasticity of metal 

I = the moment of inertia of the pipe wall in unit length 

 

6.2.7 HDPE Pipe Design 

6.2.7.1 Deflection 

The total deflection ∆t should be smaller than the allowable deflection ∆A (typically 

5%D). The total deflection can be calculated using Spangler’s formula combined with the 

circumferential shortening as follows: 



182 

 0

3

( )

1000 0.061

B L sp L L
t sc

P P
s

K D P C P D
D

E I M
R

ε
+

D = +
 + 
 

 Equation 6.6 

 

In which: 
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Where: 

scε  = the service compressive strain due to thrust 

sT  = the service thrust per unit length (lb./in.) 

LD  = the deflection lag factor (typically 1.5) 

BK  = the bedding coefficient (typically 0.1) 

spP  = the soil prism load at the pipe springline (psi) 

LC  = the live load distribution coefficient 

LP  = the design live load pressure including vehicle, dynamic load allowance, 

and multiple presence effect (psi) 

0D = the outside diameter of pipe (in.) 

PE  = the short or long-term modulus of pipe material (ksi) 

PI  = the moment of inertia of the pipe profile per unit length of the pipe (in.4/in.) 

R = the radius from the center of the pipe to the centroid of the pipe profile (in.) 

D = the diameter to the centroid of the pipe profile 

sM = the secant constraint soil modulus as shown in Table 6.2 

sP  = the design service load 

effA  = the effective area of the pipe wall per unit length of the pipe 
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6.2.7.2 Factored and Service Loads 

The factored load Pu can be calculated as follows: 

 
 ( )2u EV EV E sp WA w LL LL L LP K K VAFP P P Cγη γ γ η γ= + +  Equation 6.9 

 

The service load Ps can be taken as: 

 
 2s sp L L wP K VAFP P C P= + +  Equation 6.10 

 

In which: 
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 Equation 6.11 
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=  Equation 6.12 
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= ≤  Equation 6.13 

 
 0 12 ( )wL L LLDF H= +  Equation 6.14 

Where: 

EKγ  = the installation factor (taken as 1.5) 

2K  = the coefficient to account for the variation of the thrust around the 

circumference (1.0 at the springline and 0.6 at the crown) 
VAF = the vertical arching factor 

HS  = the hoop stiffness factor 

wP  = the hydrostatic water pressure at the pipe springline (psi) 

LC  = the live load distribution width in the circumferential direction at the 

elevation of the crown 
H = the soil cover thickness (ft) 

EVη  = the load modifier (taken as 1.0) 
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EVγ  = the load factor for the vertical pressure from the dead load of the earth fill 

(the maximum value is 1.3 and the minimum one is 0.9) 

spP  = the soil prism pressure 

WAγ  = the load factor for hydraulic pressure 

LLη  = the load modifier (taken as 1.0) 

LLγ  = the load factor for live load (taken as 1.75) 

LP  = the live load pressure with the dynamic load allowance (psi) 

Sφ  = the resistance factor for soil stiffness 

sM = the secant constraint modulus of soil as shown in Table 6.2 

R = the radius from the center of the pipe to the centroid of the pipe profile (in.) 

PE  = the short or long-term modulus of pipe material (ksi) 

gA  = the gross area of pipe wall per unit length of pipe (in.2/in.) 

0D = the outside diameter of the pipe (in.) 

LLDF  = the factor for live load distribution through earth fills 

 
Table 6.2: Secant Constraint Modulus Ms of Backfill Based on Soil Type and Compaction 

Condition (Unit: ksi) 

Sand and 
gravel 

Psp stress level 
(psi) 

100 % 
compaction 

95 % 
compaction 

90 % 
compaction 

85 % 
compaction 

1.0 2.350 2.000 1.275 0.470 
5.0 3.450 2.600 1.500 0.250 
10.0 4.200 3.000 1.625 0.570 
20.0 5.500 3.450 1.800 0.650 
40.0 7.500 4.250 2.100 0.825 
60.0 9.300 5.000 2.500 1.000 

Silt 

1.0  1.415 0.670 0.360 
5.0  1.670 0.740 0.390 
10.0  1.770 0.750 0.400 
20.0  1.880 0.790 0.430 
40.0  2.090 0.900 0.510 
60.0     

Clay 

1.0  0.530 0.255 0.130 
5.0  0.625 0.320 0.175 
10.0  0.690 0.355 0.200 
20.0  0.740 0.395 0.230 
40.0  0.815 0.460 0.285 
60.0  0.895 0.525 0.345 

Source: AASHTO (2012) 
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6.2.7.3 Soil Prism Load 

The soil prism load Psp can be calculated as follows: 

If the water table is above the top of the pipe and at or above the ground surface: 
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If the water table is above the top of the pipe and below the ground surface: 
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If the water tale is below the top of the pipe: 
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Where: 

sγ  = the moist unit weight of the soil (pcf) 

bγ  = the unit weight of the buoyant soil (pcf) 

wH  = the depth of water table above the pipe springline (ft) 

Definitions of other parameters are the same as those defined previously. 
 

6.2.7.4 Hydrostatic Pressure 

The pressure caused by the ground water can be calculated as follows: 

 

 
144

w w wa
w

H KP γ
=  Equation 6.18 

Where: 

wP  = the hydrostatic pressure 

wγ  = the unit weight of water 

waK  = the factor for uncertainty in the level of the groundwater table (typically 1.0-

1.3) 
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6.2.7.5 Live Load 

The live load pressure can be calculated as follows: 
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 Equation 6.19 

Where: 

LP  = the live load pressure on the pipe (psi) 

P  = the design wheel load (lbs) 

IM  = the dynamic load allowance (taken as 33%) 

m  = the multiple presence factor (1.2 for one lane road, 1.0 for two lanes road, 

0.85 for three lanes road, and 0.65 for the road with the lane number greater 

than three) 

0L  = the length of the live load surface contact area parallel to the pipe diameter 

(for the AASHTO-H25 truck, use 10 in.) 

LLDF  = the factor for the distribution of the live load through earth fills 

(typically 1.15) 

0W  = the width of the live load ground surface contact area parallel to the flow in 

the pipe (for the AASHTO-H25 truck, use 20 in.) 

1K  = the coefficient to consider the design location (0 for the pipe crown and 

D0/2 for the springline) 

H = the soil cover thickness (ft) 

 

6.2.7.6 Effective Area 

To determine buckling resistance, the profile wall pipe should be idealized as straight 

elements as shown in Figure 6.1.  
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Figure 6.1: Typical and Idealized Cross Sections of a Profile Wall Pipe 
Source: AASHTO (2012) 
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In which: 
 

 eb wρ=  Equation 6.21 
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 Equation 6.23 

Where: 

effA  = the effective area of pipe wall per unit length of the pipe (in.2/in.) 

eb  = the element effective width (in.) 

ρ  = the effective width factor 

λ  = the slenderness factor 

ω  = the spacing of corrugations (in.) 

ycε  = the factored compressive strain limit 

gA  = the gross area of pipe wall per unit length of the pipe (in.2/in.) 

t  = the thickness of the element 

w  = the total clear width of the element between supporting elements (in.) 

k = the plate buckling coefficient (taken as 4) 
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The effective area can also be determined using a stub compression test as follows: 
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= ≤  Equation 6.24 

Where: 

stP  = the stub compression capacity (kip/in.) 

tK  = the time factor (0.9 for initial, 0.3 for 50 years, and 0.25 for 75 years) 

uF  = the material yield strength (ksi) 

 

6.2.7.7 Compressive Strain 

The factored compression strain due to the factored thrust and the service compression 

strain due to the service thrust are: 
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In which: 
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 Equation 6.27 

Where: 

ucε  = the factored compressive strain due to the thrust 

scε  = the service compressive strain due to the thrust 

uT  = the factored thrust per unit length 

sT  = the service thrust per unit length 
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6.2.7.8 Strain Limits 

The factored compression strain due to the thrust should satisfy: 

 
 uc T ycε φ ε≤  Equation 6.28 

Where: 

Tφ  = the resistance factor for thrust effects (taken as 1.0) 

ycε  = the factored compression strain limit (taken as 5%) 

 
 uc bck bckε φ ε≤  Equation 6.29 
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Where: 

bckφ  = the resistance factor for global buckling (taken as 1.0) 

bckε  = the nominal strain capacity for general buckling 

hR  = the correction factor for backfill soil geometry 

nC  = the calibration factor to account for nonlinear effects 

sφ  = the resistance factor for soil (taken as 0.9) 

v  = Poisson’s ratio of soil 

D = the diameter to the centroid of the pipe profile (in.) 

H = the depth of fill over the pipe top (ft) 

 

6.2.7.9 Combined Strain Limit 

The combination of the bending strain and the axial strain should satisfy: 
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 f uc f ytε ε f ε− <   (tensile strain)   Equation 6.32 

 
 1.5f uc T ycε ε f ε+ <   (compressive strain)   Equation 6.33 

Where: 

fε  = the factored strain due to flexure 

ytε  = the service long-term tensile strain limit (taken as 4.1%) 

ff  = the resistance factor for flexure (taken as 1.0) 

Tφ  = the resistance factor for thrust (taken as 1.0) 

 

 f
f EV f

cD
R D

ε γ
D  =     

 Equation 6.34 

 
 f A scDεD = D −  Equation 6.35 

Where: 

f∆  = the reduction of the vertical diameter due to flexure 

fD  = the shape factor as shown in Table 6.3 

c = the larger of the distance from the neutral axis of the profile to the extreme 

innermost or outermost fiber 

R = the radius from the center of the pipe to the centroid of the pipe profile 

D = the diameter to the centroid of the pipe profile 

 

6.2.7.10 Handling and Installation Requirements 

The flexibility factor can be taken as: 

 

 

2DFF
EI

=
 Equation 6.36 

Where: 

I = the moment of inertia 

E = the initial modulus of elasticity of the pipe 

D = the diameter of the pipe 
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Table 6.3: Shape Factors Based on Pipe Stiffness, Backfill, and Compaction Level 

Pipe stiffness (ksi) 

Backfill material and compaction level 

Gravel Sand 

Dr < 40 % Dr > 40 % Dr < 40 % Dr > 40 % 

0.009 5.4 7.0 6.0 8.0 

0.018 4.5 5.5 5.0 6.5 

0.036 3.8 4.5 4.0 5.5 

0.072 3.3 3.8 3.5 4.5 
Note: Dr is the relative density of the backfill material. 
Source: AASHTO (2012) 

 
6.3 SRHDPE Pipe Design Considerations 

Based on the field tests, the following considerations are suggested for design of an 

SRHDPE pipe in accordance with the AASHTO design methods for a metal pipe and an HDPE 

pipe: 

1. Load: The load calculation is the basis of the SRHDPE pipe design to 

determine the strain and the pipe deflection, which are essential to 

evaluate the pipe responses. A VAF corresponding to an SRHDPE pipe 

should be used instead of that for an HDPE pipe in Equation 6.9. Based on 

the field test in this study, the short-term VAF for the SRHDPE pipe was 

1.1 and the long-term VAF can be estimated by Equation 5.3.  

2. Deflection: The laboratory and field tests showed that the SRHDPE pipe 

in granular backfill had a VAF greater than 1. This result implies that the 

pressure on the SRHDPE pipe is higher than the soil prism pressure. For 

the HDPE pipe design, the load on the pipe is treated as the soil prism load 

for conservation purposes. However, it will not be conservative if the soil 

prism load is still used for the SRHDPE pipe. Therefore, a VAF should be 
used to modify the soil prism load. Furthermore, the term scDε  in 

Equation 6.6 is used to consider the circumferential shortening, which is 

only important for a very flexible pipe. For an SRHDPE pipe, this term 

can be dropped. The field monitoring showed the pipe stiffness factor EpIp 

decreased with time. Therefore, when an SRHDPE pipe is used for long-
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term applications, the initial pipe stiffness factor should be reduced by a 

percentage depending on the service time. For a 50-year service life, the 

pipe stiffness factor may be reduced by 73.6%, while for a 100-year 

service life, it may be reduced by 78.8%. As a result, the SRHDPE pipe 

deflection can be calculated as follows: 
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 Equation 6.37 

 

3. Strain: Based on the field test results, the strains of the plastic valley were 

much larger than those of the plastic cover. An SRHDPE pipe should be 

treated as an HDPE pipe first for the plastic strain limit check (i.e., 

Equations 6.28, 6.29, 6.32, and 6.33). The strain limits for plastic should 

be 5% for the compressive strain and 4.1% for the tensile strain. However, 

buckling of steel ribs also needs to be checked using Equation 6.4 to 

ensure the buckling stress of the steel rib is lower than the yield strength of 

steel. Nonlinear behavior of the pipe was not observed under the service 

loading; therefore, the calibration factor to account for nonlinear effects 

can be taken as 1.0 in Equation 6.30. 

4. Flexibility Factor: The elastic modulus of pipe material is needed for the 

flexibility factor calculation for both metal and HDPE pipes (i.e., 

Equations 6.5 and 6.36). For an SRHDPE pipe flexibility factor 

calculation, the equivalent elastic modulus of the pipe should be used, 

which is based on the area weighted average of the moduli of steel and 

plastic. 

5. Soil Envelop Width: The SRHDPE pipe is classified as a flexible pipe. 

Therefore, the soil envelop width for the metal pipe and the HDPE pipe 

presented in Section 6.2.4 should also be followed to determine the 

minimum soil envelop width for the SRHDPE pipe. 
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6. Soil Cover Thickness: The minimum soil cover thickness should be 

calculated based on the requirements for both steel and HDPE pipes in 

Section 6.2.5. The greater of the minimum soil cover thicknesses for both 

pipes should be used as the minimum soil cover thickness for the 

SRHDPE pipe. 

 
6.4 Proposed SRHDPE Pipe Design Procedure 

Based on the design considerations, the following design procedure is proposed for 

SRHDPE pipes: 

1. Determine the soil envelop width based on Section 6.2.4; 

2. Calculate the soil cover thickness in accordance with Section 6.2.5. The 

designer should calculate the minimum soil cover thicknesses for both the 

metal pipe and the HDPE pipe and then select the greater value as the 

minimum soil cover thickness for the SRHDPE pipe; 

3. Calculate the external load using Equations from 6.15 to 6.19; 

4. Calculate the total deflection of the SRHDPE pipe based on Equation 6.37 

and ensure the total deflection is smaller than 5% pipe diameter; 

5. Calculate the factored load based on Equation 6.9 using a VAF (typically 

1.1) for a short-term condition and Equation 5.3 for a long-term condition; 

6. Use Equations 6.28, 6.29, 6.32, and 6.33 to calculate plastic strains and 

check them against the strain limits;  

7. Use Equations 6.2 to 6.4 to calculate pipe buckling, wall, and thrust 

resistance; 

8. Use Equation 6.5 to check the flexibility of the pipe using the equivalent 

pipe modulus. 
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6.5 SRHDPE Pipe Design Example 

6.5.1 Design Problem  

An SRHDPE pipe with a nominal diameter of 36 inches is proposed as a culvert under a 

two-lane highway with a pavement. The outside diameter of the pipe is 37.25 inches, while the 

inside diameter is 35.35 inches. For the convenience of readers, the pipe cross section in Figure 

4.9 was repeated here as Figure 6.2. The pipe stiffness is 33.4 psi, and the yield strength of the 

steel ribs of the SRHDPE pipe Fy is 33 ksi, while the tensile strength Fu is 45 ksi. The elastic 

modulus of the steel ribs Em is 29,000 ksi. The stub compression capacity of the pipe is 40 

kip/in., and the equivalent elastic modulus of the pipe of a 50-year service is 950 ksi. AASHTO 

H-25 loads are anticipated. Groundwater is below the pipe invert. Backfill material is crushed 

stone. The density of the crushed stone is 110 pcf and its minimum relative compaction is 95% 

based on the standard Proctor test maximum density. The design service life is 50 years. Design 

an SRHDPE pipe for this application. 

 

 
Figure 6.2: Schematic of Cross-Section of the Corrugated SRHDPE Pipe (Unit: Inches, 
Not to Scale) 

 

6.5.2 Solution 

Step 1: Soil Envelop Width Determination 

The design pipe will be buried in an embankment condition and the pipe diameter is 36 

inches. Based on the terms in Section 6.2.4, the minimum width of soil envelop on each side of 

the pipe should be 2 ft. Therefore, the total width of the soil envelop is: 

 
 2 12 2 36 84 .B in= × × + =  Equation 6.38 
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Step 2: Soil Cover Thickness Determination  

For a metal pipe, the soil cover thickness should be the greater of D/4 or 12 inches, while 

for an HDPE pipe, the soil cover thickness is the greater of Di/8 or 24 inches considering the 

paved condition in this design problem.  

 

D/4 = 9 inches, take 12 inches for the metal pipe.  

Di/8 = 35.35/8 = 4.4 inches, take 24 inches for the HDPE pipe. 

Therefore, the soil cover thickness should be 24 inches. 

 

Step 3: External Load Calculation 

Soil Prism Pressure. Since the water table is below the pipe top, using Equation 6.17: 
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Soil cover thickness H = 24 inches, the pipe diameter D0 = 36 inches, and the 

unit weight of the backfill material γs = 110 pcf. 

 

Hydrostatic Pressure. The water table is below the bottom of the pipe, therefore, the 

hydrostatic pressure in the pipe zone is zero. 

Live Load. Equation 6.19 is used to estimate the live load:  
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 Equation 6.40 

AASHTO-H25 truck, P = 16 kip, IM = 33%, m = 1.0 (two-lane highway), L0 = 10 

inches, W0 = 20 inches, H = 2 ft, K1 = 0 for pipe crown, and LLDF = 1.15. 
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Step 4: Deflection Calculation  

Since VAF increases with time and pipe stiffness decreases with time, the deflection at 

50 years controls the design. Based on Equations 5.3 and 5.5, the VAF and EI for a 50-year 

service life are 2.17 and 2.45×105 lb∙in.2/in, respectively. Equation 6.37 is used to calculate the 

total deflection of the pipe cross section at 50 years: 
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  Equation 6.41 

 

Step 5: Factored Load Calculation (using Equation 6.37) 

Based on Equation 6.2, the VAF for a 50-year service life of the SRHDPE pipe buried in 

the crushed stone is 2.17. Equation 6.37 is used to calculate the factored load: 

 

 
( )

( )

2

1.0 1.1 1.5 0.6 2.17 1.8 1.0 1.75 11.9 1.0 24.7

u EV EV E sp WA w LL LL L LP K K VAFP P P C

psi

γη γ γ η γ= + +

= × × × × × + × × × =
 

  Equation 6.42 

 

Step 6: Strain Limit Check 

Effective area (Equation 6.24): 
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Kt = 0.3 for a 50-year service life  

Taking 20.16effA in=  
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 Equation 6.44 
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 Equation 6.45 

 

Compressive strain limit check: 

 
 0.31% 1.0 5% 5%uc T ycε φ ε= ≤ = × =   OK.   Equation 6.46 

 

Buckling strain check: 
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 Equation 6.48 

 
 0.31% 1.0 7.5% 7.5%uc bck bckε φ ε= ≤ = × =  Equation 6.49 

 

Combined strain limit check: 
Since scDε =0 for the SRHDPE pipe, 

 
 0.59 .f A scD inεD = D − =  Equation 6.50 

Where: 

c is half of the pipe thickness which is equal to (37.25 – 35.35) / 2 =0.95 in. 

Based on Table 6.3 and the pipe stiffness 

Df = 4.5 
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 Equation 6.51 
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 0.12% 1.0 4.1% 4.1%f uc f ytε ε f ε− = < = × =   (Tensile strain)   OK. 
  Equation 6.52 

 
 0.43% 0.31% 0.74% 1.5 1.0 1.5 5% 7.5%f uc T ycε ε f ε+ = + = < = × × =  
 (Compressive strain)   OK. Equation 6.53 

 

Step 7: Metal Pipe Calculation 
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 Equation 6.54 

 

 1.0 33 0.48 15.8n yR F A ksiφ= = × × =  Equation 6.55 

 

Based on Figure 6.2, the corrugation radius r = 0.67 inches. k = 0.22 as suggested in 

Equation 6.4. Em = 29, 000 ksi and Fu = 45 ksi. 
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Then the critical buckling stress is: 
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 Equation 6.56 

 

Step 8: Flexibility Calculation 

The flexibility factor limit for a metal pipe is 33 in./kip while that for an HDPE pipe is 95 

in./kip (as shown in Table 6.1). Then the equivalent flexibility should be: 
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= = =  Equation 6.57 

Where: 

rFF  = the required flexibility 

stA  = the area of the steel ribs 

plA  = the area of the HDPE 

tA  = the total area. 
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  Equation 6.58 
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Chapter 7: Conclusions and Recommendations 

7.1 Conclusions 

This research has two phases. The first phase (i.e., Phase I), which is reported in Khatri, 

Han, Corey, et al. (2013), focused on laboratory tests of pipe material and steel-reinforced HDPE 

(SRHDPE) pipes buried in a test box at the University of Kansas. The second phase (i.e., Phase 

II, also this study) focused on two field tests conducted to investigate the SRHDPE pipe 

performance in the AB3 aggregate and the crushed stone during installation and static loading. 

Pipes in the first field test were monitored for 680 days after the field installation. Pipes in the 

second field test were exhumed to examine possible damage. Field measurements include earth 

pressures around pipes, pipe deflections, and strains at the plastic valley, the plastic cover, and 

the steel ribs. Field test data were reduced and analyzed. The following conclusions can be made 

based on this study: 

1. The vertical arching factor (VAF) in both field tests during the installation 

was approximately 1.1, which indicated the SRHDPE pipe behaving like a 

metal pipe. The lateral earth pressure coefficient of the SRHDPE in the AB3 

aggregate or the crushed stone was approximately 0.65. Peaking deflections 

were observed during pipe installation in both tests in a range of 0.25% to 

1.80% pipe diameter. The maximum strain of the pipe occurred on the 

plastic valley in the longitudinal direction at the pipe crown, but it was much 

smaller than the strain limit of 5% suggested by AASHTO (2012). 

2. The vertical pressure on the SRHDPE pipe induced by static loading on 

unpaved roads (i.e., during construction) can be calculated by the Giroud and 

Han (2004) method and the AASHTO (2012) method. When the base course 

had higher stiffness than the backfill above the pipe, the Giroud and Han 

method more accurately estimated the vertical pressure than the AASHTO 

method. The deflection of the SRHDPE pipe during the installation and the 

loading can both be calculated based on the Iowa Formula. 
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3. The earth pressures around the pipes generally increased with time at all 

locations in both field sections. The VAFs were 1.72 and 2.18 in the AB3 

aggregate and the crushed stone, respectively, after 680 days of construction.  

4. The vertical and horizontal deflections of the pipes generally increased with 

time and the maximum deflections were 0.6% and 0.8% pipe diameter in the 

AB3 aggregate and the crushed stone, respectively. 

5. The measured strains generally increased with time at most locations in both 

field sections. The maximum strains which occurred on the plastic valley in 

the longitudinal direction at the pipe crown were 0.3% and 0.35% in the 

AB3 aggregate and the crushed stone, respectively, up to 680 days after pipe 

installation. The maximum strains of the steel ribs in both sections were 

lower than the strain corresponding to the steel yield strength. 

6. Long-term empirical correlations were developed for the vertical soil 

arching factor (VAF) and the pipe stiffness factor (EI) with time based on 

the field data.  

7. No obvious damage was observed after the installation of SRHDPE pipes in 

the field. 

8. The SRHDPE pipe behaved like a metal pipe in the cross section direction 

but like an HDPE pipe in the longitudinal direction. 

 
7.2 Recommendations 

Based on the analysis of the field data in Phase II, in addition to the laboratory results in 

Phase I, a design procedure was proposed to modify the current AASHTO design methods by 

considering the behavior of SRHDPE pipes. A design example was presented to illustrate how 

the proposed design procedure can be used for design.  

The authors would like to make the following recommendations based on this research: 

1. SRHDPE pipes have apparent advantages of higher corrosion resistance than 

metal pipes and stiffer cross sectional response than HDPE pipes. 

Laboratory and field tests in this research demonstrated that SRHDPE pipes 
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performed well; therefore, they can be used to replace metal pipes and 

HDPE pipes for certain applications. 

2. SRHDPE pipes can be designed using the methods for metal and HDPE 

pipes with some special considerations of the unique features of SRHDPE 

pipes. 

3. This research was based on SRHDPE pipes with diameters of 2 and 3 ft. 

Pipe size may affect the behavior and performance of SRHDPE pipes. 

Further research is needed to verify the results and conclusions from this 

research for other pipe sizes. 

4. This research adopted poorly-graded sand and crushed stone in the 

laboratory study and well-graded aggregate and crushed stone in the field 

study. All these materials are granular materials with no or low cohesion. 

Use of any backfill with cohesion that will change the behavior and 

performance of SRHDPE pipes deserves further research. 

5. All pipes investigated in this research were installed above the groundwater 

table. Possible effects of groundwater on the behavior and performance of 

SRHDPE pipes were not investigated in this research and deserve further 

research. 

6. The time effect on the behavior and performance of SRHDPE pipes was 

investigated in the field up to 680 days. Long-term behavior of the pipes 

should be verified with a longer time period. 

7. SRHDPE pipes are made of a composite material (steel ribs and plastic), 

which has anisotropic behavior. However, the current design methods were 

developed based on isotropic pipe materials. A design method considering 

anisotropic pipe materials should be developed to better design SRHDPE 

pipes.  
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