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Abstract 
Transportation planners and traffic engineers are increasingly turning to crash reduction factors to 

evaluate changes in road geometric and design features in order to reduce crashes. Crash reduction 

factors are typically estimated based on segmenting a highway and associating crashes with geometric 

features; this allows statistical methods to be applied to the data. Concurrently there is a stream of 

research that relies on spatial units of analysis to examine crashes; these typically use broad features of 

the road network combined with socio-economic and demographic factors that are associated with 

crashes. In this paper, we examine whether omission of these spatial factors in a link-based geometric 

model results in omitted variable bias. Our results suggest that there is no change in coefficient signs, 

but that there is a reduction in the magnitude of estimates. The sign of spatial variables, however, is 

quite different when combined into a link-based model. We also find substantial variability in coefficient 

estimates, and discuss the implications of these results for the use of crash reduction factors. 
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Introduction 
Crash reduction factors (CRF) for the evaluation of safety interventions are being developed to provide 

guidance to highway engineers and planners. CRFs are developed using statistical models that link a 

variety of geometric design variables to police-reported crashes on road links (AASHTO, 2010). As such, 

the unit of analysis tends to be links or segments of a highway. This allows one to match the highway 

characteristics with the crashes that occur along the specific link in the road network. These models 

focus on the geometric design of the highway including features such as turning radius, road curvature, 

access points, lane widths, and number of lanes, among others (Abdel-Aty and Radwan, 2000; Caliendo 

et al., 2007; Malyshkina and Mannering, 2010; Milton and Mannering, 1998; Shankar et al., 1995). The 

output of these models is a parameter estimate associated with a specific design element which can 

then be used in a cost-benefit analysis to determine whether a design change should be implemented. 

Another strand of research within the highway safety community has examined spatial determinants 

associated with road crashes (e.g., median income levels, population density, and other census-level 

data). These include studies of pedestrians in New Jersey (Noland et al., 2013), child and adult 

pedestrians in London (Graham et al., 2005), motor-vehicle crashes in England (Noland and Quddus, 

2004) and Pennsylvania (Aguero-Valverde and Jovanis, 2006), and a number of studies conducted in 

Florida, including a spatial analysis of counties (Huang et al., 2010), analysis of pedestrians and cyclist 

crashes at a small spatial scale (Siddiqui et al., 2012) and analysis of the most desirable spatial unit to 

use (Abdel-Aty et al., 2013; Lee et al., 2014), suggesting that traffic-analysis zones (TAZ) while 

convenient to use may not provide the best model fit. 

The issue of spatial autocorrelation is an issue that should be accounted for when modeling these 

effects (Aguero-Valverde and Jovanis, 2006). Conditional autoregressive models that control for spatial 

autocorrelation are used to derive crash estimates in (Quddus, 2008) and (Noland et al., 2013), the latter 

for pedestrian crashes. These studies will typically use various measures of the road network, such as 

network density or intersection density, but often will not include details such as lane width or number 

of lanes, (Noland, 2003; Noland and Oh, 2004) being two notable exceptions. These models will tend to 

lack the detailed context of the road geometry that a link-based model can provide. 

One critique of CRF analysis and the link-based models on which these are based, is that the coefficient 

estimates are not transferable (Hauer et al., 2012) and often are highly variable (Elvik, 2015). The latter 

may be due to variation in the traffic environment in which they are measured. Put another way, there 

may be factors that affect safety outcomes that are not included in link-based models. The omission of 

variables from a statistical model can potentially bias results. This means that one may find statistically 

significant effects from factors that are not associated with the measured crash outcome, or non-

significant effects for factors that are associated with crashes. One source of omission is the spatial 

context where the crashes occur. Combining the spatial context with a link-based analysis may shed light 

on whether this is an issue or not. (Mitra and Washington, 2012) identified issues associated with 

omitted variable bias when intersection-based models do not control for spatial attributes that may also 

affect crashes. The objective of this paper is to explore these issues using a link-based analysis that is 
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combined with a spatial analysis using data from New Jersey. This is done to examine whether there is 

omitted variable bias. 

In the following sections, we first review some of the results from link-based studies, primarily to 

highlight the variation in results, recognizing that a difficulty with comparing results is the multitude of 

variables modeling approaches used. We then discuss our own data and the challenges of combining the 

link-based and spatial approaches. This is followed by our analysis, which includes a base spatial model 

and models estimated for five highways in New Jersey as well as a large database of local roads that 

covers the entire state. Results and discussion follows with implications for crash analysis and the use of 

crash reduction factors. 

Link-based studies 
The Poisson and Negative Binomial models have emerged as the standard in crash analysis as it best 

matches the distributional characteristics of crash data. Though the Poisson model is often the starting 

point due to its suitability for analyzing count data, the Negative Binomial model is often chosen 

because of the Poisson model’s assumption of equi-dispersion, i.e., the mean and variance are equal. 

Real data usually violates this assumption, including most crash datasets.  

The Negative Binomial model accounts for over-dispersion and thus provides a useful method for 

estimating crash models. Most of the studies we reviewed were estimated using the Negative Binomial 

model, however a handful employed other models, including (Chiou and Fu, 2013) who used a 

multinomial-generalized Poisson model with error components, and (Garnowski and Manner, 2011) who 

used a random parameter negative binomial model in addition to a fixed parameter model. Our review 

focuses on the variables included in each model and the results of the estimates, and we make no 

judgement about the appropriateness of various modeling techniques. Our review is by no means 

comprehensive, but we sought out studies that are repeatedly cited in the literature (except some that 

are more recent); these are listed in Table 1 with their corresponding Google Scholar citation rates.  

Table 1. Google Scholar citations for papers reviewed. 

 
  

 

Google 
Scholar 

citations 
(Sept 25, 

2015) 

Citations 
per year 

(Shankar et al., 
1995) 

490 24.5 

(Milton and 
Mannering, 1998) 

285 16.8 

(Council and 
Stewart, 1999) 

46 2.9 

(Abdel-Aty and 
Radwan, 2000) 

401 26.7 

(Caliendo et al., 
2007) 

172 21.5 

(Malyshkina and 
Mannering, 2010) 

49 9.8 
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(Labi, 2011) 7 1.8 

(Zeng and Huang, 
2014) 

4 4.0 

(Bauer and 
Harwood, 2014) 

2 2.0 

 

In reviewing link-based studies, we found a wide variety of different variables included in the models 

presented. Different measures were sometimes used for the same variables, complicating efforts to 

compare coefficient values. Our comparison focuses on results for the following geometric design 

elements included in some of the studies: number of traffic lanes, lane width, average annual daily 

traffic (AADT), horizontal curvature, shoulder width, and median width. These are variables that we use 

in our analysis based on the availability of data in New Jersey. We examine each of the geometric 

variables in turn. 

Horizontal curvature 
One of the earlier studies is (Shankar et al., 1995). In this study, data for an interstate highway in 

Washington state was used and the focus was on horizontal curvature for different design speeds, while 

controlling for weather conditions. Lane and shoulder widths were virtually constant over the stretch of 

road analyzed given that interstate highways follow standard design guidelines.  Estimates ranged from 

0.046 (lower design speed) to 0.117 (higher design speed) measured using the number of horizontal 

curves at the two design speeds based on segmenting the interstate into ten sections. Further work in 

Washington state based on data for principal arterials measured curvature as the horizontal curve 

radius; thus a negative coefficient implies increased risk (Milton and Mannering, 1998); coefficient 

values for two different data sets varied between -0.0021 and -0.000221, and both were statistically 

significant. 

An analysis of an arterial roadway in Florida also controlled for horizontal curvature, but used a different 

measure of “degrees/100 m arc” which is not precisely defined (Abdel-Aty and Radwan, 2000). Their 

coefficient estimate is positive and significant with a value of 0.124, which cannot be directly compared 

to the results of (Shankar et al., 1995). A study of a 4-lane motorway in Italy used a measure of km-1, and 

found positive coefficients, for all crashes, of about 0.26 (Caliendo et al., 2007). Using data from Indiana, 

(Malyshkina and Mannering, 2010) used a measure of 18,000/(𝜋 𝑥 𝑟), with r (radius) defined in feet. The 

coefficient estimate is -0.0562, again difficult to compare with other studies except for the directional 

effect being the same. 

Another study using data from Indiana focuses on rural two-lane roads (Labi, 2011). Horizontal 

curvature is based on “average horizontal curve radius”, coefficients were estimated for different crash 

severity levels and for different functional road classes of rural two-lane roads; for fatal plus injury 

crashes, this varied from .0262 to 0.0580. 

Returning to data from Washington state, (Bauer and Harwood, 2014) define horizontal curvature as 

1/ln(2 x 5730/r). The coefficient estimated is statistically significant at a 95% level and is 0.19. Again, it is 

not clear how this can be compared with other studies. A variable was also included in the estimated 

model that assessed the interaction between horizontal curves and vertical grades, which was also 
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significant. This report, conducted for the US Federal Highway Administration, is of note partly because 

it was conducted to develop crash modification factors for the Highway Safety Manual and presents 

precise figures for both fatal/injury crashes and property-damage only crashes (this latter is surprising 

given the incomplete collection of data that is common in property-damage crash reporting). 

Curvier roads are assumed to increase the probability of crashes, all else equal, and these results largely 

support that notion. However, curvier roads may also lead to reduced speeds if they are perceived as 

riskier (Noland, 2013). Only one study notes that the curviest stretches of roads seem to have fewer 

crashes and that curves tend to be riskiest following a long tangent section, i.e., a straight road leading 

into a curve (Milton and Mannering, 1998). While all these studies controlled for different variables 

(some of which we discuss below), none included spatial variables that might provide a better context 

for the driving population and the local area in which the crash occurred. 

Shoulder width 
Another commonly included geometric design variable is the shoulder width, larger shoulders are 

assumed to decrease the crash rate. This is presumably because a larger right-hand shoulder provides 

greater space for a driver to recover if a loss of control occurs. Some of the models we reviewed include 

parameters for shoulder width. Measurement is quite straightforward, assuming the segments 

correspond to constant shoulder widths.  

Variation in the results is large. One study that analyzed two-lane rural roads in four different states had 

coefficient estimates ranging from -0.1230 to -0.4541 (Council and Stewart, 1999). Two of the models 

included surface width as an additional control variable; this might be correlated with shoulder width, 

but no mention is made of this possible confounding result. (Abdel-Aty and Radwan, 2000) in their 

model of Florida data estimates a coefficient of -0.12, similar to the low value in (Council and Stewart, 

1999). The models estimated by (Labi, 2011) with Indiana data have estimates ranging from -0.0321 to -

0.0943 for fatal and injury crashes, substantially smaller than the other estimates. Also using data from 

Indiana, (Malyshkina and Mannering, 2010) include a variable for interior shoulder widths and find a 

larger coefficient value of -1.25. All these studies used different data, models, and independent 

variables, thus it is not surprising to find such a wide variation in parameter estimates. 

Lane width and number of lanes 
Increasing the width of lanes and the number of lanes on a road is typically assumed to increase safety. 

Yet, theory and empirical work, much of it from spatial analysis of road safety, suggests the opposite 

(Dumbaugh and Rae, 2009; Noland, 2003; Noland, 2013). Three studies find that wider lanes reduce 

crashes with coefficient values of -0.42 (Council and Stewart, 1999), -0.364 (Abdel-Aty and Radwan, 

2000), and -.09 (Labi, 2011). While these are all different road types, there is again substantial variation 

in coefficient estimates. An analysis conducted in Hillsborough County, Florida, included a variable for 

the number of lanes (Zeng and Huang, 2014) and found that more lanes increase the crash risk; 

coefficient values range from 0.137 to 0.167 depending on estimation method. 
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Traffic levels 
Almost all models control for the level of traffic on each link, based on estimated annual average daily 

traffic (AADT) counts.  Log transformations of AADT are often included in the model. At a fundamental 

level one would expect more traffic to lead to more crashes, although the relationship may vary in how 

it affects relative severity. Highly congested roads may suffer more crashes, but less severe crashes since 

vehicles are moving at slower speeds (Zhou and Sisiopiku, 1997). Estimated coefficient values range 

from 0.24 (Caliendo et al., 2007) to 1.18 (Bauer and Harwood, 2014), again showing substantial variation 

between estimates. 

Summary of link-based analysis review 
This review serves to show the variation in crash reduction factors that are estimated in the literature. 

For horizontal curvature this is partly due to different ways of measuring curvature, but for other 

simpler geometric design features this is due to the variation in the models. Our hypothesis is that much 

of this is due to the omission of variables that also affect crashes. While it may be naïve to think that one 

can estimate fully transferable crash reduction factors, the use of fixed deterministic values reported in 

the Highway Safety Manual, is equally naïve. In what follows we discuss our analysis of New Jersey 

safety data, including a spatial model, a link-based model, and then a combination of both. We also 

discuss some of the data problems we encountered that preclude a one-to-one comparison between all 

the models, but consider the results in that context. 

Data 
Crash data for New Jersey is available via Plan4Safety, maintained by the Center for Advanced 

Infrastructure and Transportation (CAIT) at Rutgers University (http://cait.rutgers.edu/tsrc/plan4safety). 

Most of the crash data is geo-coded and we downloaded data for all crashes from 2008 to 2012. This 

included information on the severity level of injuries, specifically fatalities, incapacitating injuries, and 

more minor injuries. In the analysis that follows we analyze three categories of crashes: total crashes, 

crashes with fatalities and incapacitating injuries, crashes with fatalities and all injuries. 

For this data there were about 980,000 geocoded crash occurrences that were linked to road segments. 

The Spatial Join ArcGIS geo-process was used to assign crashes to road segments by X and Y coordinates. 

The result was that each segment in the NJ road network was assigned a value for number of crash 

occurrences and for the varying crash severity types. Approximately 46,206 road segments were 

assigned crash occurrences, out of a total of 104,811 segments in the NJDOT data.  

Detailed information on the New Jersey road network was obtained from the New Jersey Department of 

Transportation (NJDOT) (New Jersey Department of Transportation, 2011; New Jersey Department of 

Transportation, 2013). This included the composition of the road network, including functional class, 

starting and ending mileposts for all road segments, AADT for selected road segments, and geometric 

design variables (segment length, lane counts, road width, median width and shoulder width). 

Spatial data includes demographic data such as population density, employment density by employment 

location, median income, land-use, road density, and household vehicle ownership. Population data was 

http://cait.rutgers.edu/tsrc/plan4safety
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based on 2010 Census block group data, median income from 5-year (2007-2011) average American 

Community Survey (ACS) data, and for employment from the Census Longitudinal Employer-Household 

Dynamics (LEHD) database which was 2011 data. Land use data was obtained from the New Jersey 

Department of Environmental Protection (NJDEP) Land Use Land Cover data.  

Our initial goal was to estimate a link-based model covering the entire state, as this could then be easily 

matched with a spatial model that covers the entire state. In processing the data, we linked the spatial 

data (based on block groups) to the road segments. In other words, the road segments within a block 

group would have the socio-economic variables of that block group attached as data attributes. This 

allows us to estimate three models: a link-based model with crash counts based on road segments, a 

spatial model with crash counts based on block groups, and a link-based model that includes the spatial 

attributes associated with the block group in which the road segment is located. 

One constraint was the lack of AADT data on most road segments. While there are 104,811 road 

segments in the NJDOT data, linear estimates of AADT were only available for 1712 segments based on 

5-year averages. Of these 1712 segments, only about one-tenth had exact segment matches with the 

segments in the road network shape file, and as such only a small portion of the entire network could be 

assigned AADT values using this linear AADT data. As an alternative, AADT data using 2010-2013 traffic 

counts were obtained from NJDOT, that could be linked using the latitudes and longitudes of these 

traffic count points. In total, 8336 of these points were processed into AADT values for 3863 road 

segments.  

Given some of these data constraints, we estimated two different link-based models. In one we used all 

the road segments in the NJDOT shape file, in order to cover the entire state, to the best of our ability. 

For this analysis, the segmentation of the roads was based on how they were segmented in the NJDOT 

shape file (more details on the data are discussed below). The other link-based model was based on five 

highways that we selected (described below). Two-mile segments were created leading to a total of 587 

road links, among these five highways. For both of these road link datasets, spatial variables were 

assigned based on the spatial attributes of block groups within 0.25 miles of each road link. 

Segment length data was used to estimate VMT for each link (i.e., length x AADT). For the five 
model, we had AADT data for each road link. For the model covering the entire state AADT 
estimated based on a negative binomial regression using 680 of the 3863 data points (see 
model is shown in  

Table 2. Predictor variables included geometric features and some socio-economic variables associated 

with the linked block group.  Predicted AADT results were applied to those segments without data. This 

was done for only segments in functional class 7 (local roads) as the bulk of the data for geometric 

variables used in the regression were for segments in this class and other segments were largely lacking 

such data. 
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Table 2. Negative binomial regression of AADT 

  
Dependent variable = AADT coef. t-value 
Lane Count (ln) -0.399 -0.38 
Pavement Width (ln) 0.456 1.34 
Number of 0 Vehicle Households (ln) 0.219 2.13 
Median Income (ln) 0.520 2.34 
Block Group Population Density (ln) 172.20 3.30 
Employment Density (ln) 169.80 2.04 
Sinuosity (ln) 1.926 2.43 
Constant -1.813 -0.54 
Log Transformed Overdispersion 0.368 7.48 

   
Observations 680  
Log likelihood -5750  
Ll Constant Only -5862  
LR Chi2 89.38  
Pseudo_R2 0.019   

 

We calculate horizontal curvature slightly differently than other studies, as the NJDOT data did not have 

turning radius. We use sinuosity, which is a measure of the deviation of a line from its shortest path and 

is the actual length of a segment, divided by the shortest (straight line) distance between its start and 

end points. This provides a differentiation between straight versus more sinuous segments, measured 

on a scale of 0 to 1, 0 indicating very sinuous (curvy) segments and 1 indicating perfectly straight 

segments. Sinuosity was measured using an ArcMap geo-processing tool (ArcGIS, 2015). 

The remaining geometric design attributes include lane count, roadway width, median width, and 

shoulder width. These were obtained from NJDOT as tables, each with between 95,000 and 110,000 

segments, for which Standard Route Identifiers (SRI) as well as the starting and ending mile posts were 

indicated to denote the various segments of each roadway. These were matched both with SRI and the 

starting and ending mile posts leading to 87,518 initial segments with lane count, pavement width, 

median width, median type, and shoulder width data. These successful joins did not include many of the 

higher functional class roads (namely class 1, 2 and 3) as we could not determine exact matches. We 

matched some of these segments using SRI, but not the same starting and ending mileposts. This 

required us to average some of the geometric design features across the mismatched segments. This 

worked well for the higher functional class roads due to the consistency of their geometric features 

across segments of roadways in these classes. This interpolation process provided us with geometric 

data on 87,704 segments.  

Our spatial variables include total population, population density, employment density by work 

destination, median income, percent below poverty, percent of residential, commercial and industrial 

land uses, vehicle ownership by household and road density by functional class. There are 6320 block 

groups in New Jersey and data was processed at that level.  

All data sources are listed in Table 3. 
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Table 3. Data sources used 

CRASH DATA http://cait.rutgers.edu/tsrc/plan4safety 
ROAD DATA  
NJ Road Network Shapefile http://www.state.nj.us/transportation/gis/data.shtm  

AADT http://www.state.nj.us/transportation/refdata/roadway/traffic.shtm 
ROAD GEOMETRY DATA  
Lane count, pavement width, 
median width, shoulder width (New Jersey Department of Transportation, 2011) 
Sinuosity [Computation] Calculate Sinuosity geoprocessing tool 
SPATIAL DATA  
Block Group shapefile https://www.census.gov/geo/maps-data/data/tiger-data.html 

Geographic Data (block group area) https://www.census.gov/geo/maps-data/data/tiger-data.html 

Demographic data (age, population, 
income, poverty status, vehicle 
ownership) 

https://www.census.gov/geo/maps-data/data/tiger-data.html 
http://www.census.gov/acs/www/data/data-tables-and-tools/index.php 

Land Use Data (Residential, 
Commercial, Industrial) http://www.nj.gov/dep/gis/lulc07cshp.html 

Employment by employment 
destination http://lehd.ces.census.gov/data/ 

Road Density [Computation] http://www.state.nj.us/transportation/gis/data.shtm  

 https://www.census.gov/geo/maps-data/data/tiger-data.html 

 

Methods 
As crash data is based on counts of crashes, whether for a spatial unit or a road link, count regression 

models are used to estimate models. Common practice is to use negative binomial regression models 

that account for overdispersion in the data. This is a generalization of the Poisson regression that 

assumes equidispersion, that is that the mean of the estimate is equal to the standard deviation, a 

condition that typically fails with empirical data. These models are estimated using maximum likelihood 

estimation. 

Spatial data tends to also be spatially auto-correlated. Put simply, this means that the conditions in 

neighboring block groups likely also have an effect on the incidence of crashes in a given block group. 

The same can be said for road links; that is neighboring links may be spatially correlated with each other. 

To account for this, we also estimate negative binomial conditional autoregressive models (Levine et al., 

2010) using Crimestat. These models are estimated using Markov Chain Monte Carlo estimation which is 

a Bayesian estimation technique.  

The interpretation of Bayesian estimates differs from that of frequentist approaches (i.e., maximum 

likelihood estimation). In a frequentist estimate, the confidence interval represents the sampling error; 

that is, a 95% confidence interval implies that if a population is sampled 95 out of 100 times, then the 

estimates will fall within that interval. A Bayesian analysis, on the other hand, results in a credible 

interval. A 95% credible interval means that there is a 95% probability that the correct estimate is within 

http://cait.rutgers.edu/tsrc/plan4safety
http://www.state.nj.us/transportation/gis/data.shtm
http://www.state.nj.us/transportation/refdata/roadway/traffic.shtm
https://www.census.gov/geo/maps-data/data/tiger-data.html
https://www.census.gov/geo/maps-data/data/tiger-data.html
https://www.census.gov/geo/maps-data/data/tiger-data.html
http://www.census.gov/acs/www/data/data-tables-and-tools/index.php
http://www.nj.gov/dep/gis/lulc07cshp.html
http://lehd.ces.census.gov/data/
http://www.state.nj.us/transportation/gis/data.shtm
https://www.census.gov/geo/maps-data/data/tiger-data.html
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the specified range. This provides a powerful method for showing the range of coefficient estimates 

rather than simply a fixed coefficient estimate. 

An additional issue with our Bayesian estimates is that Crimestat uses a block sampling method with 

large datasets (Levine et al., 2013). This is done to increase the speed of the estimates and does not 

affect their efficiency. The mean standard deviations, however, have substantial variation, thus the 

standard errors are inflated. Crimestat calculates an adjusted standard error to correct for this and we 

report these (for our link-based model covering the entire state). Of consequence, in some cases our 

95% credible intervals may span zero; that is the estimate with an unadjusted standard error was not 

significant at the 95% level, but the adjustment implies that it is significant.1 

The MCMC method is a stochastic process. What that means is that the estimation relies on a random 

process to converge to a stable estimate. For most of our estimates we ran 100,000 iterations with a 

burn-in sample of 20,000. In some cases this was increased to 300,000 iterations with a 40,000 burn-in 

sample. To determine whether the estimates reached convergence we examined the Gelman-Rubin (G-

R) statistic.  

For the full geocoded database, there were 981,483 total crashes over the 5 years of our data; 2318 of 

these were fatal crashes and another 8303 were incapacitating injury crashes. A total of 255,086 were 

less severe injury crashes (not counting the fatal and incapacitating injuries). We estimate three sets of 

models, each with various dependent variables (total crashes, total fatal and incapacitating injury 

crashes, total fatal and injury crashes). 

The first model we estimate is a spatial model for the entire state. One benefit of a spatial model is that 

it includes the crash information across every block group in the state (of which there are 6320). While a 

large selection of socio-economic and demographic factors can be controlled for, the one shortcoming is 

the lack of VMT data at the block-group level. However, total population tends to be highly correlated 

with VMT and can be used in its place as an exposure variable (Noland, 2003). However, we note this 

one limitation of spatial analysis. Also, we used only those block groups that had roads passing through. 

This was important in order to include the road density variables. We estimated this model using a total 

of 6293 block groups.   

The second set of models that are estimated are two different link-based models. We originally intended 

to include every road in the state, but this proved infeasible due to data limitations with some higher 

functional class roads. Since roads in functional class 7 (local roads) had the most robust data, we opted 

to use them for one of our link based models. Of a total of 94,109 links, 86,394 had data for the 

variables we wanted to model. For these links there are a total of 224,900 crashes, 51,450 crashes with 

fatalities or any injuries, and 3377 crashes with fatalities or incapacitating injuries.  

                                                           
1 Crimestat uses a default of 6000 observations for block sampling. In our models using just spatial variables our 
number of observations is 6293; in this case we overrode the default and ran the models without block sampling 
(these took about one day to run). In our model with all the local road links our number of observations is 86,394 
and thus we ran these with block sampling. 
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The final model is a more traditional link-based analysis based on five roads within functional classes 1 

through 4 in New Jersey. The five roads are the Garden State Parkway (FC 4), I-80 (FC 1), I-95 (FC 4), US-

46 (FC 2), and US-202 (FC 2) and these are displayed in Figure 1. There are a total of 587 links across all 

five roads (with a length of 471.4 miles), with 97,884 total crashes, 22,304 crashes with fatalities or 

injuries, and 591 crashes with fatalities or incapacitating injuries.   

Summary statistics for each set of models are listed in Table 4.   
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Figure 1. Highways used for link-based analysis 
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Table 4. Summary statistics 

Spatial models based on block groups N Mean 
Std. 
Dev. Min Max 

Independent Variables           

Population (ln) 6293 7.14 0.51 0.00 9.07 
Population Density (ln, /sq meter) 6293 0.004 0.005 0.000 0.062 
Employment Density (ln) 6293 0.001 0.003 0.000 0.082 
Median Income (ln) 6293 11.11 0.84 0.00 12.43 
Percent Residential (ln) 6293 3.79 0.77 0.00 4.62 
Percent Commercial (ln) 6293 1.87 1.10 0.00 4.60 
Percent Industrial (ln) 6293 0.52 0.96 0.00 4.25 
Percent Principal Arterial (ln) 6293 0.01 0.02 0.00 0.39 
Percent Minor Collector (ln) 6293 0.03 0.04 0.00 0.45 
Percent Local Road (ln) 6293 0.22 0.13 0.00 0.67 

Dependent Variables      

Crashes 6293 155.96 199.52 0.00 3570.00 
Crashes with Fatalities or Injuries 6293 40.90 51.33 0.00 853.00 
Crashes with Fatalities or Incapacitating Injuries 6293 1.69 2.31 0.00 26.00 

Link-based model for five highways      
Independent Variables           

Sinuosity (ln) 587 0.68 0.03 0.30 0.69 
Lane Count (ln) 587 1.29 0.22 0.69 1.95 
Shoulder Width (ln) 587 2.18 0.70 0.00 3.04 
Lane Width (ln) 587 2.25 0.25 0.00 3.26 
Vehicle Miles Traveled (ln) 587 10.48 0.99 8.10 12.36 
Population Density (ln, /sq meter) 587 0.001 0.001 0.000 0.010 
Employment Density (ln) 587 0.001 0.001 0.000 0.005 
Median Income (ln) 587 11.28 0.75 0.00 12.14 

Dependent Variables      

Crashes 587 166.75 162.79 0.00 1477.00 
Crashes with Fatalities or Injuries 587 38.00 34.61 0.00 236.00 
Crashes with Fatalities or Incapacitating Injuries 587 1.01 1.17 0.00 7.00 

Link-based model for all local roads      
Independent Variables            

Sinuosity (ln) 86394 0.64 0.11 0.00 0.69 
Lane Count (ln) 86394 1.09 0.05 0.69 1.95 
Lane Width (ln) 86394 2.65 0.18 0.00 3.89 
Vehicle Miles Traveled (ln) 86394 5.72 1.01 0.08 12.75 
Population Density (ln, /sq meter) 86394 0.002 0.002 0.000 0.024 
Employment Density (ln) 86394 0.001 0.001 0.000 0.029 
Median Income (ln) 86394 11.35 0.42 0.00 12.43 

Dependent Variables      

Crashes 86394 2.60 10.77 0.00 665.00 
Crashes with Fatalities or Injuries 86394 0.60 3.19 0.00 210.00 
Crashes with Fatalities or Incapacitating Injuries 86394 0.04 0.25 0.00 12.00 
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Results 
Results are presented for models with spatial variables, link-based variables, and then with our effort to 

combine these. Both maximum likelihood and MCMC results are presented and discussed. Our focus is 

on the variation in coefficient estimates and the implications for developing crash reduction factors and 

policy. We show the problems with omitting key variables in link-based models. 

Models with just spatial variables 
The first set of models include only the spatial variables and are based on Census block groups. We 

estimated these as negative binomial regressions with both Maximum Likelihood Estimation (MLE) and 

as Bayesian MCMC models controlling for spatial autocorrelation. Dependent variables included total 

crashes, crashes with fatal and incapacitating injuries, and crashes with fatal and all reported injuries.  

Results are shown in Table 5 and Table 6 (models are labeled consecutively). Each model is based on 

6,293 block groups. For Model 1, all explanatory variables show statistically significant effects at the 5% 

alpha level, except employment density, and percent local roads. For Model 3, all explanatory variables 

show significant effects except median income and percent industrial land use. For Model 2, all the 

variables except percent local roads have significant effects. The direction of effects were consistent for 

all three models with population, percent commercial and industrial land uses, and percent principal 

arterial, minor collector and local roads being positively associated with the respective dependent 

variable. Population density, employment density, median income, and percent residential land use had 

negative effects.  

As these models do not control for spatial correlation, results for our conditional autoregressive model 

are shown in Table 6. As these are Bayesian estimates they have the added benefit of calculating 

credible intervals, as discussed above. In most of the estimates we see that the 95% credible interval 

includes the MLE estimated coefficient. But these intervals are quite large.  For example, looking at how 

the percent of principal arterials in a block group is associated with total crashes, the estimate has a 95% 

probability of falling between 5.559 and 7.296.  While positive and implying that more principal arterials 

can cause more crashes, if used as a crash reduction factor or for cost/benefit analysis, the mean 

estimate (6.422) could lead to improper conclusions. Another example is the estimated coefficient for 

local roads which is statistically significant only in model 6. However, the credible interval for this 

coefficient (in models 4 and 5), ranges between a negative and a positive value. Thus, while the mean 

coefficient value is positive, there is a probability that it may actually be negative, which clearly would 

imply some difficulty in using this estimate for policy. The same holds true for the employment density 

variable in model 4. 
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Table 5. Negative binomial maximum likelihood models with just spatial variables 

Dependent variables Total crashes (model 1) 
Total fatal and injury  

crashes (model 3) 

Total fatal and  
incapacitating injury 

crashes 
 (model 2) 

  coef. t-value coef. t-value coef. t-value 

Population (ln) 0.546 15.12 0.616 17.35 0.693 10.04 
Population Density (ln) -40.210 -12.62 -50.010 -14.46 -58.130 -10.16 
Employment Density (ln) -4.339 -1.39 -9.690 -3.03 -18.390 -3.00 
Median Income (ln) -0.100 -2.81 -0.142 -3.83 -0.081 -1.21 
% Residential (ln) -0.534 -20.23 -0.548 -21.08 -0.609 -18.74 
% Commercial (ln) 0.271 21.85 0.270 20.61 0.157 8.53 
% Industrial (ln) 0.071 5.56 0.062 5.03 0.016 1.08 
% Principal Arterial (ln) 6.400 12.67 6.702 13.46 3.777 7.97 
% Minor Collector (ln) 2.488 9.61 2.788 10.14 1.821 4.65 
% Local Roads (ln) 0.041 0.24 0.213 1.23 0.875 3.47 
Constant 3.531 6.43 2.206 3.99 -1.758 -1.56 
ln overdispersion -0.527 -23.11 -0.454 -20.92 -0.565 -10.11 

       
Observations 6293  6293  6293  
Log likelihood -36341  -28068  -10327  
Ll Constant Only -38083  -29723  -11163  
LR Chi2 3067  2926  1435  
Pseudo_R2 0.0458  0.0557  0.0749  
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Table 6. Negative binomial conditional autoregressive Bayesian models with just spatial variables 

  
Total crashes (model 4) 

 
Total fatal and injury crashes (model 5) 

 
Total fatal and incapacitating injury crashes 

(model 6) 
Variables mean t-value 2.5th  97.5th  mean t-value 2.5th  97.5th  mean t-value 2.5th  97.5th  

             
Population (ln) 0.542 27.40 0.505 0.581 0.617 29.44 0.576 0.658 -1.784 -6.73 -2.300 -1.269 
Population Density (ln) -40.128 -14.76 -45.444 -34.771 -50.175 -16.58 -56.060 -44.179 0.690 23.94 0.635 0.747 
Employment Density (ln) -4.079 -1.14 -10.897 3.109 -9.363 -2.56 -16.356 -1.997 -57.977 -11.66 -67.917 -48.405 
Median Income (ln) -0.095 -6.76 -0.124 -0.068 -0.144 -9.05 -0.175 -0.113 -18.354 -3.23 -29.608 -7.315 
% Residential (ln) -0.531 -24.15 -0.575 -0.489 -0.544 -23.35 -0.590 -0.498 -0.078 -3.60 -0.119 -0.035 
% Commercial (ln) 0.272 26.10 0.251 0.292 0.270 24.29 0.248 0.292 -0.605 -21.25 -0.659 -0.548 
% Industrial (ln) 0.071 6.17 0.049 0.094 0.063 5.24 0.040 0.087 0.158 9.72 0.126 0.190 
% Principal Arterial (ln) 6.422 14.44 5.559 7.296 6.716 14.39 5.810 7.648 0.017 1.11 -0.013 0.047 
% Minor Collector (ln) 2.553 9.67 2.034 3.068 2.814 9.99 2.263 3.371 3.782 6.88 2.711 4.864 
% Local Roads (ln) 0.091 0.67 -0.172 0.361 0.222 1.55 -0.059 0.501 1.807 4.48 1.022 2.598 
Intercept: 3.479 28.45 3.227 3.721 2.195 16.39 1.936 2.462 -1.784 -6.73 -2.300 -1.269 
Spatial correlation (phi) -0.004 -1.79 -0.009 0.000 -0.002 -1.00 -0.006 0.001 0.000 0.14 -0.001 0.002 

             
N 6293    6293    6293    
Df 6280    6280    6280    
Iterations 100000    100000    100000    
Burn-in 20000    20000    20000    
LL -36344.8    -28068.3    -10326.7    
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Link-based models for five highways 
We first estimate a link-based model for the five highways previously mentioned. This is the method 

that is typically used in the development of crash reduction factors. We estimate using both MLE and 

MCMC. Next we add in various spatial variables that have been linked to each road segment. These 

models are shown in Table 7, Table 8, and Table 9. 

Examining the results in Table 7 for models 7, 8, and 9, without the spatial variables, we see that 

coefficient estimates are statistically significant at the 95% confidence level, except for two variables in 

the fatal and incapacitating injury crash model (sinuosity and lane width). Results for total crashes and 

total fatal and injury crashes are broadly similar in the link-based models without spatial variables 

(model 7 and 8). In general, these results suggest that straighter roads increase crashes (sinuosity ranges 

from 0, very curvy, to 1, a straight road segment), more lanes increases crashes, wider shoulders reduce 

crashes, wider lane widths reduce crashes, and increased VMT is associated with more crashes. Other 

than the result on sinuosity, these results are in general agreement with much of the traffic safety 

literature. 

We then add our spatial variables, which we know are generally associated with crashes as previously 

shown in Table 5 and Table 6. Based on these prior results we expect increased population and 

employment density to be associated with fewer crashes, and higher median incomes to also be 

associated with fewer crashes (with some minor variation between each model). We see that these 

results are quite different when linked to our road links. Population density now has a positive 

association with more crashes, as does employment density in model 10 and 11. Employment density is 

negative in model 12 for fatal and injury crashes. Median income is no longer statistically significant. 

The effect on the road geometry variables of adding spatial controls is also notable, but less so. All the 

variables maintain the same directional effect, but almost all the coefficient values have a lower value. 

The implication is that geometric variables have less effect on crashes when spatial controls are added 

to the model. While this is indicative of omitted variable bias, the good news is that directional effects 

are maintained. Model fit, as measured by pseudo R2 is higher in the models that include spatial 

controls. 

Turning next to our Bayesian models for the five highway road link data (Table 8 and Table 9), we see a 

broadly similar pattern of results. Directional effects are similar for the road geometry variables. The 

spatial variables introduced into the model are also similar in direction to results shown in the MLE 

model (Table 7). The introduction of the spatial variables reduces the magnitude of the road geometry 

coefficients, but not by that much and in some cases the coefficient value is a bit higher. Again, while 

there may be some omitted variable bias, it is minor and does not distort the directional effects.  

The credible intervals, however, have quite large ranges. For example, in model 17 (Table 9) we can see 

that the interval for sinuosity ranges from -0.100 up to -3.819, which obviously would have an impact on 

any consideration of how curvature affects safety. In the same model we can also see that the lane 

width coefficient ranges from -0.085 to -0.640, so increasing lane widths may have either virtually no 

safety effect or have a relatively substantive effect. It is possible that assuming a constant effect without 
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considering that there is a non-linear process, i.e., going from 9 ft lanes to 10 ft lanes may improve 

safety, while moving from 11 ft to 12 ft lanes may not. If anything, this only highlights the difficulty of 

model estimation to estimate the effect of geometric changes. 
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Table 7. Link-based negative binomial maximum likelihood models for five highways 

  
Total crashes (model 

7) 
 

Total fatal and injury 
crashes (model 8) 

 

Total fatal and 
incapacitating injury 

crashes (model 9) 

Total crashes (model 
10) 

 

Total fatal and injury 
crashes (model 11) 

 

Total fatal and 
incapacitating injury 
crashes (model 12) 

Variables coef. t-value coef. t-value coef. t-value coef. t-value coef. t-value coef. t-value 

Sinuosity (ln) -3.804 -2.77 -3.286 -2.55 -1.906 -1.21 -2.279 -1.52 -2.121 -1.54 -1.853 -1.84 
Lane Count (ln) 0.586 3.99 0.678 4.64 0.601 2.55 0.415 2.80 0.464 3.20 0.574 2.33 
Shoulder Width (ln) -0.440 -6.98 -0.427 -6.86 -0.199 -2.04 -0.287 -4.55 -0.294 -4.62 -0.203 -1.86 
Lane Width (ln) -0.491 -2.99 -0.504 -3.00 -0.375 -1.45 -0.343 -1.91 -0.375 -2.06 -0.430 -1.71 
Vehicle Miles Traveled (ln) 0.797 20.28 0.720 18.05 0.376 5.52 0.631 12.52 0.565 11.65 0.369 4.38 
Population Density (ln)       122.600 5.22 153.800 7.09 94.470 2.73 
Employment Density (ln)       279.000 4.61 181.000 3.04 -174.500 -1.92 
Median Income (ln)       -0.030 -1.12 -0.032 -1.28 0.011 0.42 
Constant 0.429 0.43 -0.685 -0.72 -2.207 -1.79 0.718 0.65 -0.076 -0.07 -2.139 -2.10 
Log Overdispersion -0.947 -16.61 -0.998 -15.84 -1.652 -4.42 -1.130 -13.93 -1.210 -13.22 -1.778 -4.29 
Observations 587  587  587  587  587  587  
Log likelihood -3348  -2507  -767.5  -3291  -2451  -762.9  
Ll Constant Only -3582  -2715  -801.1  -3582  -2715  -801.1  
LR Chi2 468.6  416.8  67.03  637.8  624.7  81.63  
Pseudo_R2 0.065  0.0767  0.0418  0.0813  0.0973  0.0476  
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Table 8. Link-based negative binomial conditional autoregressive Bayesian models for five highways 

 
Total crashes (model 13) 

 
Total fatal and injury crashes (model 14) Total fatal and incapacitating injury crashes 

(model 15) 
Variables mean t-value 2.5th  97.5th  mean t-value 2.5th  97.5th  mean t-value 2.5th  97.5th  

Sinuosity (ln) -2.370 -2.03 -4.734 -0.319 -1.870 -1.99 -3.656 -0.050 -2.010 -1.59 -4.438 0.382 
Lane Count (ln) 0.570 3.82 0.262 0.848 0.580 3.91 0.291 0.870 0.620 2.58 0.145 1.086 
Shoulder Width (ln) -0.360 -5.58 -0.486 -0.231 -0.350 -5.89 -0.474 -0.234 -0.200 -2.16 -0.389 -0.020 
Lane Width (ln) -0.370 -2.12 -0.725 -0.048 -0.360 -2.17 -0.692 -0.038 -0.400 -1.66 -0.873 0.073 
Vehicle Miles Traveled (ln) 0.760 17.26 0.669 0.850 0.700 15.73 0.607 0.781 0.370 5.03 0.240 0.542 
Constant -0.700 -0.78 -2.416 1.236 -1.840 -2.50 -3.303 -0.293 -2.080 -1.94 -4.174 -0.107 
             
N 587    587    587    
Df 579    579    579    
Iterations 100000    300000    300000    
Burn-in 20000    40000    40000    
LL -3582.37    -2958.08    -769.66    

 

Table 9. Link-based negative binomial conditional autoregressive Bayesian models with spatially linked variables for five highways 

 Total crashes (model 16) 
Total fatal and injury crashes (model 17) Total fatal and injury incapacitating crashes 

(model 18) 
Variables mean t-value 2.5th  97.5th  mean t-value 2.5th  97.5th  mean t-value 2.5th  97.5th  

Sinuosity (ln) -1.740 -1.72 -4.150 -0.016 -1.920 -2.00 -3.819 -0.100 -1.850 -0.96 -5.328 1.796 
Lane Count (ln) 0.520 3.76 0.249 0.789 0.500 3.67 0.229 0.766 0.590 2.52 0.138 1.057 
Shoulder Width (ln) -0.270 -4.89 -0.383 -0.167 -0.290 -5.46 -0.398 -0.189 -0.190 -1.87 -0.400 0.006 
Lane Width (ln) -0.330 -2.15 -0.646 -0.043 -0.360 -2.50 -0.640 -0.085 -0.420 -1.52 -0.975 0.096 
Vehicle Miles Traveled (ln) 0.640 16.34 0.552 0.708 0.580 14.69 0.498 0.653 0.360 4.89 0.227 0.525 
Population Density (ln) 115.560 5.41 74.305 157.945 152.330 7.11 110.809 194.816 96.480 3.01 33.194 158.515 
Employment Density (ln) 236.950 4.62 136.981 338.035 164.170 3.21 64.360 264.732 -170.710 -1.89 -350.622 2.255 
Median Income (ln) -0.030 -0.78 -0.094 0.036 -0.030 -1.01 -0.096 0.028 0.020 0.35 -0.084 0.135 
Constant 0.060 0.07 -1.469 1.847 -0.420 -0.49 -2.090 1.351 -2.280 -1.56 -5.092 0.254 

             
N 587    587    587    
Df 576    576    576    
Iterations 100000    300000    300000    
Burn-in 20000    40000    40000    
LL -3331.99    -2459.78    -765.04   
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Link-based analysis with full spatial coverage 
Our original intent was to develop a link-based model that covered every road and highway 
of New Jersey. As noted above, we encountered major data limitations in our attempt to do 
alternative, we developed a dataset that includes almost a full set of geometric variables for 
7 local roads. AADT data was still largely unavailable but we estimated AADT using the data 
available. This is obviously a major limitation, but in the end we have a model with 86,394 
This in itself created additional problems of successful convergence using MCMC for our 
analysis. We were only able to successfully estimate models for total crashes. Results using 
MCMC are shown in Table 10 and  

Table 11, respectively. Shoulder width is not included in these models as local roads generally have no 

shoulder. 

Examining the MLE model (Table 10) we find that effects are quite different than in our previous 

analysis. Sinuosity has a positive and significant effect as does lane width. While these different effects 

may be because local roads have different travel characteristics than the links examined for the five 

highways, it is also possible that our estimates of AADT and VMT are affecting the estimates. VMT is 

highly significant with a coefficient value above one.  

Spatial variables, shown in model 20, on the other hand, have a similar effect as in previous models. 

Both population and employment density are associated with more crashes, while higher median 

income reduces crashes. But as can be seen, introduction of the spatial variables, while not changing the 

sign of the geometric variables does affect the coefficient values, in some cases substantially.  For 

example, sinuosity drops to 0.182 from 0.728. 

The results for the MCMC estimation, in Table 11, show broadly the same pattern, however, coefficient 

values are quite different and have a large range within the credible interval. Of note, is that sinuosity 

loses statistical significance when spatial variables are included while lane count and lane width both 

have a credible interval that spans zero.  The same is true of population and employment density, 

although the latter is not statistically significant. So these models show both different effects when the 

spatial variables are introduced, but also credible intervals that suggest ambiguous effects associated 

with all the variables except VMT and median income.
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Table 10. Link-based negative binomial maximum likelihood models for all local road links 

 Total crashes (model 19) Total crashes (model 20) 
Variables coef. t-value coef. t-value 

Sinuosity (ln) 0.728 13.33 0.182 2.32 
Lane Count (ln) 0.503 5.44 0.897 3.77 
Lane Width (ln) 0.603 16.30 0.572 9.11 
Vehicle Miles Traveled (ln) 1.239 194.20 1.171 97.58 
Block Group Population Density (ln)   47.540 8.53 
Employment Density (ln)   47.720 3.62 
Median Income (ln)   -0.739 -32.84 
Constant -9.727 -56.23 -1.107 -2.37 
Log Overdispersion 0.653 73.04 0.563 34.12 

     
Observations 86,394  86,394  
Log likelihood -128005  -125669  
Ll Constant Only -147993  -147993  
LR Chi2 39978  19479  
Pseudo_R2 0.135  0.151  

 

Table 11. Link-based negative binomial conditional autoregressive Bayesian models for all local road links 

 Total crashes (model 21) Total crashes (model 22) 
Variables mean adj. t-value 2.5th  97.5th  mean adj. t-value 2.5th  97.5th  

Sinuosity (ln) 0.739 12.42 -0.976 2.435 -0.072 -1.20 -1.805 1.639 
Lane Count (ln) -0.057 -0.36 -4.611 4.388 0.646 4.90 -3.181 4.385 
Lane Width (ln) 0.253 6.00 -0.944 1.481 0.449 11.57 -0.661 1.569 
Vehicle Miles Traveled (ln) 1.405 195.45 1.205 1.617 1.301 172.58 1.087 1.525 
Block Group Population Density (ln)     24.355 6.24 -85.850 140.385 
Employment Density (ln)     8.512 1.04 -215.984 257.848 
Median Income (ln)     -0.836 -48.15 -1.342 -0.331 
Constant -9.387 -38.10 -16.585 -2.394 -0.124 -0.43 -8.478 8.280 

         
N 86,394    86,394    
Df 86387    86384    
Iterations 200000    200000    
Burn-in 40000    40000    
LL -130811.70    -127082.89    
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Discussion and Conclusions 
As noted previously, only one study has examined omitted variable bias in safety research (Mitra and 

Washington, 2012). Their analysis focused on intersection crashes in the city of Tucson, Arizona. Some 

291 signalized intersections were included in the database with crashes occurring within 250 ft being 

attributed to the intersection location. Traffic variables that are typically included in this type of model 

are average daily traffic, turning movements, and infrastructure features (width of medians, posted 

speeds, right/left turn lanes). These were supplemented with spatial variables, specifically distance to 

schools of various types, number of drinking establishments within a specified distance, and total nearby 

population, by age. They conclude that when these variables are omitted inaccurate estimates of safety 

effects occurs, and this can lead to false conclusions on correlates of traffic crashes.  

Our analysis provides less evidence that the omission of variables is a major issue, as in most cases 

directional effects are consistent with and without spatial variables being included in a link-based 

analysis. If anything, the spatial variables prove to be more problematic when included in a link-based 

analysis, for example, instead of a negative effect associated with population density, we find a positive 

association. 

Of more interest is the wide range of the credible intervals found in our analysis. Recall that a credible 

interval in a Bayesian analysis represents the probability (at say 95%) that the real coefficient estimate 

falls within the range of the interval. This suggests at a minimum that any use of crash reduction factors 

should evaluate the low and high end of the range and what the impact will be on road safety. In some 

cases, this may even span zero, suggesting both a negative and positive effect associated with the 

intervention. More and better data may lead to more refined estimates, however, this means that 

models must be fully specified with theoretically sound relationships. Data will undoubtedly still be an 

issue as we found with our models. 

Data is the major limitation of this work. While we sought to examine the effect of omitted variables on 

crash reduction factors, our models may also omit key variables due to missing data. The safety of the 

road network is largely determined by driver behavior and various other policies (such as vehicle 

regulations, drunk driving laws, and safety-belt laws). These can have large effects on safety (Noland, 

2003). None of these factors are typically taken into account in this type of modeling, and would largely 

be dependent on how the drivers respond to these policies as well as the vehicle mix. One of the 

objectives of a pure spatial analysis is to control for demographic proxies for some of these variables, 

but even this is probably insufficient. 

Our main conclusion is that those working to improve the safety of our highways should be cautious in 

the use of deterministic crash reduction factors. Theoretical understanding of how changes to geometric 

design will affect safety is useful knowledge but does not require the development of crash reduction 

factors (Noland, 2013). For example, highway design practice assumed that “faster, straighter, and 

wider” was safer, mainly because controlled access freeways follow this design practice. This ignores 

how applying these criteria to an urban road may actually have a negative safety outcome (Dumbaugh 
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and Gattis, 2005). Putting thought into design practices is more effective than blindly applying crash 

reduction factors. 
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