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1 Introduction

Increasingly, Public Bike Sharing Systems (BSS) are being adopted by many major cities throughout

the world. Bicycles are being touted as a way to achieve sustainable mobility in an urban setting

while also helping to alleviate the last mile problem in urban transportation (Shaheen et al., 2010).

As of September 19, 2014, some form of bike sharing system is operating in 747 cities worldwide

and another 235 such systems are in planning or under construction with more and more cities

becoming interested (Meddin and DeMaio, 2014). One of the major problems facing these systems

is the operational issue of repositioning of bicycles between different stations. Due to demand

variability, certain stations become too full or too empty to effectively service new customers. This

not only affects the desired service level but also incurs spurious operational costs. According to

a report by New York City Department of City Planning (2009) based on different case studies,

the total capital costs for a bike sharing system vary from $3000/bike to $4400/bike in different

cities. When averaged across programs, the average yearly operating cost for a bike share program

is around $1,600/bicycle.

The operating cost consists mainly of system operations, administration, marketing and utility

costs associated with hardwired stations. System operation forms the largest share of these costs

and will include functions such as: maintenance of all equipment, rebalancing of bicycles, customer

service operations, and website and IT support (The Pennsylvania Environmental Council, 2013).

Clearly, the repositioning of bicycles from stations too full to stations too empty is a big operational

overhead. In fact, for Vélib system in Paris, the average cost of a single repositioning for a single

bike is $3 (DeMaio, 2009). A system-wide snapshot of Capital Bikeshare at 9:30 AM on May 15,

2014 shows that 88 out of 202 stations are unbalanced considering 90% service level (see Section

3.1).

This paper aims to reduce the number of such unbalanced stations by rebalancing their inventory

through price incentives/disincentives. To do so, we will intentionally make some unbalanced

stations even more unbalanced, making these unbalanced stations function as hubs. If only a

few highly unbalanced stations exist in the system, then bike redistribution can be handled with

just a few regular short time truck trips, in every operational period (e.g., a 30-minute-long one).

1



With the reduced number of unbalanced stations, the operation of truck redistribution becomes

simpler, more efficient and thus results in operating cost reduction. This observation is key to our

idea of designing dynamic pricing policies. We seek to ensure that surplus bicycles are gathered

predominantly at designated ‘surplus accumulation’ stations, and similarly, the deficiency/lack of

bicycles predominantly occurs at ‘lack accumulation’ stations.

We find that we can successfully reduce the number of these unbalanced stations, by giving

travelers multiple journey choices and by changing the cost of those journeys through pricing. We

also show that the cost of the same degree of manual rebalancing outweighs the price incentives

offered. To determine such price incentives, we first formulate a bi-level optimization model and

provide a single-level reformulation that may be useful for small networks. We propose a heuristic

algorithm, called the iterative price adjust scheme (IPAS), and compare its performance with the

single-level optimization model solved by a commercial solver and solutions obtained by a genetic

algorithm.

The performance of IPAS is demonstrated by computational experiments. Using the data

from Capital Bikeshare in Washington, D.C., we show how our approaches manage to successfully

minimize the number of unbalanced stations. The efficacy of our heuristic approaches vis-à-vis

execution time while bringing satisfactory improvement to the overall objective of minimizing the

number of unbalanced stations is also shown.

2 Literature Review

Bike sharing systems have recently garnered an increased interest from the research community due

to their increased importance in sustainable urban transport systems. DeMaio (2009) and Shaheen

et al. (2010) separately discuss the history, the impacts, the models of provision and the future

of public BSS. Introducing what they call the Fourth generation of BSS, they identify improved

redistribution of bicycles as a key challenge facing BSS. Schuijbroek et al. (2013) have an excellent

and comprehensive description of BSS literature. They divide up the BSS literature into four

major streams including strategic design, demand analysis, service level analysis and rebalancing

operations. We thus refer readers to Schuijbroek et al. (2013) for general literature review, and limit
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this Section to reviewing most relevant literature on bike sharing systems, in particular, rebalancing

operations.

Rebalancing operations are a big part of operating costs of a bike sharing system (The Penn-

sylvania Environmental Council, 2013). Most such systems are run in collaboration with city

governments and depend financially on public funds and corporate sponsorship. Because these

systems are often cash strapped, it is not possible to indiscriminately add extra bicycles or docks

to the system. Furthermore, the demand also depends on many factors and is hardly predictable.

This necessitates some kind of rebalancing of the system. Generally, bike sharing systems em-

ploy two methods to redistribute the bicycles: truck-based manual redistribution and pricing-based

rebalancing.

Most bike sharing systems have a fleet of trucks that move around and pick up and drop bicycles.

Vélib has 20 trucks (Benchimol et al., 2011) operating 24 hours to carry out manual rebalancing.

Trucks and crew required to operate them have huge associated costs. Paul DeMaio of MetroBike,

LLC, mentions a conversation with Luud Schimmelpennick, a pioneer of bike sharing concept, in

DeMaio (2009). He reports that according to Schimmelpennick the cost for distribution of a single

bike for JCDecaux is $3 and that any scheme that offers incentives to customers would increase

the redistribution efficiency at a fraction of the current cost. Since some kind of manual balancing

is always required, most of rebalancing literature is focused on optimal truck routing. Benchimol

et al. (2011) introduce several approximation algorithms for static rebalancing of bicycles at the

end of the day when there is not much bike movement happening.

Several papers have recently studied truck-based manual bicycle redistribution. Raviv et al.

(2013) introduce several formulations for static rebalancing problem but their objective function

minimizes the expected user dissatisfaction rather than minimizing the total travel distance. Fricker

and Gast (2014) study a simple model with symmetry where all the bicycle stations have the same

parameters. The authors establish that even in this perfect scenario, the probability of a station

being full or empty is 2/(K + 1) where K is the capacity of each station, and then, propose

to improve this situation through incentives and regulation. Contardo et al. (2012) introduce a

dynamic public bike sharing balancing problem (DPBSBP) to rebalance a BSS during daytime
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peak hours. They solve the DPBSBP problem using Dantzig-Wolfe decomposition and Benders

decomposition to derive lower bounds and fast feasible solutions. Caggiani and Ottomanelli (2012)

construct a modular Decision Support System (DSS) for dynamic bike redistribution. Shu et al.

(2013) discuss under-utilization of bike sharing systems in Chinese cities and propose a deterministic

model to optimally deploy bicycles and docking capacity at different stations. They also evaluate

the value of redistribution and its impact on the number of trips supported by the system. They

conclude that for systems with more than 30,000 bicycles, frequent periodic redistribution does not

add much value and a small number of daily redistributions are recommended.

There is a recent trend in BBS literature to introduce a scheme of incentives to get users to

move bicycles away from the stations too full and into the stations too empty. Vélib operates a

V+ scheme to induce users to avoid certain stations and prefer others. Users get 15 minutes of

added travel time if they place the bicycles at one of the hundred uphill stations (Fricker and Gast,

2014). The incentives can be in the form of extra added time, as is the case with Vélib, or some

cash discounts. The literature on user incentive schemes is not as plentiful as that on rebalancing

through trucks (Fricker and Gast, 2014). Fricker and Gast (2014) present a two-choice model in

which each user is provided with two station choices at the time of a rental and is given an incentive

to choose the station with the lower load as a destination. They show that even if a fraction of

the users make the intended choice, the number of unbalanced stations comes down dramatically.

Waserhole et al. (2012) also develop a pricing strategy using fluid approximation.

Pfrommer et al. (2014) introduce a tailored algorithm for dynamic route planning for multiple

trucks for redistribution of bicycles and then go on to devise a system of price incentives computed

based on Model Predictive Control (MPC) to draw users away from full or empty stations. They

attempt to increase the service level of the system by adding repositioning trucks and increasing the

incentive payouts. They observe that with the increase in number of trucks and incentive payouts,

diminishing gains to service level are reported. They also conclude that a system of price incentives

is more effective on weekends as compared to weekdays when work related commuting takes place.

We aim to establish a system of cash discounts and penalties on user fee to modify user decisions.

The operators have real time status data on all stations and based on this data a price vector can
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Figure 1: Bilevel Decision Making Process

be calculated for all journeys. This information can be provided to users at Point of Sale or

through mobile apps. As described by Waserhole et al. (2012), price incentives can be offered in

discrete jumps with certain small increments, or they can be continuous within a range with a

certain maximum and minimum value. Pricing policies can also be dynamically changed in real-

time depending upon the current state of the system and the expected future demand, or they can

be static, i.e., independent of the system’s current state, and set in advance.

3 Model Formulation

The decision-making process for bike sharing systems is bilevel, as shown in Figure 1. Decisions

regarding the location and size of stations as well as pricing are made by the operator running the

system, while lower level journey decisions are made by the customers using the bicycles. In our

model, the upper level (operator) objective is to minimize the total number of unbalanced stations.

The lower level customer objective is to make a journey between two points at the minimum possible

cost. The underlying assumption is that travelers will always take the minimum cost route. This

section works to develop a detailed formulation of the problem that exploits the idea of strategic
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customer incentives. A few explanations, leading to the definition of unbalanced stations, are first

in order.

3.1 Service Level Requirements

As described earlier, bike sharing systems are subject to two demands. On one hand, there exists the

demand for bicycles while on the other hand, there is the demand for empty docks,i.e., for parking

the bicycles at the end of the journey. A bike procured from one station is eventually parked back

at the same station or any other station in the system. Every time a station is full or empty, a

service opportunity is wasted. Most bike sharing systems keep track of stations being empty or

full. Some systems measure the number of instances (e.g. Capital Bike share in Washington, DC)

while others measure the fraction of time (e.g. Vélib in Paris) that the stations are empty or full.

Operators do it for more efficient rebalancing operations and to determine the need for expansion

or reduction in the number of docks available at a particular station. Schuijbroek et al. (2013)

define a measurable Type-2 service level: the fraction of demand satisfied directly should be larger

than β−h for pickups and larger than β+
h for returns, assuming no back-orders. We use the same

definition:

E[Satisfied bike pickup demands]

E[Total bike pickup demands]
≥ β−h ,

E[Satisfied bike return demands]

E[Total bike return demands]
≥ β+

h .

Schuijbroek et al. (2013) then go on to establish a method to evaluate the values of minimum

and maximum inventory for each station in the system, respectively designated as Imin
h and Imax

h

for given β−h and β+
h . They model the inventory Ih at station h as an M/M/1/K queuing process

with customers in the queue for bicycles or docks representing the inventory. We use their system

of equations to evaluate the values of Imin
h and Imax

h . For given β−h and β+
h , starting inventory I0

h

should ideally be rebalanced so that:

Imin
h ≤ Ih ≤ Imax

h .
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If a station does not satisfy the above inequality, the station is termed unbalanced. It bears

repeating that a station is lack-unbalanced when Ih ≤ Imin
h and surplus-unbalanced when Ih ≥ Imax

h .

It must be noted that Imin
h is always greater than or equal to 0 and Imax

h is always less than or

equal to the maximum capacity of station h, i.e., the number of docks installed in station h. So a

station can be unbalanced even when it is not completely full or empty. The following parameters

are required to calculate Imin
h and Imax

h for station h: β−h , β+
h , number of docks installed, the rate

of arrival of users to pick up bicycles, and the rate of arrival of users to return bicycles.

3.2 A Bi-Level Formulation

This section presents the mathematical formulation of the bilevel problem. The first level repre-

sents the price change vector to minimize the number of unbalanced stations while the lower level

corresponds to a minimum cost network flow problem which determines the route choices made by

the travelers. Let S be the set of stations in the system. Let us assume that for a single journey, r

is the origin station and s is the destination station where r, s ∈ S. Let us also assume that (r, s)

is the OD pair for a single one way trip and W is the set of all possible OD pairs, i.e., (r, s) ∈ W.

If the number of stations in the network is n then the number of OD pairs is n2. The distance d

between two stations is the distance along the shortest bike route and not the euclidean distance.

In an urban setting, each station has a number of neighborhood stations. We assume that two

stations less than 600 meters apart are neighborhood stations. On average, this accounts for less

than 6 minutes of walking. For every OD pair, both origin and destination have a number of

neighborhood stations as illustrated in Figure 2. The colored circles around the stations represent

the neighborhood radius.

Let us designate a full, directed network G(N ,A,P) where N denotes the set of nodes in the

network, A denotes the set of arcs and P denotes the set of paths. In this network a direct arc

between any two nodes is also the shortest path between them. For every single OD pair in set W,

we construct a smaller directed network Grs(N rs,Ars,Prs). Observe that N rs ⊂ N but Ars 6⊂ A

and Prs 6⊂ P. As shown in Figure 2, a traveler intending to go from origin r to destination s

can now take any one of the many paths available to him. If Nor and Nos are the numbers of
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Figure 2: Network structure for every OD station pair

neighborhood points of origin and destination, respectively, then the total number of alternate

paths available is (Nor + 1) × (Nos + 1). Each path can consist of one, two or three links. For

example, path r → s consists of one link, while path r → m2 → n1 → s consists of three links. A

traveler taking the latter path walks from origin r to its neighborhod point m2, rents a bicycle and

bikes to destination’s neighborhood point n1, then parks the bicycle at an empty dock and walks

to the destination s. In Figure 2, bike links are represented by solid arrows, while dotted arrows

represent walk links. Note that every path contains one and only one bike link.

For a given OD pair (r, s), let Crsmn be the cost matrix for all links (m,n) where (m,n) ∈ Ars

and m,n ∈ S. The cost Crsmn of traversing a link consists of various subcosts. These include the

cost of walking, cost of biking, and the price of renting a bicycle to travel on a bike link. The

rental price is determined by the operator. Let these subcosts be denoted by wrsmn, v
rs
mn and pmn,

respectively. The costs wrsmn, v
rs
mn are calculated as

wrsmn = ν3t
rs
mn and vrsmn = ν2t

rs
mn.

In the above expressions trsmn is the time of travel between two stations m and n using a bicycle.
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ν2 and ν3 are the coefficients that convert distance between stations to the cost depending upon

biking and walking travel times, respectively. As stated earlier, the price pmn is defined by the

operator. The price associated with a single given link (m,n) in multiple OD pair networks is the

same. For example, the value of p19,3 is the same for all (19, 3) links in all the feasible OD pair

networks. Hence, all pmn values in an OD pair network form a price vector associated with the OD

pair (m,n) and defined by the operator.

Also, for every OD pair (r, s), let (m,n) ∈ ArsB be the links where a bicycle is used to traverse

and hence the cost of travel consists of pmn and vrsmn. Similarly, Let (m,n) ∈ ArsW be the links where

a traveler walks and hence the cost of travel consists of wrsmn alone. The price vector pmn further

consists of a fixed component and a variable component,

pmn = p0
mn + qmn, (1)

where p0
mn is the fixed base price set by the operator and depending on the time of the journey

(m,n) while qmn is the variable component capturing a penalty or incentive within a fixed range

[qmin
mn , q

max
mn ], determined again by the operator, with

qmin
mn ≤ qmn ≤ qmax

mn . (2)

Note that all the costs mentioned above except qmn are fixed costs depending only on travel time.

By modifying the price change vector qmn, the operator can modify the cost matrix and influence

the traveler’s decision about which path to take. Here we introduce a binary variable xrsmn which is

equal to 1 if link (m,n) is used to travel between OD pair (r, s), and 0 otherwise. Since for every

OD pair, one or more links (m,n) can be used to travel between origin r and destination s, one

or more variables xrsmn can take on the value of 1. The outcome xrsmn of the lower level program

which depends on traveler choices is used at the upper level to calculate the bicycle inventory Ih

for each station h at each instant. This information feeds into the upper level objective function

to minimize the number of unbalanced stations. To calculate the inventory, we only require links

where a bicycle is used. Let parametric vector δrsmn have value 1 for a bike link and 0 for a walk

9



Table 1: Mathematical Notation

S Set of stations
W Set of Origin-Destination (OD) pairs
A Set of arcs in the directed network for every OD pair
P Set of Possible Paths for each OD pair
Imax
h Maximum number of permissible bicycles at a station h, beyond which

the station is considered unbalanced
Imin
h Minimum number of permissible bicycles at a station h, beyond which

the station is considered unbalanced
I0
h Starting level of bike inventory at station h at any time t
Ih Current level of bike inventory at station h at a later time t+ δt
δrsmn 1 for a bike link and 0 for a walking link
αrsmn 1 for a walking link and 0 for a bike link
yh 1 for a surplus station where surplus station is a station where Ih > Imax

h

zh 1 for a lack station where lack station is a station where Ih < Imin
h

qmn Price change (Incentive or penalty) for traversing link (m,n)
xrsmn 1 when link (m,n) is used to travel between OD pair (r, s)
drs Demand for OD pair (r, s) in current time period
Nor The number of neighborhood points of origin
Nos The number of neighborhood points of destination

link. Then the product δrsmnx
rs
mn is 1 only if a link (m,n) used to travel between an OD pair is a

bike link and 0 if it is not a bike link. Observe that for every OD pair combination, δrsmnx
rs
mn is 1

for only one link (m,n). Table 1 details the mathematical notation used in the model.

The Upper Level Pricing Problem of the System Operator

Using the notation defined in Table 1, we formulate an upper level optimization problem to deter-

mine the price change vector qmn as follows:

(P) min
x,y,z,p

∑
h

yh +
∑
h

zh (3)

subject to

Ih − Imax
h ≤Myh ∀h ∈ S, (4)

Imin
h − Ih ≤Mzh ∀h ∈ S, (5)
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Ih = I0
h −

∑
(r,s)∈W

∑
n∈N rs

xrshnδ
rs
hnd

rs +
∑

(r,s)∈W

∑
n∈N rs

xrsnhδ
rs
nhd

rs ∀h ∈ S, (6)

qmin
mn ≤ qmn ≤ qmax

mn ∀(m,n) ∈ A, (7)

where values of variables xrsmn depend on the minimum cost route choice of bike users and is

determined by a lower level problem to be introduced later.

The Lower Level Routing Problem of the Bike Users

In the lower level problem bike users who want to travel from origin r to destination s use minimum

cost paths so the objective is,

min
∑

(r,s)∈W

∑
(m,n)∈Ars

crsmnx
rs
mn (8)

subject to ∑
(m,n)∈Ars

xrsmn −
∑

(n,m)∈Ars

xrsnm = ersm ∀m ∈ N rs, (r, s) ∈ W, (9)

xrsmn ∈ {0, 1} ∀(m,n) ∈ Ars, (r, s) ∈ W, (10)

where

crsmn =


p0
mn + qmn + ν2v

rs
mn ∀(m,n) ∈ ArsB

ν3w
rs
mn ∀(m,n) ∈ ArsW .

(11)

In (9), ersm takes the value 1 (respectively, -1), if node m is the origin (respectively, destination) of

the trip, and 0 otherwise.

3.3 A Single Level Reformulation

In the lower level problem the integrailty requirement for variables xrsmn can be replaced by the

constraints xrsmn ≥ 0. This is so because the lower level program is a minimum cost network flow

problem: its right hand side can only be integer and the coefficient matrix in the left hand side

forms a unimodular matrix. Now we can represent the lower problem by its optimality conditions
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or KKT conditions of its LP relaxation. Since the lower-level problem is a linear optimization

problem, we can replace it by following Karush-Kuhn-Tucker (KKT) optimality conditions:

δrsmn(p0
mn + qmn + ν2v

rs
mn) + ν3α

rs
mnw

rs
mn − λrsm + λrsn − µrsmn = 0 ∀(m,n) ∈ Ars, (r, s) ∈ W, (12)∑

(m,n)∈Ars

xrsmn −
∑

(n,m)∈Ars

xrsnm = ersm ∀m ∈ N rs, (r, s) ∈ W, (13)

−xrsmn ≤ 0 ∀(m,n) ∈ Ars, (r, s) ∈ W, (14)

µrsmn ≥ 0 ∀(m,n) ∈ Ars, (r, s) ∈ W, (15)

λrsm free ∀(m,n) ∈ Ars, (r, s) ∈ W, (16)

−µrsmnxrsmn = 0 ∀(m,n) ∈ Ars, (r, s) ∈ W. (17)

The complementary slackness conditions (17) are non-convex, and we can linearize them taking

advantage of binary nature of xrsmn. Suppose M is a very large number then the linearized constraint

would be:

µrsmn ≤M(1− xrsmn) ∀(m,n) ∈ Ars, (r, s) ∈ W. (18)

We state the final formulation of our optimization model here:

(P) min
x,y,z,p

∑
h

yh +
∑
h

zh (19)

subject to

Ih − Imax
h ≤Myh ∀h ∈ S, (20)

Imin
h − Ih ≤Mzh ∀h ∈ S, (21)

Ih = I0
h −

∑
(r,s)∈W

∑
n∈N rs

xrshnδ
rs
hnd

rs +
∑

(r,s)∈W

∑
n∈N rs

xrsnhδ
rs
nhd

rs ∀h ∈ S, (22)

qmin
mn ≤ qmn ≤ qmax

mn ∀(m,n) ∈ A, (23)

δrsmn(p0
mn + qmn + ν2v

rs
mn) + ν3α

rs
mnw

rs
mn − λrsm + λrsn − µrsmn = 0 ∀(m,n) ∈ Ars, (r, s) ∈ W, (24)

12



∑
mn∈Ars

xrsmn −
∑

nm∈Ars

xrsnm = ersm , ∀m ∈ N rs, (r, s) ∈ W, (25)

−xrsmn ≤ 0 ∀(m,n) ∈ Ars, (r, s) ∈ W, (26)

µrsmn ≥ 0 ∀(m,n) ∈ Ars, (r, s) ∈ W, (27)

λrsm free ∀(m,n) ∈ Ars, (r, s) ∈ W, (28)

µrsmn ≤M(1− xrsmn) ∀(m,n) ∈ Ars, (r, s) ∈ W. (29)

In the final model represented by Equations (19) to (29), for every OD pair (r, s), the number

of decision variables is calculated as 2NorNos + 3(Nor + Nos). For a network of 200 stations,

this amounts to approximately 1 million variables and 1 million constraints. Therefore, while

this formulation can be useful for a comparative evaluation of other methods (with small-scale

problems), more scalable solutions are desirable for practical purposes.

4 Computational Methods

This section presents two heuristic methods to solve model (P). Keeping the upper level problem

intact, we work with the lower level problem: instead of performing the exact minimum cost

optimization to determine the optimum price change vector qmn, we determine qmn heuristically.

The overall objective of minimizing the number of unbalanced stations remains the same. Section

4.1 presents a genetic algorithm based heuristic to produce the price change vector (Details in

Appendix A). Another heuristic method, IPAS, presented in Section 4.2 produces a price change

vector using discrete increments and decrements on the price between different station categories.

4.1 Continuous Genetic Algorithm

Genetic Algorithms (GA) are evolutionary algorithms that use natural selection for generating

solutions to optimization problems. We use continuous form of GA to determine price change vector

qmn. The variable qmn is continuous within a pre-specified range. In continuous GA, variables are
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Figure 3: Flow chart of a continuous GA

represented as floating point numbers over a particular range. Continuous GA has many advantages

over binary GA (Haupt and Haupt, 2004). Figure 3, taken from Haupt and Haupt (2004), shows

major steps in a continuous GA. Although these steps are roughly the same for binary GA as well,

the difference lies in the use of crossover and mutation operators. The details of the continuous

GA applied to model (P) are provided in Appendix A.

4.2 Iterative Price Adjustment Scheme

We present the iterative price adjustment scheme (IPAS), which relies on a simple decision making

process that classifies the bike stations into different categories based on their starting inventory

level I0
h, the maximum and minimum inventory values, and the demand in the next time period.

Based on these factors we divide the stations into six different types: 1) Balanced Stations with

Bikes Needed, 2) Balanced Stations with Docks Needed, 3) Unbalanced Stations with Bikes Needed,

4) Unbalanced Stations with Docks Needed, 5) HUB Stations with Bikes Needed (also called Lack

accumulation stations), and 6) HUB Stations with Docks Needed (also called Surplus accumulation

14



Figure 4: Flow chart of the Iterative Price Adjustment Scheme (IPAS)

stations).

We will identify stations that are “slightly” unbalanced at the current time and try to make

those stations balanced. We will also identify stations that are “highly” unbalanced and try to make

them even more unbalanced for the sake of preserving the balance at other neighboring stations.

As the primary objective of the pricing problem lies in identifying the accumulation stations,

while simultaneously reducing the number of such stations, we will first develop a heuristic to

identify such stations where accumulation happens naturally. Further accumulation may be possible

and likely whenever a station is expected to experience an increase in the imbalance at the current

pricing scheme. Here, we will look at the possibility of transferring the surplus inventory from

high surplus stations to the neighboring stations that lack bicycles. If a station is expected to

have a significant surplus and there are no stations in its neighborhood where lack accumulation

is expected, then such a station is a good candidate for a surplus accumulation hub. For such a

station, to help further accumulation, we can decrease prices for bike returns to that station and

increase regular prices on bike checkouts from that station. For a likely lack accumulation station,

we can do the opposite: increase regular prices on bike returns and offer discounts for checkouts.
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Based on such selection of accumulation stations and price changes, we may evaluate the objective

function in (P) and iteratively adjust prices. Figure 4 shows a flow chart for the proposed iterative

price adjustment scheme.

4.2.1 Step 0: Define the Algorithm Parameters

First of all, we define some parameters that will be used in the proposed scheme. The basic

parameters are as follows: The parameters Imax
h , Imin

h , I0
h, and Ih as defined in Table 1; k is an

integer number representing the running iteration of the algorithm; and qkmn is the Price change

(Incentive or penalty) vector for traversing link (m,n) during iteration number k of the algorithm

where qmn for a given link (m,n) is the same for all OD pairs. The starting price change vector

called qkmn for k = 0 can generally have all values equal to 0.

Parameter θin
h describes the maximum number of bicycles that can possibly come into a certain

station h, which is the sum of the number of bicycles coming in from all the other stations of the

network into the station h and the number of bicycles coming in from all the other stations of the

network into the neighborhood stations of h. We assume that if big enough incentives were offered,

all the traffic coming into neighborhood points of h will be redirected to h and users will take rest

of the trip walking.

Parameter θout
h describes the maximum number of bicycles that can possibly go out of a certain

station h, which is the sum of the number of bicycles going to all the other stations of the network

from the station h and the number of bicycles going to all the other stations of the network from

the neighborhood stations of h. We assume that if big enough incentives were offered, all the traffic

going from neighborhood points of h will be redirected through h and users will walk to h and take

a bike onward to their destinations.

The rank ratio, denoted by ρ, is the parameter used to rank different stations based on their

current inventory status,

ρh =
(Ih − Imax

h )2 + (Ih − Imin
h )2

(Imax
h − Imin

h )2
. (30)

The value of ρ varies from 0.5 to ∞ with lesser values implying a more balanced station and larger
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values implying a more unbalanced station. A station with value of ρ ≥ 1 implies that either of the

two inequalities Ih ≤ Imax
h and Ih ≥ Imin

h are unsatisfied. The rank ratio is used to sort stations

that fall into one of the six categories listed below.

4.2.2 Step 1: Define Station Types

The stations fall in only one of the six subsets of stations based on the following definitions:

HUB Stations with Bikes Needed (HSBN) have very low bike inventory, so that we would

not have enough bicycles to make this station balanced again, even if the incoming bike

inventory from all the neighboring stations were to be redirected; hence they become good

candidates for Lack Accumulation Stations. Instead of making such a station balanced by

gaining bicycles, we make it even more unbalanced by losing bicycles further. Such a station

must satisfy the following inequality:

πImin
h − I0

h ≤ θin
h .

HUB Stations with Docks Needed (HSDN) have very high bike inventory so that it is very

difficult to lose enough bicycles to make the station balanced again, even if all the outgoing

bicycles from all its neighborhood stations were to be redirected through it. Hence these

stations become good candidates for Surplus Accumulation Station. So instead of making it

balanced by losing bicycles, we make it even more unbalanced by gaining bicycles further.

Such station must satisfy the following inequality

I0
h − πImax

h ≤ θout
h .

where π is a constant with value ranging from 0 to 1. A higher value of π means less HUB

stations and vice versa.

Unbalanced Stations with Bikes Needed (USBN) are stations which cannot satisfy user de-

mand at β−h service level with their current bike inventory, although they might not be fully
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empty. Such station must satisfy the following two inequalities:

Ih < Imin
h ,

πImin
h − I0

h ≤ θin
h .

The first inequality defines an Unbalanced Station with Bikes Needed while the second makes

sure that the station is not an HSBN.

Unbalanced Stations with Docks Needed (USDN) are stations which cannot satisfy user

demand at β+
h service level with their current inventory, although they might not be filled to

capacity. Such stations must satisfy the following two inequalities:

Ih > Imax
h ,

I0
h − πImax

h ≤ θout
h .

The first inequality defines an Unbalanced Station with Docks Needed while the second makes

sure that the station is not an HSDN.

Balanced Stations with Bikes Needed (BSBN) are stations which satisfy the inequality Ih ≥

Imin
h , and hence, are balanced by definition but their current inventory is relatively closer to

Imin
h than Imax

h . Such stations must satisfy the following two inequalities:

Ih ≥ Imin
h ,

πImin
h − I0

h ≤ θin
h .

Balanced Stations with Docks Needed (BSDN) are stations which satisfy the inequality Ih ≤

Imax
h , and hence, are balanced by definition but their current inventory is relatively closer to

Imax
h than Imin

h . Such stations must satisfy the following two inequalities:

Ih ≤ Imax
h ,

18



I0
h − πImax

h ≤ θout
h .

Denote each subset of stations by SHSDN, SHSDN, SUSBN, SUSDN, SBSBN, and SBSDN respectively.

Within each subset, we order stations from the most balanced to the least balanced. We denote

the number of stations in each subset by |SHSDN|, |SHSDN|, |SUSBN|, |SUSDN|, |SBSBN|, and |SBSDN|

respectively.

4.2.3 Step 2: Update the Incentives Vector

After the network has been divided into six exclusive sets of stations, its time to update the price

change vector based on the following equation:

qkmn = qk−1
mn + ∆qmn,

where ∆qmn is the price update that we will calculate as follows.

For each link (m,n), the price change is updated in discrete jumps. We define ∆is and ∆il

as small and large discrete jumps. Their values are constant numbers. We use $0.05 and $0.3 for

experimental purposes. As shown in Table 2 the discrete jumps can thus vary from −$0.05 to $0.05

when δs is used or from −$0.3 to $0.3 when δl is used. The trigonometric distribution functions

used to calculate ∆qmn are plotted in Figure 5. We have not included stations of type BSBN and

BSDN in the table because the price change for travel between and to the balanced stations is

zero. The value of ∆qmn between stations of HSBN and USBN types follows the distribution in

figure 5a with stations at both ends of the vector getting smaller decrements while those in the

middle getting the maximum decrements. This makes sure that our pricing favors the movement of

bicycles from stations in the subset SHSDN to the middle stations of the subset SUSBN. The reason

for favoring middle stations is that the stations at the start are very close to being balanced and

hence do not need large changes in price while the stations at the end are very unbalanced and it

is difficult to make them balanced again using price changes. Similarly, the value of ∆qmn between

stations of USBN and USDN types follows the distribution in Figure 5d. The price increment is
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Table 2: Calculating values of ∆qmn, where jm and jn are the order indices starting from zero within the set
SUSBN of stations m and n, respectively—for example, if station m is the most balanced station in the set
SUSBN, then jm=0—and similarly, km and kn are the order indices starting from zero within the set SUSDN.
We let ∆qmn = 0 for all m ∈ SBSBN and n ∈ SBSDN.

Type of Station n

Type of
Station
m

HSBN HSDN USBN USDN

HSBN 0 −∆is −∆il sin
πjn
|SUSBN| ∆is sin πkn

|SUSDN|

HSDN ∆is 0 −∆is sin πjn
|SUSBN| ∆il sin

πkn
|SUSDN|

USBN ∆il sin
πjm
|SUSBN| ∆is sin πjm

|SUSBN|
∆is

2

(
− cos πjn

|SUSBN| +

cos πjm
|SUSBN|

) ∆il sin
π(jn+km)

|SUSBN|+|SUSDN|

USDN −∆is sin πkm
|SUSDN| −∆il sin

πkm
|SUSDN| −∆il sin

π(jn+km)
|SUSBN|+|SUSDN|

∆is
2

(
− cos πkn

|SUSDN| +

cos πkm
|SUSDN|

)

maximum for stations in the middle making it difficult for bicycles to move from stations in subset

SUSBN to stations in subset SUSDN, so on and so forth.

4.2.4 Step 3: Calculate the Number of Unbalanced Stations

We use (P) to calculate the number of unbalanced stations given the price change vector qmn. We

store this value for every iteration. (P) is also used to calculate the updated values of Ih. After

this, Step 1 is repeated with updated Ih and stations are again categorized into different types

based on Step 1. This process is repeated until the designated number of iterations.

4.2.5 Step 4: Find the Best Price Change Vector

The number of unbalanced stations calculated in Step 3 are compared to the minimum value. If the

current price change vector improves on the objective function, the vector and the objective value

are stored. After this, Step 0 is repeated with updated Ih and the values of some of the parameters

are calculated based on new Ih. Stations are again categorized into different types based on Step 1.
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(a) − sin πj
|SUSBN| for j ∈ [0, |SUSBN| − 1] (b) sin πj

SUSBN
for j ∈ [0, |SUSBN| − 1]

(c) − sin π(j+k)
|SUSBN|+|SUSDN| for j ∈

[0, |SUSBN| − 1] and k ∈ [0, |SUSDN| − 1]

(d) sin π(j+k)
|SUSBN|+|SUSDN| for j ∈ [0, |SUSBN| −

1] and k ∈ [0, |SUSDN| − 1]

(e) (− cos πj
|SUSBN| + cos πk

|SUSBN|−1 ) for j, k ∈
[0, |SUSBN| − 1]

Figure 5: Graphs of Different ∆qmn functions for |SUSBN| = 10 and |SUSDN| = 10
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Table 3: Journey Data Sample

Start Time Station ID End Time Station ID Bicycle ID

7/1/2013 12:02:00 AM 31250 7/1/2013 12:21:00 AM 31506 W20231
9/4/2013 4:27:00 PM 31247 9/4/2013 5:11:00 PM 31248 W01484
8/9/2013 3:54:00 PM 31253 8/9/2013 4:01:00 PM 31229 W20198
9/23/2013 5:34:00 PM 31004 9/23/2013 5:52:00 PM 31007 W20523

Table 4: Station Status Data Sample

Station ID Longitude Latitude No of Bicycles No of Empty Docks

31000 -77.0512 38.8561 4 7
31605 -77.0023 38.8851 1 10
31609 -77.0213 38.8767 7 12
31403 -77.0198 38.9566 8 7

This process is repeated until the designated number of iterations. After the iterations run out, this

scheme gives the price change vector with minimum number of unbalanced stations as its output.

5 Numerical Experiments

The following publicly available data sets were retrieved from the Capital Bike Share website:

1. Journey Data: The data of 0.85 million bike rides during the three months period starting

from July 1st to September 30th, 2013 (See Table 3).

2. Station Data: The data of longitude and latitude of all stations, their ID numbers and their

current inventory status retrieved from publicly available xml file (See Table 4).

Journey data is used to calculate the demand vector drs. Capital Bike Share is a relatively

newer and smaller system. The number of journeys between each OD pair in a small enough time

period is very small. So we divide each day into four equal intervals of six hours. We use the data

for the first interval of 6:00 am to 11:59 am on 20th September 2013. We assume that the demand

in this interval is known at the beginning of the interval. For calculation, we use the demand vector

drs during this interval using the historical ride data available. The journey data is also used to
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determine service level requirements and values of Imax
h and Imin

h . We use β−h and β+
h values of 0.85

for our calculations.

Station data with sample in Table 4 is available in the form of an XML file and the current

status of the stations in terms of inventory, checks ins and check outs is continuously updated on

to the server. This data is used to calculate the position of each station in the network. The

longitude and latitude are used to calculate distances and time of travel between all OD pairs.

The distance calculated is not euclidean and represents actual biking distance. We also get the

number of bicycles, number of empty docks and capacity of each station using this data. The

starting inventory I0
h used in our calculations is the starting inventory of the network at 9 am on

20th September, 2013. The distance matrix is also used to determine the neighborhood stations

of each station. We use 600 meters as a conservative measure with stations less than 600 meters

apart becoming each other’s neighbors.

We build the data sets for three sets of problems of different network size. A smaller network

with 21 closely located stations, a medium sized network with 60 stations and a full sized network

with 202 stations in it. It should be taken into account that the number of unbalanced stations

cannot always be 0. In fact, our observations show that during high demand periods, like the one

we have used for experimentation, the total inventory available in the system is much smaller than

demand for the next time period. In Table 5 we present the inventory situation for each of our

data sets. As evident, there is always a measure of imbalance present in the system.

The Objective Function values for optimization model and two heuristics for different network

sizes are tabulated in Table 6. All the numerical experiments were done on a machine with 2.30

GHz CPU clock speed, 8 GB RAM and 64-bit Windows 8 operating system. The model (P) was

solved using the Java API of CPLEX V12.4 while the coding for both GA and IPAS heuristics was

also done in Java. We find out that for small sized and medium sized networks, the optimization

model is solved by CPLEX within 11 seconds and 1 minute respectively. However, CPLEX fails to

solve the full network model consisting of 202 stations. Although the heuristics developed in this

paper perform worse of in terms of objective function for the full network, they still show a marked

improvement. The columns compare the values of objective function without and with changes in
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Table 5: Inventory Status for Different Network Sizes. The three small networks, Small-1, Small-2,
and Small-3 have the same network topology and bike demand, but different initial distributions of bike
inventory.

Network
Name

No of
Stations

No of Total
Docks

No of
Avail-
able
Bikes

No of
Empty
Docks

System-
wide

Demand for
Bicycles

System-
wide

Demand for
Docks

Small-1 21 443 106 337 107 107
Small-2 21 443 190 253 107 107
Small-3 21 443 332 111 107 107
Medium 60 1606 1240 366 907 907
Large 202 4498 1012 3486 2531 2531

the base price. We see a huge improvement in the objective function when price change vectors are

generated through optimization model and heuristics. We also consider the effect of neighborhood

distance on the amount of improvement we can bring to our objective function. Since Capital Bike

Share is not as big a system as are Vélib in Paris or Citi Bike in New York City, we assume that

the number of neighborhood stations with the 600 meter radius is much smaller in Washington DC

than in Paris or NYC. We increase the neighborhood radius to 800 meters to better simulate a big

city network. With the increase in neighborhood radius, the range of choices available to customers

increases and the objective function decreases correspondingly.

We also limit the maximum absolute value of price changes available to the operator. The

Table 7 shows the objective function values for different ranges of incentive and penalty values and

different ν3 values. Smaller values of ν3 underestimate the cost of walking and hence alternative

paths become more suitable for travelers. We have used ν3=1/50 in our earlier calculations.

As evident, larger the price changes an operator is willing to introduce, the more balanced a

network becomes. We see that as the price change range increases the total price change offered

increases dramatically while offering much less in terms of objective function improvement. It is

always better to offer smaller price changes first and gradually increase them if doing so provides

considerable advantage.
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Table 6: Value of Objective Function for different starting inventories with a) Optimization Model b) Ge-
netic Algorithm and c) Iterative Price Adjustment Scheme (IPAS) for the Small-1, Small-2, Small-3,
MEDIUM and LARGE networks

Network
Name

Computational
Method

Initial Number of
Unbalanced Stations

Final Number of
Unbalanced Stations

CPU Time
(seconds)

Small-1 P 9 0 1.609
GA 9 4 41.275
IPAS 9 5 3.743

Small-2 P 4 0 0.590
GA 4 0 22.933
IPAS 4 0 4.034

Small-3 P 12 2 0.659
GA 12 5 39.897
IPAS 12 6 4.204

MEDIUM P 25 15 63.314
GA 25 19 183.325
IPAS 25 19 9.750

LARGE P 117 n/a n/a
GA 117 94 2288.959
IPAS 117 84 86.786

Table 7: Value of Objective Function f(qmn) for different qmn ranges and ν3 values where neighborhood
radius is 800m

Range of qmn

[−5, 5] [−4, 4] [−3, 3] [−2.5, 2.5] [−2, 2] [−1.5, 1.5]

ν3=1/25 79 87 95 103 105 112
ν3=1/50 70 71 75 76 81 90
ν3=1/75 64 68 68 71 73 78
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Table 8: Comparison of Cost(in Dollars) to the System for Price Induced and Manual Repositioning, A=Total
incentives given, B= Total Penalties Levied, C= Cost of Manual Repositioning

ν3=1/25 ν3=1/50 ν3=1/75

Range A B C A B C A B C

qmn ∈ [−5, 5] 1311 -1955 744 913 -1426 1183 690 -1102 1148
qmn ∈ [−4, 4] 1251 -1742 605 894 -1361 1134 742 -1095 1235
qmn ∈ [−3, 3] 1039 -1337 399 726 -1078 952 604 -919 1123
qmn ∈ [−2.5, 2.5] 983 -1162 224 668 -973 896 537 -804 1039
qmn ∈ [−2, 2] 820 -954 168 520 -829 822 480 -697 945
qmn ∈ [−1.5, 1.5] 590 -724 63 476 -689 592 376 -577 801

In Table 8, the values in column A represent the total positive price change which is the amount

of incentives doled out to customers. The values in column B are the total negative price change

which is the total penalties levied on the traveler to stop them from making undesirable journey

choices. Naturally, due to the price change vector, the travelers automatically move certain bikes

between stations to make them balanced. The sum of A and B values is the total cost to the

system for moving a certain number of bikes automatically. Column C indicates the cost of moving

the same number of bikes using manual trucks and crew. Simply, column C is the cost that is

saved as a result of pricing scheme. To find the cost values in column C, we use the average $3.5

as a conservative measure for cost of a single manual repositioning and multiply it with the total

number of bicycles moved as a direct result of our pricing scheme. As long as A+B ≤ C, price

induced repositioning is more viable than manual repositioning.

Note that if the range of incentives increases, the number of unbalanced stations comes down.

Also, the number of bikes ‘automatically’ moved as a direct result of the pricing scheme also

increases and hence we see greater values in column A, B and C. Naturally, if the range of price

change is larger, greater cost is saved.

6 Conclusion

At the start of this paper, we set out to prove the efficacy of a pricing scheme for partially or fully

rebalancing a BSS. This paper explores pricing and incentive schemes as a way to rebalance the
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network of a public bike sharing system. As already stated, the objective is to minimize the number

of unbalanced stations to fully or partially obviate the need for a manual repositioning operation

using trucks and crew. We develop a bilevel optimization model that works well for relatively

smaller networks to deliver the optimal pricing scheme. We develop heuristics to solve the issue

of time while still improving the objective function. A genetic algorithm formulation improves

markedly on time but due to very large number of starting chromosomes, does not perform as

well with the objective function. We then set out to develop a more intuitive heuristic based on

the classification of different stations using the data available. This heuristic called iterative price

adjustment scheme delivers much better computing time. For the full network, the IPAS takes only

87 seconds. The value of objective function is also markedly better than genetic algorithm. We

conclude that this time is small enough to make it feasible for BSS operators to update their price

vector in real time. The cost of offering incentives is also much smaller than the cost reduction

from smaller number of unbalanced stations, smaller crew and trucking fleet.

The demand vector we use is based on actual rides data after the fact. One obvious improvement

is to model the demand more accurately using demand forecasting taking into account various

factors that affect the demand for bicycles. The values of coefficients for deriving cost of travel

have also been roughly determined. We assume the value of time to be the same for all customers

which is obviously not the case. The values of these coefficients can be better estimated using

insights into customer behavior. We conclude that a real time dynamic pricing scheme cannot

only solve the problem of system wide imbalance in BSS but also cut down on operating costs of

controlling that imbalance.
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Appendix

A Genetic Algorithm

A brief description of the algorithm steps is presented first. Let us define a chromosome as an array

of variable values to be optimized. In our case, qmn, the price change vector is the chromosome.

Each chromosome of the population is a 1×Nvar vector. In our case with n stations, there are n2

price change variables and hence each chromosome is an array of size 1 × n2. Let us also convert

variables qmn to a single subscript vector for convenience. Let χl represent the individual variables

of the chromosome vector qmn where l varies from 1 to Nvar,

chromosome = [qm1n1 , qm1n2 , ....qm1nn , ....., qmnnn ] = [χ1, χ2, χ3, ....., χNvar ]. (31)

Each chromosome thus constructed has a cost associated with it through a cost function. In our

case the upper level objective, i.e., the number of unbalanced stations, is the cost function. This

number depends on the values of variables xrsmn, which in turn depend on the values crsmn, and hence,
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qmn or χl,

Number of unbalanced stations = f(chromosome) = f([χ1, χ2, χ3, ....., χNvar ]). (32)

A.1 Initial Population

The initial population consists of a number of chromosomes equal to the population size Nsize.

The population size is determined keeping in mind the size of each chromosome and the execution

time to find the cost function. We choose an initial population of 300 chromosomes. The initial

population matrix thus consists of Nsize number of chromosomes, each representing a row of Nvar

continuous values. These values are randomly generated and lie within a pre-specified range,

(χlo
l ) ≤ χl ≤ (χhi

l ).

We use -3 and 3 for χlo
l and χhi

l , respectively. Let ζ be a random real number from a uniform

distribution between 0 and 1. The value of each variable χl in a single chromosome is generated

by:

χl = χlo
l + ζ(χhi

l − χlo
l ).

The initial chromosome population thus consists of Nsize chromosomes, where in turn, each chro-

mosome consists of Nvar randomly generated values of variables χl.

A.2 Natural Selection

The cost function for each chromosome in the initial population is evaluated for the number of

unbalanced stations. At this point, all the chromosomes are ranked in increasing order of their

cost function values obtained via equation (32). The chromosome with the minimum number of

unbalanced stations comes at the top and so forth. After ranking, the top-ranked 50% of the

chromosomes are kept while the rest of them are discarded to make room for new offspring.
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A.3 Pairing and Mating

After ranking the population of chromosomes and selecting the top 50% contenders, the chromo-

somes are broken into pairs to mate and generate new offspring. To make sure that the char-

acteristics of the best chromosomes, i.e., those with the least number of unbalanced stations are

transferred to the offspring, we use Rank Weighting method to set the probability of mating. This

method assigns higher probabilities to the mating of the chromosomes with lower values of the cost

function.

Let a be the rank index of the top 50% chromosomes after they have been ranked in increasing

order of the cost function. Lower the rank a of a chromosome, lower the value of its cost function.

For a chromosome with rank a, the mating probability Pa is set as

Pa =
NKeep − a− 1

NKeep∑
a=1

a

,

where NKeep is the number of chromosomes selected to pair and mate which is equal to bNsize/2c.

The mating probabilities thus found are then used to calculate cumulative probability P cum
a for

each chromosome using the equation,

P cum
a = P cum

a−1 + Pa ∀a ∈ [1, NKeep],

where P cum
0 = 0. To produce bNsize/2c new chromosomes, bNsize/2c number of parents is selected

out of which bNsize/4c are father and bNsize/4c are mother chromosomes. The selection of parent

chromosomes to mate and reproduce is done using the following procedure:

while c = 1 to bNsize/4c do

. Generate two random real numbers in the range [0, 1] and call them Pick1
c and Pick2

c

for a = 1 to bNsize/2c do

if Pick1
c ≤ P cum

a and Pick2
c ≥ P cum

a−1 then

. Select the chromosome with rank a to be the mother and call it mac

if Pick2
c ≤ P cum

a and Pick2
c > P cum

a−1 then
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. Select the chromosome with rank a to be the father and call it pac

end if

end if

end for

. Use the pair mac and pac to mate and produce a pair of offspring chromosomes

end while

For mating, the algorithm we use is taken from Haupt and Haupt (2004) and is a combination of

an extrapolation method with a crossover method as described henceforth. We generate a random

number η in range [0, Nvar] to select a variable in the first pair of parent chromosomes to be a

crossover point,

η =
⌈
ζNvar

⌉
,

where ζ is a random number from a uniform distribution between 0 and 1 and d·e is a ceiling

function. The crossover point η can be any number between 1 and Nvar. The variables before the

crossover point retain their original value while those after the crossover point are combined to

form new variables that will appear in the children. Following equations are used to generate new

variables. Let us represent the two parents as

mother = [χm1, χm2, ...χmη, ...χmNvar ]

father = [χd1, χd2, ...χdη, ...χdNvar ]

where the subscripts m and d represent mother and father. These two parent chromosomes will then

combine to produce variables for the two offspring chromosomes using the extrapolation method,

χnew1 = χmη − φ[χmη − χdη],

χnew2 = χdη + φ[χmη − χdη].

Where φ is a random number from a uniform distribution between 0 and 1. Finally, two offspring
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chromosomes are created through crossover of variables after χη in the parent chromosomes using

a crossover method,

offspring1 = [χm1, χm2, ...χm,new, ...χdNvar ],

offspring2 = [χd1, χd2, ...χd,new, ...χmNvar ].

A.4 Next Generation and Convergence of the GA Heuristic

After producing the offspring chromosomes, shape of the original population is modified. The

population now consists of the top 50% parent chromosomes and 50% offspring chromosomes. When

this new population is generated, we go back to natural selection and repeat all the subsequent

steps. This process continues over a number of iterations. Better and better chromosomes with

fewer number of unbalanced stations find their way to the top of ranking. This process is continued

until the cost value of the best identified solution converges to a certain number and the successive

iterations stop producing any improvement. In our case, instead of defining a convergence criterion,

we let the algorithm run for a certain number of iterations and save the value of the top-ranked

chromosome. After the algorithm stops, the result is a price change vector chromosome that gives

the minimum number of unbalanced stations.
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