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Why is W/R-friction so important?

Friction in wheel-rail contact

Short term
Vehicle dynamics
Drive train dynamics
Traction control
...

Long term
Wear
Rolling contact fatigue
Thermal damage
...
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Experimental findings

Traction depends on:
§ creepage
§ vehicle velocity
§ load and contact geometry
§ contact conditions
§ etc.
Þcomplex behaviour
Þcreep force models should

reproduce these effects

Loco: Dry conditions

Loco: Wet conditions

Loco: v = 10 m/s

Twin disc experiments

K. Six et al., Physical processes in wheel–rail contact and its implications

on vehicle–track interaction, Vehicle System Dynamics,  2014
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The “classical” theory

Assumptions
• elastic material behaviour
• „smooth“ surfaces
• constant coefficient of

friction (Coulomb law)

Comparison to tests
• deviations over the whole

range
• no decrease at higher

creepage
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Possible implications on vehicle dynamics

Creepage
→Drive train dynamics

Vehicle velocity
→Trac on control

Load and contact geometry
→Curving

Contact conditions
→Trac on control
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The ECF-Model

Temperature Model

3BL-Model

set on Tangential Contact
Model (bristle model)

(p- and T-dependent)

Fluid Model

Input

Output

Temperature in contact [C]

1400

0

Fluid pressure in contact [MPa]

ECF-Model

Model based on physical sub-models

Þ Coefficient of friction µ is not an input Þ f is an output

Þ 3BL
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The ECF-Model - Tests

Loco tests

àmeasurement of traction
characteristics under different
boundary conditions
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Twin-disc tests

à assessment of different
contact conditions

SUROS at University of Sheffield

after loading
HPT tests (High Pressure Torsion)

à assessment of roughness, water,
sand
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The ECF-Model – Twin Disc Tests

§ 3BL found on specimens (steel particles, iron oxides)
§ Also found in real railway operation

Includes effects from
• natural and artificially introduced solids like interfacial layers (granular materials under

high pressure
• wheel-rail surface (roughness, micro-cracks, etc.)

Þ Properties of 3BL?

elastic

elastic

?

Results from Twin Disc experiments
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The ECF-Model – HPT Tests

after loading

3BL
§ Normal stresses comparable to wheel-rail contact (N)

§ Rotation of discs and measurement of torque (T)

Þ Relationship between shear strain and shear stress

Þ Influence of roughness, water, sand

N

N

T

T
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The ECF-Model – HPT Tests

• Contact conditions

• smooth / rough surfaces

• „low“ / „high“ amount of sand

• dry / wet

Ra = 4 µm

Rt = 33 µm

Ra = 0,1 µm

Rt = 0,9 µm

smooth
rough

“low” sand

“high” sand

§ Results
• p-dependency of 3BL-Model parameter

Þ low influence of roughness
Þ low influence of amount of sand
Þ water reduces the shear stress level
Þ sand brings it back to original level

Þ Behaviour at vehicle tests?
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The ECF-Model – On Track Tests

Locomotive testing in Wildenrath/Germany

Measurement of traction characteristics

• with adapted traction control

• creepage: 0% - 50% - 0% in 8 seconds

vehicle velocity v [m/s]

1 5 10 20

dry x x x x

wet x x x x

dry/sand x x x x

wet/sand x x x x
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The ECF-Model – On Track Tests

ECF-Model in good agreement with the vehicle test results

§ Influence of creepage
§ Influence of vehicle velocity
§ ECF-parameter from HPT tests used for reproduction of vehicle test results

Þ Estimation of traction characteristics by ‘simple’ HPT tests is possible

classical theory: µ = const

cx [%] cx [%]longitudinal creepage cx [%]
tra
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n
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one set of model-parameters

Test
ECF-Model

Test
Test

Test
Test
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The ECF-Model - Results

dry

dry/sand

wet

wet/sand

Þ Good agreement for different contact conditions
Þ ECF-parameter from HPT tests used for reproduction of vehicle test results

Þ Water reduces traction level

Þ All other contact conditions show similar traction level



30.06.2015

© Siemens AG Österreich 2015
Seite 15 Heinz-Peter Kotz / BG EN SDS VD

The ECF Model in Vehicle Dynamics

ECF model: SIMPACK implementation
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The ECF Model in Vehicle Dynamics

• Same set of input parameters used

• ECF model within SIMPACK gives practically the same results

Validation of the User Routine
§ Parameter variation: thickness of the 3rd Body Layer (h3BL)

ECF - Matlab
ECF - SIMPACK
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The ECF Model in Vehicle Dynamics - Curving

Traction in curves: FASTSIM vs. ECF-Model

FA
ST

SI
M

EC
F-

M
od

el

§ SIMPACK model

§ traction in tangent and curved track (f = Tx/Q)

§ leading truck, leading wheel set

outer rail inner rail

outer rail inner rail

FASTSIM

§ Traction maximum independent of curve radius
ECF-Model

§ Traction characteristic and maximum curve radius dependent

Þ Effect known from operation
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The ECF Model in Vehicle Dynamics

1 2 3 ECF
COF 0,39 0,39 0,53/0,25 -
Louter -8,38% -9,14% 18,10% 12,95%
Vouter 3,93% 5,76% 6,81% 12,04%
L/Vouter -12,41% -12,41% 9,49% 0,73%
L/Vinner -27,59% -27,59% -3,45% -8,62%
dz 41,18% 100,00% 11,76% 5,88%

§ SIMPACK vehicle model
§ Curving scenario (deviations from testing in %)
§ Creep-Force-Models: 1 = FastSim table, 2 = FastSim online, 3 = FastSim with different m inner/outer rail

§ The standard model does not predict the L/V value on the inner wheel correctly
§ Only with the ad hoc assumption of two different COFs the measured values can be

reproduced
§ The ECF gives a good result without any such assumptions
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Summary

Friction in wheel-rail contact is crucial for vehicle-track interaction

Classical creep force models are generally unable to explain the measurements

W/R-friction can not be described by only one number for the coefficient of friction
dependent on vehicle velocity, normal load, contact geometry, etc.

Phenomenological models have no physical input

A physical creep force model has been developed (ECF-Model)

This model shows good agreement with test results. The ECF-Model offers new
opportunities for more precise simulations in specific cases
• Curving (especially very narrow curves)
• Traction control
• Drive train dynamics
• Wear
• Fatigue & damage
• ...
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