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EXECUTIVE SUMMARY

1 . Introduction

This is the final report for Phase I (first year) of a two year effort

on Contract D0T-0S-40093, "Improved Wheel and Rail Performance via Control

of Contact Stress." The general state of the art prior to the beginning

of the project has been summarized in the report "A Review of Rail -Wheel

Contact Stress Problems," by B. Paul, FRA-OR&D 76-141, PB251 238IAS , April 1975

The present report gives the detailed mathematical theory of a new approach

to the higherto unsolved problem of finding the stresses between two closely

fitted or "worn-in" metallic surfaces, such as a moderately worn wheel and rail

Before applying the general technique to the wheel -rail problem it is essen-

tial to check its validity with simpler geometries such as closely fitting

cylinders and spheres, where previous experimental and approximate

analytical solutions exist.

2. Problem Statement

The overall objective of the contact is to generate a method for

calculating the contact stresses between arbitrarily profiled wheel and rails.

In this report a general approach to the problem is formulated, and applied

to two specific geometries: (a) a cylinder pressed against a closely fitted

cylindrical seat and (b) a sphere pressed against a closely fitted spherical

socket. In addition, the stress concentrations induced by the presence

of a small defect such as a corrosion pit are calculated for the case of

a sphere.

3. Results Achieved

Since worn wheels and rails contact conformally, the existing contact

stress theories for nonconformal contact are not adequate. In this report a

general numerical method of solution for three dimensional, frictionless,

conformal , elastic contact problems is presented for the first time. The

method is used to analyze the conformal contact of a sphere indenting a

spherical seat and a cylinder indenting a spherical seat. The results of the

sphere-spherical seat problem compared well with experimental data and are

significantly more accurate than those of a previously published attempt to

solve the problem. Results of the cylinder-cylindrical seat problem were in

close agreement to a known approximate solution of this problem and agree well

EXEC. -1



with an existing photoelastic experiment. For both analyses, results compared

favorably with Hertzian theory for the limiting case of small contact regions.

A method is given for defining the boundaries of the large contact regions,

and for solving the associated governing singular integral equation of the first

kind. A general iterative procedure is developed which converges to the

true three-dimensional contact region.

In addition the solution to a non-Hertzian contact problem with a multiply

connected contact region is solved; namely, the case of two spheres in con-

tact where one of them has a surface defect or pit. The method developed was

capable of detecting extremely steep gradients in stress at the defect.

4. Utilization of Results

Better understanding of the contact stress distribution at the interface

of wheel and rail could lead to substantial advances in the solution of several

key problems in railroad technology. Examples include wheel screech, flange

impact noise, wheel and track wear and fatigue failures, deterioration of

ride quality and possible derailment due to lateral and longitudinal slippage,

increase of headway (and loss of economic capacity) due to adhesion limits

in braking and acceleration.

The results of the research has potential for wheel and rail designers,

and those doing research and development work in the areas of wheel and

rail failures, rail-car dynamics, ride-comfort, and safety.

5. Concl usions

The objectives set for Phase I of the research have been achieved. In

addition to the generation of a comprehensive survey report on wheel -rail

contact stress phenomena, the work reported on herein successfully tested the

validity of a new method for finding contact stresses between closely fitted

curved surfaces such as cylinders and spheres. This work is a necessary

precursor to the solution of the more complicated geometrical configuration

of wheel-rail interfaces, which is the subject of Phase I of this research

project.

EXEC. -2
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1. INTRODUCTION

The very large contact stresses which exist between rails and conven-

tional wheels may be calculated by Hertz's analysis when the wheels are new,

and the area of contact is small. However, when the wheels are worn, or are

initially fabricated with so-called preworn profiles, the contact area will

be too large for the Hertzian analysis to be valid. In fact, for this

latter case of so-called conformal elastic contact, there is no currently

available method for accurately predicting contact stresses. We have

therefore undertaken the task of developing general methods for the deter-

mination of contact regions, surface deformations, approach^, and interfacial

pressures in conformal (i.e. closely fitting) elastic bodies. In this

work we report upon the numerical method developed to date, and show how

it may be applied to the case of conformal cylinders, or spheres.

Contact problems can be classified into the following two categories:

i) Problems where one body is elastic and the other is rigid

ii) Problems involving two elastic bodies

In the first class of problems, termed "punch" problems, the

The approach" is defined in contact mechanics as the displacement of
a point in one body relative to a point on the other body, where both points
are far removed from the region of contact.

2
The essentials of this work constitute the Ph.D. dissertation of

W. Woodward at the University of Pennsylvania, 1976.
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contact region is known a-priori. In the second class, termed elastic

contact problems, the contact region is initially unknown and must be

determined. The first widely acclaimed solution to a contact problem

was that published by H. Hertz [1881] involving the elastic contact of

frictionless bodies with quadratic surfaces. Hertz's solution is

centered around the assumption that the dimensions of the contact

region are small compared to the radii of curvature of the bodies.

Problems for which this assumption is valid are termed "nonconformal

"

or "counterformal " contact problems. Most solutions that have been

found to date are of this type. In contrast, problems not restricted

to this assumption are termed "conformal." Following Hertz, solutions

to punch problems were analyzed by several Russian authors such as

Muskhelishvili [1963], For detailed accounts of these problems the

reader is referred to the excellent reviews of this work by L. A.

Galin [1961] and A. I. Lure [1964]. Recently, elastic contact prob-

lems involving friction and dynamics have also been analyzed. In a

recent publication, Kalker [1975] categorizes the solutions to date

and identifies the areas within contact mechanics which need

investigation. His comparison reveals that the areas involving

friction, plasticity, visco-elasticity and large deformations are in

most need of study. Kalker does not review the analysis of conformal

contact problems in his survey. It should be noted that the uniqueness

theorem of Kirchoff (not intended for contact problems) was extended

only recently to include general frictionless, elastic contact problems

by Kalker [1971]

.
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This dissertation centers on providing a general numerical

method of solution to conformal frictionless contact problems. The

literature in the areas mentioned above is far too comprehensive to

review in this brief introduction, instead the interested reader is

referred to the aforementioned surveys. The remainder of this dis-

cussion will be devoted to a more detailed discussion of the existing

numerical solutions and the limited literature on conformal contact

probl ems

.

With the advent of the digital computer several numerical

techniques have been developed to analyze a more general class of con-

tact problems. Conry and Seireg [1971] have examined elastic contact

in terms of a linear programming model. Their method is general in

scope, however, the only examples which were analyzed were Hertzian or

one dimensional beam problems.

Kalker and van Randen [1972] derived a variational principle

for both linear and non-linear elastic contact problems. For the case

of linear elasticity the principle takes the form of an infinite

dimensional convex quadratic programming problem. They successfully

solved both a Hertzian and non-Hertzian problem. It was concluded that

the solution yielded accurate values of approach, maximum pressure and

applied force; however, the actual contact area was not determined with

great accuracy.

Finite element techniques have also been adapted to solve

contact problems by Chan and Tuba [1971] and more recently by Chaud,

Haug and Rim [1974]. Both methods are general in that they are
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reported to be able to handle problems which fall into the domain of

finite element analysis such as analyzing non-isotropic,

non-homogeneous media or problems with plasticity and creep, however,

both works report only examples which are composed of isotropic

materials stressed within the range of linear elasticity.

Tuba and Chan compare their computed results to photo elastic

studies and concluded that trends were identical but the results lacked

close agreement. Chaud et al, analyzed the non-Hertzian problem of a

human knee joint and the contact between two half spaces where one

half space has three bumps on the surface. The contact area in the

latter case found in photo elastic studies had good general agreement

with their computed results.

A general method of solution of non-Hertzian, non-conformal

elastic contact problems was developed by Singh and Paul [1974]. They

considered the classical contact criterion (which includes that of

Hertz) for arbitrary surface geometries. In order to solve the

governing integral equation of the first kind, which belongs to the

class of "ill posed" or "Hadamard incorrect" problems, they introduced

three different numerical schemes. The first "simply-discretized

method" was found to be relatively unstable for the particular problems

they investigated. In order to overcome this difficulty, Singh and

Paul [1973-74] introduced two other methods of solving ill posed

integral equations, called the "Redundant Field Point method" and

the "Functional Regularization method"; the latter of which is based

on Tychonov's regularization procedure.
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In contrast to counterformal problems are those of the

"conformal" type; i.e., those where the dimensions of the contact

region can be large compared to the smallest radii of curvature of the

contacting bodies. Relatively few solutions to conformal contact

problems have been published. A brief summary of all elastic conformal

problems, known to the author, follows.

An elastic sphere indenting an elastic seat has been solved by

Goodman and Keer [19651 . They present results for the half angles of

contact up to 20 degrees and provide experimental results which

generally agree with their solutions. Improvements to the Hertzian

theory are discussed— in particular, the problem which arises when one

tries to include terms of higher order than those used in the "half

space solution" (of Boussinesq) which is fundamental to the Hertzian

solution. It is noted that there are higher order terms in the exact

formulation of the sphere problem which do not appear in the formula-

tion if the half space assumption is used without truncating terms.

These terms are particular to the spherical geometry. Goodman and Keer

justify their extension of the Hertzian theory through analysis of

these second order terms.

The conformal contact of an elastic cylinder indenting a

cylindrical seat was first analyzed by Sjtaerman [1940] and more

recently by Persson [1964]. Sjtaerman and Persson derived the iden-

tical "contact criterion" but both proceeded in different ways to solve

the equation. Sjtaerman formulated the displacements in terms of

integrals of the influence functions and used finite difference
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techniques to solve the resulting integral equation for the unknown

pressure distribution. On the other hand, Persson assumed the contact

region to be cylindrical in shape and formulated the criterion as an

integro-differential equation from which he found analytic expressions

for the pressure field. The earlier solution of Sjtaerman appears to

be less accurate, possibly because he published before the digital

computer was invented and may have been forced to use a too crude

finite difference mesh.

Recently, a number of problems involving a disc in an infinite

plate under tension have been solved by finite element techniques.

Chan and Tuba [1971] analyzed a plate under tension with a shrink fit

disc located in the center. They present results which show good

agreement between their computed values of ci rcumferential stress and

the exact solution, however, there is a larger discrepancy between the

computed value of compressive stress and the exact solution. In fact

the compressive stress on each body for any one angle does not in

general agree.

Chaud et al [1974] have analyzed the problem of a plate under

tension with either a loose or full inclusion. They show good agree-

ment between their predicted contact stress and experimental results

for a contact angle of 20 degrees.

The goal of this research is to develop a general method of

analysis for frictionless, conformal contact problems. In particular,

the method developed is to be used in future research on the analysis

of interfacial contact stresses between a railway wheel and rail. The
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concepts of Hertz's classical geometric formulation of the contact

criterion are extended to non-planar surfaces resulting in a singular

integral equation of the first kind. The solution is dependent on

identifying the influence functions for surface point displacements

in the region of the contact area. A numerical appraoch to generating

influence functions is developed and the accuracy of the generated

functions is shown to be good for those cases where analytic solutions

are known. The simply discretized method of Singh and Paul [1973] was

used for solution of the integral equation. The solutions using this

formulation were compared to Hertz's solutions for limiting cases in-

volving small contact regions.

The results of the present general method are compared to

available analytic solutions to specific problems involving the contact

of an elastic cylinder in seat and a sphere in seat.

In addition, a solution was found to a noncomformal problem

with a multiply connected contact region. The proper boundary

iteration which is necessary to arrive at a unique solution is

developed and discussed. The specific example analyzed is a pitted

sphere in contact with a sphere. The significance of pit geometries

on the contact stress are illustrated.

In summary, the main contributions of this disseration are:

1. A general numerical method for solution of frictionless conformal

elastic contact problems is presented
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2. Numerical influence functions needed for solutions of problems

with cylindrical and spherical surface geometries were generated

and their accuracy was verified by comparison to exact analytic

solutions when they existed

3. In its application to the specific problems of a sphere indenting

a spherical seat and a cylinder indenting a cylindrical seat, it

was shown that this method produces accurate values of contact

pressure approach, displacements, strains and applied force

4. The problem of a pitted sphere indenting a sphere was solved for

the first time and the appropriate boundary iteration for

multiply connected contact regions was established

Chapter 2 contains a brief review of the previous non-

conformal methods of solution presented by Singh and Paul [1973-74].

The conformal contact theory which is the basis of this work is

formulated in chapter 3. The generation of influence functions which

are necessary to the solution of the sphere and cylinder problems is

discussed in chapter 4. Chapters 5 and 6 contain solutions to the

examples of a sphere indenting a conformal spherical seat and a cyl-

inder indenting a conformal cylindrical seat respectively. A contact

problem involving a multiply connected contact region is solved in

chapter 7. The conclusions of this work are presented in chapter 8.



2. FORMULATION AND SOLUTIONS FOR NON-CONFORMAL CONTACT PROBLEMS

2.1 Introduction

The basic equation for non-conformal contact theory is

developed in this chapter along with a method of solution. Hertz

[18811 has shown that the governing equation is an integral equation

of the first kind. Hertz found an analytical solution to this

equation for the special case where the surfaces may be modelled as

locally quadratic; however, the integral equation itself applies to

any non-conformal contact problem and has been solved by Singh and

Paul [1974] for non-conformal, non-Hertzian contact problems. The

method of solution outlined here is that developed by Singh and Paul

and is termed the "Simply-Discretized" or "S.D." method. They proved

that the S.D. method can become unstable; they applied a stabilizing

technique termed the "Functional Regularization" or "F.R." method,

when the S.D. method proved unstable and successfully solved several

problems. The "Functional Regularization" method is also summarized

in this chapter.

In addition to presenting the basic integral equation for

non-conformal contact, the material in this chapter introduces the

concepts of contact theory which will be used in the development of

the governing integral equation for conformal contact in chapter 3.

Furthermore, the "Simply-Discretized" method of solution will be used

t

9
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in solving the conformal contact problems presented in chapters 5 and

6 and in the non-conformal contact problem with a multiply connected

contact region in chapter 7.

2.2 The Governing Equation for Non-conformal Contact Theory

Consider two frictionless non-conforming bodies initially in

contact at a single point. Loading each body such that the resultant

force acts through the initial point of contact produces deformations

in the neighborhood of the initial point of contact. The area of

contact between the bodies will increase from a single point to a

finite area. In non-conformal contact theory it is assumed that the

dimensions of the contact area are small compared to the local radii

of curvature of the two contacting surfaces. After deformation, the

two bodies undergo a localized elastic deformation and a rigid body

displacement. The rigid body displacement is referred to as the

"approach" in contact mechanics.

In general the geometry of the surfaces before deformation

and the applied thrust is known, while the actual contact area, the

pressure distribution within this area, and the approach 6 are unknown.

The governing equation for non-conformal contact relates the approach,

the contact area, the surface geometry and the interfacial pressure

distribution.

Consider body 1 and body 2 initially in non-conformal contact

at a point 0. (Fig. 2.1) Let a right-hand cartesian coordinate sys-AAA
tern (x.j, y^, z.j) be constructed such that the x-j -

y-|
plane lies

A
tangent to body 1 at point 0 and has point 0 as its origin. Let z-j be



11

Fig. 2.1. Coordinate systems for non-conformal contact
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the unit inward normal to body 1. Also define a left-handedAAA A A A A
coordinate system (x

2
, y

2
, z

2
) such that x

2
= x

] » ^2 ~ y
l

’ and

A A
z
2
= - z

1

. Now examine a cross section of the contacting bodies through

the point 0 as shown in figure 2.2. It is assumed that points on the

surfaces of bodies 1 and 2 which merge after deformation are located

at the same (x, y) coordinates. The displacements due to the contact

phenomena of a point A on body 1 and B on body 2 which merge after

deformation, will be examined closely in the following paragraphs.

Consider the change in the position of point A on body 1

after a load F is applied. Due to the elastic deformation of the

surface, point A moves the distance A 'A" in the z-j direction. This

elastic deformation will be labeled w-j . Also point A moves a distance

AA' due to rigid body motion, labeled A Similarly on body 2 a point

B displaces an amount B'B" or w
2

due to elastic deformation and

displaces from B to B
1

due to a rigid body motion A Therefore, con-

sidering the total motion of points A and B, point A moves a total

distance w-j + and point B moves w
2

+ A^.

Having traced the motion of points on the surfaces of the

contacting bodies, these motions may be related to the surface

geometry to obtain a necessary condition for contact of the two sur-

faces. Note that points A and B are initially separated by a distance

equal to f-j (x, y) + f
2

(x, y) where f-j (x, y) and f
2

(x, y) are

termed the "profile functions" of the two surfaces, f^ (x, y)
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I!

!

Fig. 2.2. Kinematics of surface point displacements in non-

conformal contact.

i



14

represents the coordinate of a point (x, y, z-j ) on the surface of

body 1, while f^ (x, y) is the z^ coordinate of a point (x, y, z^) on

the surface of body 2. After deformation the initial separation

changes. Consider the final separation, S, of points A and B after

deformation

s* + (w,+a>)*(Wi+Ai)
( 2.i)

Define a function f (x, y) and a scalar 6 such that

f(*,$)- +4 (x-v) < 2 - 2 )

and

<J= (2.3)

The scalar 6 is termed the "approach" and physically represents the

distance that points on one body move parallel to the z-^axis towards

points on the other body due to rigid body movement. Rewriting

equation (2-1) by substituting equations (2-2) and (2-3),

S- ) + (w, t wz ) - S ( 2 . 4 )

By assumption in non-conformal contact theory, the contact area is

small compared to the local radii of curvature of the contacting
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bodies. Therefore, it is appropriate to replace these displacements

with the displacement field of an elastic half space due to some

where and v. are the Young's modulus and Poisson's ratio for

body i. It is reasonable to neglect the displacements in the (xj - yp
/s /\

plane and assume that points A and B, located at equal x^»y^ coordi-

nates, will merge after deformation since the displacements in the

(x-j- y|) plane on each body are nearly equal in magnitude and direction.

The pressure distribution in equation (2.5) is over the contact

region ft.. on body i, however ft-j = 9,^. Furthermore, since the radii of

curvature of the bodies are large compared to the dimensions of the

contact area and the radius of curvature of the contact patch is still

larger owing to the non-conformal nature of the contact, the contact

area may be represented by ft, the projection of ft-j onto the x^ -
y^

plane. Substituting equation (2.5) into equation (2.4) the separation

pressure distribution p (x, y) over an area ft.. Hence,

2

(2.5)

t
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becomes:

3 - f(x, 3 ) t k f
J J fr-x'JViM') 2

ob& 4m

(2.6)

where

n E, n

If U is known then equation (2.6) is an integral equation of

the first kind and is the governing equation for non-conformal contact.

The separation of two points within the contact region has to be zero

while the pressure has to be positive, i.e., the bodies can only exert

compressive forces on one another within the contact region. Outside

the contact region, S must be positive while the pressure distribution

must equal zero.

These boundary conditions may be summarized as follows:

S - 0 IS/SIDE J1

J >0 outside n

<P(x, i) ! >0 iusipe sx

<P(X, 1) - O

(2.7a)

(2.7b)

(2.7c)

OUTSIDE (2.7d)
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The solution of a non-conformal contact problem for a given thrust

requires the determination of the unknown contact region n, the

pressure distribution p (x, y), and the approach 6. These quantities

must all satisfy equation (2.6) and the boundary conditions (2.7).

General numerical solutions to equation (2-6) are explained in

sections 2.3 and 2.4.

2.3 The "Simply-Discretized" Method of Solution of Singh and Paul

The general non-conformal contact problem as posed in equation

(2-6) and boundary conditions (2.7) has been solved by Singh and Paul

by the "Simply-Discretized" method. This method is a semi inverse

solution which will be explained in the following paragraphs.

Given that two bodies of known shape are brought into contact

with one another and held there by a force F, the task remains to

locate the boundary of the contact region fi and to find the interfacial

pressure distribution p (x, y) and the approach 6. The "Simply-

Discretized" method is called a semi inverse method because the contact

area is assumed to be some logical "candidate" region whereupon the

pressure distribution and approach are then found via equation (2.6).

The force F is then calculated from the integral of the pressure dis-

tribution over the area n. The initial guess of the logical

"candidate" contact region ft is then checked to see if the values of

the separation satisfy equation (2. 7a) and (2.7b). If they do not,

the "candidate" region can be modified to better approximate the true
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contact region and the solution procedure is repeated. Now consider

the details of this solution.

Discretized" method is to find an approximation to the contact

region ft. Singh and Paul used the plane projection of an

"interpenetration curve" formed by the intersection of the two

surfaces when one body was allowed to mathematically interpenetrate

the other. Increasing the depth of interpenetration would increase

the contact area. Each interpenetration depth would provide one

"candidate" contact area corresponding to one loading F on the bodies.

This concept of interpenetration is physically meaningless in a con-

tact problem since the bodies can not actually interpenetrate one

another; it is only a method which enables one to find an approxima-

tion to the contact area.

Having found a "candidate" contact region the next task is to

find the pressure distribution and approach in equation (2.6). A

"Simply-Discretized" solution is obtained by assuming a piecewise

constant pressure distribution over the area ft. Dividing up the

contact area ft into N cells and assuming the pressure p (x, y) to be

constant within each cell equation (2.6) becomes

The first step in solving equation (2.6) by the "Simply-

( 2 - 8 )
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where

O-v,*)

TTE IT Ez
(2.9)

and

P. is the constant pressure in cell i.

In equation (2.8) there are N unkown P^'s and 1 unknown 6 , thus a

total of N + 1 unknowns. However, equation (2.8) applies to every

point (x, y) inside n, thus it can be written for N + 1 "field points"

inside the contact region. Singh and Paul chose the centroids of the

N cells as N of the field points and picked a last field point at the

intersection of several cells. The integrals in equation (2.8) can

be evaluated numerically to provide the coefficients for this set of

linear equations. Thus equation (2.8) can be expanded to the form

( 2 . 10 )

where

P. is the pressure in cell j
J

f.j is the initial separation of the centroid of cell i

ft. is the area of cell j
J

(x. , y.) are the coordinates of the centroid cell i
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Vi PC ( 2 . 11 )

where

d%' a

latj(*e -x')
x
* 0o-3')*

(x , u ) are the coordinates of the N + 1 field pointoo
f^

+ i

is the initial separation of the N + 1 field point

Combining equations (2.10) and (2.11) into one set of linear equations

in P.. and 6 , the unknown P^ and 6 can be found, in principle, by using

standard Gaussian elimination. This is done by first substracting

equation (2.11) from equation (2.10), thus eliminating 6 from all

equations. The new set of N equations formed can be written as

( 2 . 12 )

where
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Equation (2.12) is a set of N linear equations in N unknown P.j's.

After solving this set of equations for the pressure field, the

approach 6 may be found by back substitution of these pressures into

equation (2.11).

Having obtained the pressure distribution and approach the

original "candidate" contact region ft can be verified via the boundary

conditions (2.7a, b). The "candidate" contact region can be reduced

if the pressure is less than zero at the boundary of ft or it can be

extended if the separation is negative outside the boundary of ft. The

problem can be solved again if necessary to find the pressure distri-

bution in the connected region ft. When the true contact area is found

the total force applied to the bodies can be computed by integrating

the pressure over the contact area, i.e..

where

f =J(P(X, Dahlfill
Jl

(2.13)

A., is the-area of cell i.

In applying the S.D. method to a variety of problems, Singh

and Paul found that it was numerically unstable in the general case.

For small cell densities the solutions obtained were good; however, as

the cell density was increased, the solutions broke down. The pressure

distribution became very erratic, changing from positive values to
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negative values from cell to cell. The details of these results were

recorded by Singh [1972] and Singh and Paul [1973] [1974]. One method

for eliminating the problem of ill -conditioning is known as the

"Functional Regularization" method which will be explained in section

2.4.

2.4 " Functional Regularization "

The "Functional Regularization" method is a technique of

stabilizing an ill-conditioned set of linear equations. This method

was developed by Singh and Paul [1973] in order to extract a sensible

solution from the unstable "Simply-Discretized" method of solving non-

conformal contact problems.

The "Simply-Discretized" method yields solutions which have

wide variations in the pressure fields. Furthermore, it was observed

that small perturbations in the coefficient matrix B of equation (2.12)

produce completely different pressure fields which also vary radically

from cell to cell. Although the determinant of the coefficient matrix

was not singular, it appeared that there were many solutions to the

set of equations generated by the "Simply-Discretized" method of

solution. In order to find the correct solution vector of a large

number of vectors that satisfy the linear equation set, the F.R. method

exploits the "smoothness" property of the pressure distribution. The

F.R. method seeks to approximately solve the original set of equations

while it simultaneously minimizes the difference between the pressure

in neighboring cells. This is accomplished by introducing a function $
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such that

# -- f (Pi-Pt„)
x

< 2 - 14 >

Solving the equation set (2.12) is equivalent to finding a solution

2
to equation (2.15) which produces an e of exactly zero.

(2.15)

"Functional Regularization" seeks an approximate solution to equation

2
(2.15) such that both e and $ are small quantities. Mathematically,

this is equivalent to minimizing a functional

Y(Pi) = f Bcj Pj -fc + V §(Pi) (
216 )

where

o is a small parameter which controls the influence of the

constraint function $. Minimizing & implies finding the

vector P.. such that - 0 or solving the equation set

pp = Bit FC
(2.i7)

cf r(

Bounds for the parameter u have been given by Singh and Paul [1973 ].
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The solution to equation (2.17) is stable in that it yields

a smoothly varying positive pressure distribution which is physically

realistic. Singh and Paul [1973-74] have shown that it closely agrees

with the exact solution for several Hertzian contact problems.



3. FORMULATION OF CONFORMAL CONTACT PROBLEM

3.1 Introduction

The development of nonconformal contact theory was based on

the assumption that the dimensions of the contact area are small

compared to the local radii of curvature of the contacting surfaces.

This assumption is no longer valid in conformal contact. By its

very nature, conformal contact can produce contact areas with

dimensions as large as the radii of curvature of the surfaces.

Because of this assumption in the nonconformal theory it was

appropriate to approximate the contacting surfaces by two elastic

half spaces and to use the Boussinesq displacement function for a

point load on a plane as the influence function^ necessary for the

calculation of the displacement field. In conformal contact theory

the contact region cannot be approximated by a plane, and alternative

influence functions for the surfaces must be found.

Furthermore, no longer can the displacements tangent to the

surface be considered small as was the case in nonconformal theory.

A solution procedure must incorporate both the normal and tangential

displacements of the contacting surfaces in the solution.

Presented in the following sections of this chapter is a

Hhe "influence function" relates the surface tractions to

the displacement field. It may be sometimes referred to as a "Green's
function.

"
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formulation for conformal contact theory which not only incorporates

the true influence function for conformal surfaces but also accounts

for the surface displacements both normal and tangent to the surface.

3.2 Assumptions in Conformal Contact Theory

Consider two contacting bodies, labeled 1 and 2, which have

closely conforming surfaces, i.e., they exhibit conformal contact.

The initial point of contact will be labeled 0. Figure 3.1 represents

a cross section through 0 of the two surfaces. A coordinate system

is constructed such that z is the inward unit normal to body 1 at 0

N
and unit normal y lies in the plane of the cross section at 90°

clockwise of z. The intersection of the surfaces of body 1 and 2 with

planes through the z axis will be termed the "contour curves" of

the respective surfaces. The following assumptions will be made:

1. The surfaces are assumed to be frictionless

2. The line of the applied load on the bodies in contact passes

through 0 (fig. 3.1

)

Considering only frictionless surfaces reduces the complexity

of the contact problem significantly, yet it does not destroy the

usefulness of the solution. It is often desirable to have friction-

less surfaces in contact applications. For example, in the situa-

tions involving bearing surfaces, such as ball bearings or ball

joints, the surfaces are machined and lubricated to minimize surface

friction. This assumption dictates that no shear tractions can be

applied to the surface of either body within the contact region.
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Fig. 3.1. Cross section of bodies in conformal contact



Hence, the normal interfacial pressures will be the only surface

tractions allowed within the contact area.

28

Assumption (2) requires that the resultant applied force

passes through 0. Mathematically this assumption requires that

the following relationship hold:

S r *(- fn-) dA - o (3.D

A
Where ft.. is the contact area on body i, r is a vector extending from

/\

the origin, 0, to a point within the contact area, n.. is the unit

normal to body i of the point defined by r, and p is the interfacial

pressure at the point located by r. This assumption is not required

in the analysis, rather it is made to simplify the analysis. It

should be possible to extend the present analysis to include moments

and rigid body notations.

3 . 3 Formulation of Conformal Contact Criterion

Consider two conforming frictionless bodies in contact. Body

1 will be called the "indentor" while body 2 will be termed the

"seat." In the undeformed state these bodies contact at a point 0.

Figure 3.2 represents a cross section through 0 of typical conformal

AAA
contact surfaces. A global coordinate system (x,y,z) is constructed

such that the x-y plane is tangent to point 0 on body 1 with 0 as

/\

its origin and z is directed inside body 1.

One of the difficulties in this class of problems is the



t
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Ah
per/N/r/oN or outward normal*,
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D

TANQ£NTlAL D/RCCT/ONS

Fig. 3.2 Definition of coordinate systems in conformal
contact theory.
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identification of points on each body which come into contact in the

deformed state. In order to find the sets of mating points we

introduce an iterative scheme termed the "point-mating procedure."

The details of this scheme will be discussed later.

Consider two points, A on body 1 and B on body 2, which come

into contact after deformation. It will be initially assumed that

points A and B lie at equal distances along their respective contour

curves from the initial point of contact. Figure 3.1 illustrates

this concept. The distance between 0 and A measured along the

contour curve of body 1 is s^ while the distance between 0 and B

measured along the contour curve of body 2 is s^. In order to form-

ulate the contact criterion it will be initially assumed that

(3.2)

/s

Let n-j and n^ define the outward unit normals to the surfaces

of bodies 1 and 2 respectively. Shown in figure 3.2 are the

normal vectors at points A and B. n^ is directed ip degrees clockwise

of the z direction while n^ is directed
<f>

degrees counter clockwise

of the z direction. For extremely conforming bodies n^ ~
-n-j . A

local coordinate system will be assigned to each set of points which

contact after deformation. This local coordinate system will have

a unit vector r defined as the mean of n^ and -n-j
,
i.e., the angle

between r and z is defined by a measured counter clockwise, where
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(3.3a)

A unit vector t will be defined as being 90° clockwise of r in the

y-z plane, and a ui unit vector will be defined by

The displacement of point A (and B
)
due to conformal contact

as illustrated in figure 3.3 will be traced. Point A (B) undergoes

a rigid body translation A-j ( ) which carries it in the direction

of z (-z) to point A' (B
1

). As shown in figure 3.3, point A displaces

an amountw^in the -n^ direction (from A' to A") due to elastic

deformation. Not shown in figure 3.3 are the elastic displacements

of points A and B in the tangent plane. These displacements

will be initially neglected in the formulation of the contact

cri terion.

Similarly point B displaces to B" due to an elastic displace-

ment \^2 in the -

n

^
direction. The original vector separation of

points A and B is labeled f and is a function of the geometry of the

contour curves. The vector separation S, between A" and B" (in the

deformed state) is therefore given by the vector relation

to - tx r (3.3b)

s (3.4)
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Fig. 3.3 Kinematics of surface point displacements in

conformal contact.
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Only the components of displacement along the r axis will

be considered in the formulation of the contact criterion. The

elastic displacements, and w
2

form angles of X and tt-X respectively

with the r direction where

ir - y -
<f>

Z
(3.5)

The rigid body displacements and A
2

form angles -a and ir-a

respectively with the r direction while f forms an angle K with the

A

r direction. E, is determined by the shape of the contour curve at

^ A

points A and B. The projections of S in the r direction may be

written as

Iflm. f -6 JO04.<k f- ('•*/, -tVVj % (3.6)

where 6 = -(A^ + A^)

.

6 is termed the approach and represents the

distance that points on one body move along the z axis towards

points on the other body due to rigid body movement.

In general the displacement w-j and w
2

may be written in

terms of the interfacial pressure plx'.y'.z
1

) and an influence

function G-| (x,x' ,y,y
'
,z,z

' ) as

J n.

(3.7)
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where ft. is the area of contact of body i. Physically the function

.1

G.j ( x,x
! y,y ' z,z' ) represents the elastic displacement in the -n .

direction at point (x,y,z) due to a unit load at point {x\y',z') in

the -n^ direction. In the most general form equation (3.6) may be

written as.

St- - If I f " & 01 +

+ XAi A I Tf<«; i) Gf (*,*',iX +

4 /OH aJn*w) (3.8)

In order to solve the conformal contact problem it is

necessary to find the interfacial pressure P(x',y',z'), the approach

6, and the final contact area ft, all of which satisfy equation (3.8)

and the following boundary conditions:

S> -o INSIDE 41 (3.9a)

TV*,?,?) 2 0 INSIDE SL (3.9b)

S, >0 OUTSIDE SL (3.9c)

Pcx.i.i) =0 OUTSIDE jCI (3.9d)

Furthermore, it is required to verify the accuracy of equation

(3.2), i.e., that the points within the contact area satisfy the

relationships:
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St =o

S«j = o /firstp£ Jl

/NS/Pe SL (3.9e)

(3.9f

)

where S. and S represent the separation in the t and w directions
t 03

respectively.

criterion for conformal contact. They are analogous to equations

(2.6) and (2.7a-d) for nonconformal contact. Equations (3.8) and

(3.9a-d) may be solved in a similar manner as equations (2.6) and

(2.7a-d) using the "Simply-Discre cized" method of solution.

However, this solution only guarantees the displacements be compat-

ible in the r direction since only S
r
was involved in equation (3.8).

Therefore it is necessary to examine the components of the displace-

A A

ments in the t and w directions to insure that A and B merge as

originally assumed. An iterative scheme, termed the "point-mating

procedure," is outlined which shows how successive "Simply-Discretized"

solutions may be utilized to converge upon a final solution in which

merging points on each body have been identified.

Consider the "point-mating procedure" on the first attempt

at solution. As shown in figure 3.1

where k-j = 1 . With the "Simply Discretized" method of solution,

equation (3.8) is written for N + 1 field points, thus for each

Conditions (3.8) and(3.9a-f) represent the contact

? k, x, (3.10)
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field point equation (3.10) must be assumed. This can be restated as

* .

4 1
- k, a,‘ (i-i.Nti) (3.ii)

The first solution of equation (3.8) yields a pressure field,

approach and a contact region ft. The elastic displacements w-j and

at each field point may be calculated via equation (3.7). Now

it remains to see if indeed the field points on each body merge.

In order to check the final separation it is necessary to compute
A /\

the displacements in both the w and t direction. Denoting the dis-

placements of a field point on body i in the tangential plane of body

i by u^ and respectively, they may be determined as in equations

(3.12a ,b) ,
where u^ lies in the plane of the contour curve and v^ is

A

in the direction of w.

Ui ') (*,*', 'iA ,1,1')dt'didl' (3.12a)

i i 1. iA W.if
' dl

'

(3.12b)

In equations (3.1 2a , b )
/-/ and I.. represent the influence functions

for body i which relate the displacements u . and v. respectively

at a point (x,y,z) to the normal pressures exerted at a point

(x',y',z'). The pressure field P(x',y',z l

) and the contact areas

ft.j are known from the solution of equation (3.8).

Examining one set of points, A on body 1 and B on body 2,
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which are assumed to merge after deformation, the total separation

may be written as:

S - St
f + S

t
* * Su u = ) co*\ r +

+(m,-u
t
)c<n\i +(<f-if,)A> *f

x
hf

t
i -£r r (3.13a)

where

f s fr r * fu to (3.13b)

and

£ i = -(*,+£1 )$ = iT r +6t i + O u> (3.13c)

Equation (3.8), which was originally solved by the "Simply-Discretized"
A

method represents the r components of equation (3.13).

In the first solution of equation (3.8) it was assumed that

u, = u 9 , v, = v 9 , f = 0. However, the first solution has now
c. \ C CO

provided values for u^ , u^, v-j , and 6. f is a function of the

geometry of the undeformed surfaces and 6 may be decomposed into 6
r

and 6^. Therefore all the quantities in equation (3.13) are known

to a first approximation after the first simply discretized solution.

The separation after the first solution may be computed and in general

it will be non-zero. It will be shown how the separation may be

utilized to better approximate equation (3.11) sc that the separation

of a second solution to the same problem will be much smaller.
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In order to simplify the illustration of the point-mating

procedure, it will be assumed that for the problem at hand v-| and

are zero for all field points. This is the case for axi symmetric

bodies. Furthermore, consider the seat to be fixed at some point

well removed from the contact area (where the elastic deformation

is negligible), thus after the deformation the indentor will have

displaced the entire amount 6 due to rigid body displacement. Typi-

cal displacements for points A and B, including the u-j and Ug

displacements found via the first simply discretized solution, are

illustrated in figure 3.4. The solution to equation (3.8) guaranteed
A

only that the separation in the r direction would be zero. As

shown, the points A and B will in general be separated by a distance

S^. Equation (3.11) may now be modified such that

9
% •

- A
}

‘
A,

*
(3.14)

(3.15)

and subscript j refers to the number of the iteration.

This modification compensates for the error in the original

assumption (3.11). Using relationship (3.14), the calculation may

be performed a second time. The value of S' in the second solution

will be much smaller than that of the first, however, if it is
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Fig. 3.4. Displacements of typical field points in

conformal contact.
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still too large, a new value of k^, may be computed following

equation (3.15).

Equations (3.14) and (3.15) may be generalized as

A

where

(3.16a)

(3.16b)

and j denotes values associated with the j th "Simply Discretized"

solution [k, = 1]. The value of k
1

. in equation (3.16) is used
J

in place of k
1
. , for the j th "Simply Discretized" solution. The
3

iterative scheme can be repeated until the desired tolerances on Sj.

are met.

A

Also of concern is the separation in the u> direction. It

was assumed that points along contour curves merge, however, if v-j

and ^2 are n°t equal, points A and B may not lie on the same contour

curve after deformation. This can be determined by examining the

separation. S', in the u> direction. It must be remembered that the
or

solution at hand is an iterative one and therefore, the separation

of field points will in general never be zero. The separation can

only be reduced to an acceptable amount.

In summary, a mathematical model of frictionless conformal

contact theory has been presented. The model takes the form of



equations (3.8) and (3.9a-d). Since there is no knowledge a priori

of which points on each surface merge, initially points located by

equation (3.11) are assumed to merge. The contact criterion of

equations (3.8) and (3.9a-d) only insure that two field points,

assumed to merge, have zero separation in the r direction. In order

to guarantee the absence of separation between two field points

in the contact region, the iterative scheme termed the "point-mating

procedure" must be applied.



4. GENERATION OF INFLUENCE FUNCTIONS

4.1 Introduction

In the formulation of both the nonconformal and conformal

contact theories, the influence function plays a crucial role.

Physically the influence function relates the elastic dis-

placement at a given point to the applied force at some other point.

The elastic displacements due to a given pressure distribution can be

found by integrating the product of pressure and the influence

function over the contact area. This is illustrated by equation 3.7.

In any given problem it is necessary to know the influence

functions which are appropriate for the given surfaces in contact.

In nonconformal theory the contact area is approximated by a plane

making it appropriate to use the Boussinesq influence function, for a

point load on a half space, as the influence function for all sur-

face geometries. However, in conformal theory, where the contact

surface can not be approximated by a plane, it is necessary to find

the influence functions explicitly for each of the bodies in contact.

For some problems analytic influence funtions may be found;

however, in the event that no analytic functions are available, they

may be generated numerically. The following two sections, 4.2 and

4.3, present the classical solutions of a half space loaded under a

point load and line load respecti vely . In section 4.4 the principles

42
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involved in the numerical generation of influence functions are

developed. The remainder of chapter 4 contains examples of influence

functions generated with finite element techniques. Wherever

feasible, analytic solutions are compared to the numerical influence

functions.

4.2 Influence Function for a Point Load on a Half Space

The problem of a half space loaded with a normal concentrated

load was first solved by J. Boussinesq [1885] J Consider the half

space and coordinate system illustrated in figure 4.1.

A concentrated load F is applied at point 0 and point A is

located on the surface of the half space at a distance |r| from 0.

u represents the elastic displacement of point A in the direction of

r while w represents the elastic displacement in the z direction.

Boussinesq found u and w to be given by

( l-2U)( /* u) F

Zrr £ It I

(4.1)

US
F

IT E ifl
(4.2)

where E and v are Young's modulus and Poisson's ratio respectively for

the half space.

Equation (4.2) forms the basis of the influence function used

^See Timoshenko and Goodier [1970], pp. 398-402.
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I

i

I

Fig. 4.1. Point load on half space
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in nonconformal contact theory. We wish to generate a function

G (x, x', y, y') which relates the normal displacement at (x, y)

to a unit load at (x', y'). Noting that in equation (4.2) w is pro-

portional to l/|r|, where |rj is the distance between points (x, y)

and (x', y'), the influence function for the normal surface dis-

placement on a half space may be written as

(!-»') i

7T£
(4.3)

Similarly, for the displacements tangent to the surface, a function

H (x, x', y, y') may be defined as

~(l-2vXl+v) /

27r£
(4.4)

If a pressure field p (x
1

, y
1

) were considered to act over

the surface of a half space within a region ft, the displacements w

and u due to this pressure field can be calculated by the following

equations

:

uj --fTr*;y)6(xxir)4*'dt' < 4 - 5 >

%rt

SI
(4.6)



46

Both G and H play an important role in the generation of numerical

influence functions which will be explained in section 4.4.

4.3 Analytic Solution for a Line Load on a Plane

Consider a line load acting on the edge of a semi -infinitely

plate. It is desired to find the displacement field in the plate due

to the given loading, (see fig. 4.2)

As posed the problem is one of plane stress and was originally

solved by Flamant [1892]. For boundary conditions, it is assumed that

points along the y axis have no motion in the x direction while a point

A, located along the y axis at a distance d from the surface, is fixed

rigidly. The displacement field then becomes^

(T-~

U s -

2 P * (\-\>)F _
. ^— — ———

- Q AbnO +
7TB V 7TB

zvt

(4.7)

7TB

(i-v)

AjwlQ
ZF g

(\-v)F
'

f ——— B
re 7T£

IF—— ,4am. 0 i —
ve we

AiAM. 6 (4.8)

where E and v are the Young's modulus and Poisson's ratio respectively

of the plate. The solution is not unique in that it is dependent on

the value of d chosen in the boundary condition.

1

See Timoshenko and Goodier [1970], p. 103.
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4

Fig. 4.2. Plate loaded under line load

i
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Let 0 be tt/ 2. The surface displacements for the plane stress

problem become

U s +
ZF
TT£

O+v)

TTf
(4.9)

lr - -
a-v)

ZE
(4.10)

For the case of plane strain equations (4.9) and (4.10) may be written

substituting v by v and E by E where

(4.11)



The proof of this substitution is shown in appendix 1. For plane

strain the surface displacements at 9 = tt/2 become
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2F(l-» %
) . t

7TE ^fd.

(i+v)
(4.12)

_ (l-Z\t)(l+V)F

ZE

Equations (4.12) and (4.13) form the basis of an influence

function for a line load on a plane. Consider a unit line load.

Parallel to the z axis at x', then the displacements along a line at

coordinate x becomes

G (x. x ')
Z U-v*) „ Ix-k'I U+v)

ne
(4.14)

H (XX) - -
0-Z»)(\4U) xX
IE lx-x'l

(4.15)

where G (x, x') and h(x, x') represent the influence functions for

displacements u and v respectively for 0 = tt/2. Equations (4.14) and

(4.15) are essential to the numerical generation of influence functions

when line loads are involved. These results will be used in sections

4.7 and 4.8 for line loads on bodies with cylindrical surfaces.
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4.4 Numerical Generation of Influence Functions

Consider a three dimensional body whose surface is defined

by z =
<|> (x, y), as illustrated in figure 4.3. For a linear isotropic

material, the influence function for the surface point displacements

will be of the form

where F is a unit load acting normal to the surface at point

(x‘, y', z
1

) and (x, x', y, y
1

) represents the displacement in a

defined direction at some other surface point (x, y, z). E is the

Young's modulus of the material and v is Poisson's ratio. The

function g(x, x', y, y', v) depends on the geometry of the body and

has dimensions of [1/L]. In some cases g may be found analytically

however for more complicated geometries the task may be impossible.

When g can not be derived by analytic means, it can in principle be

constructed from a set of finite element solutions. A simple example

follows which demonstrates this numerical procedure.

Consider the region (z < 0) defined by the curvilinear

coordinate system illustrated in figure 4.4.

A unit load F is applied to point (x', y') normal to the

surface and it is desired to find the displacement Gina specified

direction at a point (x, y). For the purpose of finding finite

(4.16)



Q.C

Fig. 4.3. Three dimensional surface 4> (x, y) under point load

Fig. 4.4. Curvilinear coordinate system on three dimensional surface
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element solutions, a model of the body is divided into "elements."

The surface of the body is defined by the top sides of some of those

elements. The intersection of more than two elements defines a node.

Figure 4.4 illustrates a typical discretization of the surface of

some typical body into elements.

In order to find G at (x, y) due to F at (x
1

,
y'

) it will be

necessary to solve a number of finite element problems with the above

model. Consider that a set of solutions is known via finite element

techniques within the region of interest around (x, y) and (x', y').

Each solution corresponds to a problem where the point load is

applied to a different node. Thus from these solutions the displace-

ment at each node is known due to a point load at any of the other

nodes.

Now consider in further detail elements i and j which

contain points (x', y
1

) and (x, y) respectively, (see fig. 4.4)

Let us approximate element 1, 2, 3, 4 as a plane facet, then

a set of four forces located at nodes 1, 2, 3 and 4 may be found

which is equipollent to F at (x‘, y
1

) i.e., if it is required that

the forces at nodes 1, 2, 3 and 4 sum to F and that their moment about

(x
1

, y') is zero then F may be replaced by forces F x ,
F 2 , F

3 , and F 4

at nodes 1, 2, 3, 4 respectively. By superposition of the finite

element solutions, the displacement at node 5 may be found due to the

set of forces F x , F 2 , F 3 , F 4 . Similarly the displacement at nodes 6, 7,

8 may be found. One final interpolation may be made between these dis-

placements at nodes 5, 6, 7 and 8 to obtain the displacement G at (x, y)
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due to F. The above scheme, involving the interpolation between

finite element solutions, illustrates how an influence function can

be generated numerically for arbitrary surfaces.

It must be noted that finite element solutions for a point

load applied to a node will yield a finite displacement directly

under the load. This is inconsistent with, at least, equations (4.1)

and (4.2) which predict infinite displacements under a point load on

a plane. The finite element displacement function is only valid away

from the point load. In the neighborhood of the load, the appropriate

singularities must be identified as described in sections 4.5--4.8.

The following sections contain examples of the generation of

influence functions via the method described above. They deal with

both point and line loading on spherical and cylindrical surfaces

respectively. In all but one of the examples analytic solutions are

compared to the numerically generated influence functions.

4.5 Influence Function for a Point Load on a Sphere

Sternberg and Rosenthal [19521 have found the solution for

the stress distribution in an elastic sphere under two equal and

diametrically opposed point loads. Guerrero and Turteltaub [1972]

have analyzed a similar problem of a sphere under a finite number of

concentrated surface loads of arbitrary orientation. Both of these

solutions are useful in providing an analytic influence function for

a point load on a sphere. The results that follow are from the

analysis of Sternberg and Rosenthal.

Consider a sphere compressed by two concentrated forces F as
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shown in figure 4.5. From dimensional considerations, symmetry

considerations and the fact that the displacements must be proportion-

al to loads in classical problems of elasticity, it follows that

displacements on the surface of a sphere must be of the form

T v>

It is shown in Lure' [1964] that the displacements u (radial) and u Qr u

(meridional) on the surface of the sphere are as follows:

(m~%) F F f iw-i . ! @— f—— |
— f—^ +—

r® $mR f m 1

- 2 )

6 -

f * HAm f iM&ir

~
‘AmJ z j

jrjE,AS fc ^ (&d6)
I

(4.18)



Fig. 4.5. Sphere under diametrically opposed point loads
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———i—
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, £ o dPm (M@)
+ <£

*?/
( 4 . 19 )

where m is the reciprocal of Poisson's ratio, G is the modulus of

rigidity and (cos 6) are the Legendre polynomials in cos 0. The

coefficients are given as

A
I

n
n?4 (n~i)(ntt)(n+2)

&'

xff m4
+ 7«i

3
t 30m® - (>4-m + 32)fJ

2 +

4 f jffA * 22 m 3 - 31 * 44m -l€)n

+ 10m
4 -

II « s +ltn z
t 20m- 16

]
< 4 -20)
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m 3'(n-i)(n +0(n +

2

j A'

[(7ff\
3
+ ll m 2 -28m tii>)(h+2)

2’

+ (-I8m 3 - 46/n* + l3Zm -72Xn*2)

+ y(m-i)(m z +8m -8
) ]

where

(4.21)

nfn-/) +(in + i)
m+i

m ( 4 . 22 )

The influence functions for a point load on a sphere may be

obtained by considering a unit load F in equations (4.18, 4.19) and

letting 9 represent the angle between the vectors describing the

position of the load and the point A where the displacements are

desired. This is illustrated in figure 4.6.

Consider points A and B on the surface of a sphere. A

AAA
cartesian coordinate system (n, y>) is constructed with the origin,

0, at the center of the sphere. The vectors 0A and OB form an angle 9

between them.

If loads F are applied at point B and at a point diametrical-

ly opposite D then the displacements u and u. at A are defined by
r 0

equations (4.18) and (4.19) respectively. It is important to note
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Fig. 4.6. Coordinate system for influence functions for a

point load on a sphere.
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that the direction of u
Q

is not only a function of 6 but also of the

spherical coordinates (iK 6) of D and those (<K , S') of A. u
Q

is

measured along the tangent to the great circle at D which passes

through point A.

The influence functions for a point load on a sphere may be

written as

<sc% fi, y'J'a £,*)-- (*>») (4.23)

and

(4.24)

where

&(V, £ y'/s') =c^e/xn.

(4.25)

_A

|
OD

From spherical law of cosines or from cos 0 = OA • 0D/|0A|*



60

G and H represent the influence functions for u^ and u
0

respectively

which are given by equations (4.18) and (4.19) respectively. The

displacements u^ (ip, 6) and u
Q

(iJj, 6) at point (^, 6) due to a dis-

tributed load p (ip
'

,

8') over region ft can be calculated respectively

4*ta/0 -/ *W) octjM »,*,*
A

and

ctgfyii):]* t(ry)H(rpyjy,e
Jii)R

,
Ainr'd<f'dr' < 4 . 27 )

Now consider the numerical generation of these influence

functions. It is known from symmetry that the magnitudes of G and H

are related to R, 0 , v and E. Furthermore the orientation of positive

G is always radially inward whereas that of H is tangent to the sur-

face in the direction away from the unit load. Therefore it is

necessary to find functions g r
(e, v) and g

0
(9, v) in equations

(4.23) and (4.24). These functions can be constructed if desired^

from one finite element solution of a point load on a sphere.

The analytic solution of Sternberg and Rosenthal [1952] will
serve as a check on the finite element development which will then be

applied to the spherical seat and other problems without analytic
solutions.
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Consider the sphere under the loading in figure 4.5. This

problem can be modeled for finite element analysis with the grid

shown in figure 4.7. The present analysis was made with the computer

program for axisymmetric problems, described in Wilson [19651. The

grid in figure 4.7 represents a cross section of ring elements which

are axisymmetric about the z axis. Because of the symmetry of the

loading, points located on the x axis were restricted to move only

in the x direction while points on the z axis were fixed from moving

in the x direction. The output data of interest are the displacements

of the surface points. Consider the finite element analysis of a

C

sphere where E = 30 x 10 psi, v = 0.3, R = 1 in. which is compressed

between two forces F, where F = 30 x 10^ lb. From equation (4.17) it

follows that

and the function h and h Q are exactly those, g and g Q , in equations
r u r u

(4.23) and (4.24).

The functions h (0, v) and h Q (0, v) are non-dimensional
r u

functions of displacement which are known at the nodes in figure 4.7

from the finite element analysis. Knowing the displacements at the

(4.28)

(4.29)
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A

Fig. 4.7. Axi symmetric finite element model of a sphere under
two diametrically opposed point loads.



Fig. 4.8. Matching of analytic singularity to numerical
(finite element) influence function.
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surface nodes, the displacement at any surface point may be obtainea

through interpolation.

The computed displacements under the load are finite and the

numerical results must be matched at some point near the load with the

singularity of the function. It is shown in appendix A that the

dominant singularities in the displacements under a point load on a

sphere are indeed those of equations (4.1) and (4.2).

It was found that with an appropriately dense mesh, such as

that shown in figure 4.7, the numerical influence function h
r

(0, v)

would merge with its analytic singularity over a region near the load.

This is illustrated in figure 4.8 where the numerical influence func-

tion h
r
merges with the singular function in the region between A and

B. The singularity was matched to the numerical function at A, thus

between 0 and 0^ the behavior of the generated influence function was

taken to be that of the singularity while for 0 greater than 0
^

the

numerical values of h
r
were utilized to describe the influence

function g r
(0, v). Similar treatment was used to generate

g
0

(e, v).

A comparison of the displacement functions given by "analytic"

equations (4.18) and (4.19) with the displacement function h
p

(0, v)

at the node points of finite element analysis are given in table 4.1.

It can be concluded that the numerical influence functions are accurate

representations of the analytic ones.

4. 6 Influence Function for a Point Load on a Spherical Cavity

The displacements due to a point load on a spherical cavity
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have not been published to date. An investigation by Sternberg et al

[1951], which deals with the solution to the axisymmetric problem of

a region bounded by two concentric spheres, could be used under

certain limiting conditions to produce the influence function; how-

ever, the limit process is very involved and has not been performed.

For the purposes of the present research, the influence function for

a point load on a spherical cavity is derived numerically as outlined

in this section.

Consider a spherical cavity of Radius R under two diametri-

cally opposed point loads, F. The material has elastic moduli E and

v. (see fig. 4.9)

The displacements u
r

and u
Q

are desired as a function of R,

0, E, v, and F. From equation (4.17) which is also valid for a

spherical seat, we note that the displacements must be at the form

(4.30a)

and

(4.30b)
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Fig. 4.9. Spherical cavity under diametrically opposed point loads
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Now consider a (r^, T
2

) coordinate system as shown in figure 4.11.

The influence function for radial and tangential displace-

ments respectively due to loads, diametrically opposed on a spherical

cavity, may be expressed in terms of a ^ » T
2

) s Pherica ^

coordinate system as

We seek to find the functions gr
and gQ

which are the

displacements on the internal spherical boundary surface of an infinite

region under a loading condition such that F/ER = 1. These displace-

ment functions can be easily found using a single finite element

analysis.

Consider the discretized model of a spherical cavity in an

infinite medium as shown in figure 4.11. The model represents the

loading illustrated in figure 4.9. Each element is a ring,

axisymmetric about the z axis. The boundary conditions for the model

restrict the nodes on the z axis to move only in the z direction while

those on the x axis are allowed to move only in the x direction. The

(4.31)

and

% (6 ,
v) (4.32)
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Fig. 4.10. Coordinate system for influence functions for a

point load on a spherical seat.
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nodes on the outer boundary were free. The values of the Force F,

radii, Poisson's Ratio and Young's modulus used in the finite element

analysis were as follows

F = 30 x io
7

lb.

R = 10 in.

R = 200 in.
o

v = 0.3 and 0.25

E = 30 x io
6

psi (4.33)

The solution of the finite element analysis gives the values of the

displacements on the surface of the cavity at the nodal points in

figure 4.11. These displacements, u^ and u
Q

, under conditions where

F/ER = 1, actually represent the values of the functions g r
(9, v) and

g
0

(0, v). Therefore by interpolating between these values an

approximation of g^ (6, v) and g_ (9, v) is known for all 0. As with
r w

the influence functions for the sphere, the singularities of equations

(4.31) and (4.32) near the point load were represented by equations

(4.1) and (4.2).

4.7 Influence Functions for a Cylinder Under Concentrated Line Loads

Consider a long cylinder under two concentrated line loads as

shown in figure 4.12.

The problem is one of plane strain and has been solved in

Muskhel ishvil i [1963]. The displacements at the point Q, in terms of
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quantities labeled in figure 4.12, are

and

(4.34)

- (jUn 2c(, + Ao»

i

(Mm)R 3
.

(4.35)

where F is a line load expressed in units of force/length, u
x

and u^

are the displacements in the x and y directions respectively, andAand

y are the Lame' constants of the cylinder. Equations (4.34) and

(4.35) may be combined to find the displacement field in polar

cordi nates of a cylinder under two diametrically opposed line loads,

as illustrated in figure 4.13.

The derivation of u
r

and u
Q

is performed in appendix B.

The results are as follows:

Uy - -f^ j^/Co4 OJIm. /ah *
/

j
ir F JjT Mm6 (4.36)

Ak
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A

Fig. 4.13. Polar coordinate system for a cylinder under two

diametrically opposed line loads.
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Ue - - F X, M*<-8 Un | - P ~f (4.37)

where

2(1-

V

1
)

ir£
(4.38)

and

(i+v)(i-zv)

2£
(4.39)

The influence function for a line load on a cylinder may be formed

from equations (4.36) and (4.37) by considering 0 to be the angle

between the vector describing the position of the unit load F and the

point Q. The influence functions in the radial and tangential

directions respectively are

G ( Gj Vj £ )
r “ Kf (B -B )£vlfan f

/ J
Kz

f ~jr (0- 0 )
(4.40)
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and

H(6)6> Vj E) <4** (&-6')jUt fa*. [-g^]

+* if Kl /C*l(&-Q') (4.41)

where 6 and 0' are illustrated in figure 4.14.

It is important to note that equations (4.40) and (4.44)

represent the influence function for two diametrically opposed line

loads. They may be integrated as shown below to find the displace-

ments u
r

(0, R) and u
Q

(0, R) due to two symmetric loadings p (0),

where p (0) = p (0 + tt). The displacements may be calculated by

UrOj £) p(e ')Rde' (4 . 4

and

ue cs>/?)*f ej v, e) <f(e ') Rde

'

A
(4.43)

Now consider the numerical generation of equations (4.40) and

(4.41). It is known that the displacements u
p

and u
0

due to diametri-

cally opposed point loads, F are functions of 0, F, E, v and R, where
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Fig. 4.14. Coordinate system for the influence functions of
a cylinder under two diametrically opposed line loads.

I
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E and v are the elastic constants of the cylinder of radius R. From

dimensional analysis the displacements u and u„ may be expressed in
r y

the forms

( 4 . 44 )

T * *'£'**’>

Furthermore, because of the linearity of the problem, the

ratio er must appear linearly in the above equations; hence u
r

and

u
Q
may be expressed in the form:

( 4 . 46 )

and

( 4 . 47 )

We therefore seek to find the dimensionless functions g (0, v) and
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g 0 (0, v) which represent the displacements u^ and u
Q

under the

conditions that F/E = 1. These functions may be found with one finite

element analysis of a cylinder under two diametrically opposed line

loads.

Consider the model of a cylinder given by the finite element

representation in figure 4.15. The elements are plane stress elements.

The line load per unit thickness, F, is applied and due to the

symmetry of loading only the upper-right quarter of the cylinder is

considered. Nodes on the x axis are restricted to move only along

the x axis and nodes on the z axis are restricted to move only along

the z axis. For the solution at hand the values of the parameters

P, E, v and R were taken as

P = 3 x 10
7

lb/in.

E = 32.967 x IQ
6

psi

(4.48)

v = 0.42857

R = 1 in.

The values of E and v used above represent the moduli in plane stress

which are equivalent to the values of E = 30 * 10
6

psi and v = 0.3 in

plane strain. These values were determined via equation (4.11) and

the results are appropriate for the plane strain model with the noted

values of E and v. The solution yields the values of the displace-

ments, u
r

and u
0

at the surface nodes in figure 4.15. These
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A

Fig. 4.15. Plane stress finite element model of a cylinder
under line loads.
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displacements represent the values of g r
(0, v) and g

Q
(0, v) at the

nodal points in the finite element model. The functions g
r

(0, v)

and g (0, v) can therefore be approximated by interpolating between
0

these values.

The singularities for the functions g r
and g

Q
are given by

equations (4.14) and (4.15), that is, those singularities appropriate

to the line load on a plane. It is shown in Appendix C that these

are indeed the correct singularities since the functions in equations

(4.12) and (4.13) approach infinity in exactly the same manner as

equations (4.36) and (4.37), respectively.

It may be concluded that by knowing values of gr
(0, v) and

g
0

(0, v) at the nodal points in figure 4.15 and by having correctly

identified the singularities of those functions, the influence

functions for line loads on a cylinder have been determined. As a

final check on the accuracy of such a function the values of the

displacements
g^, and g

0
from the finite element analysis have been

compared to those of equations (4.12) and (4.13) in table 4.2. It is

clearly indicated that the finite element solution gives a very

accurate representation of the displacements up to within a half

degree from the applied force.

4.8 Influence Function for a Line Load on a Cylindrical Cavity

Consider a cylindrical cavity within an infinite solid body.

Given that two line loads, F, diametrically opposed, are applied to

the cavity surface, the displacements u
r

and u
0
are derived from known

elasticity solutions in Appendix D. (see figure 4.16)



Fig. 4.16. Cylindrical cavity under two diametrical ly
opposed line loads.
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They are as follows:

Ur r ft K, <440 jbtfan (4.49)

and

Lj# r F

£

AJ &m, 2.
~ <04* oj (4.50)

where

ad-» z
)

7T £
(4.51)

and

(l- 2.v)(l+ u)

17
(4.52)

The influence functions for u
r

and u
Q

can be derived simply from

equations (4.49) and (4.50). By considering F to be a unit load per

unit width and by replacing 0 by 9-9' as illustrated in figure 4.17.



Fig. 4.17. Coordinate system for the influence functions of
a cylindrical cavity under two diametrically opposed line loads.
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the influence function for two line loads on a cylinder become

€(&,&',

V

t E) -- -K, (4.53)

- Kt M*.l(e-&)l

It is interesting to note that the influence functions for

both the cylinder and cylindrical seat are independent of the radius

R, since the dimensional analysis leading to equations (4.44) and

(4.45) are valid for the cylindrical cavity as well as for the solid

cylinder. Accordingly, the displacement functions for the cylindrical

seat are:

and

H(0, B',U,E) - I

(4.54)

(4.55)

and

(4.56)
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where $ represents the difference between the angular position of the

force and the displacement, i.e., 9-6' in figure 4.17. The functions

9
p

(<J>» v) and g
Q

(4>, v) represent the displacement on a cylinder where

the ratio F/e =1. An approximation to these functions may be obtained

through finite element analysis. From equations (4.55) and (4.56) we

see that the required influence functions are found by dividing g^
and

9*
bV E-

Consider the model of a cylindrical cavity as illustrated in

figure 4.18. The model represents the loadings illustrated in figure

4.17. The points along the z axis are restricted to move only along

the z axis and 1 i kewise the points on the x axis are restricted to move

on the x axis. The outside radius is thought to be sufficiently

removed from the cavity to consider it at infinity. In the mathemati-

cal problem both the stresses and displacements vanish at infinity.

Therefore, two cases of boundary conditions will be considered at the

outside radius in the discretized model. In the first case those

points are free while in the second they will be fixed rigidly.

For the example at hand the values of E, v, R, R
q

and F were

as follows:

F = 3 x io
7

lb

E = 32.967 x 10
6

psi

v = 0.42857

R = 1 in

R
o

= 20 in (4.57)
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The results of the surface nodal point displacement for the

free and fixed boundary conditions are compared to the analytic

solutions in tables 4.3 and 4.4 respectively. The results indicate

that the boundary condition at the outside radius which most closely

models the true condition is when those points are considered to be

free. The finite element data in table 4.3 shows good agreement

between the numerical and analytic solutions. While the data in

table 4.4 also indicates a close correspondence it does not agree as

well as the results in table 4.3.

Again there is the problem of finding the appropriate

singularity. As might be expected, the Flamant solution for a line

load on a plane, represents the singularity for the case of a line

load on a cylindrical cavity. This is proven in appendix E.

From the above finite element analysis, the functions

g r
(<J>, v) and

g^ (<t>, v) may be evaluated away from the applied loads

by interpolating between the nodal displacements. The Flamant

singularity, given by equation (4.14), may be used as the singularity

of the function (4.55), while the constant in equation (4.15) may be

substituted for the limit of equation (4.56) near the applied loads.

Having constructed equations (4.55) and (4.56), the displacements u
r

and Uq due to distributed line loads p (0) and p (0 + it), where

p (0) = p (6 + u), may be calculated from equations (4.42) and (4.43)

respectively.
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5. CONFORMAL ELASTIC CONTACT OF A SPHERE
INDENTING A SPHERICAL CAVITY

5.1 Introduction

Hertz [1881] provides an analytic solution to the problem of

two contacting bodies with quadratic surfaces. In his theory. Hertz

assumed non-conformal contact, i.e., that all of the dimensions of

the contact patch were small compared to the radii of curvature of the

bodies, hence justifying the approximation of the surfaces in the

contact region, by elastic half spaces. Hertzian theory may be

applied to the problem of a sphere indenting a spherical cavity, how-

ever, it is restricted in its application to the analysis of cases

where the contact patch remains small. If the sphere and seat are

closely conforming, i.e., their radii are nearly equal, then Hertzian

analysis can only be applied for very small loads for which the

contact patch remains small.

Goodman and Keer [1965] have analyzed the conformal problem

of a sphere and seat with nearly equal radii. They present results

for areas of contact larger than those that could be analyzed by

Hertzian theory. As in the theory of Hertz, Goodman and Keer

assumed that points on surfaces of the sphere and seat respectively

which lie along a line parallel to the line of applied load will

merge after deformation. Furthermore, the basic equation in their

formulation enforces this constraint. It will be shown that this

92
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assumption in conformal theory can lead to erroneous strains and dis-

placements when large areas of contact are analyzed.

In section 5.2 the problem of an elastic sphere indenting an

elastic spherical seat will be formulated, using the conformal contact

model discussed in chapter 3. The numerical procedures used in the

solution will be reviewed in section 5.3 and the numerical results

will be presented in section 5.4.

5.2 Formulation

Consider the conformal contact problem of an elastic sphere

of radius R-j indenting an elastic spherical seat of radius

(R
2

> R-|). It is assumed that the sphere and seat are equilibrated by

pressure distributions equal to the interfacial contact pressure and

diametrically opposite the contact region. Contact regions will be

therefore limited to hemispherical contact. A cross section of a

sphere, body 1, and spherical seat, body 2, in point contact at 0 is

illustrated in figure 5.1.

AAA
Let us establish a global coordinate system (x, y, z) whose

origin will be fixed at the initial point of contact, 0, such that the

x - y plane is tangent to the sphere at 0 and z is directed into the

sphere. The cross section of the sphere and seat in the x - z plane

represent the "contour curves" of the sphere and seat and each curve

is a circle.

It is initially assumed that two points which will merge

after deformation, A on body 1 and B on body 2, are defined such that

their distances from the origin along their respective contour curves
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Fig. 5.1. Conformal contact between a sphere and spherical
seat or a cylinder and a cylindrical seat.
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are equal, i.e., = S
2

(Fig. 5.1). Points A and B are defined by

vectors r^ and and the vector difference between them is defined

by f, the vector valued profile function. Alternatively, points A

and B may be located on their respective contour curves by angles

measured at the center of the contour curves from the z axis as

shown in figure 5.1. Point A is defined by angle ip and point B is

defined by angle 4>. In the notation to follow in this chapter all

angles \p will refer to locations of points on the sphere while all

angles will denote points on the seat.

/\ A A

A local coordinate system (r, t, u>) will be constructed at

point A such that unit vector r, which represents the "mean normal"

forms an acute angle a with the z axis, where

e* » -X - (5.i)

£

unit vector t is defined to be tt/2 radians clockwise of r and w is

such that

CO
+ A
t x r (5.2)

The contact criterion can then be formulated by examining the

displacements of points A and B. Consider the following displacements

as illustrated in figure 5.2. Point A moves through a rigid body

translation A^, parallel to the z axis, to A
1

, and through an elastic



96

A*

Fig. 5.2. Displacements on sphere and spherical seat



97

displacement along the inward normal of the sphere to A".

Similarly point B undergoes a rigid body translation parallel to

the z axis to B
1 and an elastic displacement w^ directed along the

inward normal of the seat to B". Because of the symmetry of the

contacting surfaces about the z axis, there will be no displacements

on either body in the to direction.

We now impose the contact criterion, i.e., that the

projection of the separation (S = A" B") in the direction of the mean

A

normal r must vanish. Following equation (3.6) this criterion may be

expressed in the form:

Sf - f404 ? - £ 404 W* )<C04. \ (
5 - 3 )

where

and

z

S = - (a, +a2 )

OAct&sn.
/ fix ~ \

' r,i - rit I

(5.4)

(5.5)

(5.6)

£ is derived in appendix F and r

components of vectors r-j and r^

lx’
r
2x’

r
lz’

as shown in fi

r
2z

are x an<^ 1

gure 5.2. f and 6 are

the profile function and approach respectively.
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It should be noted that the peak strains will remain small

(as required by the assumption of linear elasticity theory) only if

the initial separation f (see fig. 5.1) is small compared to the local

radii of curvature. Therefore some additional but consistent approx-

imations are possible in the derivation of equation (5.3), (see

appendix H). However, these approximations result in no significant

reduction of computational effort.

Consider now the (n-j » C-j > y-j ) coordinate fixed to the sphere

as shown in figure 4.7. Point A can be located in spherical coordi-

nates by (ty, 8, R-j). The elastic displacement w-j at A, shown as u
r

in figure 4.7, can be expressed in terms of the pressure distribution

p (ip
1

,
8‘

) in the form

EJAnrdfi'dr' (5-7)

A

where G (ijj, 6, xp
' , 8', v-|, E-j) is given by G in equation (4.22) and

n, is the contact surface defined on the sphere.

Similarly in terms of the (ri
2

> coorcllnate system in

figure 4.11, W
2

can be expressed in terms of p (<f>, 8) by

a
(5.8)
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where (<j>, 3, <J>',
3', E^) is defined by equation (4.35) and fig

is the contact are defined on the spherical seat. The integrands

in equations (5.7) and (5.8) may be simplified by utilizing the

symmetry of the pressure field. Because of the symmetry about the

z axis of the contact surfaces in figure 5.1, the pressure distribution

must also be symmetric about z. Hence, p (x, 3 ) may be replaced by

p (x) in equation (5.7), (see fig. 5.3) and p ($, 3 ) in equation

(5.8) may be replaced by p (<}>). Making these substitutions and

combining equations (5.3), (5.7) and (5.8) the contact criterion,

equation (5.3) becomes

S - f£44 f ~ S +

/xx A /?,

2

/
t(Y)G,(XPX y'dpJY'

J
JL,

(5.9)

The boundary conditions require that the separation, S , be zero with

positive pressure inside the contact regions ^ and fig. Also, the

separation must be positive with zero pressure outside the contact
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Fig. 5.3. Axisymmetric pressure loading on sphere
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regions. In symbolic terms

ltJ$U>E U1 (5.10a)

?( 4>), t(Y)-0 iNsioe j\ (5.10b)

Sv >0 Outside si (5.10c)

fC^), f(Y) - O Oursme n (5. lOd)

It is required to determine the contact regions, ^ and the

pressure distributions p (ip ) and p ( <t> ) , and the approach, 6, such

that relationships (5.9) and (5.10) are satisfied.

The determination of the contact regions, ^ and poses a

major problem in the solution of equation (5.9). However, choosing

*
some tentative "candidate" regions, ft-j and ^ * will establish

equation (5.9) as an integral equation of the first kind which can

be solved using the "Simply Discretized" method of Singh and Paul

[1974], In the conformal contact problem of a sphere indenting a

spherical seat, it is known a priori, that the boundary of ft, will

always be a circle on the sphere defined by . Also, the
Ula X

boundary, <b , of ft9 may be chosen such that s 9 = s, for the
max l. l.

*

*
boundaries of ft-| and • Thus

(5.11)
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The region ^ is written without an asterisk since it can be defined

as the exact contact region on the sphere corresponding to some

*
unknown force F. ^ 1S denoted with the asterisk since it is chosen

according to equation (5.11). Further details on the refinement of

*
the tentative region ^ are discussed later.

A "Simply Discretized" solution is found by subdividing ft-j

*
and ^ into a large number of small cells. The normal pressure is

replaced by a piecewise constant pressure field (pressure
p^

and

*
cell i). Thus and are divided into N cells apiece, such that

the centroid of cell i of fi-j merges with the centroid of cell i of

k

^2 •
This is achieved by first choosing the cells on fi-j and then

using the relation S
2

= s.j to determine the corresponding cells on

*
!w!

^
•

Because of the known symmetry of p (c|>) and p (ip)

,

the cells

on each surface will be chosen as rings symmetric about the n-| axis

as shown in figure 5.4 for the sphere. Cell i will be located on the

sphere between^ and i|k
+ .j

while that on the seat will be between <£..

and 4>.j + .|
. N field points are chosen on each surface such that the

"t h t h
location of the j field point is within the j

n
cell. Equation

(5.9) may be written in discretized form for field point j as,

$
h - f ^c&4 t*

“ ^ cC t

+«*xzpifG,(ri ,p) , y; f\ d„e^r^'dr
^li

Z Pi \Gi (tj, l)
t ,

'Afid

f

(5.12)
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A

Fig. 5.4. Axi symmetric cells on sphere
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The integrals in equation (5.12) may be evaluated numerically. The

location of all the field points will be along the contour curve

located in the n-| - Y-| and P^ anes so that B'j will always be

considered zero. Equation (5.12) may be written for each field point.

Thus N linear algebraic equations are generated in N + 1 unknown

(N values of P^, and 6). One additional equation is needed to produce

a unique solution of the unknown variables. The last equation is

generated by writing equation (5.12) for one additional field point.

The location of this field point is, in theory, arbitrary but, as will

be discussed later, the results are sensitive to this choice.

Having generated N + 1 linear algebraic equations in N + 1

unknowns the piecewise constant pressure distribution, P. , and 6 may

be found. It now remains to check the validity of the method used to

determine and the location of two points A and B which merge after

deformation. In each case, the merging points or boundaries were

initially chosen such that s^ = Sy It will now be illustrated how the

"point-mating" procedure, described in chapter 3 may be utilized to

refine the choice of the outer boundary of and of points on the

seat such that they merge with the appropriate points on the sphere.

The total separation after deformation of points A and B may

be computed from equation (3.13a). For the case of a sphere indenting

a spherical seat, the value of S Q is zero. Furthermore, the contact
fc)

criterion required that is zero. Therefore, the only non-zero

component of separation is S
t
where

a 604. a (ot,-

u

x ) + ft - (5.13a)
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and

64-6 trt (tt-cx)

ft r / f I M&\ f

(5.13b)

(5.13c)

The components of displacements u-j and may be computed using the

pressure distribution (P^) of the "Simply Discretized" solution by

where and are the influence functions for displacements in the

tangential direction on the sphere and seat respectively. is

defined by H in equation (4.24) and is defined by H in equation

(4.32). Having evaluated S^., at all field points, the "point-mating

procedure" may be used to find coordinates for a new set of field

points on the seat which upon repeating the solution procedure just

described will give rise to new values of S
t
which are smaller than

those previously calculated. Originally, mating points on the sphere

and seat were located by assuming that the distances along their

respective contour curves were equal , i .e. , s^ = s-j as illustrated in

(5.14a)

and

)Autjb‘df'd

(5.14b)

I
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figure 3.1. The "point-mating procedure" discards this relation after

the initial solution and replaces it with relations (3.16 a,b).

Repeated iterations yield values of which become smaller if the

process converges. The limits on the final values of depend largely

on the cell density and the values of Numerical experiments

have shown that for large values of ^max (> 10°), with few cells

(< 10), the final value of which can be achieved is of the order

of e (w-j + W£) where e = 0.1. For problems with up to 15 cells values

of e = 0.01 can be achieved. Considering, essentially Hertzian

problems (^max < .1°), e = 0.01 may be achieved on the first solution.

The location of (f>max
defining may a ^ so be refined using the

"point-mating procedure." In most cases this was performed auto-

matically since 4>

max
was chosen as the additional field point.

Having generated the displacements w-j , w^, u-j and u^ via

equations (5.7), (5.8) and (5.14) at field points along a contour

curve, the strains cOD , e.
,

on the sphere and c OD and e. . on the seat
PP w PP <p<p

may be formulated. These quantities will be needed later for

accuracy analysis. It can be shown^ that the strains on the surface

of a sphere for the axi symmetric set of displacements are

+
u, (*)

R,
Mm (5.15)

^okolnikoff, 2d ed., 1956, p. 184.
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and

fn>. \ . ! dUi('V'i) cOiO'i)
l) ~

R, dy R,
(5 '

J_ I-

where i|;. is the coordinate of the l field point. Similarly, for

the spherical seat

Rl
tot (${) (5.17)

and

/ dUi(fr)

Rt ol?
4
Wt (fii)

Ri
(5.18)

±. L

where (|>. is the coordinate of the i
L

field point on the seat. These

strains may be computed using finite difference approximations for the

derivatives in equations (5.16) and ( 5 . 1 8

)

1

.

5.3 Numerical Procedures

In each "Simply Discretized" solution the boundaries on

and are defined by to and <j) respectively. Each contact region
c. MTaX max

was divided into N cells by first subdividing ib and <t> into N3 max rmax

equal intervals subtending equal arc lengths. The cells were then

^Carnahan, [1969] p. 431 „
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defined by the surface generated by revolving the arc lengths about

the n-j and n
2

axis. Typical cells on the sphere are illustrated in

figure 5.4. All field points were located on the contour lines

defined by the n-| -
y-|

and n
2

- Y
2

planes, (see fig. 5.4)

The integrals in equations (5.12) and (5.14a, b) were

evaluated in part by analytic means. Consider the integration of an

influence function corresponding to the i^ field points at ^ (<J>^)

over the region (^
2j
.). For all cases where i f j, the integra-

tion was performed by Gaussian quadrature. When i = j, i.e., when

the field point is located within the cell of integration, the

integrand is singular within the region of integration and the

singularity is located at the field point. Integration over the

singularity is performed analytically while that over the remaining

portion of the cell is performed numerically using Gaussian

quadrature.

Consider the portion of a cell on a sphere of radius R-j near

the field point at (^ , 0) as shown in figure 5.5. The region is

bounded by arcs defined by 3 = ±A, tp = ip

c
- A and tp = ij> + A

(A < < 1). Similarly, consider a region on the seat. For both the

sphere and seat when small cells are used, the boundaries of the cell

fall within the limits of this region. In this case the values of

i|k and (}). defining the cell boundaries were used to bound the region.

For small A, taken in this analysis to be 1/4 degree, the region

around the singularity on the sphere will be approximated by a small
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Fig. 5.5. Small region surrounding a field point on a

spherica.1 surface.

Fig. 5.6. Planar approximation to a region surrounding a

field point on a spherical surface.

^
>



I

no

planar annular element with inner radius r^ , outer radius r^, and

half angle p where

|
A} - R, Aw ( yc - Yc (5.19a)

>1 - R\ a™ (Yc*A) / <004. Yc (5.19b)
i

and

I

J* = A /C^i Tc (5.19c)

Similar relations in terms of cj> , and A may be written for the

definition of r-j , r^ and p for the seat. The derivation of r^ , r^

and p is shown in appendix P. The displacement at the field point

C due to a constant force applied to a general point A within the

region is governed by the Boussinesq influence function as shown in

appendix A. The integration of the Boussinesq influence function

over an annular element is derived in appendix G. Therefore, the

integration over a cell i for field point i was performed in two

parts. First a small annular element surrounding the singularity

(field point) was defined, and the integral within that region was

computed using the analytical solutions in appendix G. Second the

remaining portion of the integral was computed using 2-dimensional

10 point Gaussian quadrature. Similar approximations were made for

the spherical seat.

The "point-mating procedure" was employed to identify the set
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of field points on the seat which merge with the field points on the

sphere. The iteration was terminated when values of S for all field

points were within their respective values of [ (w-j + w^) e
]
^ . e was

taken to be 0.1 for preliminary results while accurate solutions were

obtained by choosing e to be 0.01.

For all cases that follow, the extra field point was located

at the outer boundary of the contact region. With this location, the

final determination of <f> on the seat is automatically performed,
ma x

i.e., 4>

max
is the final coordinate of the extra field point. The

"Simply Discretized" method of solution always provided stable

pressure distributions even though Singh and Paul [1973] noted that

for the problems they treated, this method generated an ill-

conditioned set of equations which resulted in unstable (widely

varying and negative) pressure distributions. This stability can

possibly be attributed to the choice of axi symmetric cell distribu-

tions which had not previously been attempted in the work of Singh

and Paul. The solutions will be termed "quasi stable" because the

solution becomes unstable if the location of the extra field point is

moved within the contact region. The success achieved when the extra

field point is located on the boundary of the contact region can

possibly be attributed to the fact that the location is farthest from

all other field points, on the average, than any location inside the

contact region. This choice could yield the most independent extra

equation thus providing a more stable solution.

Having generated N + 1 equations in N + 1 unknowns
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(N values of and 6) as described in section 5.2, the set was first

reduced to N equations in N unknowns by subtracting the equation

written for the extra field point from the others thus eliminating 6

from the set. The remaining N equations were solved using Gaussian

s t
elimination. The approach, 6, was then computed from the N + 1

equation.

The strains corresponding to equations (5.17), (5.18), (5.19)

and (5.20) were computed, from equations (5.15) - (5.18), using the

values of w^ , w^, u^ and u^ at each field point on the sphere and seat.

The required derivatives du-j/dij; and du^/dtj) were evaluated using

central difference formulae for field points i where i / 1 or N. For

i = 1 forward difference formulae were used while for i = N backward

difference formulae were usedJ

The total force applied to the sphere can be calculated from

the pressure distribution found in the analysis. Consider the discre-

tized pressure distribution P.. on cell i. The force in the - n-j

2
direction from P. applied to a small sector area 2tt sin ipdip is

2
2ttR^ P^ cos\p sin ipdip. Integrating this between ^ andi|A

+ ^,
the force

2 2
in the - n-j direction due to P^ on cell i is ttR^ P. • (sin ip^

+ -|

-

2
sin ip.). Thus the total force applied to the sphere can be computed

as

F - Z irfi* % (5 zo)

4*3/

^See Carnahan [1969] p. 431.
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5.4 Numerical Results

A computer program termed CONSPHERE was written to analyze

the conformal contact between an elastic sphere and seat. The

following numerical example was considered

R-| =1 in

R^ = 1.01 in

V
1

= v
2

= ^-25

E
]

= E
2

= 30 x io
6

psi

'I'max
= °' 5 de9 r^es (5.21)

In this example and the ones to follow, the value of Poisson's

ratio was chosen to be 0.25 so that the results could be compared to

those of Goodman and Kerr [1965]. The results are presented in

dimensionless form. Let,

<?>?, Rx

Rx
~ R i

(5.22)

and

(5.23)
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Then define

Dimensionless Pressure in cell i, P. = P.k
i i

(5.24a)

* R
Dimensionless Load, F = F ^“2~

m
(5.24b)

R
i* I

Dimensionless Radii, R, = r
im (5.24c)

* R o
"
2

m

* 5
Dimensionless Approach, 6 = p

m

(5.24d)

(5.24e)

Dimensionless Ratio of Radii =
R,

r:
(5. 24f

)

The contact region was divided into 15 cells such that

^j + 1

= 0.033 degrees. The pressure distribution obtained from

CONSPHERE is compared in figure 5.7 to the pressure distribution

predicted by Hertzian theory for the same applied force of

* -14 * -8
F = 0.7294 x 10 . The approach 6 was found to be 0.3858 x 10 in,

-8
while the value predicted by Hertzian theory is 6 = 0.3895 x 10 in.

This problem falls within the domain of Hertzian theory, and the

comparison of these results indicates that the solution produced by

CONSPHERE is in general agreement with those of Hertz.

Now consider the non-Hertzian problem where ^max = 30 degrees
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and the dimensions and elastic constants are the same values as used

l

in the previous example. Figure 5.8 illustrates the pressure distri-

bution between the sphere and seat. Also shown is the Hertzian

pressure distribution for the same applied force. It should be noted

that the conformal contact solution predicts a higher peak stress and

a smaller contact region than the Hertzian solution. The approach

* -4
for the conformal solution is 6 = 0.1281 x 10 and the total

* -7
compressive force was found to be F = 0.1780 x 10 . The radial and

tangential displacements are tabulated in tables 5.1 and 5.2. It is

interesting to note that the tangential displacements on the sphere

are all positive (increasing \p is positive direction) while those on

the seat are negative (increasing <p is positive). This can be under-

stood if one considers the sphere to be flattened out while the seat

is a depression which elongates or grows deeper.

Additional problems were solved in order to compare the load-

approach relationship to that obtained with the solutions of

Hertz [1881] and Goodman and Keer [1965]. Figure 5.9 illustrates the

load-approach curves for Hertzian theory, the theory of Goodman and

Keer and experimental data reported by Goodman and Keer. The results

are plotted for half angles of contact between 0° and 20°. Figure 5.9

clearly illustrates a strong correspondence between the present

theory and the experimental data reported by Goodman and Keer. The

load-approach curve for the Hertzian theory indicates more compliance

than that of the other theories while the load-approach relation of

the Goodman and Keer theory is less compliant than the others. All
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TABLE 5.1

SURFACE DISPLACEMENTS ON SPHERE

Ip

[Deg]

Radial

Displacements

w-j x lo4 in

Tangential
Displacements

u-j x 104 in

1.0 14.12 0.03869

3.0 14.04 0.1194

5.0 13.87 0.2035

7.0 13.62 0.2841

9.0 13.29 0.3578

11.0 12.88 0.4300

13.0 12.39 0.4968

15.0 11.82 0.5580

17.0 11.16 0.6123

19.0 10.43 0.6635

21.0 9.627 0.7116

23.0 8.745 0.7562

25.0 7.792 0.7998

27.0 6.766 0.8475

29.0 5.672 0.9165

30.0 5.099 0.9711

iji = 30°, R, = 1.00 in, R 0 = 1.01 in,m x I c

E^ = E^ = 30 x 10^ psi , v
i

= v
2

= 0-25
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TABLE 5.2

SURFACE DISPLACEMENTS ON SPHERICAL SEAT

[Dig]

Radial
Di splacements

w
2

x 10 4 in

Tangential
Displacements

x 10
4

in

0.9888 11.73 - 0.1789

2.966 11.66 - 0.5307

4.944 11.53 - 0.8735

6.922 11.32 - 1.211

8.899 11.04 - 1.542

10.88 10.70 - 1.858

12.85 10.29 - 2.158

14.83 9.812 - 2.439

16.81 9.267 - 2.699

18.79 8.654 - 2.929

20.77 7.974 - 3.125

22.74 7.228 - 3.286

24.72 6.414 - 3.404

26.70 5.534 - 3.470

28.68 4.587 - 3.463

29.67 4.089 - 3.418

^max
= 30°’ R

1

= 1,00 in ’ R
2

= 1,01 in ’

E-| = E^ = 30 x 10^ psi, v-j = v
2

= 0-25
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Fig. 5.9 Load-approach relationship for conformal contact of
a sphere and spherical seat.
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2
of the theories agree for loads less than F (1 - v) / R-j E = 2 while

the experimental data near this region deviates from the theories.

Goodman and Keer [1965] attribute this discrepancy to experimental

error.
f

The effect of Poisson's ratio on the load-approach curve was

also studied. The variation of force and approach for values of

Poisson's ratio of v = 0.25 and v = 0.30 were plotted together in

figure 5.9. With increasing Poisson's ratio the materials were found

to be less compliant.

A comparison was made of the val ues
,
predicted by the various

theories, of the radius of the contact region a = sin ( and 6 .

Figure 5.10 illustrates the results of Hertz, Goodman and Keer, and

the present theory. The results from CONSPHERE fall much closer to

the Hertzian theory than those of Goodman and Keer.

Knowledge of the displacements at discrete points, namely,

the field points, enables one to also calculate the surface strains

given in equations (5.15) - (5.18). Both the displacements and

strains for several problems will be compared to those obtained in

the analysis of Goodman and Keer [1965]. It will be shown through

this comparison that the assumptions used by Goodman and Keer can

produce erroneous displacements and strains in problems where the

contact angle exceeds ib = 60°.

In the derivation of the contact criterion used by Goodman

and Keer (see appendix L) it is assumed that points on both bodies,

which are initially equidistant from the axis of symmetry come into
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conformal contact of sphere and spherical seat.
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contact after deformation. To show that this assumption can not be

true for large angles of contact, consider the contact of an elastic

sphere in a rigid seat, as shown in figure 5.11. According to

Goodman and Keer points A and B which merge after deformation, are

located such that R-j sin ip = R? sin <J>. Since the seat is rigid,

point A on the sphere will merge with point B on the seat solely due

to a displacement u
z

of point A. This displacement may be viewed as

having components in the r and t directions, i.e., w-j and u^ , where

r is directed radially inward on the sphere and t is perpendicular

to r, i . ,e.

,

fU, t (5.25)

where (see appendix M for derivation):

l(Tt /
s Rt (l-AO*#) + 6 (5.26)

IV, - / Wj / £04, 'Y (5.27)

Wz - ItitlAiH 'f (5.28)
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Fig. 5.11. Sphere in contact with seat (displacements of
points A and B constrained).
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and

- CM4MTI (^ Aon^ )
(5.29)

Now consider the case where

R.| = 1.0 in.

R
2

= 1.001 in.

E
]

= 30 x lo
6

psi, E
2

= 30 x io
10

psi

v-| = 0.25, v
2

= 0.25

^max ‘ 60
°

< 5 - 30 >

Since E
2

>> E-j the seat will be considered completely rigid

and equations (5.27) and (5.28) will be used to compute w^ and u-j

for results obtained in the Goodman and Keer analysis. The displace-

ments for the present conformal theory of section 5.2 were computed

using equations (5.7), (5.8) and (5.14). The displacement results

for the problem at hand are compared in tables 5.3 and 5.4. Also

tabulated are the displacements that are obtained when the pressure

distribution obtained through CONSPHERE was applied to a finite

element model of the sphere.^ The radial displacements of all

solutions agree well. The tangential displacements obtained through

the Goodman and Keer analysis are much higher than those of CONSPHERE

Vhe paper of Goodman and Keer [1965] did not provide any data
for angles of contact above 20 degrees. Therefore no comparable
finite element model could be analyzed using their pressure distri-
bution.
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TABLE 5.3

COMPARISON OF RADIAL DISPLACEMENTS w
]

[Deg]

Goodman
and Keer

w-j x 103 in

CONSPHERE

w-j x 103 in

Finite
Element

w-j x 103 in

3.0 1.171 1 .166 1.184

9.0 1.147 1.142 1.157

15.0 1.100 1.095 1 .109

21 .0 1.029 1.025 1.040

27.0 0.9368 0.9330 0.9480

33.0 0.8231 0.8197 0.8315

39.0 0.6895 0.6864 0.6965

45.0 0.5374 0.5348 0.5364

51.0 0.3686 0.3663 0.3535

57.0 0.1850 0.1828 0.1738

= 60°, R, = 1.000 in, R 0 = 1.001 in,rmax 1 2

E
]

= 30 x IQ
6

psi, E
2

= 30 x to
10

psi ,
v = v

2
= 0.25
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TABLE 5.4

COMPARISON OF TANGENTIAL DISPLACEMENTS u
]

4>

[Deg]

Goodman
and Keer

ln4 .

u-j x 10 in

CONSPHERE

, n4 •

u-j x 10 in

Fi ni te

Element
4

u-j x 10 in

3.0 0.6135 0.2001 0.2065

9.0 1.816 0.5972 0.6160

15.0 2.946 0.9737 1 .002

21.0 3.951 1 .306 1.338

27.0 4.773 1.576 1 .607

33.0 5.345 1.770 1.806

39.0 5.584 1 .881 1.910

45.0 5.374 1 .892 1 .915

51.0 4.552 1.811 1 .858

57.0 2.849 1 .657 1 .718

^max
= 60 °’ R

1

= in, = l.OOl in,

E
1

= 30 x 10
6

psi, E
2

= 30 x 10
10

psi , v
]

= v
2

= 0.25
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or the finite element solution.

Having computed the displacement fields, the strains e OD and
38

may be calculated using relations (5.15 - 5.18). They are

tabulated in tables 5.5 and 5.6 for the analysis by Goodman and Keer,

CONSPHERE and finite element theory. It can be seen that the
88

strains are zero for the analysis of Goodman and Keer which is

expected since the circle defined by ip does not enlarge or shrink

after deformation. The strains e from CONSPHERE are in general

agreement with those produced through finite element analysis. The

computation of e reveals that near the boundary of the contactW
region, those strains predicted by the Goodman and Keer analysis are

much larger than the solutions of CONSPHERE arid the finite element

analysis. Furthermore, the results of CONSPHERE agree with those

of the finite element analysis.

Both p and e, . decrease as \p increases according to
88 #

CONSPHERE and the finite element analysis. This is to be expected

since the pressure diminishes when ip increases. On the other hand

the values of e,
,

predicted by the Goodman and Keer model increase asW
ip increases. Finally, the values of e nn and e,. are nearly equal for

38 #
small ip in the s'olution of CONSPHERE and finite element analysts

which is expected in this axi symmetric case.

5.5 Conclusions

The problem of a sphere indenting a spherical seat has been

solved. The pressure distribution for ip = 0.50° has been shown to

compare closely with the Hertzian solution, (fig. 5.7) For to = 30°,
MlaX
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TABLE 5.5

CONPARISON OF STRAINS e.

.

Ip

[Deg]

Goodman
and Keer

x 10 3 in/ in

CONSPHERE

x 10 3 in/ in

Fini te

El ement

x 10 3 in/ in

3.0 - 0.002744 - 0.7868 - 0.7894

9.0 - 0.02506 - 0.7730 - 0.7692

15.0 - 0.07172 - 0.7567 - 0.7563

21.0 - 0.1472 - 0.7377 - 0.7355

27.0 - 0.2593 - 0.7115 - 0.7121

33.0 - 0.4210 - 0.6741 - 0.6626

39.0 - 0.6545 - 0.6280 - 0.6181

45.0 - 0.9975 - 0.5681 - 0.5437

51.0 - 1.520 - 0.4788 - 0.4171

57.0 - 2.360 - 0.3299 - 0.2873

iL = 60°, R, = 1.000 in, R 0 = 1.001 in,
FTla X I c

E
]

= 30 x 10
6

psi, E
2

= 30 x 10
10

psi, v
]

= v
2

= 0.25
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TABLE 5.6

COMPARISON OF STRAINS e oc
pp

[Deg]

Goodman
and Keer

in/ in

CONSPHERE

x 10 3 in/ in

Finite
Element

x 103 in/ in

3.0 0.0 - 0.7842 - 0.7900

9.0 0.0 - 0.7653 - 0.7680

15.0 0.0 - 0.7318 - 0.7354

21.0 0.0 - 0.6849 - 0.6912

27.0 0.0 - 0.6237 - 0.6325

33.0 0.0 - 0.5471 - 0.5535

39.0 0.0 - 0.4542 - 0.4604

45.0 0.0 - 0.3455 - 0.3444

51.0 0.0 - 0.2196 - 0.2029

57.0 0.0 - 0.07525 - 0.06036

^max
= 60°’ R

1

= K00° in ’ R
2

= 1-001 in ’

E
]

= 30 x io
6

psi, E
2

= 30 x 10
10

psi, v
]

= = 0.25
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the resulting pressure distribution has a higher peak stress and

smaller contact area than the Hertzian solution for the same applied

force. The load-approach curve was plotted and was found to agree

closely with the experimental results reported by Goodman and Keer.

The plot of approach vs. contact area indicates that the results are

nearly equal to those of the Hertzian theory for angles up to 20°.

The displacement field and resulting strains were found to be

reproduced when a finite element analysis was made of the sphere under

the pressure field predicted by CONSPHERE for \p
= 60° (the seat

being rigid). It was shown that in using the constraint imposed by

Goodman and Keer in their analysi s, larger tangential displacements

and strains will be produced. In view of the fact that the

uniqueness theorem for contact theory (proven by J. J. Kalker 1971)

guarantees a unique pressure field and displacement field for a given

contact area, it can be concluded that the total solution predicted

by CONSPHERE is correct since the finite element model reproduces the

same displacement field as CONSPHERE when subjected to the interfacial

pressure predicted by CONSPHERE.



6. CONFORMAL ELASTIC CONTACT OF A CYLINDER
INDENTING A CYLINDRICAL CAVITY

6.1. Introduction

The solution of the two dimensional contact problem of two

cylinders in contact or the problem of a cylinder indenting a

cylindrical seat can be obtained from Hertzian theory by allowing the

radii of curvature of each body to become infinite in one direction.^

However, such a solution is only valid within the assumptions of

Hertz, i.e., the in plane dimensions of the contact area must remain

small compared to the in plane radii of curvature. Therefore, Hertz's

solution is not appropriate for moderate loads, when the difference in

the radii of the cylinder and cylindrical seat is small.

A more recent theory, pertaining specifically to the problem

of a cylinder indenting a cylindrical seat has been published by

Sjtaerman [1949] for the problem where the contact pressure on the

cylinder and seat are equilibrated by identical pressures located at tt

radians from the contact region. Sjtaerman's solution is based on the

formulation of a contact criterion in the radial direction of a polar

coordinate system fixed at the center of the cylinder. He does not

consider displacements tangential to the surface. In order to compute

the radial displacements within the contact area, Sjtaerman forms the

^Timoshenko and Goodier, 3d. ed. [1970], pp. 418-20.

132
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integral of the unknown pressure distribution times the influence

function for the cylinder and seat. These integrals are incorporated

into the contact criterion and the unknown pressure field is determined

using a finite difference technique.

A third theory specific to the problem of a disc contacting a

hole in an infinite plate has been published by Persson [1964]. In

contrast to the work of Sjtaerman and the present analysis, Persson

considers the disc to be equilibrated by a force located at the center

of the disc with the seat being fixed at infinity. Persson initially

assumes the existence of both tangential and radial displacements of

surface points. He found that by assuming the contact region to be

circular and neglecting second order quantities, the contact criterion

was independent of tangential displacements and is identical to that

derived by Sjtaerman. Persson proceeds to develop the final form of

the contact criterion in terms of a singular integro-differential

equation which he solves.

The problem of an elastic cylinder indenting an elastic cy-

lindrical seat is solved in this chapter using the conformal theory

developed in chapter 3. No assumptions pertaining to the tangential

displacements are retained in the final solution. The loading condi-

tions applied are the same as those used in the Sjtaerman analysis.

Section 6.2 contains the formulation of the problem and the

numerical procedures are discussed in section 6.3. The results are

compared to those of Hertz, Sjtaerman and Persson in section 6.4.
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6.2 Formulation

Consider the conformal contact of an elastic cylinder of

radius R-j indenting an elastic cylindrical seat of radius

(R^ > R-j). It is assumed that the bodies are equilibrated by pressure

distributions equal to the interfacial contact pressures and applied

at tt radians relative to the contact region, (see fig. 6.1). This

assumption is not inherent in the method of analysis but it does effect

the form of the influence functions used in the analysis to follow.

Therefore the contact region will be limited to contact over half the

cylinder, i.e., a half angle contact of
^

radians (which should cover

all cases of practical interest). A cross section of the cylinder,

body 1, and cylindrical seat, body 2, is shown in figure 6.2-a.

The contour curves are the same as

those obtained in the analysis of the sphere and seat, therefore much

of the development takes the same form. The reader is referred to

chapter 5 for the details of the formulation omi tted in this section.

It must be remembered that the problem of a cylinder and seat in

contact is two dimensional and the force applied at any point on either

body represents a line load with units [lbs/inl.

Surface points on the cylinder and seat will be described as

in the last chapter, i.e., coordinates^ pertain to points on the cyl-

inder and coordinates 0 defines points on the seat. The initial

location of points A and B on the contour curves are chosen in the same

way as those on the sphere and spherical seat, s-j = S
2

* The local

AAA
coordinate system (r, t, <d) is fixed at point A as before, however, the
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\

Fig. 6. 1. Cross section of cylinder and cylindrical seat in

conformal contact.

i
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I

1

A

*
z i

Fig. 6.2-a. (repeated) Conformal contact between a sphere and
spherical seat or a cylinder and cylindrical seat.
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unit vector co is parallel to the axis of the cylinder.

The contact criterion of equation (5.3) exactly represents

the criterion needed for the solution of this problem, i.e.,

Sf - f/C&l f - &/C44CC + (W,+Wx )*44 A (5.3)

where f is the profile function, 6 is the approach and w-j and w^

represent the displacements in the radial directions of points A and

B on the cylinder and seat respectively. The quantities a. A, 6

and £ are defined by equations (5.1), (5.4), (5.5) and (5.6) respec-

tively.

A A A A

Now consider the (n-|
,
^ ) and (r^* r,^) cartesian coordinate

systems fixed to the cylinder and seat respectively as illustrated in

figure 6.2. Point A is located on the cylinder by polar coordinates

(i|>, R-j). The elastic displacement w-j at point A, can be expressed as

a function of the pressure distribution p (^) by

KO, i'oO = /?,} ftriG.tv
; r/ m , f,

)

oiy ' ( 6 -n
Jl,

where G-j (i|>,
, E-j ) is given by G in equation (4.40) and ^ is the

contact surface on the cylinder. Similarly, on the cylindrical seat,

the elastic displacement w^ may be defined by

w2 (t> )
= Rt fW) vt A)d*' ( 6 . 2 )
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CYLINDRICAL SEAT-

Fig. 6.2. Coordinate systems for cylinder and cylindrical seat
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where (0, 0
1

, v^, E^) is defined by equation (4.53) and is the

contact region on the cylindrical seat.

Combining equations (6.1), (6.2) and (5.3) the contact

criterion may be written

The suppl ementary conditions associated with equation (6.3) are

equations (5.10 a-d)

.

The initial choice of the tentative contact region is

based on the same assumptions used in the previous chapter, i.e.,

s-| = s^ so that

A simply discretized solution of equation (6.3) is found by first

subdividing fi-j and ^ into a large number (N) of infinitely long

cells which are oriented such that the infinite dimensions of the

cells are parallel to the axis of the cylinder. The normal pressure

distribution is then approximated with a piecewise constant pressure

distribution such that the pressure in each cell is constant. The

(6.3)

*

r*MX “
ft

7/M4X
(6.4)
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f.
L.

i

L
cell on the cylinder will be denoted ft, .. while that on the seat

*
will be termed ftg.. The choice of is such that it merges with

ftl . This is achieved by first choosing the cells on ft-j and then

using the point mating procedure to determine the cell boundaries on

ft^ . Cell i will be located on the cylinder between ^ and ip. + -j

while cell i on the seat will be defined between <|>. and <|>. + .|. N

field points are chosen on each body such that one lies within each

cell. The N + 1 field point was located on the boundary of the

h
contact region on each body. The location of the l field point on

the seat is determined using the point mating procedure so that it is

t h
assumed to merge with the i field point on the cylinder. Equation

(6.3) may be written in discretized form as

St = T/COt j* ~ S /tOt Ot + (6.5)

< 5/

+ 404 A Z P
t
- <)-->,««)

The integrals in equation (6.5) may be evaluated analytically as

described in the following section. Thus N + 1 equations are gener-

ated in N + 1 unknowns which may be solved for by Gaussian elimination

as discussed in section 5.2.
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It remains to check the validity of the assumption used to

determine the location of merging points. This is done in precisely

the same manner as described in section 5.2 using the point mating

procedure. The separation in the tangential direction is determined

using equation (5.13a), however, the tangential displacements u-j and

U
2

used in equation (5.13a) are now defined by

u, (vj) = £ p
t t,J H, ('th y\ (

6 . 6 )

jiu

and

Ui (<Pj) -• 2 Pi Plf Hz ( <f>Jj <j>\ , Fj Cty' (6. 7 )

with and defined by H in equations (4.41) and (4.54) respec-

tively. The remaining steps in the point mating procedure are performed

as described in section 5.2.

For the two dimensional problem of plane strain, the only

meaningful strains which can be calculated (from the surface

displacements) are for the cylinder and e for the seat. The

strains e , e , e, and e. are all identically zero while e ., e .

oxjo rto lpo) 4>(jo n|) r4>

and e can not be calculated with only knowledge of the surface point

displacements, and e can be calculated using equations (5.16)

and (5.18) respectively.
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6.3 Numerical Procedures

In each simply discretized solution the boundaries on and

were defined by ^max
and

<j> respectively. The contact region on

each body was partitioned into N cells by dividing a or ih by N3 ymax wnax
f* h

and defining the i
L

cell to lie between ^ and
+ -j

where

^ + 1 - ^ and *
1 + ,

= i*4
max / N) (see fig. 6.3). The

pressure distribution between ip = 0 and \p
= - ^ was assumed to be

h
symmetric with respect to the n-| axis. The i

Ln
field point on the cyl-

^i + ^i + 1

inder was located on the contour curve at an angle of
^

•

The N + 1 field point was located at
+ y Similar locations for

the field points on the seat were chosen in terms of <J>. , + -j

and

+ T
The integrals in equations (6.5), (6.6) and (6.7) were

evaluated using the analytic formulations derived in appendix 0. Since

the pressure distribution is symmetric about the n-| axis (fig. 6.3),

±

.

j_

the integral over the i cell on the cylinder (or seat) consisted of

two parts, the region between i|>. and
+ -j

(or <|>. and <J>. + i
) and

between - ij>. and - if;.
+ i

(or - <|>. and -
<!>.. + ^

) . In evaluating the

tangential displacements in equations (6.6) and (6.7) the integrals

were multiplied by either + 1 or - 1 depending on the relative posi-

tions of the field point and regions of integration. If the region of

integration was located to the left (in the - ip or - <p direction) of

the field point the integral was multiplied by - 1 ; otherwise it was

multiplied by 1. This procedure accounted for the sign of the

direction of the displacement due to the position of the loading. The
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integrals when evaluated at their singularities present no problem

since the results arefinite as shown in appendix 0.

The point mating procedure was employed in the same manner as

described in section 5.3, to converge on the coordinates of a set of

merging field points. Also as described in section 5.3, N + 1

equations were generated and the variables were solved for using

Gaussian elimination.

The total applied force per unit length can be calculated

from the discretized pressure distribution determined in the analysis.

Consider the constant normal pressure P. over cell i on the cylinder.

The component of incremental force in the - n-j direction at angle ip

is P.j cos ip R-j dip . Integrating this between ^ and ^ + -j

the force

per length over cell i becomes P^ (sin ip
. + -|

- sinij; .). Recalling

that the pressure acts over an identical region between - ijj. and

- ijj.
+ i»

the total force on the cylinder may be found by summing the

forces on each cell, i.e.,

N
P- 2R

S Jf p- (s&on Yc ) (6-8)

C' i

Finally the approach 6 may be calculated by back substitution of the

P

,

s
in the N + Inequation written at the N + 1 field point (see

chapter 2 for a description of the complete simply discretized method

of solution).
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6.4 Numerical Results

The following numerical example in plane stress was

considered:

R.j = 1.00 in

R
2

= 1.01 in

"-max
= 40 Deg

(6.9)

E
]

* E
2

* 30 x 10
6

psi

Vi
= v

2
= 0.3

A program C0NCYL was written using the analysis of section

6.3. The results for the above problem were compared to those of

Persson [19641 .

The pressure distributions obtained by Persson and C0NCYL

are plotted in figure 6.4. A close correspondence exists between the

two solutions. The displacements calculated in C0NCYL are tabulated

in tables 6.1 and 6.2 as functions of the angles ip and <J>.
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Fig.

6.4.
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distribution

between

a

cylinder

and

cylindrical

seat,

^max
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TABLE 6.1

DISPLACEMENTS ON CYLINDER

[Deg]

Radial
3

Displacement * 10
J

[in]

Tangential
^

Displacement * 10
J

[in]

1.33 2.019 0.1101

4.00 2.006 0.3288

6.67 1.979 0.5429

9.33 1.939 0.7492

12.00 1.886 0.9450

14.67 1.819 1.127

17.33 1.739 1.294

20.00 1.646 1.443

22.67 1.540 1.573

25.33 1.422 1.682

28.00 1.290 1.771

30.67 1.146 1.841

33.33 0.9885 1.896

36.00 0.8189 1.945

38.67 0.6368 2.010

40.00 0.5409 2.039

PLANE STRESS RESULTS FOR:

^max
= 40° * R

1

= 1 * 00 in ’ R
2

= 101 in ’

E-| = E^ = 30 x 10^ psi, v.j = = 0.3
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TABLE 6.2

DISPLACEMENTS ON CYLINDRICAL SEAT

<p

[Deg]

Radial
3

Displacement * 10
J

[in]

Tangential -

Displacement * 10
J

[in]

1.31 0.3097 -0.07100

3.93 0.3078 -0.2124

6.55 0.3040 -0.3521

9.17 0.2984 -0.4889

11.79 0.2910 -0.6216

14.41 0.2817 -0.7490

17.04 0.2706 -0.8700

19.66 0.2577 -0.9834

22.28 0.2431 -1.088

24.91 0.2268 -1.182

27.54 0.2089 -1.265

30.16 0.1894 -1.334

32.79 0.1683 -1.389

35.43 0.1458 -1.427

38.06 0.1219 -1.444

39.38 0.1094 -1.446

PLANE STRESS RESULTS FOR:

= 40°
, R, = 1.00 in, R„ = 1.01 in,

Mid X S c.

E
1

= E 9 = 30 x 10
6

psi, v = v
2

= 0.3



149

The radial displacements on the seat are larger by a factor

of 1.5 to 2.0 than those on the cylinder. As in the case of the sphere

and seat, the tangential displacements on the cylindrical seat were

found to be negative while the tangential displacements on the cylinder

were positive. The physical interpretation of this result is the same

as that expressed in section 5.4 for the sphere and seat. The values

of force and approach for this problem were found to be

F = 0.6922 x io
5

lbs/in and 6 = 0.5120 x 10~ 2
in.

In order to correlate results with Hertzian theory, the

problem for = 0.1 degree was analyzed. The resulting pressure

distribution is plotted in figure 6.5 along with the results of Persson

and Hertz. There is close agreement between all solutions as would be

expected for this case of small contact area.

Figure 6.6 illustrates the relation between the load F, radial

difference ArJ and the maximum angle of contact, ip . Along with
md x

the results of C0NCYL are plotted the solutions of Hertz, Sjtaerman

[1949] and Persson.

There is close agreement between all solutions for angles of

contact less than 15 degrees. For larger angles of contact there is a

close correspondence between the results of C0NCYL and those of Persson.

The curves corresponding to Hertz's theory and that of Sjtaerman

deviate significantly.

Figure 6.7 illustrates the variation of maximum pressure with

^ AR equals R^ - R^

.
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.
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R p ^
Fig. 6.7. Relationship between HM and tangent of
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maximum contact angle for both the present theory and that of Persson.

Figure 6.8 relates the variation between the maximum pressure, radial

difference and load. In each of the last two figures the results of

CONCYL show close agreement with the results of Persson.

The computer costs in running CONCYL were minimal, being about

twenty-three cents for a fifteen node case. This corresponds to about

five seconds of CPU time on the IBM 360/65 computer. The low costs in

CONCYL can be attributed to the fact that all integration was performed

analytically rather than numerically as in CONSPHERE.

6.5 Conclusions

It can be concluded that the problem of a cylindrical seat

has been successfully solved using the conformal theory presented in

chapter 3. The pressure distributions for the problems where

w
= 40° an d = 0.1° were found to agree with the results of

Persson [1964], In addition the latter results also corresponded to

the solution of Hertzian theory. The displacements were calculated

for the case where \p
mQx

= 40°. The tangential components were found

to be of opposite sign on each body. The load vs. subtended angle

relationship was found to agree with the solution of Persson, however,

the solution of Sjtaerman [1949] deviates significantly for angles

greater than 20 degrees. The results of maximum pressure vs. contact

angle also agreed well with that of Persson.

In general there was strong agreement with the Persson solu-

tion. This close agreement supports Persson's assumption that the

contour curve of the contact region is circular. The correlation
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F
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Fig. 6.8. Relationship between
^ max and
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between the solutions presented and the Hertzian solutions broke down

for large angles as expected. The results of Sjtaerman also deviated

from those of the present theory which may be explained by the fact

that Sjtaerman may have used an extremely crude finite difference

scheme since he could not take advantage of modern computational aids

at the time of publication.



7. CONTACT STRESSES FOR MULTIPLY CONNECTED REGIONS

7.1 Introduction

Contact problems involving multiply-connected contact

regions have received little attention in the literature, possibly

because of the non-Hertzian nature of such problems. Such problems

arise, for example, whenever either of the contacting bodies have

surface pits (e.g., casting defects, corrosion pits, machining

faults, etc.). Barely perceptible surface flaws can cause high

stress concentrations, and consequently, rapid fatigue failure.

Experimental observations by Tallian [1967], Martin and Eberhardt

[1967] and Littman and Widner [1966] indicate that such surface

defects may be potential nuclei of microcrack propagation and can

produce rapid destruction of rolling surfaces.

Based on the degree of difficulty associated with their

solution, these problems may be divided into the following two

categories:

(i) Contact region known a priori:

When the indentor contact surface is flat (or almost flat) it

will be called a "stamp," and the contact surface is defined

a priori by the stamp boundary. When the indentor surface

is not flat, but the indentor has a substantially higher

elastic modulus than the indented body, the indentor can be

156
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treated as rigid, and the shape of the contact region becomes

known for any given depth of penetration relative to the

indentor tip. These are also termed "punch" problems.

(ii) Elastic Contact Problems:

When the indentor is not a stamp, and the two bodies have

comparable elastic moduli, then the geometry of the contact

region is unknown a priori, and it must be determined by

solving the appropriate Elasticity problem.

To the best of our knowledge, only one recent solution by

Chaud et al. [1974] for three dimensional elastostatics with multiply-

connected regions, has been reported in the literature. However,

solution of a few special cases of rigid indentor problems (category

[i]) have been found by Olesiak [1965], Parlas and Michalpoulos [1972]

and Chiu [1969].

Olesiak [1965] solved the problem of an annular flat faced-

stamp pressed on an elastic half space. Parlas et al
.
proposed the

solution for a "bolt shaped" indentor pressed into an elastic half

space with a cylindrical hole. The cylindrical (bolt) section of

the indentor was assumed to be rigidly bonded to the wall of the

cylindrical hole while the bottom face of the bolt head presses

against the half space.

Chiu [1969] solved the problem of an infinitely long rigid

cylinder in contact with an elastic half space, where the rigid

cylinder has a groove running parallel to its axis.

In this chapter, results indicate that problems of



158

both categories (i) and (ii) may be successfully solved by an extension

of the method introduced by Singh and Paul [1974].

A brief synopsis of the formulation and application of the

"simply discretized" method of solution are given with some limitations

and advantages of this method in section 7.2. The example problem of a

pitted sphere in contact with a complete sphere is described in section

7.3. Techniques devised for an accurate numerical solution and rapid

convergence are described in section 7.4. Results for an example are

given in section 7.5, and conclusions are reviewed in section 7.6.

7.2 Formulation

We will restrict our attention to "nonconformal " contact

problems where the dimensions of the contact region are small compared

to appropriate radii of curvature of the undeformed bodies. There-

fore, we may assume that the contact surfaces do not deviate signifi-

cantly from a reference plane in which we imbed fixed cartesian

axes (x,y). Furthermore, we shall consider only those cases where

the two bodies undergo a relative rigid body translation of amount

6, in a direction normal to the reference plane, plus an elastic

deformation. The translation 6 is called the "relative approach" and

is positive if it moves the bodies towards one another. We will also

assume that the applied load consists of a force F, acting normal

to the reference plane, and that the contacting surfaces have a

sufficient degree of symmetry that the resultant of the contact pres-

sures on each body is a force of magnitude F which acts through the
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origin 0 of the reference plane and equilibrates the applied force F.

The fundamental integral equation governing nonconformal

contact problems was shown in chapter 2 to be

St*.?)

C P(K*')JtW x r

JSL
(7.1)

where the "elastic parameter" k is defined as

(7.2)

In the foregoing equations, and denote the Poisson's

ratio and Young's modulus respectively for body 1 (indentor) and body

2 (indented); p(x',y') is the normal pressure over the contact

surface; ft is the projection of the contact surface on the (x,y)

reference plane; f(x,y) represents the initial separation (or gap)

between surface points on the two bodies, located at the same (x,y)

coordinates, before the load F is applied; S(x,y) is the separation

of the opposed surface points after the load is applied. Figure 7.1

illustrates the initial separation f for a case of axial symmetry

where f is a function f(r) of the radial coordinate r.

The condition of impenetrability of matter requires that

S(x,y) should vanish inside ft and it should be positive outside of

ft. Conversely, the interfacial contact pressure p(x,y) should be

positive inside ft, and it should vanish identically outside of it.
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In symbolic terms.

S'O foR (X, V) tNStpe AhPOAiA. (7.3a)

S ?0 toR(x,y) ourstpe ji (7.3b)

P(^t^) s O fOR(X,V) OVTStDEA
( 7 . 4 a)

PCKjV) ZO totCx,*) iN$/pe /y*poMSL (7.4b)

(7.4a)

In short, a solution of the problem requires the determina-

tion of the boundaries of region ft, a pressure field p(x,y), and an

approach 6 which satisfy relations (7.1 )-(7.4). The associated

load may be found from the expression

The absence of foreknowledge of the contact region ^ is a major

impediment to a mathematical solution. This obstacle is overcome by

postulating a tentative contact region ft*. Singh and Paul [1974]

proposed that the "interpenetration curve" described by

be used as a tentative contact region. Equation (7.6) defined the

contour of the curve formed by interpenetration (without deformation)

of the two surfaces through an arbitrary distance d. Picking a

suitable value of d establishes the candidate contact region ft*.

Using this as a preliminary estimate of ft, equation (7.1) is readily

A
(7.5)

(7.6)



recognized to be an integral equation of the first kind.

Equation (7.1) can be solved using the "simply discretized"

method of Singh and Paul which is reviewed in chapter 2. A "simply

discretized" numerical solution of equation (7.1) is found by

subdividing ft into a large number of small cells. The pressure

function p(x,y) is replaced by a piecewise constant pressure field

(pressure P. in cell i). Thus if ft is subdivided into N cells,

equation (7.1) becomes

where ft.. is the region of cell i. In equation (7.7), N values of
p^

and the constant 6 are unknowns to be determined. The centroids

(x. ,y. ) of the cells are taken as field points (x,y) and equation

(7.7) is written for each field point. The integrals in equation

(7.7) are evaluated by numerical quadrature. Thus N linear algebrai

equations are generated. An additional independent linear equation,

essential for a unique solution, is generated by picking up a field

point other than the cell centroids. The choice of this additional

field point is otherwise arbitrary, however, it does affect the

quality of the results, as discussed in section 7.4.

Having thus generated a set of N + 1 linear equations, the

N unknown pressures, P., and the approach 6, are obtained through

(7.7)
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Gaussian elimination. The next step in the solution is to determine

whether the tentatively selected region of integration ft is indeed

the true contact region. This is done by utilizing the inequalities

(7.3) and (7.4) and systematically adjusting the boundaries of ft

until these inequalities are satisfied.

Singh and Paul [1974] showed that the "simply discretized"

method was unstable in the general case and was incapable of pre-

dicting the proper stress distribution. For such problems they found

it necessary to introduce stabilizing techniques known as the

"Redundant Field Point Method," and the "Functional Regularization

Method" (see Singh [1972], Singh and Paul [1973]).

The amount of numerical computation required for either of

the two last methods exceeds that of the Simply Discretized Method.

Accordingly, it is desirable to use the latter whenever circumstances

permit.

In this chapter we will focus on a problem with complete

axisymmetry, and it will be shown that the Simply Discretized Method

provides an excellent solution, provided that the maximum possible

use is made of the symmetry of the problem.

In other words, we recognize that all cells located at the

same radius from the axis of symmetry have the same contact pressure

at their centroids, and the number of unknown pressures P^ is reduced

from the number of cells to N (the number of annular rings formed

by an axisymmetric distribution of cells). By using the Simply

Discretized Method, we are able to utilize Inequality (7.4) to
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iteratively refine the region of contact Upon satisfying

Inequality (7.4), it was invariably found that Inequality (7.3) was

satisfied.

The nature of the Functional Regularization Method prohibits

the use of Inequality (7.4) as a basis for refining n.

Numerical experiments have indicated that iteration pro-

cedures based on Inequality (7.4) converge much faster than those

based upon Inequality (7.3). Further details of the iteration pro-

cedures will be found in sections 7.4 and 7.5.

7.3 Pitted Sphere Geometry

As a typical example, contact of a pitted elastic sphere of

radius with an unpitted elastic sphere of radius R^ is considered.

A section of the pitted surface by a plane through the axis of

symmetry is shown in figure 7.1. The local contour of the pitted

surface is idealized as a torus smoothly blended into a sphere.

The blending point P, where the pit joins the main surface, is

located at a distance r, from the load line. The center of curvature
b

I

0 of the pit blending arc lies on the conical surface of semi vertex

angle x. The meridional radius of curvature of the torus is r .

Note that the discontinuity in curvature which occurs at P

does not preclude the use of the method of solution being used.

A tentative contact region, ft, is established by a hypothetical inter-

penetration of the two spheres through a distance d. The annulus of

contact so formed is bounded by an inner radius r^ and an outer radius
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Fig. 7.1. Geometry of pitted surface

i

Fig. 7.2. Generation of annular interpenetration



165

r as shown in figure 7.2, where suitable coordinate axes r, and z
o

are indicated. The values of r^ and r
Q

for a given problem are

determined as follows. The z coordinate of a point C(p,z-j) located

at a distance p from the z-axis on the toroidal portion of body 1

(see fig. 712), where

/< rk (7.8a)

is

:

z. = t, -fa-*) r-V'TwT-T )
1

where

(R,-re )H

R,

-i

(7.8b)

(7.8c)

(7.9)

The z-coordinate of a point on sphere 2, located at a distance p from

the z-axis is given by

(7 io)

Since point C lies on both the torus and the lower sphere, z-j
=

thus equations (7.8b) and (7.10) require that
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cl - R) - (R,~rc) CfrL T

P<rw <
7 - lla >

Furthermore, the z-coordinate of a material point C' located on the

spherical portion of body 1 , at a distance p from the z-axis, is given

by

* *>' ’S')
1

(7.12)

where

P > 1% (7.12a)

Hence, for a given interpenetration d, the radius p of a point on the

intersection of sphere 2 and spherical region of body 1 is given by

d *• R, - (K, -(e'-f)
'H

(7.1 3a

)

P>t% (7.13b)

The geometry of the toroidal surface indicates that for r
c

< R
]

>

equation (7.11) has two solutions for p. Let
p-j

and p2 (p-| < p^) be

roots of equation (7.11). Two cases are readily identified.

Case (i). When both inner and outer radii of the assumed

contact region lie inside the blending radius, i.e.,

A <n (7.14)
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In this case the contact is assumed to be completely confined to

the toroidal segment of body 1, in which case

~ P\
(7.15)

*0 r ft

Case (ii). When the outer boundary of ft lies beyond the

blending radius (as shown in fig. 7.2), i.e.,

P7 >h (7.16a)

In this case

(7.16b)

and the outer radius r
Q

is determined from solution of equation (7.13).

Note that equations (7.11) and (7.13) are transcendental in p, which

can be found by an iterative procedure (e.g., Newton Raphson).

In order to find the initial separation f(r), shown in figure

7.1, it is only necessary to find

{(r) - 2, - 2
Z (7.i6c)

where Z
2

is found from equation (7.10) with p = r and d = d
Q

; d
Q

is

the value of d corresponding to initial contact as shown in figure 7.1.
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To find z.j , set p, e r and use equation (7.8b) for points on the torus

(r < r
b
), or equation (7.12) for points on the upper sphere (r > r^).

In order to find the initial separation d
Q

, it is necessary

to note from figure 7.1, that when d = d
Q

, the slope of the torus

matches that of the lower sphere at the contact point; i.e.,

oil, _ el

OIP dfi (7.17)

where the derivatives are found from equation (7.8b) and equation

(7.10). Equation (7.17), together with equations (7.8b) and (7.10),

suffice to find d
Q

, and the two coordinates (r,z) of the initial

contact point.

Having found the boundaries (r and r
Q

) of the contact region

ft and the initial separation function f(r), we may proceed to solve

the governing integral equation (7.1).

7.4 Numerical Solution Procedure

The contact region ft is subdivided into N annular rings.

Since a steep pressure gradient is expected near the pit, the annular

rings near the inner boundary are very narrow in width. It was also

learned from experience that the peak pressure always occurs at

some radius r where r < r^. Guided by this consideration, a majority

of the rings are clustered in the region rj £ r <_ r^. Exploiting the

axisymmetry of the problem, we assume that the pressure is constant

in each ring. The rings are numbered sequentially from 1 to N, from
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the inside out, and the pressure in the i-th ring is assumed to be

an unknown constant . Let r. and r^
+ ^

be the inner and outer

bounding radii for cell i; thus r^ e r^ and r^ e r . Each ring

is further subdivided circumferentially into m equal sectors by

drawing (m) equispaced radial rays from the center of fi; the angle A(p

between two adjacent rays is 2n/m. The sector, bounded by radial

rays 1 and 2, is shown in figure 7.3.

The region of the sector located in the i-th ring, between

ray j and ray (j+1), is identified as S..; and its centroidal radius
J

by 3 — . Elementary calculations show that

3 * <t>

(7.18)

The centroids of the first sector shown in figure 7.3 (i.e., where

j = 1) are selected as field points.

Thus for the field point H, equations (7.7) and (7.3a) reduce

to

N it)

It £ F
1*1 J*/ J

c/Aj

3;

iji

u

-S
(7.19)
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where f(r) is calculated for r = 3^ from equation (7.16c). c^

is the radial distance from field point £ to the elemental area dA..
J

located in S... For most cells, the integral in equation (7.19) may
^ J

be replaced by the approximation

«, - j
cM IJ

S..
» • j
tji

Ai
(7.20)

where c. . is the distance between field point £ and the centroid of
* J

the region S. ., whose area is denoted by A. .. It was shown in

Singh [1972] that, in general, equation (7.20) is a very useful

approximation which results in a significant reduction of computa-

tion time, without compromising the accuracy of results. However,

for regions located in the immediate vicinity of the field point £,

the errors due to the approximation (7.20) may be unacceptable.

To avoid such errors, I... is evaluated by numerical quadrature within
1 J 36

cells located near the field point. The criterion which must be

satisfied in order to use equation (7.20) is

C iJt > motx (rA<t>, Ar) (7.21)

In equation(7.21 ) , rA<p and Ar are the side lengths of a typical cell.

Notice that when the field point £ lies inside the region S.. . (i.e.,

j = 1, i = £), c. . = 0, and hence the integrand in equation (7.15)
I J 36

has a singularity. However, for such cases, an approximate analytical
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solution for the integral is readily constructed as shown in

Appendix G.

In this manner, N linear equations corresponding to the N

field points are generated. An additional linearly independent

equation is generated by selecting point P' at the outermost boundary

of the contact region as field point (N + 1). The location of this

additional field point has a pronounced affect on the solution, which

deteriorates as P* is moved inside the boundary. It is plausible

to assume that this behavior is due to the gradual increase in cell

width Ar with r (see fig. 7.3) which was introduced to keep the aspect

ratio of the cells from becoming excessive. With the cells so

designed, the location of P' shown in figure 7.3 maximizes the distance

between P' and its nearest neighboring field point. This in turn

tends to maximize the amount of independent information supplied by

the equation written for field point P', and should tend to minimize

ill-conditioning effects on the coefficient matrix generated.

Thus (N + 1) equations in (N + 1) unknowns are generated, and

equation (7.19) assumes the form

(7.22)

and the equation using P' as a field point becomes

(7.23)
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where f.. is the value of the "initial separation" function f(r) at

the field point i. f^ is the value of f(r) at P
' ; and summation

from 1 to N is henceforth implied over repeated subscripts. From

equations (7.22) and (7.23), 6 may be eliminated to yield

Bij Pj ' f; (7-24)

where

and

(7.25)

(7.26)

When equation (7.24) is solved for P.., using Gaussian elimination, the

resulting pressure distribution is usually found to predict negative

contact pressures in the immediate vicinity of the inside boundary,

r = rj. The axisymmetry of the problems enables us to maintain the

outside boundary fixed, and iterate on the inside boundary where the

predicted pressure is incorrect. The iteration scheme is best

explained with the aid of the numerical example given in section 7.5.

7.5 A Numerical Example

The following example problem was considered.

R
1

= R
2

=
1 i n

V
1

= v
2

= 0*3

E
]

= E
2

= 30 X 10
6 lb/in 2
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r = .006 in
c

r, = .00025 in
b

The results are presented in dimensionless form. Let

„ 2 R, Rt
( 7.27)

Then, we define

Dimensionless pressure in ring i, P. = k P. (7.28)

* kF
Dimensionless load, F =

R
2

m (7.29)

Dimensionless distance from origin of ft, r = r/R (7.30a)3 m

'fc

Dimensionless approach, 6 = 6/R
m

(7.30b)

r. = r, /R
b b m

(7.31a)

r = r /R
c c m

(7.31b)

Figure 7.4 shows the pressure distribution near the inside boundary

for the uniterated solution. The pressure distribution far from the

pit agrees closely with the Hertzian solution for unpitted spheres

(not shown in the figure). However, the pressure in cell #1 is highly

negative. The pressures in the successive cells are less and less



175

negative, until at point the pressure curve crosses the r*-axis.

The shape of the pressure curve readily suggests the iteration scheme.

The new region of integration is assumed to have inner radius

rj = 0Q.| . The discretized equation set (7.24) is generated corre-

sponding to this new region and thus a new pressure vector is

generated (see first iteration, fig. 7.4). This new curve also has a

negative peak (weaker than that of the uniterated solution) at the

innermost field point. The new point of intersection is Q^, which

defines the inner boundary of fi for the next iteration. The process

is thus continued until all pressures are positive. In figure 7.4,

the third iteration yields the desired solution. It is found that

this solution also satisfies Inequality (7.3), thus qualifying as the

"true" solution of the contact problem. The complete pressure distri-

bution is shown in figure 7.5. Notice the essentially Hertzian

pressure distribution (corresponding to contact of unpitted spheres)

at r* > 6 x 10’ 4
. Thus the effect of the cavity is of a strictly

localized nature. However, as the cavity is made larger (e.g.,

rj/r
Q

0.3) the pressure curve departs completely from the Hertzian

case. For example, figure 7.6 shows a typical pressure distribution

for r j /

r

Q
= 0.623, along with the Hertzian solution for unpitted

spheres corresponding to identical values of thrust F.

In order to establish confidence in the solution, it is

necessary to study its convergence with change in the number of cells

used. It must be recognized that it is necessary for the cells to

be densely concentrated only in that region where a high pressure
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Fig. 7.4. Boundary iteration sequence
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gradient exists. Therefore, for purposes of convergence studies,

we have systematically varied the number of cells within a fixed

radius r . This radius is chosen arbitrarily for each problem in
con

such a way that the major area of stress concentration lies inside

the radius r
cor)

. For the example problem considered, r
cQn

= .0003.

Let N „ be the number of rings located within radius r . Figure

7.7 illustrates the convergence of the peak pressure, p*
ax

- Figure

7.8 shows the convergence of stress concentration factor with N .

Stress Concentration Factor (SCF) is defined as the ratio of the peak

computed pressure to the peak pressure for unpitted spheres under

equal thrust. Notice both figures 7. 7 and 7. 8exhibi t convergence for

IL n > 8.
con

The load-approach curve is shown in figure 7.9. It is obvious

from figure 7.9 that the compliance characteristics of the balls

(with small pits) remain essentially the same as that predicted by

the Hertzian solution.

Figure 7.10 shows SCF as a function of cavity edge radius

r*. Smaller values of r* cause greater stress concentration. Due to
c c

the nonlinearity of the problem, the SCF is also a function of the

applied load F*. Table 7.1 shows the variation of SCF with the size

of the pit (measured by blend point radius). Notice that SCF increases

with increasing value of r£. This variation of SCF with r£ may be

related to the loss of load carrying area.

The computer program developed to solve this problem is

moderately efficient. For example, the nine cases, needed to generate
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TABLE 7.1

DEPENDENCE OF STRESS CONCENTRATION FACTOR ON

Case No. r* x lo 3

D
SCF F* x IQ

8
oX r* x 10 3

1 0.25 1.692 0.9743 0.1023 0.1845

2 0.35 1.856 0.9737 0.1029 0.2753

3 0.50 2.049 0.9702 0.1041 0.4166

= r. r* = 0.006, r* =
c 0

0.002236, E = 30 x 10
6 psi , v =0.3.
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Fig. 7.7. Convergence of peak pressure with increasing
number of cells.
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o ° o o o
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NUMBER OF CELLS WITHIN r*= 0.0003

Fig. 7.8. Convergence of stress concentration with
increasing number of cells.
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figure 7.10, required an average running time of 10 min each on the

IBM/360/65 computer, corresponding to $8.33 per case, with N = 34

nodes per case.

7.6 Cone! usions

A non-Hertzian elastic contact problem involving an unknown

multiply-connected contact region has been solved. The example

problem considered, is that of a pitted sphere in contact with an

unpitted sphere. The axi symmetry of the problem enabled us to use

the "simply-discretized method" with a polar coordinate grid. For

problems with a lower degree of symmetry, it had been found in earlier

work, that a more complicated (and less efficient) method of solution

was necessary because of the numerical instability of the equations

generated. It may be appropriate to describe the equation set (7.24)

as "quasi-stable" because it exhibits dependence on the location of

the (N + 1 ) th field point. Through experience and heuristic reasoning,

it was established that locating the additional field point (
P

' in

fig. 7.3) at the outside boundary yields a wel 1 -condi tioned matrix.

The variation of the SCF, contact region and peak pressure

P
max

changes in the pit blending radius r*, and the pit edge

radius r*, was studied, and some numerical results were presented.

The numerical solution was shown to converge rapidly with a

moderate cell density.

The principal results of this chapter have been published

by the International Union of Theoretical and Applied Mechanics in
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a joint paper by Woodward, Paul and Singh. To the best of our

knowledge, this is the first published solution of a multiply-

connected contact region problem with an a priori unknown

contact boundary.



8. CONCLUSIONS

A general method of solution of three dimensional frictionless

conformal contact problems has been presented. Specifically, two con-

formal examples were analyzed, viz., the case of an elastic sphere

indenting an elastic spherical seat and the case of an elastic

cylinder indenting an elastic cylindrical seat. The necessary influ-

ence functions, needed for solution of these problems, were generated

numerically and validated with analytic solutions wherever possible.

The predicted values of contact stress, load, approach, and

contact area for these examples is in close agreement with Hertz's

solutions in the case of small loads, where small contact regions

occur. For larger angles of contact, the load-approach relationship

obtained for the sphere-seat problem was found to compare favorably

with the experimental results. The displacement field obtained in the

analysis of an elastic sphere in contact with a conformal rigid seat

was found to be reproduced, with satisfactory accuracy, by a finite

element model subjected to the same pressure distribution.

Therefore, it may be concluded that the solution obtained by

the methods of this dissertation is the unique solution to the problem.

Pressure distributions and maximum pressure obtained in the anlaysis of

conformal cylinders were within 1.5 percent of the values predicted by

Persson [1964]. The values of load vs. contact angle also agree with

185
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the values computed by Persson. In reviewing the above results, it

is concluded that the method presented can be used to successfully

analyze three dimensional conformal contact.

In addition the non-conformal problem involving a pitted-

sphere contacting a sphere was solved for a variety of pit geometries.

This problem is of mterest because it has a multiply connected

contact region. The necessary iteration needed to converge to the

true boundaries of the problem was established. The predicted values

of contact stress were essentially Hertzian away from the pit location

and the stress became much larger in the vicinity of the pit, as

expected; the stress concentration factor was found as a function of

pit geometry parameters.

In all of the above mentioned axisymmetric examples,

axisymmetry was utilized to the fullest extent in the discretization

process and it was discovered that all solutions were quasi-stable

using the simply discretized method of Singh and Paul [1974], This

has not been observed before.

The computer costs in all cases were minimal, being at most

$8. 33/for the 34 field point model for the pitted sphere examples.

The principle conclusions of the foregoing results may be

summarized as follows:

1. A general method of solving frictionless, three dimensional

conformal contact problems has been formulated.
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2. A method by which numerical influence functions may be generated

is presented and val idated where analytic solutions could be

obtained.

3. The conformal analysis was shown to be in close agreement with the

limiting cases of Hertzian contact for light loads and with other

numerical, analytic and experimental analyses of conformal contact

problems.

4. A problem involving a multiply connected contact region was solved.

Future research should be directed towards applying the above

method to the solution of non-axi symmetric problems in conformal con-

tact. Within the broad area of elastic contact theory, the inclusion

of friction and dynamics in contact theory are needed areas of

investigation.



APPENDIX A

DOMINANT SINGULARITIES IN THE STERNBERG INFLUENCE

FUNCTION FOR A POINT LOAD ON A SPHERE

Consider a sphere of radius R compressed between two diamet-

rically opposed point loads, F. The displacements u^ and u
Q , as shown

in figure A.l, are derived in Lure [1964] and are given by equations

(A.l) and (A. 2). It will be shown in this appendix that the dominant

singular terms in these displacement functions are those of the

Boussinesq influence functions for a point load on a plane.

The Sternberg Influence Functions may be written as follows:

Ur =
4<Z(mi)TTR 4TT6R

£ C (m-i) /

T6R [ m '

1 1 \

r x

rvr

3m 2 -20m+ \(t>

IH T.T*~ +
2

. 9
a t-tA&t z i e & \
£oq - ——— *2* “* jQa/VI *2* ~~ T j+ /COit
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+
Jj

( Ce*&)
]

(A.l)
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1
F

Fig. A.l . Diametrically Opposed Point Loads on a Sphere

Fig. A. 2. Coordinate System for a Point Load on a Plane
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(A. 2)

where m is the reciprocal of Poisson's ratio, G is the modulus of

rigidity, P
2k

(cos 0) are the Legendre polynomials in cos 0 and the con

stants A
p

and B
n

are given by
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3
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(A. 4)

where

a' = n fn-/) + (2 mi)
m +

1

(A. 5)

The Boussinesq displacement functions are given by

Uy =
fp-n2

)

it er
(A. 6)

and

-Fj)-2 v)(ljv)

2 ir C r
(A. 7)

where v and E are Poisson's ratio and Young's modulus respectively and

u
z

> u^ and r are illustrated in figure A. 2. Consider the coordinate
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system in figure A.l where r = R0. As r tends to zero, r will be

assumed equal to distance r along the straight boundary in figure A. 2.

Also 0 in equations (A.l) and (A. 2) will be replaced by r/R.

Specifically, it will be shown that

j&vh Ur r ^2 ^ A ' 8 ^

and

iU Ue* Ut (A 9)

Now consider the singular terms in equation (A.l). They

are as follows:

F m-i l_

4rrGR M %

(A. 10)

F_

4wGR
(A. 11)

4TTGR
( m

V . t e a \

It can be seen upon inspection that all other terms tend toward a

finite quantity. and definitely tend toward » as 0 tends toward

zero whereas is indeterminant at 0 = 0. It will be shown for the
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limit of r tending to zero that

S, 3 (A. 13)

and

A//w\. - 0
6-9 o

3

Expanding S-j , in terms of 0 we find

F_

4 ireR

m-t / l 6_

m ( © 12

(A. 14)

(A. IS)

(A. 16)

As 0-*O the only singular term is the first, which will be termed S

b
10

'

Now consider the lim of the ratio
r+0 u

m =
v

and G =

2n^y •

10
Recal 1 i ng the 0 = r/R,

F(!-V
x
) R

VER r

FO-V') i

re r

(A. 17)

Therefore the singular term S-j corresponds directly to u .

Investigating the limit of the ratio S-j/S^, where
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S, _ m(m-i) <4* f
Sj, m l

Jofy(6*t £ cot

it can be shown, using 1'Hopital's rule that

/ S, fn (/»-o <*t x
Ju/rn —— 3 im —— — —~~r~ . • ~

9-+0 St
«-*•« JW* <CjU ^ 4K * I

(A. 19)

Thus, even though the singularity is present in the displacement

u
r

> it is weak compared to the singularity S-j

.

Finally, examining S^, using 1'Hopital's rule it can be

shown that

(A. 20)

In other words, is not a singular term, but tends toward zero at

the load.

From the above analysis it can be seen that the dominant
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singularity in u^ is and furthermore, in the limit as r tends toward

zero S-j = u
z

- Therefore, it may be concluded that in the same limit

u = u . This is illustrated in table A.l. As 0 decreases, the per-
r z

'

cent difference between u and u also decreases.
r z

Now consider the displacements u
()

and u
fc

. The three terms in

equation (A. 2) which are singular or indeterminant are

-FKZ
TT R

O
<04 1 - Axrn ^

Alfa & }
(A. 21)

-F(m l46m - 6 )

47TOR H) 1
( l~ <04

6
2* ~Am (A. 22)

- FCm'+BmS)

+ TTG/Z m* c/ -
f

where k
2

= 1H|M .

T-j is singular while T
2

and T^ are indeterminant. The other term in

equation (A. 2) involving dPo^cos 0)/d6 is known to be zero at 0 equal

Examining the ratio T^/u^ it can be shown that for r =R0

to zero.
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TABLE A.

1

COMPARISON OF BOUSSINESQ INFLUENCE FUNCTION TO THE
INFLUENCE FUNCTION FOR A POINT LOAD ON A SPHERE

0[Deg.] u [in.]
a

r
L J u

z
[in.] 7o Difference

10.00 1 .44963 1 .65964 12.654

1 .00 16.4732 16.5964 0.74222

0.10 165.917 165.964 0.02806

0.01 1659.65 1659.64 -0.00179

R = 10", F = 30 x IQ
7

lb, E = 30 x 10 6 psi , v = 0.30

a
51 Terms taken in Legendre Polynomial
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;
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9 (Mi, f
Au* 0

(A. 24)

Usi ng
1 'Hopital ' s rule.

Q-yo 0—0

(ao4 X i ) +6 (~Ai*\ 2

604 O
(A. 25)

Therefore in the limit as 0, or r, tends to zero = T-j

.

Consider term in the limit as 0 goes to zero, and using

1 'Hopital ' s rule

JLi#n.
&—0

n * Jk*n.
* 0—o

~Mm —
e—o

-F(ml*8m-8) (i-a*if f )

F(rA x**m-8) (

iTTC/em 1 AtC 1 0

/*-$)

8 m 2-

(A. 26)

This proves that although T^ was indeterminant it is not a singular

term in the limit as 0 tends to zero.

Finally, consider T^. T^ may be rewritten in the form
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-F(m \8m-8 )

8 rr G R /n 1

o
,sCACj +

1

*4icf+l )

auc e
(A. 27)

which is indeterminant as 8 tends to zero. Using l'Hopital's rule

and reducing the results

jLlfflr T O'
" *** i

S \-+0 8rrG R no 1 \/U*6 /*if(l+A*i)

Aiy?& ‘knt rz

ao* e(n-z*i£)
(A. 28)

Therefore is not a singularity.

From the above analysis it was shown that the only singularity

in the function u^ is T-j and that this is equal to u^ as 0 tends to

zero

.



APPENDIX B

DISPLACEMENTS ON A CYLINDER UNDER TWO

DIAMETRICALLY OPPOSED LINE LOADS

Consider a cylinder under two lines loads F as shown in

figure B.l. Muskhel i shvi 1 i [1963] has shown that for the case of

plane strain the displacements in the x and y directions respectively

are.

- F C 2 (**Z/u) Jx_
4-rrjvL l (Mm) n *

2M604 $ K

(X+m) r
(B.l)

(oil*- Ct-l) -(Ai*t20t, + Mn2<x
t )

# # I

(*t*) R I
(B.2)
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Fig. B.2. Geometry for Diametrically Opposed Line Loads on a Cylinder
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where A and p are the Lame constants.

Now consider the case where the two line loads are diametri-

cally opposed (figure B.2). The following relations may be derived

for the geometry illustrated in

tr

2

<*
e
1

rr e
z~ z

% r R/tot 0

(B.3)

y - RAm 0

Substituting in the relations of (B.2) into equations (A.l) and (A. 2),

the displacements u and u become,K
x y

Ux T F K, [JIm fa*. I f I
+ 604 &

|
(b.4)

(B.5)
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where

* CA+v) _ z(i-v')
a. ~ r —— — ( b .6

)

2 TT/U. (h/U.) TTE

I (i-n>)(i-zv)
K> - —

,
~

r - r~zr—— (b.7)

4fA+m) 2 f

E and v are Young's modulus and Poisson's ratio respectively. In

polar coordinates the radial and tangential displacements, notated u^

and u. respecti vely, computed as functions of u and u are
t x y

Ufr • — Ux Q — My 0

(Jq s — AM?* & + (Jy Q

Substituting equations (B.4) and (B.5) into equations (B.8) and (B.9),

u and u Q become
r 0

(B.8)

(B.9)

- -Ft(i
|

d<£*i ion
e

,

2 3 (B .10)
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and

- — F K\Am 0 Jbh fa* j
— /Uri. 6 (B.ll)



APPENDIX C

SINGULARITIES IN THE INFLUENCE FUNCTIONS FOR A

CYLINDER UNDER TWO DIAMETRICALLY

OPPOSED LINE LOADS

Consider a cylinder, of radius R, under two diametrical ly

opposed line loads F, as shown in figure C.l. The displacements u^

and u. as derived in appendix B are
0

(J r - - K,F JUi -km J + l] + jt
Fa** 6 (c.i)

FA*r\ <9 Jt* feu*. 2 '* jj? (C.2)

where

2(hV'L
)

TB

and

2 £"

(C.3)

(C.4)
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Fig. C.l. Two Diametrically Opposed Line Loads on a Cylinder

Fig. C.2. Line Load on an Elastic Half Space
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E is Young's modulus and v is Poisson's ratio. Also consider the

Flamant solution for a line load acting on a half space as illustrated

in figure C.2. As presented in section 4.3, the displacements u
z

and

u
t

are

tte * r

(\+v)F

THE
(C.5)

and

(l + v)(l-2V) F

ZE
(C.6)

it will be shown that the singularity in the displacement u^ is the

same as that of u near the load. Furthermore, the limit of u A , as 0
z 0

tends to zero, will be shown to be u^.

As illustrated in figure C.2, r represents the distance

between the applied load and the point Q where the displacements u
z

and u^ are calculated. Let us define a coordinate r on figure C.l

such that r = R0. Replacing 0 with ^
in equation (C.l), it will be

shown that u - u as r tends toward zero. Likewise, u A will be shown
r z 0

to approach u^ as r tends to zero.

In terms of the coordinate r, the ratio u^/u
z

may be written

as
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. r t s , r > *z F
H

| |
At 2/9 ^ Ij ^ jp <4^

a/« £ - *3 f

I . r
^7?

(C.7)

where

£rhO
rrf

(C.8)

Taking the limit as r tends to zero of equation (C.7) and using

1
' Hopi tal

1

s rule.

r*~ £ r -t -
U R irK, R

(C.9)

The second term in (C.9) clearly goes to zero for r equal to zero

while the first and third terms are indeterminant.

Expanding cot in the first term of equation (C.9), and

taking the limit as r tends to zero
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~
j

(C.10)

Taking the limit of the third term in equation (C.9) and using

1 'Hopital 's rule.

r .. i r
, • * r

ZR A£c
- ZR *** R

(c.ll)

Hence, the only nonzero term in equation (C.9) in the limit as r tends

to zero is the first and it tends toward 1. Therefore in the limit

as r tends to zero, u
r

= u^.

Now consider the limit of u n /u. . Both u Q and u. are finite at
U L u L

r equal to zero. In equation (C.2), the first term can be shown to go
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to zero for small r. u
Q

, therefore, tends to the value -K^ for small r.

This is exactly the value of u^ for all r. Thus,

Jb*. Jdl. , /
(C.12)

r—o Ut
1

and u Q = u. when r tends to zero.



APPENDIX D

DERIVATION OF SURFACE DISPLACEMENTS FOR A

CYLINDRICAL CAVITY UNDER TWO

DIAMETRICALLY OPPOSED

LINE LOADS

Timoshenko and Goodier [1970] derived the stress functions

^ and (|> corresponding to an elliptic hole with uniform pressure p

applied on two diametrically opposed segments. Consider a unit circle

in the c plane and the mapping function,

£• co(s) <
D1 >

where

<»(r) = R( T+ f) (d.2)

a)(c) maps the unit circle in the £ plane into an ellipse in the Z

plane with semi axes

CL r R(lfm)
(D.3)

b - R(!-m

)

For m = 0, the mapping becomes a circle of radius R. Now consider an

elliptic hole with a pressure distribution applied as shown in

210
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figure D-l . Timoshenko has shown that the stress functions in the c

plane, corresponding to the above loading, are

and

+

(D.4)

where a-| , and correspond to the mapped points Z-j and in the Z

plane. Letting m = 0 for the case of a circular hole, the mapping

function becomes

? oj (?) = /? ?



V i'i

Fig. D.l. Elliptic Hole with Internal Pressure

ie

U

,

Fig. D.2. Diametrically Opposed Line Leads on a Cylindrical Cavity
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and equations (D.4) and (D.5) may be written in the Z plane as

ZTTi 2 *- 2/— <p(i ) « — -—rr 4
/? ^ 2 1 -

?+2i ^ f. . €-2.

'r^ ITT

and

(D.6)

27Tt
, 4R.ii— VU) in~ +

PR ' i 0 R

±
R

+—
i*fr

i~2> 2, . 2 + 2i

sr- + Aoa. —
R T l-i,

(D.7)

The displacements u^ and u
Q

are related to the stress functions by

2/p(ur+iu>)= e
t6

<t>'(i)-yn)
J

(D.8)

where p is the modulus of rigidity, v is Poisson's ratio and

(D.9)
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for plane stress or

X

-

J- 4 j/
(DJ0

for plane strain. (See figure D.2.)

In order to find the correct displacements for concentrated,

diametrically opposed loads, F, let p vary as F/|Z^ -
|

and take

the limit as |Z^ - |+0. Hence for concentrated loads the stress

functions become

zirL

PR

r , i l - ef

R^r e'-l
,

1

Ur I

* u, HIl
* J e--e, ?-e,

Ur ?, I

and

(D.ll)

2vi ^ a r -

PR y - JLn
J a. -5, Uo

I ft
I

+ iH f'

v*' fl

/? « e+e,

U i
- ft I

(D.12)
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The quantities Z, and Z^ may be written as

z = Re i@

z, -- S e
**

?, = Re' 1 *

(D.l 3)

Substituting equations (D.13) into equations (D.ll) and (D.12), the

functions ip and
<f>

may be written in terms of 0 and a. The limit of

|Z-j - Z.j
|

is now the limit as a->0. Taking that limit, the functions

ip and (j) become

27T

F
tv- ( D . 1 4

)

and

27T

F
V(i);

[

-2R f*

2 ze.

]

3 -go

H

(D.15)

where Z = Zn = R.
o U

The displacements u^ and u
Q
may be found by substituting

equations (D.14) and (D.15) into equation (D.8). Separating out the

real and imaginary parts, u and u
fi

are found to be
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Wr =

Ttta
** 9l°% *** [*1 +

+ iEzA frAM* e
z }

(D.16)

and

1*4$ r

f

(K* l)A*n 6 to^ ta#i
[&J

—

(y-i)
ttjuhO

}

( D . 1 7

)

For plane strain these displacements may be written in terms of E and

v as

u,
2 0-y*)

(i-2u)(i+p)

ZE
Ai*i6

}

(D.18)

and

Ue - F
I

~ [§] -

(i-2 V)0 +u)

ZE
AJH. 6

}

(D.19)



APPENDIX E

SINGULARITIES IN THE INFLUENCE FUNCTIONS FOR A

CYLINDRICAL CAVITY UNDER TWO DIAMETRICALLY

OPPOSED LINE LOADS

Consider a cylindrical cavity of radius R, under two diamet-

rically opposed line loads F, as shown in figure E.l. u^ and u
Q

as

derived in appendix D are

F l 6
e
z F

&

(E.l)

(A$ - Ff Fjto/K 6 jtog 2
- Ai F <co46 (e.2)

where

2.(I-V
X
)

TTE
(E.3)

and

(l-2v)(lf v)

ZE~ (E.4)

E is Young's modulus and v is Poisson's ratio. Also consider the

Flamant Solution for a line load acting on a half space as illustrated

in figure E.2.
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Fig. E.l. Two Diametrically Opposed Line Loads on a Cylindrical Cavity

Fig. E.2. Line Load on an Elastic Half Space
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As presented in section 4.3, the displacements u
z

and u^ are

ZF(\-VX
) A o! F(t+»)

(E.5)

and

(\+v)(i-iv) F
_____

(E.6)

It will be shown that the singularity in the displacement is

the same as that of u near the load. Furthermore, the limit of u Q ,

as 6 tends to zero, will be shown to be u^.

As illustrated in figure E.2, r represents the distance

between the applied load and the point Q where the displacement u
z

and

u
t

are calculated. Let us define a coordinate r on figure E.l such

that r = R0. Replacing 0 with
^

in equation (E.l), it will be shown

that u = u as r tends to zero. Likewise, u„ will be shown to
r z 0

approach u^ as r tends to zero.

In terms of the coordinate r, the ratio u
r
/u

z
may be written

as

Ui "A ]

(E.7)
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L. - <11^1K* ' ire
(E.8)

Taking the limit as r tends to zero, of equation (E.7) and using

1 * Hopi tal
1

s rule

£ Kx

R
( E. 9)

The third term in equation (E.9) clearly goes to zero as r tends to

zero, while the first and second terms are indeterminant.

Expanding cot ^
in the first term in equation (E.9) and

taking the limit as r tends to zero.

jur.
R

- — /£ _£
t-^o R \ r 3R 4-SR 3

(E.10)

Taking the limit of the second term in equation (E.9) and using

1 'Hopitals rule
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= O (E.ll)

Hence the only nonzero term in equation (E.9) in the limit as r tends

to zero is the first and it tends to 1. Therefore in the limit as

r tends to zero, u
r

= u
z

*

Now consider the limit of Ug/u^. Both u
Q

and are finite

at r equal to zero. In the first term of equation (E.2) can be shown

to go to zero as r approaches zero. u
Q

, therefore, tends to the value

-K^Eforsmall r. This is exactly the value of u^ for all r. Thus,

\r-+0 Uf
Am = I

(E.12)

and u
0

= u». when r equals 0.



APPENDIX F

DERIVATION OF THE PROFILE FUNCTION FOR CONFORMAL

CONTACT OF A SPHERE AND SPHERICAL SEAT

Consider a sphere of radius R^ in contact with a spherical

seat of radius R^ at a point 0 as illustrated in figure F.l. It is

assumed that point A, located at ip on the sphere, will contact point

B on the seat, located at <j>. The distance between A and B, denoted

f, is the profile function for these points. The value of the pro-

file function in terms of
<J>

and ip is derived below.

Vectors r-j and r^ are defined such that r-j extends from 0 to

A and r
2

extends from 0 to B. The quantities w-| and define the

angles between the x axis and r-j and r^ respectively. From geometry

of isosceles triangles it can be shown that

'V
2

(F.l)

and

4>
2 (F.2)

Furthermore, from geometry

/ r, I - Z Avn y
(F.3)
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Fig. F.l. Profile function for a sphere and spherical seat

A

Fig. F.2. Profile function, f, relative to mean radial direction, r



in.
i

-- zrz
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(F.4)

The components in the x and z directions of r-| amd r
?

may be

expressed as

r,% = fi, Ain't

If
l

]

g
* 2Rt

2
^r*

(F.5)

^2% ~ &z $

fzi -2^2.
J"

The values of r, , r, , r 0 and r 0 are merely the cartesian
lx lz* 2x 2z

J

coordinates of points A and B. The value of | f | is therefore defined

by the distance between these two points or

Ifl
=
-s/f n% - 'i-x )

l
+ tt*-***)*

where r, , r« , r, and r0 are given by relations (F.5) in terms of
lx 2x lz 2z 3 J

ip and 4).

Now consider the mean radial direction which forms an acute

<f> + <J> ,

angle of
—~—"with the z direction as shown in figure F.2. The angle

between AB and the mean radial direction is £ while the acute angle
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between AB and the z axis is labeled y such that £ + y =( 4) + 40/2.

The value of £ may be' determined using the following relations

(F.7)

(F.8)



APPENDIX G

INTEGRATION OF THE BOUSSINESQ INFLUENCE FUNCTION

OVER AN ANNULAR ELEMENT

It is required to evaluate the integral

zav -Jfj (x-x'JVs-ay
(G.l)

over an annular element where (x,y) represents the location of a field

point C along the center line of the annular segment as illustrated in

figure G.l. The annular element has inner radius r^ , outer radius r^

and the field point is located as radius r . The sides of the element

are defined by angle 9 measured from the center line.

Now consider the right triangle as shown in figure G.2. The

integral in equation (G.l) over the right triangle is given in Lure

[1964] as

X ~ J t&M, ( + y )
(G.2)

This result will be used to approximate the integral in equation (G.l)

over the annular region in figure G.l.

Let the annular region of figure G.l be divided into six right

triangles as shown in figure G.3. They are as follows.

226
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*

Fig. G.l. Annular Segment with Field Point along Center Line

Fig. G.2. Right Triangle with Field Point as a Vertex
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Fig. G.3. Annular Region Subdivided into Six Right Triangles
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A, 2 AC&

> N
ID BCD

III

«o
<1 DCC

hi<J EOF

Mlw\<! FCH

A* £ GCH

The calculation of the integral (G.l) over each triangle may be per-

formed using relation (G.2). The integrals over each of the triangles

defined by relations (G.3) will be termed I-j, 1^ corresponding

to the integrals over triangles 1, 2 6 respectively. Thus

li'JiUtto+d* |‘) (G4)

where <J>. i = 1,6 are illustrated in figure G.3. The values of <j>. are

all functions of r-| , r^, r
c

and 0 defined below.

a - I
(G.5a)
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c (rc - r, )/t^i f i

|
-====

}W 'i'W© O'icoie-r;) 1
j

(G.5b)

03 = mtJ&m,
^

(rc cae-r,)

(*c & )
)

4 t (£.4^) J

4 - JC „

(G.5c)

(G.5d)

(G.5e)

^ ~ rr - 0a
- -a4 -

The values of JL can then be defined by

1, - Jli^ CH - (rc -n )a>d f

/. -J4 ~ c£ - rc a**. ©

(G.5f)

(G.6a)

(G .6b)

Xs - A - s^fc-4**0)
,+(V£C<*0J

t

(G.6c)

The total integral ly over the annular element can be approximated

by

XT * ^ {i/< AAh ff*#> / A4. rf £ )}
<G ' 7)



APPENDIX H

DERIVATION OF A CONTACT CRITERION FOR

CLOSELY CONFORMING SPHERES

Consider a sphere of radius R^ interpenetrating the surface

of a spherical seat of radius R^ by an amount 6. For the problem at

hand 6 corresponds to the rigid body approach due to some unknown

applied force F, on the sphere. Figure H.l illustrates the sphere

and seat and pertinent notations for the discussion to follow.

Point A is located on the surface of the sphere at coordinate

ip. Point B is located on the seat between point A on the sphere and

02* the center of the seat. The radial gap between A and B, denoted

by f, is equal to the sum of the elastic radial displacements w-j and

W
2

* on the sphere and seat respectively, in the deformed state. From

the geometry of the problem the following relationships may be stated:

CL A = 0} C + CA - (e+<5)/6w d +/?, tot (V-$)
(H.l)

<\&~Ri (H.2)

6A » Oz/A -OtS
u (e-tl»)£#A <fl +R,yt4ri('f-$)'Rz

(H.3)

where e = R^ - R-j •
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Fig. H.l. Sphere interpenetrating a spherical seat
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Now consider the case where ~ R-j and 6 « R-| , hence ip ~ <t>.

With these assumptions equation (H.3) may be written as

BA ^ (H . 4)

Recalling that BA = w-j +

lV,+
2̂

t 6 (1-jCsn f) y - O (H.5)

Equation (H.5) is an approximate contact criterion based on radial

displacements.



APPENDIX I

RELATIONSHIP BETWEEN THE ELASTIC CONSTANTS

IN PLANE STRESS AND PLANE STRAIN

Given the displacement and stress fields in a state of plane

stress in terms of the elastic constants E and v, the equivalent

fields for the identical problem in plane strain may be found by

substitution of E for E and v for v where

and

( 1 . 1 )

( 1 . 2 )

This can be verified by substitution of (I • 1) and (1*2)

into the stress-strain relations for plane stress. The stress-strain

relationships for a linear isotropic material are

£% s
£ i )

- Y «r% -»<rx )

v . T
" £

l **

(1.3)
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Substituting equations (1*1) and (I • 2) into (I • 3) yields

Equations (I • 4) are the stress-strain relations for plane

strain.

Similarly, a solution in plane stress may be obtained from

a solution in plane strain by substituting E' for E and v' for v

where

<fx
s y|W)o;-

j

- jiO'V l)cr,-VO+v)0-K
J

(1.4)

'

(l+v) z
(1.5)

(1.6)

Substituting relations (I • 5) and (I • 6) into equations (I • 4) one

obtains equations (1*3) for plane stress.



APPENDIX J

HERTZIAN FORMULAS FOR A SPHERE
INDENTING A SPHERICAL SEAT

For the case of a sphere of radius R^ indenting a spherical

seat of radius R
2

» Hertz's theory predicts the following relation-

ships between load F, approach 6 , and the radius of the contact

region a (see Timoshenko and Goodier, 1970 pp. 409-14):

I

a =

£ -

3rr k Pl F

F* k*<Rt - B,)

(j.i)

16 r, r2
(J.2)

where

, i -u(

* i-vS
R - — + (J.3)

W Ft ITFj

v-j and \>2 are Poisson's ratio for the sphere and seat respectively

and E^ and E^ are the respective values of Young's modulus.

The pressure at a radius of r from the center of the contact

region is given by

P(r )*
3 F
2VQ. 1

I-
(J.4)
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These formulae are only valid for contact regions which have dimen-

sions small compared to both R-j and R^.



APPENDIX K

P

HERTZIAN FORMULAS FOR A CYLINDER
INDENTING A CYLINDRICAL SEAT

For the case of a cylinder of radius R-j indenting a cylin-

drical seat of radius R^, Hertz's theory predicts the following

relationships between load F per unit length and the half width of the

contact region b (see Timoshenko and Goodier, 1970 pp. 418-19):

a
( K. 1

)

b =
4Fk R,R

l

Rt -R,

b
l

(Pi-R.)

4 k P, Pt
(K.2)

where

k =
T£; TTf

t

(K.3)

and are the Poisson's ratio of the cylinder and seat respec-

tively while E^ and E^ are the respective values of Young's modulus.

The pressure distribution at a distance of r from the center

line of contact region is given by
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These formulae are only valid for b « R-j . The approach for cyl-

inders in contact or the contact of a cylindrical seat is predicted

to be infinite by Hertzian theory which is clearly not possible. For

an explanation of this inadequacy and the derivation of an appro-

priate formula for cylinlers in line contact see Singh [August 1974].



APPENDIX L

DERIVATION OF A CONTACT CRITERION FOR CONTACT OF A SPHERE

AND SPHERICAL SEAT WITH A CONSTRAINED

DISPLACEMENT FIELD

Consider an elastic sphere of radius R-j indenting an elastic

spherical seat of radius R^. For a given force applied to the sphere,

the bodies will approach by 6 and the contact area will extend to \prr max

on the sphere. It will be assumed that a point located at ip on the

sphere will contact a point at 4> on the seat and

Ri _ Aton. 0

Ri a*a*

This is physically equivalent to requiring points with the same x

coordinates as shown in figure L.l to contact after deformation. Only

displacements in the z direction will be considered in the criterion.

Consider the sphere interpenetrating the seat (although this is

physically impossible) by an amount 6. The distance between points A

and B is labeled f.

Noting the geometry at hand and the constraint equation (L.l)

the gap f may be written as

f - (ftx -R,)4 & x/n 'f -Ri 4> (l.2)
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Fig. L.l. Sphere interpenetrating a spherical seat

interpenetrate^

w, AND ARE DiML N^lONl ESS

Fig. L.2. Detail of interpenetration surfaces of sphere and seat



242

This gap must be closed by the dimensionless elastic displacements

w
1

and v)

^

on the sphere and seat respectively, (see fig. L.2) Thus

R, K tRx ^2 =
(&i ~R\) t & ~ (L.3)

Writing equation (L.3) for points on the outer boundary

J^iWi +R% Vvjj Ri-Rt + 4 ~(Ri £0* ^
'%*#%)

(L.4)

Equation (L.4) may be solved for 6 . Substituting the resulting value

of 6 into equation (L.3) and rearranging terms gives

( tv, -iv
(

a
)R, +(w

z
-w°) r%

-

~ /?> (L.5)

Writing equation (L.l) for points on the outer boundary

R\ Am— - — - 1 - — (L. 6)

R i Am
Dividing equation (L.5) by R-j and substituting in relation (L.6) the

final expression for the contact criterion becomes

Am. t/v\a*

Am ftrrtAA

( Wr wf) + (iv*-w/)

~ ZZfa/4*4? Am* )* (** (L.7)
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The above expression (L.7) is the contact criterion used in the

analysis of Goodman and Keer [1965] who omit the bar over the dimen-

sionless quantities , w^.



APPENDIX M

DERIVATION OF CONSTRAINED DISPLACEMENT FIELD FOR

SURFACE POINTS OR AN ELASTIC SPHERE

CONTACTING A RIGID SEAT

Consider an elastic sphere of radius R^ in contact with a

rigid spherical seat of radius R^. It is known a priori that the

contact surface will be of radius R^. Assume that all points on the

surface of the sphere move in a direction parallel to the line of the

applied load. For a given contact angle ^max
> the displacement field

is then uniquely determined and will be derived below.

The displacement of surface points on the sphere consists of

a rigid body translation 6 and an elastic displacement field u
z

(ip)

.

Consider a sphere which has undergone the rigid body translation so

that its surface interpenetrates the seat as illustrated in figure M.l.

The elastic displacement of point A on the sphere is then defined by

u
z

in accordance with the given assumption. Taking vector components

_A A
of OB, O'A and 00' the magnitude of u

z
can be derived to be

|u a |
~ - loeljUH Y i" /oo'l + I o'A 14&L $ (Ml)
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Fig. M.l. Elastic sphere interpenetrating a rigid seat

i Fig. M.2. Components of surface displacement on sphere
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which can be expressed as

lUt l - Rz (l-sCt± <p) - R, fl -44* Y) *& (H.2)

Let a r - t coordinate system be defined at point A such

that ? is directed radially inward on the sphere and t is directed tt/2

clockwise of ?, Then the components of tT
z

, w^r and u-jt, may be com-

puted by

w,* )u z l M+V (M.3)

and

u; * / Uj / aut (M. 4)

The initial assumption requires A and B to be located such that

thus

Rt Aiw 7
^ " Rt aJm. (M. 5)

(M.6)
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Combining equations (M.3), (M -4) , and ( M . 6 ) one finds

W, - Rt ^1
-x&i ( -j^rA^y

)J
j

ao< y

~ R, ( I - A64 Y)AAHT + 6604 Y (M-7)

and

W/ r i^/ ~ta*t
(M. 8)

du

The derivative may be expressed as

- A* AO<
£
AAAAon f Ami y)

j
A&4.Y

- R,AiM*Y+Ri co*Y - R, (i-am'})/**'} +Soh.Y

This latter derivative is useful in computing the surface strain

£#'



APPENDIX N

COMPUTATION OF THE ORIENTATION OF TANGENTIAL COMPONENTS

OF DISPLACEMENT ON SPHERICAL SURFACES

Consider the spherical surface of radius R illustrated in

figure N.l. The surface is subjected to a load F at point B located

at (ipg , 6^). The tangential displacement u
t

» at a given point A

located at (iK , 0), lies along the tangent to the great circle

connecting A and B and is directed away from B for positive values.

The angle between the positive u
t

direction and the tangent at A which

lies in the n-| -
y-j

plane is defined at t. 4> is the angle measured

between OA and OB. For purposes of integration of the tangential

displacement influence function it is desired to find x in terms of

^A» ^0 ^0-

Consider the portion of the spherical surface A M B as

illustrated in figure N.2. The spherical angle at M is 3g
and the

opposite angle is 4>. The adjacent angles to M are ^ and 4^. The

spherical angle at A is x. From the law of cosines for spherical

trigonometry

/CO40 - iC&iYg, MHTa *MMYe (n - 1)
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Fig. N. 1. Orientation of tangential displacements due to a

point load on a sphere.

M

B

Fig. N.2.. Spherical triangle

7
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The law of sines for spherical trigonometry states:

.W T = r — (N.2)

6

combining equations (N.l) and (N.2) and taking the inverse of sin t,

T - OAX44m
fii Aim Yb

^cn Act V8 otn % *Au« Yg Aim

(N.3)

The above result can also be derived with cartesian vectors.



APPENDIX 0

INTEGRATION OF INFLUENCE FUNCTION

FOR CYLINDRICAL GEOMETRIES

The influence functions for a cylinder under two diametrically

opposed line loads, normal to the surface as derived in section 4.7

are

<r,<Y,ri «..,O
s - kI lM.fa»C

r~ +
/}

+

if
>

f —2- AtM. (V- y) (0.1)

- !*Lco4(r'-Y)
7T ( 0 . 2 )

where G-j (if> , ip' , E-j , ) is the influence function for the displace-

l I

ment of a point at ip due to a load at ^ (^ - ip) and

H.| ip'

,

E.j , v-|) is the influence function for the tangential

displacement- E^ and are elastic constants of the cylinder and the

constants and K l, are given by

K, *

Ki--

20-*i)

7TEi

l£Ti

(0.3)

(C-Ijl) (0.4)

251

I



252

Similarly for the cylindrical seat under two diametrically opposed

normal line loads the influence functions as derived in section 4.8

are

s £* /am. -

*’* K\ Aim ( (0.5)

and

Ht (t t: Vt)Et ) ‘ (+'- *)

U

7

-
/<l 4*1 cv-t) ( 0 . 6 )

where k^
2
and are given by equations (0.3, 0.4)

G£ represents the radial displacement influence function and

is that for the tangential displacement on the cylindrical seat.

Consider the loading p (ip
1

) on the cylinder between 4>, and

\l>2 (4*2
>

) as shown in figure 0.1. p ( 4>
'

) is a constant pressure

P and \p is located such that ip < 4^
(see fig. 0.1). The displacement

w-j at \p due to p ( 47
'

) can be computed as

The tangential displacement u n
due to load p ( ip '

) can be expressed as

(0.7)

( 0 . 8 )
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Fig. 0.1. Pressure loading on a cylinder

Fig. 0.2. Pressure loading on a cylindrical seat
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Similarly on the cylindrical seat the radial and tangential displace-

ments at p due to p (<f) ') are

r*
w2

: PR, J 6,(Apyii Et )d^' (0.9)

and

Ut = PRi J ( 0 . 10 )

respectively (see fig. 0.2)

The integrals in equations (0.7), (0.8), (0.9) and (0.10)

may be evaluated analytically. In each case the first term in G-j

,

H.| , and can be integrated by parts while the integration of

the second terms is trivial. The indicated integration results in

w, - pr, ^ -k,an(v'-r)f^
x

(0.11)

-jinAtM (Y-Y))

,
lY = Yt

- (o.i2)

W
t
r ppt [- (t‘-e)JL,Z*^( tt) f H,

1
(*'-*)

- K, an ($ -<t>)
j _

(0.13)

V- Pi

U, ~ PR, [-K, Q, + R*j£*« aPk ($>-$)

2 ,
10'- Pi

- K, **»(*-*)]p^ (0.14)
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These expressions for u-j , u^, and are valid for , ip^,
<J>-| and

7T

4>2 less than
2

- In order to extend the domain of the integration to

it, symmetry of the displacement fields must be considered. For ,

TT

<f>1
and ^ less than

^
these conditions may be expressed as

(0.15)

U, (YY/VJ, P)- - U, (T, TT- P) (0.16)

Wt<£Mi>P)= r) (0.17)

(£» <&A,P) - -UiMj* P) (0.18)

The above analysis is valid only for ip < ip^ < ip

2
- If

^ > ^2
>

^1
(or (p > $2 >

<l>i
) then the absolute values of ip - ip.

(i = 1, 2) and <J>
- cf

^

in equations (0.11 )-(0.14) should be considered

in the evaluation of w.| , w^, and u^. In addition to the above,

the direction of u-j and U
2
must be accounted for by considering these

quantities as being + u-j (or + u
2

) when ip <_ < ip (<J>
<

<j>.j
<

<J>g ) and

as - u.| (- u
2

) when ip > ip

2
> ip

-|

(4> >
4>-|

> 4>

2
)-



APPENDIX P

DERIVATION OF A PLANAR APPROXIMATION TO THE

ELEMENTAL AREA ON A SPHERICAL SURFACE

Consider the area ABCD on a spherical surface of radius R as

shown in figure P.l. It is desired to approximate this curved area

with a plane element so that the integral of the Boussinesq influence

functions can be approximated for the spherical element.

The area on the sphere is bounded by ± A and 6 ' ± A where

A « 1 radian. A cone generator is defined such that its apex N falls

on the n axis and points A, B, C, and D fall on the surface of the

cone (see fig. P.l). The surface ABCD on the cone closely approxi-

mates the surface on the sphere for small A. Let point G be located

midway between A and D, and let G' be its projection on the n axis

(as shown in fig. P.2). From figures P.l and P.2, the following rela-

tions may be established:

AG = GJ) - Rjuhi A.

06 - R<on & (P-

NG = OG to^L T‘ 9 RsCOQ-A&ulY'

NA - NG-AG = - '**«*)*

Nt> - NG +AG
_ ^ sooty*'

G 1G (%&}
- ^ xuxl 'YNG
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BASE OF CONE
GENERATOR

Fig. P.l. Elemental area on spherical surface
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Fig. P.2. Section view of cone generator

Fig. P.3. Annular segment
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Finally, for small A, the area ABCD on the cone can be closely approx-

imated by a planar annular element including points N, A, B, C, and D.

Figure P.3 illustrates an annular segment ABCD with inner radius r-j ,

outer radius r^ and half angle of p. In relating the equation (P.l)

to the geometry of the annular element the quantities r-j , r^ and

can be described as

f\ - NA = R Aim (Y /mhl Y '

(P.2)

fi -A/Z) r R 4Am, (Y' + a) /ao4 nr

'

(P.3)

J* - A 404 Y*
'

(P.4)

The corresponding areas of the original spherical element may

be compared to the area of the planar annular element. For the sphere

TdY
'a'-*

= ** 2*f-^r#*
- 4

A

For the annular element

A = v'( r^-r, 1
)

/ -R\4vnl(Y-A)

(P.5)

" 2ir

- zi /C#i Y'
/ton z Y'

(P.6)

For small A,A
a

* A
s

-



NOMENCLATURE

A,

U
A

A

'2 k

B. .

ij

B
n

2k

U

do

E

E.
l

E'

area of annular segment

area of cell i

area of cell ij

coefficients defined in equations (4.20) and (A. 3)

area of sector on sphere

coefficients in equations (4.18) and (A.l)

radius of contact region in chapter 5,

semi -major axis of ellipse in appendix D

non-dimensional radius of contact region

coefficients defined by equation (2.12)

coefficients defined by equations (4.21) and (A. 4)

coefficients in equations (4.19) and (A. 2)

coefficients defined by equation (2.10)

half width of contact region in appendix K,

semi -minor axis of ellipse in appendix D

distance between field point 1 and a point in cell s..
* J

distance between field point 1 and centroid of cell s..
* J

hypothetical interpenetration

initial interpenetration of spheres

Young' s modul us

Young's modulus of body i

equivalent Young's modulus for plane stress
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E equivalent Young's modulus for plane strain

e difference in radii of curvature, -
R-j

F force in context of point loads, force per unit
length in context of line loads

F
i

*
F

force at node i

nondimensional force

f
consphere

force resulting from analysis by CONSPHERE

F
Hertz force resulting from Hertzian analysis

*
f
consphere

nondimensional force resulting from analysis by

CONSPHERE

F*Hertz nondimensional force resulting from Hertzian analysis

f profile function or initial separation between two
points which merge after deformation

a

f vector describing initial spearation fo two points
which merge after deformation

f.
i

initial separation of field points i

f\
i

f
N+l

" f
i

r t w
components of f in r, t and w directions respectively

f(x,y) f evaluated at point (x,y)

f.j(x,y) distance of surface i from x-y plane evaluated at (x,y)

G modulus of rigidity

G
( ) influence function for displacements normal to a

surface in a cartesian coordinate system

G ( ) influence function for displacements normal to a

surface in a polar or spherical coordinate system

G
i

( ) G ( ) for body i

g ( ) nondimensional influence function
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nondimensional influence function for displacements in

the radial direction

nondimensional influence function for displacements
in the tangential direction

influence function for displacements tangential to a

surface in a cartesian coordinate system

influence function for displacements tangential to a

surface in a polar or spherical coordinate system

H( ) for body i

numerically generated nondimensional influence func-
tion for displacements in the radial direction

numerically generated nondimensional influence func-
tion for displacements in the tangential direction

total integral over an annular segment

dA. ./C.
ij ijl

elastic parameter
TT E

elastic parameter (ItH) .

elastic parameter
1+v
ttE

K., evaluated for body j

1-v 2 1-v 2

elastic parameter ^

—

initial value of constant in point mating procedure

th
constant in point mating procedure for j solution
on body i

inverse of Poisson's ratio in chapter 4 and appendix A

constant in mapping function in appendix D,

number of equal sectors in ft in chapter 7



N number of cells in simply discretized solution

N
con

A
n.
l

number of cells within r
con

unit normal vector to surface of body i

P constant pressure

p
i

constant pressure in cell i

P
max
*

P.
1

P
max

maximum pressure

nondimensional pressure, kP^

kP
max

P
2k

(cos e) Legendre polynomial in cos 0

P ( ) interfacial contact pressure in polar or spherical
coordinate system

P(x,y,z) interfacial contact pressure in cartesian coordinates

R radius of curvature

R
i

radius of curvature of body i (k = 1,2)
2R, R«

R
m

mean radius of curvature, D
-

. D
-

R
2

K
1

(note: in conformal theory -R0 is substituted for
r
2

)

2

AR R
2

" R
1

r coordinate of generic point

*
r nondimensional coordinate of generic point, r/R

m
A
r unit vector in mean radial direction

r position vector

.»

r.
l

position vector to point on surface of body i

r
b

radius of blending point of pit on sphere
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r
c

r
i

rA<(>

radius of curvature at "edge" of pit in chapter 7,

radius of centroid in appendix G

radius used in convergence studies

radius of inner boundary of contact region

chords used in analysis of influence functions for a

cylinder in chapter 4 and appendix B (i = 1,2),
radius of inner boundary of ith cell in chapter 7

radius of outer boundary of contact region

x and z components respectively of vector r.

r/Rmm

r./R
b m

r /R
c m

length of cell

width of cell

SCF

TOL

T
l> V T

3

t

separation of merging field points

separation vector of merging field points

r, t, and ^ components of §

singularities in influence function for radial dis-

placements on a sphere

stress concentration factor

region included in ring i between rays j and j + 1

distance along contour curve of body i (i = 1,2)

s
i

on jth solution

tolerance used to determine merging of field points

singularities in influence function for tangential

displacements on a sphere

unit vector in mean tangential directions
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u

u

1

v
j

V .

1

w

w.
1

w.

w.
1

(x,y,z)

Z

Z
0

Z
1

Z
1

z

.

l

a

ot-| ,a
2

3

displacement tangent to surface

displacement in radial direction

displacement in tangential direction

displacement in z direction

displacement in tangential direction

tangential displacement on body i (i = 1,2)

coefficients defined in equation (2.11)

displacement in w direction on body i (i = 1,2)

displacement normal to surface

normal displacement on body i (i = 1,2)

w.j at outer boundary of contact region

nondimensional normal displacement w./R.K
l i

coordinates of generic point in cartesian coordinate
system

unit vectors on body i

i 0
generic vector in Z plane. Re

A
vector in x direction in Z plane

vector in Z plane

conjugate of Z-j

val ue of f
.
(x,y)

angle between mean radial direction and the Z axis

angles defined in figures 4.12 and B.l

coordinate of generic point in spherical coordinate

system

centroidal radius of sector S.

.

* J
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Y angle between F and Z axis

A A

V y
2

unit vectors in cartesian coordinate systems fixed to
bodies 1 and 2 respectively

Y
xy

shear stress

A' small angle «1 radian

A constant defined in equations (4.22) and (A. 5)

A
i

rigid body translation of body i (i = 1,2),
triangle i (i = 1,6) defined in appendix G only

6 approach

6 6/ R
m

6
consphere
*

6
CONSPHERE

approach predicted by CONSPHERE

6
CONSPHERE

/R
m

6
Hertz
*

6
Hertz

approach predicted by Hertzian theory

^Hertz^m

6 9 6.
r t

approach in the r and t directions respectively

e root mean square error

£ , £
x y

components of strain in appendix I

£ . .

1J
strain tensor (i,j = 6, ip, r, u>, $)

c generic vector in c-plane

A A

5r c
2

unit vectors in cartesian coordinate system fixed on

bodies 1 and 2 respectively

A /\

nr n
2

unit vectors in cartesian coordinate system fixed on

bodies 1 and 2 respectively

0 generic angle used in spherical and polar coordinate

systems

K elastic parameter equal to
^

for plane stress and

3-4v for plane strain
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angle between normal vector n. and r direction
/ 1

modulus of rigidity, Lame's constant

Poisson's ratio

Poisson's ratio of body i (i = 1,2)

equivalent Poisson's ratio for plane stress

equivalent Poisson's ratio for plane strain
-1

/V

angle between f and r

half vertex angle of annular segment in chapter 5

and appendix P,

a boundary radius (r
T

or r ) of the contact region in

chapter 7
1 0

components of stress in appendix I

vector in c-plane

conjugate of o-j

angle defined in equation (7.9) in chapter 7,

angle describing orientation of u^ in appendix N

shear stress

regularization parameter

generic angle in spherical and polar coordinate sys-
tems fixed to body 2

angle defining boundary of contact region on body 2

27T/m in chapter 7

generic angle in spherical and polar coordinate
systems fixed to body 1

angle defining boundary of contact region on body 1

function which is minimized in Functional
Regularization method

contact region



projection of contact region onto x-y plane in

chapters 2 and 7 only

region of cell i in chapters 2 and 7,

contact region on body i in chapters 3-6

contact region of cell j on body i

candidate or tentative contact region

tentative contact region of cell j on body 2

unit vector defined by equation (3.3b)

mapping function

j A
angle between r^ and x (i = 1,2)
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