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1.0 INTRODUCTION

The crash victim simulator (CVS) computer program developed by Calspan

is a general three-dimensional simulator (Ref. 1). The user must decide the

level of detail (i.e., the level of sophistication) that is required to adequately

account for all aspects of a particular problem that significantly affect the

responses of interest. In the crash victim problem the principal responses of

interest are usually those associated with the production of injuries. The

presently reported study does not address the problem of identifying injury

criteria. Rather, the general objective of the research was to develop, evaluate

and recommend means and procedures for evaluating accuracies and sensitivities

of various measures of crash victim response to the choice of and to the numerical

values of various parameters that are used in crash victim simulations with the

CVS computer program.

In particular, many of the studies were confined to the modeling

aspects related to a Part 572 dummy. Extensive work to define the parameters

of a 15 segment Part 572 dummy model was accomplished in two closely related

research programs reported in References 1 and 2. The baseline models used in

this study stem from the data obtained in those programs. To facilitate

understanding of the analyses and information presented in this report, the

reader should be familiar with the CVS program and the results of the comparison

studies described in Reference 1.

This research work vras divided into eight (8) principal tasks as

follows

:

1. Plan of Work and Methodology

2. Check the CVS and Input

3. Comparative Study of Levels of Sophistication

4. Response Measurq Approximating Function Generator (RMAFG)

5. Study of Responsfe Sensitivity to Model Parameter Variations

6. Reduction of th^ Number of Inertial Related Parmaters

1



7. Numerical Verification of the RMAFG

8. The Main Questions.

Comments on the Plan of Work and Methodology, Task 1, are included

in the discussions of the individual tasks. The original plan proved overly

ambitious. Many of the tasks were much more difficult and required much more

time than had originally been proposed. As a result the work was only

partially completed.

Task 2, Check the CVS and Input, is discussed in Section 2. This was

principally concerned with the joint algorithms in the program since noticeable

"drift" of the joint constraints was reported by some users.

Task 3, Comparative Studies of Levels of Sophistication, addresses

some of the modeling capabilities of the CVS program. This task is discussed

in Sections 3 and 6. Section 6 also addresses Task 8, the Main Questions.

These questions are given in Table 1-1 and are intimately related to the levels

of sophistication that were to be considered which are given in Table 1-2.

Results of the Study of Response Sensitivity to Model Parameter

Variations (Task 5) are presented in Section 3 where a detailed model of a

dummy shoulder is studied and in Section 4 where the results of neck and

shoulder models are used to demonstrate the Response Measure Approximating

Function Generator (RMAFG) developed in Task 4. Table 1-3 lists some of the

potential parameters (independent variables) that were considered in the

sensitivity studies, and Table 1-4 lists the number of parameters that are

associated with various components of a typical model using the CVS program.

Results from Task 7, Numerical Verification of the RMAFG, are also

described in Section 4. The RMAFG is a multiparameter polynomial interpolating

routine which is useful for parametric studies. The Fortran listing of the

RMAFG program is presented in Appendix B.

2



Table l-l

QUESTIONS CONCERNING REQUIRED LEVEL OF MPPEL PETAIL

1. Is similitude between rigid body characterizations of selected segments
adequate or must similitude of one or more vibration modes also be preserved?

2. Are simple ball-and-socket joints an adequate characterization of the

shoulder or must the separate motions of the clavicle and scapula be approxi-
mated?

3. Is it sufficient to preserve kinematic similitudes that are describable
by geometric constraints between the head and the base of the neck or must

physical or computer models of the neck include dynamic degrees of freedom that

correspond to the human neck?

4. Is a planar model adequate or must a three-dimensional model be used for
conditions essentially symmetric to the body?

5. Is it sufficient to preserve similitude of impulses and coefficients
of restitution during "hard" impact processes or must similitude of forces
also be preserved?

i

6. Is it necessary to account for the non-symmetric shape of joint stops?

7. Is a sliding/ rolling characterization of a particular contact adequate
or must similitude of the deflection characteristics be preserved?

8. Is it necessary to provide separate rigid body degrees of freedom for
the hands or the feet?

9. Must the similitude of surface compliances be preserved in the region
of belt or air bag contacts?

10. It is necessary to preserve similitude of certain dynamic degrees of
freedom which include inertial effects for deformations associated with contact?

11. With respect to each of the modeling features, and for various typical
crash conditions either:

11.1 what is the simplest level that adequately handles
all of the cases, or

11.2 what is the most detailed model that is within the
capabilities of the CVS program and that is inadequate
for one or more of the cases?

12. What is the simplest and least expensive mechanical idealization,
using the CVS, that appears to be adequate for each of several typical crash
conditions?

3



Table 1-2

LEVELS OF SOPHISTICATION

1. Planar, i.e., two-dimensional, motion using planar kinematic constraint
option (for symmetric and nearly symmetric crash situations) . Include a case
where the two sets of planes formed by the upper and lower parts of the arms
and legs, respectively, make significant angles with the mid-sagittal plane.

2. Abdomen modeled as several rigid body segments each with independent ro-
tational degrees of freedom. The lumped mass, stiffness, and viscous parameters
should be consistent with the Baseline Model (if this is not the Baseline Model
itself) .

3. Abdomen modeled the same as for item (2) except that the individual
abdomen subsegments have orientations with respect to one end that are constrained
to be functions of the relative orientations of the opposite end of the abdomen.

4. Neck modeled similar to the treatment described in Item (2) for the abdomen.

5. Neck modeled similar to the treatment described in Item (3) for the abdomen.

6. Shoulder model that includes clavicle, scapula and muscles modeled as ten-

sion elements with mass.

7. Globalgraphic descriptions of joint stops that correspond to the human
subjects

.

8. Impulsive contacts for nominal conditions involving relatively short

duration, i.e, hard contacts.

9. Degrees of freedom that approximate certain segment modes of vibration
during events that include hard impacts. (This may well involve modeling seg-
ments as an assembly of two or more rigid subsegments)

.

4



Table 1-3

LIST OF POTENTIAL INDEPENDENT VARIABLES FOR SENSITIVITY STUDIES

1. Components of inertia tensors for body segments.

2. Joint friction torque unlock threshold.

3. Joint moving friction torque.

4. Joint stop parameters.

5. Flexural moment stiffnesses.

6. Joint locations.

7. Initial position and orientation.

8. Contact model parameters.

5



Table 1-4

SIGNIFICANT PARAMETERS

Significant Parameters No. of Parameters Required/Element

Segment

mass 1

inertia 6

contact ellipsoid 9

integrator tests 1_2

28 TOTAL

Ball Joint

location and orientation 12

spring characteristics 10

viscous characteristics 7

29 TOTAL

Pin Joint

location and orientation 12

spring characteristics 5

viscous characteristics 7

24 TOTAL

Euler Joint

location and orientation 12

spring characteristics 15

viscous characteristics 11
48 TOTAL

(Globalgraphic joint option requires a minimum of 22 additional

parameters)

Belt

reference points

slack

stress-strain zero friction

or infinite friction

9

1

11 (mimimum)

(22) (minimum)

6
21 (32) minimum TOTAL



Table 1-4 (continued)

Airbag

basic parameters

each additional reaction panel

Flexible Element

for each segment, h function

Contact Surface

size, position and orientation

force-deflection characteristics

38

9

38 + 9 x number of panels TOTAL

30

30 x number of segments TOTAL

9

50 typical (minimum 16)

59 TOTAL
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Task 6, the Reduction in the Number of Inertially Related Parameters,

is addressed in Section 5 where a theorem is presented which shows that the

mass distribution of a set of connected rigid bodies is not unique. A sample

case is presented in that section, and the Fortran listing of the computer

program for computing dynamically equivalent systems is contained in

Appendix C.



2.0 CHECK OF THE CVS PROGRAM

One primary purpose of Task 2 was to make a complete check of the CVS

program and the algorithms used to develop the program. A problem that came to

light was the failure of the joint constraints, in that, in some runs a noticeable

drift occurs in the Pin and Euler joints. This problem was studied in detail

and is discussed below.

The CVS program links the segments by imposing forces and torques of

constraint at the joints. The program integrates the linear accelerations

and velocities of the reference segment (s) to obtain the linear velocity and

the position of these segments. It then uses a chaining algorithm to compute

the positions and the velocities of the other segments. The use of this chaining

procedure insures consistency of the linear variables, i.e., the joints do

not pull apart. However, when a joint is locked or pinned (one free axis) or

has one locked axis, nothing in the program checks or corrects for any inconsis-

tencies that may occur in the relative angular positions or velocities because

of integration or precision errors.

To state the problem: if segments 1 and 2 are connected by a pin

joint (IPIN = 1 or IEULER = 4, 5, 6), the angular constraint is that the vector

defining the pin axis in segment 1 should remain parallel to the vector defining

the pin axis in segment 2. This constraint is imposed on the system by defining

a torque of constraint for th.s joint. The constraint equation is obtained in

acceleration form by twice differentiating the equation expressing the equality

of the pin axes. Since the orientation of segment 1 is updated by the integrator

independently of the orientation of segment 2, errors in integration and lack of

infinite precision in the calculations will cause errors in orientation (direction

cosine matrices) and hence the pin vectors may not remain parallel. This drift

effect has been noticed in some of the computer runs. For simple pin joints the

maximum error detected has been less then 1 degree; however, for the Euler joint

with one locked axis a very noticeable drift (several degrees) has been reported

by Leyland Motors.

9



Since the typical Part 572 dummy joint is best modeled by the use of

the Euler joint, any drift may cause significant errors in the simulation. Thus,

considerable effort was expended to determine the cause of the drift. All of

the subroutines involving the joint computations were examined in detail to

ensure that there were no programming errors or errors in the algorithms. No

errors were found; however, it should be noted that a correction had been made

to subrouting VISPR in 1979. This correction would make the current version of

the program perform differently from previous versions. The correction did not

help the drift problem.

A simple three segment-two joint model was used to make tests on the

drift. These tests verified that the drift was a function of integrator

accuracy. As the ratio test on the integration angular acceleration was reduced,

the drift was reduced. In these tests, both joints were Euler joints; one had

the precession axis locked and the other had the spin axis locked. It was

noticed that although the individual angles drifted from their expected values,

the sum of the angles was close to the expected values. The reason for this

has not been determined.

Modifications to subroutine PDAUX were tried in an attempt to correct

the drift. In particular several methods of correcting the quarternion to insure

that the vector part of the quarternion had no component on the effective locked

axis were tried. None of these methods has a significant effect on the drift.

It appears that it will be necessary to develop a chaining algorithm

for the angular positions and velocities to eliminate the drift problem. Until

this is done, it is recommended that the integrator tests be used to hold the

drift to an acceptable level. No method of predetermining the best values to

use for these tests is known; hence they will have to be determined by trial

and error. The tabular time histories of the joint behavior show the values

of the angles involved. Examination of these time histories allows the user to

detect the drift in any angle that should be constant (locked axis), but

unfortunately the drift or error in a time-varying angle cannot be determined.

10



3.0 COMPARATIVE; STUDY OF LEVELS OF SOPHISTICATION

A significant feature of the CVS program is the ability to vary the

complexity of the model of a physical system. For most applications simulating

the Part 572 dummy, a fifteen- segment model has been used. However, the

skeletal structure of the Part 572 dummy consists principally of 33 rigid

segments plus the rubber neck and the rubber lumbar spine. Vinyl foam "flesh"

surrounds some of these segments to form an approximate human shape. No internal

organs are included except for a visceral sac in the lower torso.

Since the CVS program requires that the structure be defined as a

set of rigid segments connected by joints, the neck and the spine each must be

approximated as a set of rigid segments and the "flesh" is assumed to be rigid

and part of the segments to which it is attached. This study did not address

the effects of this assumption for the "flesh." The spring and viscous

characteristics attributed to the joints are primarily due to the interference

between the flesh of the segments connected by each joint. In studies performed

in another program (Reference 1) it was found that the visceral sac significantly

affected the dynamic motion of the torso and had to be accounted for in defining

the properties of the joints representing the lumbar spine.

Many of the 33 rigid segments of the dummy are components of the joints

which are modeled by using the "Euler" joint routine in the program. This routine

accurately models the kinematics of the joint but ignores the inertial reactions.

The inertial reactions are approximated by including the mass and inertia of

the joint components as part of the adjoining segments. For example, the elbows

are modeled as "Euler" joints and the mass of the joint structure is included

in the masses of the upper and lower arms. Thus, by use of the "Euler" joint

routine for the elbows, ankles, and hip joints, six of the segments were combined

with others to reduce the complexity of the model to 27 segments. The knees

were modeled as pin joints and the upper legs as single segments. In addition,

the hands were included as part of the lower arms, further reducing the complexity

to 21 segments. (In some applications it may be desirable to allow for motion

11



of the wrist -j Each shoulder structure of the Part 572 dummy includes three

segments. Replacement of these by a single "Euler" joint for each shoulder

reduces the complexity to 15 segments. A significant part of the effort on

this contract was directed toward a study of the shoulder which is discussed

in a following section.

3 . 1 General Discussion of the Levels of Sophistication
* i

Various degrees of complexity in modeling certain of the dummy

characteristics, in particular the rubber neck, the rubber lumbar spine (abdomen)

and the shoulder were investigated. These degrees of complexity are referred

to as "levels of sophistication" and are summarized in Table 1-2. The main

questions regarding the required level of model detail are given in Table 1-1.

Level of sophistication 1 of Table 1-2, the study of planar motion,

refers to the symmetry options available in the CVS program. There are two

symmetry options in the program. The first is the two-dimensional symmetry

option whereby all motion perpendicular to the mid-sagittal plane is suppressed.

The second option provides mirror symmetry where the motion is reflected in the

mid-sagittal plane, e.g., if the right arms and legs move to the right, the left

arms and legs will move the same amount to the left. The computer runs that were

made using these options showed, in some cases, a reduction in computer time when

compared to the same cases run without the symmetry options. This is primarily

due to the smoothness of the integration which in turn allowed the use of

larger integration steps and, hence, fewer computations. The user is advised to

use these options whenever they are applicable to his problem.
.1

Levels of sophistication 2, 3, 4, and 5 of Table 1-2 are concerned

with the modeling of the dummy spine and neck. The 15 segment Baseline model of

the Part 572 dummy (Ref. 1, Volume 2) uses a single rigid segment to model the

abdomen (lumbar-spine) and a single rigid segment to model the neck. Both of

these segments are connected to the adjoining segments with ball joints in the

model

.



The Head/Neck Pendulum tests that are reported in Reference 1,

Volume 2 were studied in detail. It was apparent from these results that at

least one segment must be used for the neck. For example, the behaviour of

the angle of the head with respect to the pendulum in the first ten

milliseconds as shown in Figure 4-3 of the cited reference could not be

obtained with a model in which the head was connected directly to the upper

torso. Results of simulations in which the neck was assumed to be composed

of either two or three segments showed no significant differences in response

from the one segment model. The Head/Neck Pendulum tests also indicated some

extension (stretching) of the neck. Attempts to simulate this effect by

replacing the ball joints with sets of springs, thus effectively disconnecting

the neck from the upper torso and the head, were unsuccessful. The failure

was due primarily to the inability, using the current capabilities of the CVS

program, to define a set of springs that would allow extension but would not

allow significant lateral motion at the joint. This deficiency could be

removed by adding a slip-joint capability to the CVS program. Such a joint could

be defined as one imposing a kinematic constraint that would allow relative

linear motion at the joint parallel to fixed lines in each of the adjoining

segments

.

Simulations of torso pendulum impact tests reported in Reference 1,

Volume 2 indicated that the principal deficiency of the single-segment model

of the abdomen was not in the modeling of the spine but in the lack of modeling

of the visceral sac that is in the Part 572 dummy. No significant stretching of

the dummy abdomen occurs because of the constraint of the steel cable that

passes through the center of ijhe rubber spine. More detailed models of the

abdomen were not studied in the current effort.

Level of sophistication 6, as stated, applies to the human victim

only since the shoulder of the dummy is a mechanical linkage. The shoulder

linkage of the Part 572 dummy is studied in some detail in the next section

of this report. The consideration of a model for the human shoulder was not

within the scope of this research program.

13



Level of sophistication 7, dealing with the g lobalgraphic description

of joint stops is applicable whenever there is sufficient motion for a joint to

enter a stop. The user is advised to specify this option whenever there is a

probability of a joint entering a stop.

Level of sophistication 8, impulsive contacts, can be examined with

a simpler model than that of the entire dummy. Question number 5 of Table 1-1

is: Under what conditions is it possible to replace a contact with a hard

surface with an idealized impulse? The use of an impulse is justified when

there is a change in velocity in a short enough time interval that there is

no significant change in position. The problem is the definition of a

significant change in position. Section 6.2 of this report presents a more

detailed discussion of this problem.

The use of the impulse in relation to question 10 of Table 1-1

should not be overlooked. The program has an inertial spike option which

models some of the inertia effects of a contact. It was originally developed

for the case of a head striking a windshield where the mass of glass must be

accelerated when it shatters. This inertial effect usually lasts only a few

milliseconds. The transfer of energy could be approximated by use of an

impulse with a negative coefficient of restitution (the program allows this)

which would allow the impacting object to continue in the same line of motion

without a reversal of velocity.

Level of sophistication 9 is concerned with transverse modes of

vibration which may be inducec, when a hard contact is made with a segment

such as a leg and the leg bends due to the severity of the impact. This may

be modeled by use of several subsegments but the stiffness of the joints may

require a small integrating step and hence make it economically unfeasible.

The flexible element option may alleviate this difficulty. The long bones in

the dummy are steel shafts and hence are much stiffer than a human bone.

Thus, segment transverse vibrations may be a more important consideration for

humans than for a dummy model, The consideration of longitudinal modes of

vibration are beyond the capabilities of the CVS program.

14



3.2 Study of the Part 572 Dummy Shoulder

In the Baseline model of the Part 572 dummy (Reference 1), the

shoulder is represented as an Euler joint with the spin axis locked. The

actual mechanical structure is illustrated in Figure 3-1 and consists of three

principal pieces for each shoulder. These are the stemo-clavicular link, the

clavicle, and the shoulder yoke. The stemo-clavicular link pivots about an

axis which is tilted (pitched) 5 degrees to the x (forward) axis of the upper

torso. The motion is constrained by a highly nonlinear viscous damping

mechanism and by hard mechanical stops which limit the elevation-depression

motion of the shoulder girdle to 15 degrees. The clavicle is pinned to

this link with the pin parallel to the nominal z (down) axis of the torso.

The motion about this pin is also restricted to approximately plus and minus

15 degrees. The shoulder yoke connects the upper arm to the clavicle. At

the clavicle end is a pin joii^t approximately parallel to the y axis of the

torso, and at the upper arm end of the yoke is another pin joint whose

axis is approximately parallel to the x axis of the torso. These joints allow

flexion-extension and abduct ion- adduct ion motion of the upper arm, respectively.

In the Baseline model, the shoulder yoke is modeled by an Euler

joint and the sterno-clavicular link and the clavicle are not modeled. The

purpose of this study was to examine the effects of using a shoulder model

that more closely represents the actual dummy shoulder assembly.

The computer model for investigating the behavior of the shoulder

was based on the model used to simulate the torso-pendulum tests described

in Reference 1. In the torso-pendulum tests the pendulum is raised to an

almost horizontal position and, when released, strikes a honeycomb structure

which stops the motion of the pendulum when it reaches a vertical orientation.

The torso and associated segments are thus subjected to an impulsive force at

the point where the lower torso is attached to the pendulum. The three-piece

shoulder structures and the upper and lower arms were added to the torso-pendulum

test simulation model to form a fourteen-segment, fourteen- j oint model. The

segments and joints are listed in Table 3-1 and the configuration is illustrated

in Figure 3-2.
15
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Figure 3-2 MODEL OF PENDULUM TEST OF TORSO WITH SHOULDER AND ARMS
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A series of computer simulation runs was made in which selected

sets of the shoulder joints were locked or unlocked for three different

initial pendulum impact velocities and three different orientations of the

torso-shoulder-arm model on the pendulum. A particular set of six runs that

was made is tabulated below:

Joint Status Level of Sophistication

Run X Z Y P N s

1 U u U L U L Most sophisticated - all segments active

2 U u L U U L Sterno-clavicle free-Euler for shoulder

3 U L L U u L Clavicle locked-Euler for shoulder

4 L U L U u L Clavicle free-Euler for shoulder

5 L L L U u L Least sophisticated-CVS baseline

6 L L U L u L Sterno-clavicle locked, shoulder yoke-
clavicle pivot used instead of Euler

where L indicates that the joint is always locked, and

U indicates that the joint is allowed to unlock
at a specified torque.

The column labels for joint status are (see Table 3-1 and Figure 3-1):

X for RX and LX, the joint connecting the stemo-clavicle link

to the upper torso,

Z for RZ and LZ, th i joint connecting the stemo-clavicle link

to the clavicle,

Y for RY and LY, th<? joint connecting the clavicle to the

shoulder yoke.

P the precession axis of the Euler joint. This joint is a

direct replacement for Y; when one is locked the other

should be unlocked,

N the nutation axis of the Euler joint which should never be

permanently locked.

S the spin axis of the Euler joint. This joint is always

permanently locked.
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The initial angular velocity of the pendulum and all of the segments was 113

degrees per second about the y axis (pitch). This represents an initial

linear velocity of 148 inches per second at the eg of the lower torso and 184

inches per second at the shoulder. The arms were initially parallel to the z

axis of the torso. All joints except 2, 3 and 14 were initially locked.

Plots of selected response measures for each of the six cases are

contained in Appendix A. The response measures plotted are:

(a) The resultant linear acceleration of the right lower arm versus time.

(b) The z versus x displacement of the right lower arm.

(c) The y versus x displacement of the right lower arm.

(d) The flexure angle of the shoulder yoke-clavicle pivot joint versus time.

(e) The precession and nutation of the Euler joint at the shoulder versus time.
S

(f) The precession and nutation of the Euler joint at the elbow versus time.

(g) The resultant linear acceleration of the upper torso versus time.

(h) The pitch of the upper torso versus time.

The results obtained with the most sophisticated model (Run 1) and

with the least sophisticated model (Run 5) of the shoulder are overlaid in
1

Figure 3-3 for comparison. It may be noted in Figure 3-3 (d) that the flexure

angle at the shoulder when the shoulder-clavicle is free (Run 1 with Y unlocked)

seems to reverse direction at approximately 85 milliseconds. This is because

the shoulder-clavicle pivot is modeled as a pin joint which is not direction

sensitive. The first part of the curve should be reflected about the abscissa

so the plot would be much like that of the precession angle of the shoulder

for Run 5 (precession axis of the Euler joint unlocked) shown in Figure 3-3(e).

No definitive conclusion was reached from the study except to note that

the response of the upper torso is essentially the same in all of the runs. The

response of the lower arms is different in each of the runs. The reader should

draw his own conclusions as to whether or not the differences are significant.
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4.0 RESPONSE MEASURE APPROXIMATING FUNCTION GENERATOR

In some applications of the CVS program the user may wish to

perform various parameter studies in which he varies one or more parameters

in the model and notes the changes in selected response measures. In

practice, the resulting response measures are usually plotted and smooth

curves drawn to show the variation with the parameters. It is natural to

assume that the value of the response measure for any intermediate value of

a parameter can be obtained from the curve, i.e., the curve is used as an

interpolating function.

The use of a hand drawn curve is quite practical if only one

parameter has been varied, but if two parameters are varied a surface must

be drawn to use this graphical interpolation approach. If more than two

parameters are varied, the interpolation problem usually becomes too

complicated to solve using planar graphs.

Hence, a multiparameter interpolating routine was developed to

assist the users. This routine is called the Response Measure Approximating

Function Generator (RMAFG). The mathematical development and a description

of the Fortran program of the RMAFG is contained in the following sections

along with a sample application.
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4.1 Mathematical Development

Let y be a scalar function of the N parameters X. 3 J = 1 3 n3

i.e., y = f (Xj 3 Xg ... 3 X^) . Assume that this function may be approximated

as a polynomial in the N parameters as:

y - c
o

N
+ Z

i=l
C. X.

N
+ Z

N
l

i=l j=l
C.. X. X.
T'J 1 J

N
+ l

N
Z

N
Z

i=l j=l k=l

+ etc .

C . X. X. x
nk ^ j A:

Constant Linear

Linear

Quadratic

Cubic

Quartic 3 etc.

(4.1)

The number of terms of each degree is given by the binomial coefficient
I

,N-1+K
,

K
C t™) where K is the degree. The total number of terms up to and including

,N+K
degree K is given by f ^

) . This is tabulated in Table 4-1 below.

Table 4-1

NUMBER OF TERMS IN MULTINOMIAL EXPANSION
!

No. of Parameters Degree K

N 2_ 3 4 5 6 7_

1 2 3 4 5 6 7 8

2 3 6 10 15 21 28 36

3 4 10 20 35 56 84 120

4 5 15 35 70 126 210 330

5 6 21 56 126 252 462 792

6 7 28 84 210 462 924 1716

7 8 36 120 330 792 1716 3432
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Note that the first row and the first column of the table are just

a sequence of consecutive integers and that the other entries are the sum

of the entry above and the entry to the left, i.e., a. .= a.
7

. + a. .
7

.

T'

3

J J 1

In a typical sensitivity study some set of parameters, X. 3 is
J

varied over a preselected set of values and the values of a response measure,

y j are recorded. The values of the response measure may then be plotted as

functions of the various variables. However, if one is interested in

estimating the value of the response measure for a set of parameters

different from one of the preselected sets it is necessary to either compute

y for the new set (by running the program) or to estimate y by inter-

polating the data available. A functional representation such as given by

Equation 4.1 provides a means of interpolation. The coefficients, C , can be

calculated from the values of y obtained from the preselected sets of X_.
rs

by a least square procedure. The number of independent sets of data must be

at least equal to the number of coefficients as given in Table 4-1 but a

significantly greater number than this minimum is recommended to achieve a

certain degree of smoothing from the least square procedure.

It is difficult, if not impossible, to cite how many values should

be used because of the complexity of the problem. It is easier to draw con-

clusions 'after the fact'; that is, the coefficients are computed for a given

set of data and the function evaluated for intermediate points. If there are

rapid variations of the function, its use as an interpolation function is in

doubt whereas if the function behaves smoothly, then it may be useful. For

example, consider a cubic fit to four points of a function of one variable.

Both a rapid variation and a smooth variation are illustrated in Figure 4-1.

In both cases the cubic goes through all of the data points but the rapidly

varying function clearly can result in less accurate interpolated values.



Poor Fit - Rapidly Varying
Function

Good Fit - Smoothly Varying
Function

Figure 4-1 EXAMPLES OF POOR AND GOOD FITS TO DATA USING CUBIC FUNCTIONS

Returning to Equation 4.1, if the value of each X is replaced by

its deviation from some nominal value, i.e., replace X. by X. - X . 3 X.
Ts 'is 'Ll) J

by Xj - %
-Q,

etc., then the coefficients in the expansions may be considered

as the terms in a Taylor series. That is, C is the value of the function at

the nominal point X , i = 1,N and the linear terms C\ are the partial

derivatives evaluated at the nominal point, etc.

4.2 RMAFG Fortran Program

A Fortran program has been developed to evaluate the coefficients in

the expansion of the form givun by Equation 4.1. It consists of a Main

Program and four subroutines. The basic coding is written in a fashion such

that the size of the problem Is limited only by the storage assignments made

in the dimension statements. In the listing of the program given in Appendix B,

the program is dimensioned to handle ten independent variables (X.) and 100
'Is

data points.

Three modes of operation are provided:
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Mode 0 -- the expression as given by Equation 4.1 is treated.

Mode 1 -- the X. of Equation 4.1 are replaced by X.
'Is ^

is the average of the given values, i.e..

X. n where X.
1*0 zO

X
i0 M

M
l

k=l
X.(k

)

a i = 1 3 N
z

X.(k) is the value of X. in the kth data set.
z z

Mode 2 -- The X^ of Equation 4.1 are replaced by (X^ - X.^)/o

where X. n is as in Mode 1 and
zO

M
1 2 21/2

a = (— 2 X.(k) - X.J .is the standard deviation.M
i

z zO

Mode 2 has an advantage of normalizing the parameters (independent

variables) to a common distribution so that the magnitude of the C’s are

more readily comparable.

The program allows the degree of parameter to be limited. For

example, we may have 3 parameters X^ 3 X

^

and X

^

and use a cubit fit on all

parameters, in which case all 20 coefficients (C’s ) will be evaluated; or,

we may limit X
j

to the 1st degree, x
%

to the 2nd degree and X
^

to the

3rd degree. In this case the terms will be y - Cr + C-iX-i + Wn
o P

~U 1 1 Z 2

+ + ?22 X
2

+ C
Z2
X
2
X
"5

+ CZ^Z + C
ZZ^Z’

The only restriction of

the program is that the parameters be labeled so that they are ordered on

increasing degrees, as in the example just cited.

The mathematical procedure is most readily described by treating the

C’s and the combinations of the parameters as components of vectors. In the

above example let:



and

r~ = (c r r c r r r r >- !

O 3
l
3 ^2 3 Z 3 22 3 32 3 33 3 333

i? — fly y y y

^

- 3 V 2 3 3 3 23 “2“3 3 n
33 "

3

x 0x 7J x
2 xh.

Equation 4.1 may be written as:

y

m

If we use the subscript m to denote the mth data point then

The error of the fit, E 3 is then
m

E = ym 3m
- iFc-m

—

The mean squared error is

* - i
"

m - m

m

M (y - C
T
U ) (u - l/c)Jm m sm -m—

= y
2

+ (? UU
F
C_ - C? Uy - ylF C

where

T
UU

yv

m
Z U rf , an

m
m=l

-m

A m m
E ym

^

um m
1

'm lm J

The mean squared error is minimized when C has the value
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C = (rjr/)
1

Uy

squared error is:

With ,this value of C_ the average error E is zero and the average

E
2

= y
2

- ylF C.

A special matrix inversion routine was written to compute the C.

It allows the program to output the results obtained by the lower order

functions. That is, if a cubic fit is specified it evaluates the best

constant, the best linear fit, the best quadratic fit, and finally, the

best cubic fit.

The mean squared erfor is computed for each of these intermediate

fits and is printed along with the values of the coefficient C_.

The general flow of the program is as follows.

Read N3 (NDG(J),j=l s N)

N number of parameters (independent variables)

,

if N = 0 program will terminate

NDG(J) maximum degree of parameter X^.

These must be ordered: NDG(J-l) <_NDG(J).

Call SET Z.

Subroutine SET Z computes the subscripts used to

identify the C's and checks whether any storage

limits are violated.
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Read NDATA, MODE, IVAL.

NDATA, number of data sets.

MODE, 0 normal

1 remove mean

2 remove mean, normalize by a
, (the standard deviation).

IVAL, 0

1

compute fit and go back for another case,
!

read in additional data and evaluate fit

at these points.

Read 'Y(J), (X(J,I) (J=1,N) , 1=1, NDATA.
\

Y(I) function value at point I

X(J,I) parameter value at point I

Call SIGN.

Subroutine SIGM evaluates the mean and sigma of y

It modifies X. depending on the mode selected.

and the X ..

J

T —
The program then computes the UU matrix and the Uy vector and

calls subroutine SETU which evaluates the U vector for each data point.

T
Next, subroutine SOLVE is called which inverts the UU matrix and

solves for the C's. Subroutine SOLVE uses a bordering scheme so that the

intermediate results are available. As each fit is completed (constant, linear,

quadratic, etc.), the main routine evaluates the error of the fit and outputs

the error and the values of the coefficients. The routine checks IVAL to see

if further evaluations are desired. If so, it reads the desired values of the

parameter and evaluates y.



4.3 Sample Numerical Evaluation of the RMAFG

Using the Head-Neck Pendulum test simulation (Reference 1,

Volume 2) as a baseline run, the linear spring coefficients of the neck joints

were varied from 28 to 34.4 in steps of 1.6, the viscous friction of the neck

joints was varied from 0.130 to 0.170 in steps of 0.01 and the Coulomb

friction of the neck joints was varied from 90 to 110 in steps of 5. This

produced a series of 125 runs (each variable has five different values).

Several response measures were extracted from the tabular time histories

and processed by the RMAFG. The basic results are summarized in Table 4-2.

Table 4-2

SELECTED OUTPUT OF THE RMAFG

Root Mean Square Error For
Degree of Fit

Response Measure Mean Sigma Constant Linear Quadratic Cubic

1. HIC 91. SI 1.65 1.6524 0.4662 0.2697 0.2052

2. HSI 122.85 3.11 3.1068 0.4241 0.3342 0.2971

3. Time of zero head pitch, ms. 103.13 3.16 3.1570 0.1522 0.0135 0.0044

4. Time of max. head resultant
acceleration, ms.

33.01 0.05 0.0533 0.0430 0.0275 0.0151

5. Value of max. head
resultant acceleration, g

29.88 0.24 0.2352 0.1551 0. 1151 0.0750

6. Time of max. head pitch,
ms

.

55.94 1.17 1.1749 0.0590 0. 0221 0.0160

7. Value of max. head pitch. 61.95 2.26 0.2600 0.1099 0.0249 0.0239

deg.

The time of zero head pitch was estimated by linearly interpolating

the values of pitch just before and just after the pitch passed through zero.

In all runs, the tabular time histories were obtained at 2 millisecond

intervals. The times of maximums and the values of the maximums were obtained

by a quadratic interpolation formula using the three points from the tabular
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time histories in the vicinity of the maximum. This quadratic interpolation

formula is --

f = fz + lWf3 - fjXt - t
2
)/d + l/2(f

:
- 2f2 + fg)(t

- t
2
)
2
/d

Z

where f is the value of the function at t and d =

The time of the maximum is given by

and the value of the maximum is

In using the RMAFG the three parameters were identified as follows:

Xj linear spring coefficient

Xg viscous friction

x
^

coulomb friction.

The mean, m , and the standard deviation, a , of each of the

parameter variations were computed and the normalized variables (mode 2) were

used by the RMAFG, i.e., the variables used were Z. = (x . - m) /o

.

The use
^ Is

of these normalized variables has the advantage of allowing one to directly

compare the significance of the coefficients of the fit obtained by the RMAFG.

With reference to Table 4-2, which shows the root mean square error

of the fit as a function of the degree of the fit, we note the following:
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1. For all responses except 4 and 5 which deal with the

head acceleration there is a dramatic reduction in

the rms error when the degree is changed from a

constant to a linear fit.

2. The most significant improvement resulting from increasing

the degree from a linear to a quadratic fit occurs for

responses 3 and 7.

3. Response 3 shows the most significant improvement

resulting from changing from a quadratic to a cubic fit.

One conclusion that may be drawn is that, for response 7 (the value

of maximum head pitch) , a quadratic fit is sufficient since use of a cubic
.

results in a negligible reduction of the error. However, note that the

standard deviation of the maximum pitch angle is 2.26 degrees and the mean

value is 61.95 degrees (computed from the 125 runs). Thus, even though a

quadratic fit reduces the error by a factor of four from the linear fit, the

linear fit approximates the data with a rms error of only 0.11 which may be

adequate for most purposes.

From a practical point of view, there is not much variation of any

of the response measures selected for this set of runs. The most significant

deviations are those related to times, responses 3 and 6, and the value of

maximum head pitch, response 7. The use of a linear fit in these three cases

reduces the error to a small fraction of the standard deviation.

It is recommended that the user use the RMAFG to evaluate the error

reduction that results from increasing the degree of the function so that the

degree of fit that is adequate for his purpose may be selected. It is

further recommended that interpolated results at intermediate points (points

other than the inputted data used for the fit) be checked to ensure that the

degree selected does not give a 'poor' fit as illustrated in Figure 4-1.
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4.4 Example of RMAFG Program Output

Data from a set of computer runs made as a part of the shoulder

model studies (see Section 3.2) were used to illustrate the output provided

by the RMAFG computer program. In this set of simulations, the shoulders

were represented as EULER joints with the precession and nutation axes

initially locked and allowed to unlock at specified torque levels. The

coulomb friction and the unlocking torques were varied over preselected

ranges and the unlocking torque for each axis was arbitrarily set as 110

percent of the coulomb friction. The response measures selected for

determining approximating functions with the RMAFG using the coulomb friction

of the precession and nutation axes as the independent variables were: the

maximum pitch angle of the right lower arm, the time at which this maximum

pitch occurred, and the pitch and the yaw angles of the right lower arm at

the end of each 300 millisecond run. The data from the shoulder simulations

that were input to the RMAFG program are given in Table 4-3.

The output from the RMAFG routine for each of the four response

measures evaluated is presented in Figure 4-2 (a) through (d) . Note that,

for each case, a quadratic fit of the data using MODE = 2 (see Section 4.2)

was specified. Also, the values of the functions for two intermediate values

of the independent variables were calculated.

A sample plot of the pitch angle of the lower arm at 300 msec as a

function of the coulomb friction on the precession and nutation axes that

results from the quadratic fit obtained with the RMAFG is depicted in

Figure 4-3.
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SHLD25 RUNS TO DEMONSTRATE RMAFG, PENDULUM TEST 14 SEGMENT SHOULDER ARMS, EULER

ND.VAR. COULOMB TORQUE; DEP. MAX PITCH, TIME MAX PITCH, PITCH(300MS) ,YAW(300MS)

Mean -1. 18750 Sigma 2.54957 for Function Y

J Degree Mean Sigma

:

for Parameters X( )

1 2 141, 87500 27.21414
2 2 143.25000 25.81061

MEAN removed from Parameters X( ) and normalized

The error using 1 coefficients is 2.54957
Coefficients Value

Constant

0 . -1 . 187500

The error using 3 coefficients is .39268
Coefficients Value

0 . -1.187500
1 . -2.527440
2.- .307646

Linear

The error using 6 coefficients is . 15472

Coefficients Value

0 . -2.098679
1 . -2.752310
2. .256477

11 . .768566
21. -.247936
22. . 164377

Quadratic

Error Distribution - Histogram
Sigma If Points Point IndeX
2.50 0 .

2.00 0 .

1.50 1 .
» 2

• 1.00 0 .

-.50 3. ***
3 5 8

0.00 1 .
* 7

.50 1 .
• 6

1.00 0 .

1.50 2. *•
1 4

2.00 0 .

2.50 0 .

(a) Function For Maximum Pitch Angle

Figure 4-2 SAMPLE OUTPUT OF THE RMAFG ROUTINE APPLIED
TO SHOULDER MODEL RESPONSE MEASURES
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Function 1 Evaluations at Given Input Points
Point Y(Input) Y(Fit) Parameters X( )

1 -3.910 -3.713 163.000 122.000
2 1 1020 .752 122.000 163.000
3' -1.900 -1.985 140.000 110.000
4 1.900 2. 113 1 10.000 140.000

5 -4.250 -4.356 180.000 130.000
6 -.010 . 101 130.000 180.000

7 -4.250 -4 . 242 180.000 180.000
8 1.900 1.830 1 10.000 121.000

Function 1 Evaluations at Specified Input Points
Point Y(Fit) Parameters X( )

1 -.895 130.000 130.000
2 -2.793 150.000 150.000

Figure 4-2 (a) (Cont'd.)



SHLD25 RUNS TO DEMONSTRATE RMAFG, PENDULUM TEST 14 SEGMENT SHOULDER ARMS, EULER
ND. VAR, COULOMB TORQUE; DEP. MAX PITCH, TIME MAX PITCH, PITCH(30GMS) , YAW( 300MS)

Mean 66.25000 Sigma 20.11685 for Function Y

J Degree Mean

1 2 141.87500
2 2 143.25000

Sigma: for Parameters X( )

27.21414
25.81061

MEAN removed from Parameters X( ) and normalized

The error using 1 coefficients is 20.11685
Coefficients Value

0. 66.250000

The error using
Coefficients

0 .

1 .

2 .

3 coefficients
Value

66.250000
- 19.816600

3.955115

is 3.17906

The error using 6 coefficients is 1.43056
Coefficients Value

0 .

1 .

2 .

11 .

21 .

22 .

54.792162
-21.930729
2.442389
5.207368

-5.730120
6 . 753*147

Error Distribution - Histogram
Sigma it Points Point IndeX

-2.50 0.

-2.00 0.

-1.50 1. * 2
-1.00 1. *

3
-.50 1. « 5
0.00 2. »»

7
.50 0.

1.00 2. »« 4

1.50 1. *
1

2.00 0.

2.50 0.
(b) Function For Time of Occurrence

of Maximum Pitch Angle

Figure 4-2 (Cont'd.)
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Function 2 Evaluations at Given Input Points
Point Y(Input) Y (Fit

)

Parameters X( )

1 45.000 47. 135 163.000 122.000
2 85.000 82.61

1

122.000 163.000

3 65.000 63.881 140.000 1 10.000
4 85.000 86.577 1 10.000 140.000

5 40.000 38.936 180.000 130.000
6 85.000 86.082 130.000 180.000

7 40.000 40.028 180.000 180.000
8 85.000 84.750 1 10.000 121.000

Function 2 Evaluations at Specified Input Points
Point Y(Fit) Parameters X( )

1 64.596 130.000 130.000
2 49.362 150.000 150.000

Figure 4-2 (b) (Cont’d.)



SHLD25 RUNS TO DEMONSTRATE RMAFG, PENDULUM TEST 14 SEGMENT SHOULDER ARMS, EULER
ND. VAR. COULOMB TORQUE; DEP. MAX PITCH, TIME MAX PITCH, PITCH ( 300MS ) ,YAW(3GOMS)

Mean -67.85000 Sigma 5.97668 for Function Y

J Degree Mean
1 2 141.87500
2 2 143.25000

Sigma; for Parameters X( )

27.21414
25.81061

MEAN removed from Parameters X( ) and normalized

The error using 1 coefficients is 5.97668
Coefficients Value

0. -67.850000

The error using 3 coefficients is 2.41994
Coefficients Value

0. -67.850000
1. -5.470639
2. .071163

The error using 6 coefficients is .56663
Coefficients Value

0 .

1.

2 .

11 .

21 .

22 .

-66.643753
-4.942339
-. 132234

-2.443365
-.556155
1.285935

Error Distribution - Histogram
Sigma # Points Point IndeX

-2.50
-2.00
-1.50
- 1.00
-.50
0.00
.50

1.00

1.50

2.00
2.50

0.

0.

1. *

1. *

1 .
*

2 .
*»

1 .
*

1 .
»

0.

1 .
*

0.

3

2

5

4 7

6

8

1

(c) Function For Pitch Angle
@ 300 msec.

Figure 4-2 (Cont'd.)
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Function 3 Evaluations at Given Input Points
Point Y(Input) Y(Fit) Parameters X( )

1 -71.660 -70.617 163.000 122.000

2 -62.820 -63.375 122.000 163.000

3 -63.280 -64.060 140.000 110.000
4 -64. 150 -64.252 1 10.000 140.000

5 -77. 140 -77.556 180.000 130.000
6 -62.570 -62. 188 130.000 180.000

7 -77.000 -77.054 180.000 180.000
8 -64. 180 -63.699 110.000 121.000

Function 3 Evaluations at Specified Input Points
Point Y(Fit) Parameters X( )

1 -64.670 130.000 130.000
2 -68.327 150.000 150.000

Figure 4-2 (c) (Cont'd.)
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SHLD25 RUNS TO DEMONSTRATE RMAFG, PENDULUM TEST 14 SEGMENT SHOULDER ARMS, EULER
ND. VAR. COULOMB TORQUE; DEP. MAX PITCH, TIME MAX PITCH, PITCH(300MS) , YAW( 300MS)

Mean 10. 10500 Sigma 2.80935

J Degree Mean Sigma: for Parameters X( )

1 2 141.87500 27.21414

2 2 143.25000 25.81061

MEAN removed from Parameters X( ) and normalized

The error using 1 coefficients is 2.80935
Coefficients Value

0 . 10. 105000

The error using 3 coefficients is .98164
Coefficients Value

0 . 10. 105000
1 . 2.603300
2. .223047

The error using 6 coefficients is . 10535
Coefficients Value

0 . 7.943752
1 . 2.052303
2. .070976

11 . 1.855552
21. -.310125
22. .332918

Error Distribution - Histogram
Sigma It Points Point IndeX
-2.50 0 .

-2.00 0 .

-1.50 1 .
» 2

-1.00 0 .

-.50 3. *««
3 5 8

0.00 1 .
» 7

.50 1 .
» 6

1.00 1 .
*

1

1.50 1 .
« 4

2.00 0 .

2.50 0 .

(d) Function For Yaw Angle
@ 300 msec.

Figure 4-2 (Cont'd.)
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Function 4 Evaluations at Given Input Points
Point Y(Input) Y(Fit) Parameters X( )

1 10.910 11.020 163.000 122.000
2 8.040 7.857 122.000 163.000

3 8.280 8.245 140.000 1 10.000
4 7.870 8.036 110.000 140.000

5 14.800 14.735 180.000 130.000
6 8.300 8.370 130.000 180.000

7 14.610 14.618 180.000 180.000

8 8.030 7.959 110.000 121.000

Function 4 Evaluations at Specified Input Points
Point Y(Fit) Parameters X( )

1 7.383 130.000 130.000
2 8.739 150.000 150.000

Figure 4-2 (d) (Cont'd.)
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5.0 REDUCTION OF THE NUMBER OF INERTIA RELATED PARAMETERS

A fact that is not widely appreciated is that there is an infinite

number of different chains of connected rigid bodies, each with different

mass distributions, that all have identical dynamic responses and may be

considered as "dynamically equivalent." In particular, it is possible to

add or subtract an arbitrary amount from each mass in a connected chain

of rigid bodies and obtain a dynamically equivalent system. The only con-

straint is that the sum of the mass perturbations be zero, i.e., the total

mass must not be changed. It is, in fact, possible to make one or more of

the masses in the chain zero, or negative, and still define an equivalent

system.

The purpose of this task was to develop a computer program to

compute dynamically equivalent systems. The basic theorem and the questions

are given on pages 113-117 of Volume 1 - Engineering Manual of Reference 1.

Theorem:

Given a system of rigid bodies connected by joints in a tree

structure, make the following transformations:

M, = where Z = 0 mass equation,
k=l

p
k

" F
k

+ Z
.

d
k.

.

x (v^ x ], inertia equation.

*

x
k

1II

'j J
,

transformation of c.g.

,

M
k

c
k

= Z d. r,
. k . k .

t-

evaluation of cv
*

r
k.

• J J J

= r
k.

+ c
k>

transformat ion of joint locations.

J J

(The notation [s x (r x ] denotes the matrix vs - s vl3

T
where s is the transpose of s and I is the identity

matrix.

)
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where

:

"k

d
k

d
k

P
k

.+

is the mass of segment k and My is the

perturbed mass,

is the mass perturbation of segment k 3

is the sum of the dy of the segments which may

be reached through joint j from segment k 3

*

is the inertia matrix of segment k. and Py

is the perturbed inertia.

X

y

is the location of the c.g. of segment k and

*

Xy is the perturbed location,

C

y

is the perturbation of the c.g. and joint locations

of segment k 3

v

y

is the location of the j'th joi.it associated with

J segment k and

*
v
^

is the perturbed joint location. Joint locations

are relative to the c.g. of the segment.

The theorem states that this perturbed system has the same motion as

the unperturbed system. This implies that, even if one had complete knowledge

of the motion, i.e., positions, velocities and orientations of the segments, one

would not be able to compute the masses of the individual segments (the My) or

determine the location of the center of mass of the segments (the J,)

.

Note
K

that the geometry is the same. The mass, inertia matrix and location of the



center of mass are the only quantities that are changed. (Of course, the

location of a joint relative to the c will change because the j* will

change, but the distance between joints attached to the same segment is not

changed.

)

5. 1 Description of the Delta Algorithm Fortran Program

The listing of the Fortran program called the "Delta Algorithm"

which will compute an equivalent system is given in Appendix C. Figure 5-1

is a flow diagram of the main program.

The routine to compute an equivalent system has been written so

that it accepts the segment cards (B2) and the joint cards (B3) with the

same information and format as the main CVS program (see Reference 1, Volume 3).

A lead card with the number of segments (NSEG) , the number of joints (NJNT)

and the value of G (to convert weight to mass units) is required. A final
,

I

card(s) containing the weight (mass) perturbations is also read.

All of the computations are made in subroutine DELTA. The key to

the procedure is the computation of the from i;he information in JNT(J).

J

The logic of the computation is in the DO 35 loop of the subroutine. Although

it has only about 25 Fortran statements, this logic is quite involved and

hence is difficult to follow. It is based on the following properties of the

JNT vector.

0 < JNT(J) <_ J

(This assumes all segments are connected and any flexible elements are

considered as regular segments.)
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START
I

I

INPUT- Title, segment weights, inertia,

joint array and locations.
Program accepts cards in standard CVS format
CVS cards A1 through B3

I

I

INPUT- Print option and mass perturbations
are inputted from the terminal.

J PRINT- Inputs are printed

I

I

I

I

J CALL DELTA ALGORITHM

I

I

{ CALL EIGEN - process inertia matrices

I

I

J PRINT perturbed masses, inertia matrices,

! principal components of inertia and orientation

! of the principal axes, new joint locations.

a

i

STOP

Figure 5-1 FLOW DIAGRAM OF DELTA ALGORITHM COMPUTER PROGRAM
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If JNT {J )
= N, the segment J+l is in the branch emanating from

segment N via joint J. All segment numbers which are not in the vector

JNT(J) are the end of a branch (except for segment 1). For example, consider

the JNT vector of the standard 15 segment crash victim model:

J 1 2 3 4 5 6 7 8 9 10 11 12 13 14

JNT 123416719 10 3 12 3 14

Segments 5, 8, 11, 13, 15 are not in the vector. These are the head,

feet and the lower arms.

In this example, for segment 1

d
2

+ d
3
+ d

4
+ d

S
+ d

12
+ d

13
+ d

14
+ d

15

d
1

= d
6
+d

7
+d

8
u

d
9

+ d
10

+ d
ll

Note

:

d~ + d- + d- + d^ = 0, since id = 0,
1 2

1
1
5

2
8

In the routine the sums required to compute and P^ are accumulated as

a^ 3 and the d
^

are determined in the DO 35 loop. The formula for P^

is written in a modified form as follows:



*

Pj^ — P -h l
k.

P ^
^k ^~^k

^ ^k ^

^

>7 .7 .7 J 3 J J

*

= P.^ + l d-^ [r^, 3? ^
~^k ^k ^~P

k
^ P

k
^ ^

J 3 J 3

T T
(The notations [s x (r r] denotes the matrix vs- s vl3

T
where s is the transpose of s and I is the identity

matrix.

)

*

The Vj^ are computed in subroutine DELTA. When subroutine DELTA

3

has finished, the main program calls subroutine EIGEN to determine the
*

principal moments of inertia from P
^

and the relative direction cosine

matrix. The main routine then computes the yaw, pitch and roll angles of the
*

system for P with respect to the original system for P^.

* A

Finally, the M
k * P

k.
J C

k J principal moments of inertia, yaw

pitch and roll, and the r
^

* are printed. This is sufficient information

3

to form an input deck for the latest version of the CVS program which allows

for a rotated inertia matrix.

5.2 Sample Application if the Delta Algorithm Program

The Delta algorithm computer program was executed to illustrate how

it can be used to compute dynamically equivalent systems. For this example,

an old data deck for a 15 segment-14 joint model of a crash victim was used.

The printout from the routine, presented in Figure 5-2, shows the values of

the original physical system and the weight perturbations of the various segments

that were input to the program, and the computed characteristics of the segments

and joints of the dynamically equivalent system.
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6.0 ANSWERS TO SPECIFIC QUESTIONS

Task 8 of the research effort was to answer a series of questions

designed to address the problem of determining the required level of

model detail (level of sophistication) that would be adequate to simulate

typical crash situations and the problems related to the development of

techniques for performing simulation studies. The principal questions were

listed earlier in Table 1-1 and the levels of sophistication in

Table 1-2.

The following subsections describe the analytical studies that were

performed to answer several of the questions of Table 1-1. It was

originally intended to supplement these studies with sample runs of the CVS

model but these runs were not completed.

6. 1 Table 1-1, Question 1

Question 1 in Table 1-1 is: Is similitude between rigid body

characteristics of selected segments adequate or must similitude of one or

more vibration modes also be preserved?

Our answer to this question is a qualified yes; rigid body

characteristics are adequate for all segments except the lumbar spine and

neck. The spine and neck are discussed elsewhere in this report. The context

in which we are answering this question is one where the concern is with the

gross motion of the dummy or the human and not with more sophisticated details

such as the effects on internal organs like the brain or those contained in the

torso. Thus, we interpret this question as one concerned with the long bone

segments which are the arms and legs and answer the question accordingly.

To substantiate our answer we rely on the following development

which is based on the simple beam theory given in Reference 3.
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Consider a simply supported beam (one in which the ends are held by

pin or ball joints) as depicted in Figure 6-1. The frequencies of free

oscillation of such a beam are given by (Reference 3, page 83):

2
n it

where = frequency, Hz

= mode number (1,2,----)

length of beam, in.

E

I

P

A

G

= Young's modulus (30x10 lb/in for steel)

4= second moment of area, in

= density (0.28 lb/in
3

for steel)

-2= cross sectional area, m

2
= 386 in/sec

PHt)

Y

Figure 6-1 SIMPLY SUPPORTED BEAM
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For a circular rod I = 0 . 5 tt r and A = tt r where v is the

radius. Hence,

f = 2.25 x 10
5

n r/l
2

.J n

2
If l =12 in. and r = 1/4 in., f = 390 n . Thus, the fundamentalJ n
frequency of oscillation (n = 1) is 390 Hertz, or a 2.6 millisecond

period. The first harmonic (n = 2) would be 1560 Hertz or a 0.64 millisecond

period. The mode shape (displacement of rod) is sinusoidal;

<f>
(x) = sin (nirx/H ) , 0 <_ x <_ l .

If the beam is subjected to an axial compressive load of Q lbs.

(tensile load -Q ) , the frequency is reduced (increased) by the factor

-y/ 1-Q/Q where Q is the Euler critical load (Reference 3, page 136). The
° ° 2 2

Euler critical load is given by = tt EI/l . For a steel circular rod 12

inches long and 0.25 inch radius; Q = 12600 lb.
a

Response to Disturbing Force

If the beam is subjected to a normal disturbing force located at

one point (see Figure 6-1) the displacement y is given by:

u = Z <p (x) q (t)
^ n ^

n

n

where

:

•• 2
q + a) q = P <p (a) f(t)/m
^ n n rn

(x)
n

sin fmrx/ijj mode shape

P f(t)y disturbing force

m = pAi

,

mass of beam.
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If the disturbing force is sinusoidal, f(t) = sin ut

,

the solution
2 2

is n = a sin w t + b cos a> t P <p (a) sin ut/(m(u - w )

)

where a
in n n n n n n n

and b are constants depending on the initial conditions.

The steady state response will be

y = y(x) sin ut where

y(x) = (P/M)l <p (a) <p fxj/fui
2

- u
2
)

.

n

2 2
When the frequency is small (w <<u^) j y(x) will approach the

deflection due to a static force P at a as given by:

y(x) = (Pi
2
/El) h(x) (6.1)

where

:

2 2 4
h(x) = (i-a) x (2ia - a -x)/(6i) f 0<_x<_a

= (i-x) a (i
2

- o' - (i - x)
2
)/ (6i

4
) , a <_ x <_ i

The maximum static deflection occurs at = a and is

y(a) = (Pi
2
/El) (a.

2
(i-a)

2
/Zi

4
)

= (Pi
2
)/4 8 El if a = i/2

For example, for a circular steel rod 12 inches long and 0.25 inch

radius, if the force is applied at the mid point the static deflection is

0.2 inches per 1000 lbs of force.
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Force and Moment

The moment M acting at the point x is:

M =-EI

and the shear force S is

:

S
3M
3x

From the equation 6.1, the moment M is zero at the end points and equal to

P(l-a) at x = a. The shear force S is P(l-a)/l from x = 0 to x = a;

and -Pa/l from x = a to x = l. The discontinuity at x = a is due to the

applied load P at that point. For the case of free oscillations where the

mode shape is sinusoidal we have for a unit peak displacement:

„ 2 2 ,

pt 3 • /ttTrx, ,m\ > . ,m\x/

.

, ,M = -PI —- s^7'2 (——) = El (—) s%n ( l) and
A U X/ X/

9x

3M „ T ,m\ ,3 ,nvx/ .
,

3n tr ,mrx/ n .

S = — = El (—) aos ( l) = n Q — jos ( i)
3x l cl

where Q is the Euler critical load. At x = 0 for a circular steel rod
c

12 inches long and 0.25 inch radius, S = 3300 lb per inch peak displacement

of the first mode (n = 1 )

.

Discussion

The preceding development was concerned with effects of transverse

loading. Axial loads will be propagated with the speed of sound. In steel

the speed of sound is 2 x 10^ inches per second. This is 60 microseconds per

foot. Since the typical minimum time interval of interest in the gross motion

simulation is the order of 1 millisecond and typical dimensions are of the



order of 1 foot, propagation time delays can reasonably be ignored. The

compression or expansion due to axial loads will be negligible for loads

experienced in typical situations. The reduction in length due to bending
2

from a transverse load will be of the order of d /£ where d is the peak

displacement and £ is the length.

The transverse loading considered assumed a simply supported beam

which implies that the ends of the beam are held by a pin or a ball to

adjoining segments which are held fixed. In the typical situation this is

not true but they may be partially 'fixed' by contact loading and/or inertial

loading. Any of these situations will reduce the peak displacement. These

may be estimated from the shear forces which exist at the ends of the beam.

Conclusion

For the long bone segments in the Part 572 dummy the deformation

due to axial loading is negligible and the deformation due to transverse

loading will probably not exceed a small fraction of an inch per 1000 pounds

of load. It is believed that errors caused by ignoring these effects will

be much smaller than the errors caused by other simplifying assumptions in

the model.

6.2 Table 1-1, Questions 5 and 7

Questions 5 and 7 of Table 1-1 concerning required level of model

detail are:

5: Is it sufficient to preserve similitude of impulses and

coefficients of restitution during 'hard' impact processes or must simulitude

of forces also be preserved?

7: Is a sliding/rolling characterization of a particular contact

adequate or must similitude of the deflection characteristics be preserved?
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To answer these questions consider the idealized problem of a hard

sphere contacting a deformable planar surface where the force-deflection

characteristic of the contact is linear and the coefficient of friction is a

constant. The geometry of the contact is illustrated in Figure 6-2 below.

Z

(A7/1X/A7UM P£NET/?A T/OAJ

)

Figure 6-2 SPHERE-PLANE CONTACT

Let the motion be jn the X-Z plane. The equations of motion are:

MX — -pk (r-z) (6.2)

MZ = k (r-z)

Mp^Q pk.r 'r-z)
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where

where

M - mass lb-sec^/in

P = radius of gyration in

X = X position of center of sphere in

Z = Z position of center of sphere in

x/z — linear velocities in/sec
2

Z,Z = linear accelerations in/sec

0 = angular position of sphere radians

0 = angular velocity rad/ sec
• •

0 = angular acceleration rad/sec^

V = radius of sphere in

k = spring constant lb/in

y
- friction coefficient

The solutions of equations 6.2 are:

t = 0

(6.3)

ti = \k/M

X = Xq + vZq (1 - oos (tit))

initially at

Z = Z^ oos tit s

0 = 0^- yrZ^ (1 - oos (tit))/p^ j

X = Xgt + \iZq (t - sin (tit) /ti) j

Z = r + Zq sin tit/ti 3

0 = Q t - yrZ^ (t - sin(tit) /ti) /p
2

j

0

r

0
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At time equal to zero, the time of initial contact, assume that

Z^ is negative and X
p

is positive. The motion in the Z direction is not

affected by the friction. At time t = t\/2SI, Z = 0 and the value of Z is

v + Z^/ft; this is the time of maximum penetration which is Z^/ft giving a

maximum spring force of k(r-z) = At time t = -rr/fi, the sphere has

rebounded and leaves the surface with a Z velocity of Z = -Z
Q

. This is

analogous to an impulsive impact with a coefficient of restitution of unity.

The behavior in the X direction is dependent on the coefficient of

friction. The tangential (

X

direction) velocity, V, at the point of contact

is given by

2 , 2
V = X

Q
- rdg + \i (1 -hr /p J Z^ (1 - cos (tit)) (6.4)

The sign of the friction coefficient \i is selected to agree with the sign of

V, i.e., the frictional force opposes the tangential motion. Initially

V
Q
= X

Q
- rQg. We must distinguish between several cases which are:

Case 1: The tangential velocity, V, is initially positive and remains

positive throughout the interval 0 <_ t <_ tt

/

ft 3 T.

Case 2:

'

I

The tangential velocity, Va is initially positive and becomes

zero at time t = vT where 0 < u < 1 and uT satisfies the equation

V = X
Q

- rd
Q + y (1 + r

2
/p

2
) Z

Q
(1 - cos (mT)) = 0.

Case 3: The tangential velocity, V3 is initially zero. In this case (and

also in Cases 2 and 5 when the tangential velocity becomes zero)
• • •»

the tangential velocity remains zero since X = 0 = 0 and the

sphere rolls on the plane.
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Case 4:

Case 5

leaves

where

and

The tangential velocity, V3 is initially negative and remains

negative throughout the interval 0 <_ t <_ T . In this case and in

Case 5, -y is substituted for y in equations 6.2, 6.3 and 6.4.

The tangential velocity, V3 is initially negative and becomes

zero at time t = uT3 where 0 <_ u <_ 1 and uT satisfies the

equation

V = X
Q

- rh
Q

- \x (1 + r
2
/p

2
) Z

Q
(1 - cos (vT) ) = 0.

The solution to all five cases at t = T3 the time when the sphere

the surface, can be written as:

X = Xq + \iZq (1 - cos (wn))

0=0^- yrZ^ (1 - cos (vu))/p
2

(6.5)

X = (Xq + yZ q) T - V-ZqT (sin (vttJ/tt + (1-o) cos fu it))

Z = r

• % 9 • 9

0 = (Qq -nrZg/p )T f yrZ^T (sin (vttJ/tt + (1-v) cos (wn))/p

y is replaced by -y if v
o
• <x

o
- rV <

V =0 if v
fl

- I - P9
0
- o.

v is the solution of the equation:

V = X
Q

- rQ
Q + p (1 + r

2
/p

2
) Z

Q
(1 - cos (vtt)) = 0 ( 6 . 6 )
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providing the solution is in the range 0 <_ u £ 1,

u = 0 if Xq - vQ
q
= 0,

u = 1 if ^ + rQ
0 ^ 0 and equation 6.6 does not have a solution

in the range 0 <_ u <_ 1.

Impulsive Solutions

Consider the case of the sphere contacting the plane where we apply

an impulse at the time of first contact. The equations are:

MLX = -pi

MAZ = J

2 •

Mp A6 = prl

• • •

where AJ, AZ, and A9 are the instantaneous changes in velocity due to the

impulse of strength I (lb-sec).

impulse)

Letting I be equal to -2bIZ
q

we have a.: t = 0 + (just after the

z
+ - - z

o

Q
+

= Q
Q

- 2prZ
Q
/p‘
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where the sign of the friction coefficient is the same as the

relative velocity V
^
= X

^
- rQ

^

at the time of contact. If

taken as equal to zero. At a time T we have

sign of the

V
Q

= 0, y is

* - *0 + 2vi
0

z = -i
g

0 = - 2urZ
g
/p

2
(6.7)

X = (X
Q
+ 2\iZ )T

Z = v -ZqT

e = (Q
0

- 2]irZ
0
/p

2
)T

Comparison of Solutions

The results of the 'soft' contact are given by Equations 6.5 and of

the 'hard' contact byEquations 6.7 at time T when the 'soft* contact has left

the surface. For the case of pure roll (Case 3), V. = 0 3 we have:
!/

'soft* ’hard' (impulse)

X x
o *0

• •

z -z
o

• * •

0 %
X V V
z r r-Z

0
T

•

e CD ‘-3 V
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We note that the only difference is in

'soft' contact becomes harder (k increases), T

T + 0 and the results are identical. For Cases

the Z position. As the

gets smaller. In the limit,

1 and 4 where u = 1 we have

' soft *
' hard

'

X

z

e

x

z

0

x
o

+ 2» z
o

-L

Qq
- 2\srZ

Q
/p‘

(X
0 + uz

0
)T

r

(Q
Q

- \irZ
0
/p

2
)T

X
Q

-f 2uZ^

-*o

e
Q

- 2\irZ
Q
/p

2

(X
Q

+ 2pZ
0
)T

r - Z
q
T

fb
Q

- 2urZ
Q
/p

2
)T

We note that the velocities are the same but the positions are

different. The differences in X and 0 vanish as y 0 or as T 0 .

The difference in Z vanishes only when T + 0.

In Cases 2 and 5 where the slide becomes a roll at some point in the

time interval T (0 < u < 1) there will be a difference in both the velocities

and positions. For example for u =1/2

'soft' 'hard'

X

z

0

X

z

0

0 - yrVp2

ri
0 + VZ

C
)T - V i

g
T/v

V

(Q
q

- \irZ
Q/p

2
) T

+ \irZgT/( up
2
)

0
O

- 2prZ/p
2

(X
Q + 2\iZ

0
)T

r - Z
q
T

(b
Q

- 2prZ
Q
/p

2
)T
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Numerical Considerations

The time interval T is given by T = m/ft and & = k./m .

The mass m is the weight, w3 in pounds divided by the acceleration of
2

gravity g (in/sea ). Values of T and ft for a range of stiffness to

weight ratio are given below:

k/w (1/in) T (milliseconds,) ft (rad/sec)

1 160

10 50.6

100 16

1000 5.1

10000 1.6

19.6

62

196

621

1960

Consider, for example, an impact with k/w = 1000. In this case the

sphere would lose contact with the planar surface at T = 5.1 milliseconds. If,

on the other hand, an impulsive contact was assumed and the impact occurred

at a velocity of 30 mph (Z = 528 in/sec) , the Z position of the sphere at

that time would be 528 (.0051) = 2.7 inches above the planar surface.

Integrator Considerations

For the case of a 'soft' impact, the time T represents a half cycle

of a sinusoid. If we assume that at least 10 integration steps are needed to

achieve a reasonable precision in the numerical integration, then the maximum

step size of the integrator must be T/10. The use of a 'hard' impact imposes

no restrictions on the integration step size.

Injury Criteria

A commonly used injury criterion is the HIC number which is defined

by the formula
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2.5

HIC max

t
2
it

l

( t
2
-t

2
)

1
a

( 6 . 8 )

where \a I
is the magnitude of the acceleration expressed in g's. For the

'soft' contact we have

|a| = Z
0 |

^ 1 + y
2

sin (Q.t)/g

The HIC number is computed for = 0.518 and = T - From

Equation 6.8 we get

HIC = 1.3 ( 1 +
2 . ,2.

y /g)
5 n 1.5

For the 'hard' impact the HIC number is not defined since by

definition of an impulse the integral in Equation 6.8 is finite and the HIC

varies inversely as (£ - Thus the HIC number would be infinite.

Another commonly used criterion is the Severity Index which is

defined as

SI

For the

SI = (

soft' impact this is given by

/
IT

, , . , 2.5
a\i (s%n ]i)

0

where

0

d\i (sin \x)
2.5

1.44
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Thus, for a half sine wave acceleration the HIC and the SI are essentially

equal. For a 'hard' impact the SI is infinite.

For a specified HIC number we can compute fi as a function of

Z^ and y. The results for a HIC =

Z
Q

(in/sec) 2
q
T (in)

50 0.062

100 0.393

150 1.161

200 2.500

250 4.534

300 7.370

1000 and y = 0 are shown below

n (rad/sec) k/w (1/m)

2532 16612

799 1653

406 427

251 163

173 78

128 42

Conclusions and Answers to Questions 5 and 7 of Table 1-1

The only definite answers we can make to the questions is that if

the contact involves a segment where the HIC number or the severity index is

required the impulse option or the slide/roll option must not be used.

(Proper use of the slide/roll option requires the use of an impulse to reduce

the normal velocity to zero at the time of first contact, hence the slide/

roll option is subject to the same restrictions as the impulse option.) In

contacts where the HIC number or the severity index are not important for

the segment involved in the contact, the user must make the decision based on

evaluation of the differences, primarily in positions, of the variables

involved and the computing time. It should be remembered that the principal

advantage of the impulse options in the CVS program is that they place no

restriction on the step size of the integrator whereas the use of a 'soft*

impact restricts the step siz.e.
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6.3 Table 1-1, Question 9

Question 9 of those listed in Table 1-1 is:

Must the similitude of surface compliances be preserved in the

region of belt or air bag contacts?

The answer to this question is yes. To support this answer we refer

to the analytic studies presented in subsections 6.3.1 and 6.3.2 which follow.

A simple model of a belt passing over a deformable spherical surface

is analyzed in Section 6.3.1. In this analysis it is shown that the effective

stress is significantly reduced from what would be computed if the compliance

of the surface was ignored. When using the belt algorithm in the CVS program

the user must define a stress-strain function which accounts for the effect of

the compliance.

The analysis also solves the equations for a belt on a nondeformable

spherical surface with friction, and shows that the belt will not necessarily

lie in a plane if there is friction perpendicular to the belt line. It also

shows that the tension decreases exponentially along the belt line. The belt

algorithm in the CVS program should not be used if the effects of friction are

important (this algorithm assumes either zero or infinite friction). However,

the harness algorithm allows for surface compliance and finite friction.

For air bag restraints, the nominal pressure in the uncontacted bag

is usually a few inches of water and contacts by body segments reduce the

volume of the bag so that pressures of a few pounds per square inch are pro-

duced. The compliance of the bag must be considered to predict these

pressures. Also, the effecti.ve area is larger than the actual area of contact

as illustrated in Figure 6-3.



Figure 6-3 EFFECTIVE AREA OF SEGMENT CONTACT WITH AIR BAG

The air bag algorithm in the program estimates the reduction in

volume and the effective area assuming that the contacting segment is rigid

and that the bag material does not stretch. Actual experiments with an air

bag (Reference 1 - Volume 2) indicated that although the fibers in the cloth

of the bag do not stretch the material effectively stretches at an angle to

the weave so as to produce undulations of the bag surface in the vicinity of

the contact by an object. The analyses described in Section 6.3.2 show this

effect. One of the studies shows how a fabric with a rectangular weave will

lie on a sphere. The other study shows the effect of bag stretch.

6.3.1 Belt Analyses

(a) Belt With Friction

sketch.

Consider a belt lying on a surface as shown in the following
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let

:

Assume the belt may be treated as a curve in space. At the point

T

N

n =

<7

f

u =

ds =

4 >

unit vector tangent to belt (in direction
of decreasing tension)

unit vector principal normal to belt

unit vector normal to surface

tension in belt

magnitude of force along n

coefficient of friction along T

coefficient of friction along T(g)n3 ( © .,

vector cross product)

differential length of belt

angle between n and N.

We have the equation:

' - fn - vfT - vf (T®n) (6.9)

From the properties of surface curves. Reference 4, page 283, we

have

^7 = KN, where.’ K is the curvature of the belt

N = n cos <j> (T(g)n) sin <p

T©N = B = n .sin
<f>

+ (T@n) aos <j>

From Equations 6.9, 6.10 and 6.11

=
ds -vf

( 6 . 10 )

( 6 . 11 )

( 6 . 12 )
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K sin
<f>

= of/qj the geodesic curvature of the belt y (6.13)

K aos p = f/q3 the normal curvature of the belt k (6.14)

Thus, from 6.13 and 6.14

tan p - u

.

We make the following observations:

1. If the coefficient of friction, u, is zero along the

belt line the tension in the belt, q3 is a constant.

2. If the coefficient of friction, u, perpendicular to the

belt line is constant, the angle, <j> , between the normals

to the surface and the belt is constant. If u is zero

the normals are the same and the belt is a geodesic.

Thus, for a frictionless belt:

* = o and (6.15)

K = f/q.

The equation of a belt on a nondeformable surface may be derived

as follows:

Let r = vector from origin to point P on the belt. We have
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dr
Id

kn y (T © n) (6.16)= KN =

dn

ds
T- grad n = -k.T + t(T (x) n)

(t is the geodesic torsion)

At the point P, r and T are known, n and grad n are functions of the

equations describing the surface. The normal curvature k may be computed

from n as:

k = -T •
dn
ds '

From Equations 6.13 and 6.14, y = uk. Hence Equation 6.16 becomes:

dT d
2
r

ds j 2
ok (

T

@ n) (6.17)

Equation 6.17 is the equation for the belt. For a unit sphere we have:

n = -r

grad n = -I (the identity)

t
ds

k- 1 3 normal curvature of all curves on a unit sphere is 1

t = 0 3 geodesic torsion is zero, all curves on a sphere are

lines of curvature.
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Equation 6.17 for a sphere is:

+ u r = 0 (6.18)

ds

Crossing this equation with r yields:

— d
2
r dr dr

,

,
r ® TT u (r '

ds ~ ds
= 0

ds

but
i2-— d r

r © 2
ds*

d —
^®ds^ and r

• ^7 is zero for the sphere. Hence,

d A dr
,

dr
ar fr @3a; ~ u a? (6.19)

For constant u. Equation 6.19 may be integrated to give

r © li o (r-r
Q
) + r

0 ©

r © li
1
sT\lo + 7

0
®T

t

dr.

( 6 . 20 )

Substituting 6.20 into 6.18 yields:



2 2
Letting K = 1 + u = rn and noting that

T = Tn at s = 0,

solution of Equation 6.21 yields:

r = ~ [u
2

+ aos Ks ] + T
Q
— ~ r

Q @ T
Q

(aos Ks-1)

K K
( 6 . 22 )

J— V
Q

T = -j— = - — sin Ks + Tn aos Ks - rn (x) T. sin (Ks)
as K 0 K 0 ^ 0

(6.23)

— dT
KN = ^- =

ds
- r

g
aos Ks - K sin Zs - u @ aos Ks (6.24)

From Equation 6.14, f = kqt and from Equation 6.12

= -\ikq = -\xq (k = 1 on unit sphere)

If y is a constant, this equation may be integrated to give

q = q0
e'

VS
(6.25)

Thus, for the case of a belt lying on a unit sphere with constant

coefficients of friction. Equations 6.22, 6.23 and 6.24 describe the geometry

and Equation 6.25 gives the tension as a function of the arc length s.

To complete the

length of the constrained

be q = F (strain) , where

have

analysis, let L(s) be the variable describing the

beit. Let the stress-strain relation of the belt
ds

the strain is If the function is linear, we

q = a
ds

dL
where

6F
6strain

is a constant.
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m dL a a qa
Thus, tt- = — = —

’ ds q qQ

L = a (e^
S

- 1)
(6.26)

or
7 ^

n

s = - Jln[2 + —- L]
u a

where L = 0 for s = 0

.

We may rewrite Equation 6.26 in terms of q as:

L =— [— - 1 Lv q

or q = qQ
/(l + y — L)

W0
If the quantity L is small compared to one, we have from

Equation 6.26:

s ~ — L or q n = as/L
a ^

0
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Assume the belt lies in a plane and the surface is circular (spherical)

From the geometry:

• „ 2 72 2
,

2 , 2 .

stn d = f<p d a + b - r + ar)/ (a + b )

(6.27)

cos 0 = (a ^ o' + b^ - - br)/(a‘ + b%)

The total length, Lj of the belt is:

L = 2 [a sec 0 + r ( 0 - tan 0)]

= 2 [r0 + ^
+ b^ - v

2
]

Let q = Z (L/Lq - D > tension in belt,

/ = k (r
0

- r) j normal force per unit length

Z = strain coefficient, lbs. per unit stress

k = force coefficient for surface (lbs. per inch length

per inch deformation)

Tg = undeformed radius

From Equation 6.15 we have:

q = vfy or

Z (^Lq - 1) = kr (v
g

- v)

(6.28)

(6.29)
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In the case where the surface is rigid (k = °°) Equation 6.29 is

not applicable; the value of r does not change and L is computed from

Equation 6.28 as a function of b. When the surface is not rigid (k < °°)

Equations 6.27, 6.28 and 6.29 must be solved simultaneously to evaluate

L, 0 and r as a function of b.

Consider the strains

a = L/
L„ - 1

ds_ _ 1_ 6L_ dr_ 6£
db Lq 6r db 6b

but
6L— = 28 and from Equation 6.29

Hence,

a
ds. = v \r _ 2rl —1
db

K lr
0 db 3

ds

db

SL/
6b

1 + 2l8/(kL
Q
(2r - r

Q
))

dq _ „ ds _
db

*
SL/

Sb
db 1 + 218/ (kL

Q
(2r - v

Q
)

)

(6.30)

Thus, the effective; slope of the stress-strain curve is reduced by

the factor in the denominator of Equation 6.30. Note that for k = °° (non-

deformable surface) the denominator is 1.

87



Numerical Example

Consider a case where a = = 7", b = 20". We have 0 = it/2

and when v = r
o

1 + 2lQ/(k L
q

(2r - v
Q
)) = 1 + ^ ? (4Q + ?^ )

If a belt produces a stress (tension) of 1000 lbs. for a strain of

0.1, then i = 10000. If the 7" radius is reduced to 6" by the 1000#, then

k = 1000/6 (Equation 6.29). Thus, i/k = 60 and the slope of the stress-

strain is reduced by the factor 1.43. Failure to allow for the compliance

of the surface would produce a 30% error (yjj
=

i-n t ^ie computed stress.

As b increases, r is reduced and the reduction factor becomes even greater.

6.3.2 Air Bag Analyses

(a) Technique for Generating a Set of
Equally Spaced Points on a Sphere

Assume that along any two great circles of a sphere we are given

a set of equally spaced points, X^ 3 and X^ 3 as illustrated in the

sketch below.

X
/l *zi *57
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Let the spacing (arc length) be £ and the angle between the vectors

from the origin to any two adjacent points be A = l/r} where r is the radius

of the sphere.

We wish to complete the array Z^ such that the spacing of any two

adjacent points is £. This can be done by starting with X^ and Z^ and

finding X Then from X^ and X
31

finding X^
2j etc -

This may be done by using the relation:

X = -r~- [cos A (X + X ) + J(
1 + oos 6 12 1 szn S/2

_ 2
where aos 6 = Z^ . Z^/r .

Letting X
J
= X^ X

2
= X^ then X is Z^.

Consider the segment of the surface of the sphere depicted in the following

sketch where X
+

is the value of Z using the plus square root and Z

is the value for the negative sqpare root.

We have

cos 6 = * . X
2
/r

2

a v" / 2 , 2,6, „ 2 6,aos 9 = X
+ .

X /r = tan (—) aos 2 A sea (-^)

.

C9
\
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Let 1
1
= a.X

i
+ yX^ @

We have t

^

.
X

^
= 0 = aX

^
. X

^
+ QX^ . X^ = 0

We note from Equation 6.31 that

cos A Xj . Xg + sin A . X^ © X^ = aos A X^ . X^

Hence, t
. ^ @ = cos A fZ,, . X

p - X^ . X
p ) = y Z

? © Z,, . Z
? @ Z

2 2 1 * 2
'

' 1 ^ 2 1 ^ 2

Thus,

X . X

*i
= B (x2- =~— x

2 ) +
x
i

K
i

aos A fZ 9 . Z 9
- Z

7 . Z 9)

- --J -*,©*
2

Since ^1 '
= we have

8 sin A =
1 +

-2

Collecting terms we obtain

X = -t—— ^ [cos A fl, + XJ +
1 + aos 6 12

. .
. x 2 ,

Z 9 -©Z 7fstn A \ -1 2^ 1

sin 6/ f
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where X
2

.
X
2
= X

2 .
X
2
= r

2
and cos 6 = X

2
.
X
2
/r

2

Note that, for a solution to exist, sin A sin 6/2, i.e., the arc length between

the points must not be greater than 2 Ar.

(b) Effect of Bag Stretch

The sketch below depicts a half-cross section of the contact of a

penetrator of radius r

^

with a bag of radius r^. The deformed bag shape is

assumed to consist of two circular arcs A-B and B-C. If the bag does not

stretch, the length of line A-B-^C is

92



Assume the bag stretches by a factor p over the arcs A-B-C.

Then,

U2\d> = r <j) + (r* - p) (<p + \p)
b a b

p qos ip + (r + - p) cos <p = d (6.32)

p sin ip - (v
q + - p) sin <p

= 0

The unknowns are p., <f>
and ip .

If p = 1 (no stretch) the solution reduces to

d
<j>

= \pj qos 4>
—

r + r,
J

a b
P =

v + r,
a b .

(r + r, ) svn <p d - (r + r,) qos 4>

... , a b a b
We have p =—

-

szn \p + szn 4> qos \p - qos <p

sin ip - sin <p

sin <p

(r + rh )

2
-d

2

a b

2 2
d +(r + r,) -2d(r + r,) qos

<J>

a b a b

(r + r,)
2
-d

2

a b

2 2
2(r + r,) (r + r,-d qos <p)-((r + r,) -d )

a b a b a b

p = r + ru -
a u

f ,
,2 ,2

(r f r*) -d
a b

b 2\v t r,-d qos 4>

J

a b

[(v-Dr^ + p] ip = (?
a + - p) <p

These equations may be solved using an iterative type procedure.

As p increases p -> r^. This is a limiting case for this model. At this

limit

:
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i
'p

sin
sin ip

aos
d
2r
a

2r d
a

Z

In a cylindrical coordinate system (see sketch above) the surface

of the bag may be described as

:

2 2 2
r + z = r, for v > r, sin ip

b —b

2 2 2
r + (z-d) = v for v < v sin cb

a —a

2 2 2
(r-p sin \pj + (z-p aos ip) = (rh-p) 3 for sin <p <_ r <_ sin ip

where x = v aos 0 3 y = r sin 9

and the penetration, p = - d

Assume the bag does not stretch in the planes Q = 0 and 6 = tt/2

which represent the warp and fill directions of the fabric. Let the stretch

factor be represented by the first term of a Fourier Series as

94



|i = / /
( ) (I - C()i', (4 <>)) ~ I f |'. II >

Thus, pj and <\> determined by Equations 6.32 are functions of 0.

Sample calculations based on the foregoing analysis were performed

to illustrate how the bag volume and the effective contact area vary with the

stretch factor 8. The effective area is the area obtained by projecting the
3 3

curve defined by — = 0 onto the XY plane. For these calculations a

4 inch radius rigid sphere was assumed to penetrate 2.5 inches into two

different size bags having radii of curvature of 10.38 and 21.33 inches,
*

respectively. The results of the computations are presented in Table 6-1.

Note that the volumes and the effective areas decrease significantly as

the stretch factor increases. The current version of the CVS program does

not allow for this effect and it would be difficult to account for it since

it is a function of the local properties of the bag at the point of contact.

Table 6-1

EFFECT OF STRETCH FACTOR ON AIR BAG VOLUME AND EFFECTIVE CONTACT AREA

Stretch Factor, 6

Volume ~ in.

r. = 10.38 vn.
b

r, = 21.33 in.
b

Area ~ in.

r-, = 10.38 in. r, = 21.33 in.
b b

0 71.24 139.92 54.44 100.60

0.05 62.84 102.52 52.36 92.72

0.10 58.84 88.72 49.80 83.88

0.15 56.72 81.56 47.56 77.68

0.20 N/A 77.32 45.40 71.24

These values are the approximate maximum radii of curvature of the ellipsoidal bag
used for the static tests described in Volume 2 of Reference 1.
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6.4 Table 1-1, Question 10

Question 10 of Table 1-1 is:

Is it necessary to preserve similitude of certain dynamic degrees

of freedom which include inertial effects for deformations associated with

contact?

To answer this question consider the simple dynamic systems illustrated

in Figure 6-4 below. In the system depicted in part (a) of the figure, mass m

moving with velocity v contacts mass m
1

which is coupled to mass m 0 with
JL Cj

a linear spring. Mass m t is coupled to a fixed reference with a linear

spring. Masses m

^

and are initially at rest. Part (b) of the figure

shows an equivalent system if masses m

^

and m

^

are negligible.

(a)

k - spring constant

(b)

Figure 6-4 SPRING MASS CONTACT MODELS

2k

m m. m
2

2k
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Assume that the initial contact is sufficiently 'soft' so that the

effects of an impulsive contact need not be considered. (Impulsive contacts

are discussed in Section 6.2 of this report.) Further, assume that mass m

combines with mass m and that they move as a single unit. The initial
* 171/ *

velocity is then (from conservation of momentum) V- = V m where
* 1

m = m + m^.

The equations of motion are:

m*X = 2k (X
2

- X - (X
2

- X) )

m
2
X
2

- -* (X
2

' XV + 2k (X
3

- X
2

- <X
Z

- X
2
) 0>

where: X = position of combined mass m

X^= position of mass m,

C 7 s position of fixed reference.
O

Solving these equations for, X3 the acceleration of X3 yields:

+ V- + p/ ^4+p
2
]

k_ T
*

;

m
X = -^V [[J-

\4+

p sin t

]

sin u

] (6

2 k
where :

= —

j

m
2 + p + \4+p

2 k 2 + p + V4+p‘

m

p = m
2
/m

.33)
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The solution for the system shown in Figure 6-4 (b) may be obtained
*

from Equation 6.33 by letting p = 0 and m = m. Thus for this system:

k_
y

sin u)t

ml a)

V \I — sin (t tf —J
1 y m y m (6.34)

where co = k/m.

We only show the solution for the acceleration of X since in the

crash environment most injury criteria are based on accelerations or forces.

For simplicity let us normalize Equation 6.33 by dividing by the amplitude

factor of Equation 6.34. We have

a = X/(-~ VjuJmi l

*

=
t[ Ul - p/ V 4+p2>

= A - sin + A 0 sin

With the same normalization Equation 6.34 becomes:

a.Q = sin ut (6.36)

— s^n to

Uj 1
t + (1 + p/ y4+ sisvn to^t\

(6.35)

For this simple model Question 10 may be rephrased as: Is the difference

between Equation 6.35 and Equation 6.36 significant? We cannot give an absolute

answer to this question since the difference of results depends on the problem

at hand. We do, however, present numerical results showing how the differences

depend on the masses and spring constant.

The numerical results are given in the form of tables. The first table,

Table 6-2, shows how the frequency and period of a simple spring mass system

(Equation 6.34) varies with the ratio of the spring constant to the weight. The

formulas are:
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Table 6-2

FREQUENCY AND PERIOD OF SIMPLE SPRING MASS SYSTEM

Spring Constant/Weight
K/W (in. -1) Freq (HZ) Period (MS)

1. 00D-01 0.99 1011.31
1 . 78D-01 1.32 758.38
3. 16D-01 1 . 76 568.70
5.62D-0I 2.34 426.47
1 - 00D+00 3. 13 319.81
1 . 78D+00 4. 17 239.82
3. 1 6D-H* 0 5.56 179.84
5.62D+00 7.42 134.86
1.00D+01 9.99 101.13
1.78D+01 13.19 75.84
3. 16D+01 17.58 56 8 r'

5.62D+01 23.45 42. 65
1. 00D-KI2 31.27 31.98
1 - 78D+02 41.70 23.98
3. 16D-KI2 55.60 17.98
5.62D+02 74. 15 13.49
1 - OOD+-03 98.88 10.11
1 . 78D-K»3 131.86 7.58
3. 16D+03 175.84 5.69
5.62D+03 234.48 4.26
1. 000+04 312.69 3.20
1 .78D+04 416.98 2.40
3. 160+04 556. 05 1.80
5. 620+04- 741.50 1.35
1. 000+05 988.81 1 . 01
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frequency f
1_
2 TT

0)
1_
2n 9 , Hertz

period T

where W

k

9

1000/
f j milliseconds

mg
y
pounds

spring constant pounds/inch

acceleration of gravity 3 386 inches/second
11

From Table 6-2 we note that for k/w = 10 the period is about 100

milliseconds. The ratio of k/w must be 100000 to give a period of 1 milli-

second.

The second table. Table 6-3, shows the effect when mass 2 of the

3-mass contact model is negligible (p = 0 ) but mass 1 is not. The formulas

*
t= I''* + velocity ratio

Aj = 1/(1 + r)^^y amplitude

Tj/T = J1 + r y period ratio

r = m^/m , mass ratio
JL

The third table. Table 6-4, shows the response of the 3-mass system when mass 1

is negligible and p (the ratio of to m ) is varied. The formulas are:
2
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Table 6-3

EFFECT OF MASS RATIO ON RESPONSE OF 3 -MASS CONTACT MODEL
WITH NEGLIGIBLE MASS 2

Mass Ratio Velocity Ratio Period Ratio Amplitude
Mj/M Vl*/V

1

t1 n Al

1 . 000+01 0. 0909- 3.31 66 0. 0274
5.620+00 0. 1510 2.5736 0. 0587
3. 160+00 0.24-»)3 2 . 0402 0. 1178
1 . 78D+do 0. 3599 1.6668 0.2159
1 . 000+00 0.5000 1.4-142 0.3536
5.62D-01 0.64-01 1 . 2499 0.5121
3. 160-01 0.7597 ! 1.1473 0.6622
1 .78D-01 0.84-90 1 . 0853 0.7823
1 . 000-01 0.9091 1 . 0488 0. 8668
5.62D-02 0.9468 1 . 0277 0.9212
3. 160-02 0.9693 1. 0157 0. 9544
1.780-02 0.9825 1 . 0089 0.9739
1 . 000-02 0.9901 1 . 0050 0.9852
5.62D-03 0.9944 1 . 0 028 0.9916
3. 160-03 0. 9968 1 . 0016 0.9953
1.780-03 0. 9982 1 . 0009 0. 9973
1 . 000-03 0.9990 1 . 0 0 05 0.9985
5 . 620—04> 0.9994 1 . 0003 0 . 9992
3. 160—04 0.9997 1.0002 0.9995
1 . 780—04- 0.9998 1 . 0001 0. 9997
1 . 000-04- 0 . 9999 1 . 0 0 0 0 0 . 9999
5.620-05 0 . 9999 1.00 0

0

o

.

9949
3. 160-05 1.00 0

0

1 . b 0 0 0 1 . 0000
1 . 780-05 1 . 0 0 0 0 1.00 0

0

1 . 0000
1 . 000-05 1 . 0000 1. 0000 1 . 0 0 0 0
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Table 6-4

EFFECT OF MASS RATIO ON RESPONSE OF 3-MASS CONTACT MODEL
WITH NEGLIGIBLE MASS 1

Mass Ratio Period Ratios Amplitudes
Amplitude

Ratio

Mr/M T
2
/T t

2
/t VT

2
A

i -
A
2

a
2/a i

1 . 00D+01 2.3557 0.6712 0.2849 0. 0457 1 . 3293 29. 0585
5 . 62D+00 1 . 8434 0.6432 0.3489 0 . 1 066 1 . 2493 11.7219
3 . 16D+00 1.4820 0.5959 0. 3994 0.2310 1 . 0996 4. 7597
1 . 78D -KI 0 1 . 2703 0.5249 0.4132 0.4262 0. 8737 2 . 0498
1 . 00D+00 1.1441 0.4370 0.3820 0 . 6325 0.6325 1 . 0000
5 . 62D-01 1 . 077 0 0.3481 0.3232 0.7855 0.4424 0. 5632
3 . 16D-01 1.0418 0.2699 0.2591 0.8791 0.3121 0.3550
1 . 78D-01 1.0230 0.2061 0.2015 0 . 9324 0.2244 0. 2407
1 . 00D-01 1.0127 0. 1561 0. 1542 0.9622 0. 1639 0.1704
5 . 62D-02 1 .

0

07

1

0.1177 0. 1169 0. 9788 0. 121

0

0. 1237
3 . 16D-02 1. 0040 0. 0886 0. 0882 0.9881 0. 0900 0. 0910
1 . 78D-02 1 .

0

022 0. 0665 0 . 0664 0. 9933 0. 0671 0. 0676
1 . 000-02 1. 0013 0. 0499 0.0499 0 . 9962 0 . 05 02 0. 0504
5 . 620-03 1.0007 0. 0375 0. 0374 0. 9979 0. 0376 0. 0377
3 . 16D-03 1 . 0004 0. 0281 0. 0281 0 . 9988 0.0282 0. 0282
1 . 78D-03 1 . 0002 0. 0211 0. 0211 0 . 9993 0. 0211 0. 0211
1 .

0

OD—03 1 . 0001 0. 0158 0. 0158 0 . 9996 0. 0158 0. 0158
5 . 620—04- 1 . 0001 0 . 0119 0. 0119 0 . 9998 0 . 01 19 0. 0119
3 . 16D-04 1. 0000 0. 0089 0. 0089 Q _ QQQQ 0. 0089 0. 0089
1 . 78D-04 1 . 0000 0. 0067 0. 0067 0 . 9999 0. 0067 0 . 0 067
1 . 00D—04- 1 . 0000 0 . 0 05 0 0. 0050 1 . 0000 0 . 0 05 0 0. 0050
5 . 62D-05 1.0000 0. 0037 0. 0037 1 . 0000 0. 0037 0. 0037
3 . 16D-05 1 . 0000 0. 0028 0. 0028 1. 0000 0. 0028 0. 0028
1 . 780—05 1 . 0000 0. 0021 0. 0021 1 . 0000 0. 0021 0. 0021
1 . 00D- G5 1.0000 0. 0016 0 ~ 0 0 1

6

1.0000 0. 0016 0. 0016
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T/T =

vr =

y (2 + 0 + J 4+p
2
)/4 ,

y 0/(2 + P + ^ «+p
2
; ,

(1 - p/ y4+p ) (o/w
^

j

fi + p/^ 4+p
2
) u)/(jj

2 ,

period ratio

period ratio

amplitude

amplitude

The ratios of T
2
//T

l
anc* ^2^1 are a * so tabulated.

In conclusion the answer to the question as to whether or not it is

necessary to include inertial effects for contacts is dependent on the situation.

In this section we give numerical results for a simple contact model which

should be helpful to the program user in making a decision as to whether or

not inertial effects should be included. Table 6-2 which shows the periods of

oscillation as a function of stiffness to weight is primarily of use in

estimating the integrator step size or in reaching a decision on the use of an

impulsive contact. The numerical integrator should have a maximum step size

that is no greater than 1/10 of the period (this is relative to the accuracy

desired); thus. Table 6-2 shows that if one wishes to use a maximum step size

of 1 millisecond the stiffness to weight ratio should be no greater than 1000.

Table 6-3 shows the effects of ignoring part of the system mass such as, for

example, the mass of the material which is carried with the head on a windshield

contact. For a mass ratio of 1/10 there is a 10% change in velocity, a 5%

change in period and a 13% change in amplitude. Ta^le 6-4 shows the effects

of the first two modes of vibration of an elastic impact. In an actual physical

problem, since we are dealing with continuous structures, there will be an

infinite number of modes of vibration. In an impact problem the higher order

modes will be of progressively less importance; that is, these amplitudes
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will decrease as the frequency increases. Table 6-4 shows that if the

effective mass of the impacted structure (M^) is 1/10 of the effective

impacting mass {M) the period of the principal resonance Tj differs by

about 1% from the period that would occur if mass 2 were ignored. The

secondary resonance has a period that is 16% of the primary. The amplitude

of the principal resonance differs by 4% and the secondary resonance has an

amplitude of 17% of the primary. The principal effect of ignoring mass 2

would be the neglection of the 17% amplitude secondary frequency. It should

be remembered that these values pertain to the acceleration response; the

effects on position will be reduced by the square of the period ratio (T^/T^)

i
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7.0 CONCLUDING REMARKS

Although this report may seem to the reader to be a collection of

unrelated topics, the topics have one thing in common, i.e., they are all

related to various aspects of the CVS program.

The user must remember that the CVS program is based on rigid body

dynamics and, hence, when used to simulate real-life conditions can only

approximate the true dynamics of the system. When the program is used to

simulate a dummy, the skeletal structure of the dummy can be modelled quite

accurately but the presence of the 'skin,' and the rubber neck and spine

preclude the precise modelling with a program based on rigid body dynamics.

The work on the shoulder model reported in Section 3.2 of this report

demonstrates the flexibility of the program in allowing the user to define a

more precise model of a dummy. The various topics discussed in Section 6 of

this report point out some of the limitations of the model and attempt to give

some insight to the effects of using impulsive forces instead of force-

deflection relationships for "hard” type contacts, the use of point contact

algorithms instead of deformable contact algorithms, and the use of

simplified models of belt and air bag restraint systems instead of more

precise models of these restraint systems.

The Response Measure Approximating Function Generator described in

Section 4 should prove to be a useful tool for the user who wishes to perform

parametric studies and have £i means of interpolating the response measures as

a function of several parameters.

The dynamically equivalent system algorithm described in Section 5

of this report has no direct bearing on the CVS program but points out a little

known fact about a system of interconnected rigid bodies. In particular, it

shows that the mass distribution to produce a particular system response is not

unique. This implies that the exact internal structure of an interconnected

rigid body system cannot be determined from the observation of external dynamic

and kinematic responses. The theorem may prove useful in defining "canonical
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models' of systems, i.e., a "canonical model' may be defined as one where all

of the segments have the same mass.

Finally, the CVS program is a useful tool, but the success of its

application to a particular problem requires a full understanding of its

capabilities and limitations by the user. There is much work yet that could

be done to improve the program, particularly the development of new contact

algorithms to better model the interaction of deformable bodies which is the

real world situation.
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APPENDIX A

PLOTS OF RESPONSE MEASURES FROM SHOULDER MODEL SIMULATION STUDY

A-l



This appendix contains plots of selected response measures for

the six CVS runs performed as part of the study of dummy shoulder models

that are described in Section 3.2 of this report. For each run the plots

are presented in the following order:

(a) Right lower arm resultant acceleration

versus time

(b) Right lower arm Z displacement versus X displacement

(c) Right lower arm Y displacement versus X displacement

(d) Shoulder yoke-clavicle pivot flexure angle versus time

(e) Precession and nutation angles of the shoulder Euler

joint versus time

(f) Precession and nutation angles of the elbow Euler

joint versus time

(g) Upper torso resultant acceleration versus time

(h) Upper torso pitch angle versus time.

A-2



00

RL

ft

RF.5UL

T.ftNT

flCCFl

F.RRT

I
ON

VS.

T
I
II
F.

UNLOCK.

P

-

LOCK.

N
r

UNLOCK,

S
-

LOCK

Figure

A-l

RUN

NO.

1

RESPONSE

MEASURE

PLOTS



<_)

o

ii

—

>

2: cn
U_i

1—

•

n •

w UJ isT

u C_f

I— a: Z3
z _j _l 4->

L_1 Q_ 2: cA
2T cn 23

wu
U-l V—
O a II

cr
_i X z r—

4

|

c_ <d
cn cr •

s—

•

_j ^r <D

o cr CJ l-(

30 bOX •* _i •H
cn tu

cr > 11

_i
cr Q_

rvj

CE CsTO
cr a

_i
2

/—

'

2
' >

il

.VI

>-

X

A-4



1 1

L r

1 !

1 i

i

i

! )

i !

1

/

i i i i

Cl- 3- 0 3 0! Si'

*C
cj
o
_J

i—
i 1

—

>

z. 00
Ll_> /—

\

•—

•

se • •w u_i VC T3

u -

i

—

CE o •4->

r*

z: _J
>-*

o
u_> c_ u
x: 00 ID

V—

/

L±j l—

o o 1

1

t-H

a: 1

_i X Z <
Q_

<D

Jh
CD CE *

*— _J id
Q CJ 60

o •H

X * U-

00
cc 0> II

1

etc Q_
>-

CE id
o
E3
_J
H

/* N ID
CJ
V—

'

il

rvi

•

>-

( NI) 1N3U3 ObldS I G A blfc
l

A-5

\

l-



A-6

W

RY

FLEXURE

VS.

TIME

UNLOCK.

P

_

LOCK.

N
-

UNLOCK.

S
r

LOCK

Figure

A-l

(Cont'd.)



A-

7

C6 09
—1 o
06-

(e)

RS

PRECESSION

AND

NUTATION

VS.

TIME

UNLOCK,

P

=

LOCK,

N
-

UNLOCK,

S
-

LOCK



CD

il

rvj

>-

X

C6 C9 0£ 0 CG-

NOIibinN GNU NGISS333dd 3d

C6-

A-8

(f)

RE

PRECESSION

HND

NUTHT

ION

VS.

TIME

UNLOCK.

P

-

LOCK.

N
=

UNLOCK.

S
=

LOCK



CZT

A-

9

(g)

UPPER

TORSO

RESULTANT

ACCELERATION

V
S.

TIME

:
-

UNLOCK

,

P

-

LOCK,

N
=

UNLOCK,

S
_

LOCK

Figure

A-l

(Cont'd.)



o

o
CJ

oo

o

o
00

o

o
CO

o
\j0

oo

o
C4

o

cn

UJ
21

ii

rvl

>-

X

!

A- 10

(h)

UPPER

TORSO

PITCH

VS.

TIME

UNLOCK.

P

=

LOCK.

N
=

UNLOCK.

S
=

LOCK



CO

a
UJ
esc

C_!

o

ii

UJ CO
n *

— a
i— uj

-

co o
> o

_i
z 2
O Z3

I— II

cx
cc z
uj -

_i Q_
uJ *

o a
(_5 UJ
CC UJ

<_>

H- O2 _J
cc
I— II

_l
3 >-
CO -

uj a
O' uj

CsC

CC CJ
_j a
CiC _J
2^ 3

03W
II

‘ rvj

X

CO
HO
-J
CL

UJ
OS
3
CO
<
UJ
2
UJ
co
2O
Cl
CO

s
CN

o2

0£

CN
I

<
0)

M
3
e>o

A-ll



cc

oo

il

CD

a
UJ

CJ
CD

—

*

x
LlJ X

•—

LlJ n
C_>

h- cr
zz. _j • -

LlJ Q_ Q_ •M
r*

51 c

n

» N
O

LlJ *— a uo a LlJ

cr lc:
CN

1
_i X o
cl- o <
od CE _i
>—

i

_J
a O' ii 3

bOX * >— •H
C/D » LU

cc D> CD
_j LlJ

ce:

rvj o
a

(X _j
_J 2:

ac CD

! V i I

rOw
rvl

X

(NIJ JLN3W33bldS I Q Z bid

A-12



o
ca

c_»

o

1

1

cn

c
U_1

>£
C_J

o
r——

>

zz U_i 3
T~

—

'

U_i II

CJ
r— a: 3
Z _j *

U_i Li- c_
T-

en •

ui >—

•

CD
O a Ui
a: v-"

X CJ
c_ o
00 cr _J
1— !

cd cz II

X « >-
CO *

cr > CD
_i Oi
qc

>- Cj
O

cn 1

etc 3
li

rvj

X

(NI ) iN3U33bldSia A aid

+J

c
o
u

CM
I

<
0
f-4

a
•H
Um

A- 13



o

I

os o ce-

(03Q) 3^0X333 A3

C9-

o CO
O 5-

o x:

o
06-

LU
2

r

CO
>
Lt_i

0^

X

Ll.

>-
cc

i I

(Vl

X

A- 14

UNLOCKED.

r
_

LOCKED.

P.N

r

UNLOCKED.

S
-

LOCKED

Figure

A-2

(Cont'd.)



o

A-15

(e)

RS

PRECESSION

AND

NUTATION

VS.

TIME

.1

-

UNLOCKED.

T
=

LOCKED.

P.N

r

UNLOCKED.

S
_

LOCKED

Figure

A-2

(Cont'd.)



o

\

x

A- 16

30

40

SO

60

70

00

90

100

i
10

120

130

HO

TIME

f
MS

)

(f
)

RE

PRECESSION

FIND

NUTATION

VS.

TINE

.Z

-

UNLOCKED.

r
=

LOCKED.

P.N

r

UNLOCKED.

S
-

LOCKED

Figure

A-2

(Cont'd.)



o
rr>

o
C4

oo

o

o
CD

o
co

o
ID

o
CO

O
C 4

O

CO
z:

A-17

(g)

UPPER

TORSO

RESULTANT

ACCELERATION

VS-

TIME

X.Z

=

UNLOCKED

,
T
=

LOCKED.

P.N

-

UNLOCKED.

S
-

LOCKED



A-18

(h
)

UPPER

TORSO

PITCH

VS.

TIME

UNLOCKED.

Y
=

LOCKED.

P.N

=

UNLOCKED.

S
=

LOCKED

Figure

A-2

(Cont'd.)



00
SO

UJ
2Z

UJ

o
o

II

00

co a
> UJ

cc
Z u
o o— _l
I- z:
cr co
QC
UJ II

_J
UJ z
u *

CJ Q_
cr

l— CO
Z UJ
cr uc
o
o
_i

ii

>-

rvi

CO
GO
UJ
DC

cr
_i

a
UJ
GcC

o
o

ii

X

(0) iNynns3^ wyy mbhci iHoia

A- 19

Figure

A-

3

RUN

NO.

3

RESPONSE

MEASURE

PLOTS



f i

1

i

1

i

i

/

1

1

|

r

I

i

,

(

1 1 1 1

51- 01- 5- 0 5 01 Si'

t N I ) 1N3W3jdldS I G Z did

a
U_1

Cj
a

n

CO

a
UJ

i— CsC—

-

z CJ
zz. UJ a
<—> n _j— UJ z

CJ n
i— cr
d _i ii

LU • Q_
21 CO z
UJ >—

1

•

CJ a Q_
cr
_i X *

Q_ a
CO <x UJ
k—

•

X.a X u
oX « _J

CO
cr > 11

_i
X >-

M •

fvi

d
_l •

X a
UJ

f—

N

XX CJ
o

+j

c
ou

to
I

<
<u

3
bo
•H
ci-

A-20



( NI ) iN3W33bldS I Q A bid

cr
UJ
is:
( )

o
j

i!

00

•

a
L_

t— is:—

'

Z CJ
~Z. UJ o— z _j
>—

>

UJ z
CJ ZD /—

\

1

—

CL •

3 _) II
"O

UJ CU +Jz CO 2 c
LiJ t—

i

• o
cj CL r» u
u_
_J X •

to

cn CL UJ 1

>—

•

_J is:

a QC CJ oa Ci

X «
i

3
cn 130

• rH
cr > n [i,

C£ i^
>- •

rvj

cr
*

CC a
UJ

>—

v

it:

o CJ
o
_i
3
3
II

X

A-21



o

o
C4

o
CD

O
rr>

o
CD

o

o
CD

O
uD

O
CT*

O
C4

O

cn

LlJ

5Z

II

X

\

A- 2 2

(d
)
RY

FLEXURE

VS.

TIME

UNLOCKED.

Z.Y

=

LOCKED.

P.N

=

UNLOCKED.

S
-

LOCKED



CO

LU

II

X

A-23

(e)

RS

PRECESSION

AND

NUTATION

VS

.

T
INF-

UNLOCKED

.

Z
*
Y
=

LOCKED.

P.N

=

UNLOCKED.

S
-

LOCKED



II

X

A-24

(f)

RE

PRECESS

1ON

AND

NUTATION

VS

=

TIME

UNLOCKED.

Z.T

=

LOCKED.

P.N

r

UNLOCKED.

S

=.

LOCKED



r

CZ1

cn
n

ii

x

A-25

(g)

UPPER

TCJRSO

RE

SUL

TON

T

HCCf.l

FRO

f
1
ON

VS

.

T-
1
M

F

UNLOCKED.

Z.Y

-

LOCKED.

P.N

=

UNLOCKED.

S
-

LOCKED



o

O
CO

oo

o
cn

c
00

o

o
co

o
ID

a
ro

O
C4

O

cn

ii

x

A-26

(h)

UPPER

TORSO

PITCH

VS*

TIME

UNLOCKED.

Z.Y

=

LOCKED,

P.N

=

UNLOCKED,

S
=

LOCKED



o iO
co jz

UJ
o 21

A-27

(a)

RLH

RESULTRNT

ACCELERATION

VS.

TIME

^LOCKED

^Z-UNLOCKED

.

BLOCKED

.P

^UNLOCKED

.S=L0CKED



A-28

(b)

RLH

Z

VS.

RLfl

X

DI

SPLRCEI1ENT

^LOCKED.Z-

UNLOCKED.

Y^LOCKED.P.N^UNLOCKED.S-

LOCKED



1 1 1

1

/

1

L

i

!
j

1 1 1 1

31- 01- 3- 0 SO! Si'

f NIJ !N3W33bldS I Q A bid

LU
z:
UJ
o
CE
_J
Q-
o-o

a

ac

ce

X

A- 2 9

/

(c)

RLfl

Y

VS.

RLR

X

DISPLACEMENT

-LOCKED

.

Z-

UNLOCKED

.

Y-LOCKED

.

P„
N=

UNL0CKED

.

S-LOCKED



cn
co

Cxi

=)
X
UJ

>-
a

J L

a o ce-

(03(3) 3^flX31J A^i

X

A-30

^LOCKED.Z

-UNLOCK

ED

.Y

=

LOCKED.P.N

=

UN

LOCKED.

S-LOCKEO

Figure

A-4

(Cont'd.)



X

A- 31

(e)

RS

PRECIS'S

I
ON

HND

NUTRTION

VS.

HUE

-LOCKED

.Z-

LINE

OCKEO

.
Y

-LOCKED

.P,

Nr

UNLOCKED

.2=

LUCKED



o CO
xi j-

LlJ

o n

A-32

(f
)
RE

PRECESSION

AND

NUTATION

VS.

TINE

-LOCKED,

Z-UNLOCKED

.

BLOCKED

.
P
.

N-UNL

OCKED

.

S-

LOCKED



(g)

UPPER

TORSO

RRSULTHNT

HCCEL

ERI-tT

1
ON

VS.

TIME

-LOCKED

.

ZrUNLOCKED

.

V-LOCKED

.P

*N=

UNLOCKED

,S-L.

OCKED

Figure

A-4

(Cont'd.)



A-34

^LOCKED

,Z=UNLOCKED

.

Y
-L

OCKED

.

P,

NrUNLOCKED

.

S-L

OCKEO



A-35

Figure

A-

5

RUN

NO.

5

RESPONSE

MEASURE

PLOTS



a
UJ

i— iC
Z c_>

z UJ a—

i

SIw UJ
o u —

s

1— cc *

Z _J (O T3

UJ CL +J
si CO * C
LlJ >—

•

o
U a UJ uw
a: XZ
_i X U
c_ a in
CO a _j i

*— _i za or 3 a>
|H

X « II 3
CO bO

cr > 3 •n
CL

_i •

cc CL
rvi

a: a
_i UJ
cc

CJ
/* \ o
X
V /

_i

II

rvj

X

I

A-36



G_
CO

CD

X

- ^
z 3
J o

CO

CO

CSC

X C_’

CD

or 3
• II

cs: dc:

o
'—/

1

1

>-

fvi

X

c
ou

LO
i

<
4)
5h

3
00



A-38

o
<M

Oo

cn

UJ

CJ
UJ CD

il

cn
cn

a

dd uX o

>- II

ct

"T3 Q.

a
UJ
ic:

CJ
o

X

c
ou

LO
I

<
1)

Cl

3
w>

u-

(•



_ o cn

UJ

i— o
UJ

* UJ
Cn CJ
U* o

O II

i— cn
CE
I— •

zd az UJ
UJ
CJ

Z CD
cr _i
z

z z
a— ii

cn
cn 2-

uJ *

CJ C_
UJ
CJ *

c_ a
UJ

cn uj
CJ CJ
a

<u

ii

>-

rvl

X

•J
c
o
CJ

LO
I

<
<D

Vi

3MH
CL.

A-39



il

>—

NJ

A-40

(f)

RE

PRECESSION

RND

NU

TRT

I

ON

VS.

TIME-

LOCKED.

P.N

=

UNLOCKED,

S
=

LOCKED



-D

3
CM

Oo

o
O'

o
00

o
CO

o

o
<*>

o
C4

o

cn

LU

CO>
2: CO
a UJ
t— iC
i— C_>

a: a \

oc _i •

UJ X)

—1 ii +-*

uJ c
C_) CO 0
co u
CE *

CO
h- UJ LO

Z 1

0
1 0 0)

1 _i u
co 2: 3
CO CO W)

•H
uj U.
QE ! 1

CO 2!
CO •

0_5
r— •

CO
c uj
UJ
Q_ 0
CL. 0
CO —1

, „
it

00
v—

/

>-

rvi

X

A-41

j



o
U)

o CO
oo s:

UJ
o z:

o
iO

o
C4

tl

>-

rvj

X

A-42

M

UPPER

TORSO

PITCH

VS.

TIME

LOCKED.

P.N

=

UNLOCKED.

S
=

LOCKED



O 00

o n

o

U_i O')

x

- o_>

oo o

a— ii

a: 2:

UJ -

x
UJ C_J

o x
O _l
or

11

00 o
U_I _l
x

X
II

o

>1

rvi

X

A-43

Figure

A-

6

RUN

NO.

6

RESPONSE

MEASURE

PLOTS



L

it
- 01 - s- 0 s

( NI ) lN3W30H1dSIQ Z

ot

ii

cn

zo
o

•—> z z>
z UJ
1— z II

•—

'

Lj /—

\

C_) z •

1— zz _J •
1 >

UJ z z t-
cz 00 CJ o

Lui 1—

1

o u
o a _l

V—

/

z VsD

_l X II 1

z <
CQ z z

Jh
•—

«

_la z • Dz 60X • •H

cn o tu

z > _i
—1 zZ

>4
z
II

Z
_J X
Z
zo

il

fvj

X

did

A-44



o
a:

a_
O')

a
X
CE
_J
cr

r:

a
_j

ii

cn

)sE

CJ
o

3
II

CJ
cr

a x
CQ CJ
a

1

1

a_

a
X
cr
_j
CT -

r:
• o

cn o
o _j
2
3

cr
_j
2

ii

CJ
a

+j
c
ou

vD
I

C
<D

Ci

3M

il

IV1

X

\A-45



o

t
1

A-46

RY

PLFXURC

VS.

Tint:

LOCK.

Y
-

UNLOCK.

P

=

LOCK.

N

=

UNLOCK.

S
r

LOCK

Figure

A-6

(Cont'd.

)



NQIiainN QNd NO I SS333Hd SX

u
o

il

cn

LU *

22 cc
CJ

1
— 0

_J
- 2:

CO 23
>

II

2T

O Z
1
— .

CE
1
— 0
23 0
Z _J

II

2:
a: a_

2: •

0
<— CJ
CO 0
CO _i
uJ 2:
CJ 3
UJ
C2 11

CL.

>-
CO
ac »

/—

\

CJ
4) 0

_J

rvl
*

X

A-47

Figure

A-

6

(Cont'd.



C9 ot o oe-

NOiiainN a no N 0 iss 303 ad 3 d

09-

o CO
« -n

UJ
o zr

C6-

rvl

X

A-48

(f
)
RE

PRECESSION

AND

NUTATION

VS.

TINE

LOCK.

Y
=

UNLOCK.

P
=

LOCK.

N
-

UNLOCK.

S
-

LOCK

Figure

A-6

(Cont'd.)



r
o
J5

fvt

X

A-49

Cg)

UPPER

TORSO

RCSULTRNT

flCCE.l

P.RHT

I
ON

VS-

TINf

:

LOCK.

Y
-

UNLOCK.

P

=

LOCK.

N

=

UNLOCK.

S
_

LOCK

Figure

A-6

(Cont'd.)



o

A-50

(h)

UPPER

TORSO

PITCH

VS.

TIME

LOCK.

T
-

UNLOCK.

P

-

LOCK.

N

=

UNLOCK.

S
-

LOCK

Figure

A-6

(Cont'd.)



APPENDIX B

LISTING OF THE FORTRAN PROGRAM FOR THE
RESPONSE MEASURE APPROXIMATING FUNCTION GENERATOR
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C RMAFG LINK WITH SETZ, SETU, SIGM, SOLVE

C THIS VERSION OF THE RMAFG IS FOR TERMINAL OPERATION
C CHANGE READ AND WRITE STATEMENTS TO CONVERT TO BATCH OPERATION
C INPUT (CARDS REFER TO LINES OF DATA SET)

FORMAT (20A4 ) INPUT DESCRIPTION
FORMAT (20A4) INPUT DESCRIPTION .CONTINUED

FORMAT (2014)
NY,N,NDG(J) ,J=1,N
NY
N

IF N=0
NDG(J)

FORMAT (2014)

NDATA .MODE , I VAL
NDATA
MODE

IVAL

CARD
CARD
CARD
C

C

C

c

c

c

C

c

CARD
C

C

C

C

C

C

C

C

CARDS
C

C

C

c

CARD NDATA+3
C IF IVAL
C IF IVAL
C NV

C

CARDS NDATA+4-NDATA+3+NV
C

C

C

c

c

c

c
£»»*»*•

c

c .

c

c
£•*«««*

c

c

c

c

c

c

c

c

NUMBER OF DEPENDENT VARIABLES
NUMBER OF INDEPENDENT VARIABLES
PROGRAM TERMINATES
MAXIMUM DEGREE OF VARIABLE J

NDG(J-1 ) .LE.NDG(J)

NUMBER OF SETS OF DATA POINTS
0 NORMAL

REMOVE MEAN FROM INDEPENDENT VARIABLES
REMOVE MEAN AND DIVIDE BY STANDARD DEVIATION
COMPUTE FIT ONLY AT POINT X( ) USED TO EVALUATE C

READ ADDITIONAL POINTS X( ) TO COMPUTE FIT AND EVALUATE

5-NDATA+2 FORMAT ( 10F8. 0)

(X(J,K) , J = 1 ,N) , (Y(K,L) ,L=1,NY)
X(J,K),J=1,N VALUES OF INDEPENDENT VARIABLES AT K

Y (K.L) ,L= 1 ,NY VALUES OF DEPENDENT VARIABLES (FUNCTION) AT K

FORMAT (2014)
= 0 THIS IS THE SAME AS CARD 1

< 0 OR > 0 PROGRAM READS VALUE OF NV
NUMBER OF POINTS TO BE EVALUATED USING COMPUTED FIT

FORMAT ( 10F8. 0)

(X(J,M),J=1,N),(Y(M,L),L=1,NY)
X(J,M) , J=1 ,N

Y(M,L) ,L=1 ,NY

ADDITIONAL VALUES OF INDEPENDENT VARIABLES
VALUES OF DEPENDENT VARIABLES (IF KNOWN) AT M

PROGRAM WILL COMPUTE YP(M) FOR EACH L

PROGRAM STOPS

PROGRAM COMPUTES THE BEST LEAST SQUARE FIT FOR EACH DEGREE
FROM 0 TO MAXIMUM AS SPECIFIED ON CARD 3

OUTPUT
KM,ERR,(Z(L),C(L,I+1),L=1,KM)
KM NUMBER OF TEEMS (COEFFICIENTS) IN FIT
ERR RMS ERROR OF »FIT

Z (L ) SUBSCRIPT OF L'TH COEFFICIENT
C(L , 1+1 )VALUE OF COEFFICIENT Z(L)
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o

o

o

o

o PROGRAM PROVIDES A PRINTER PLOT OF THE HISTOGRAM OF
ERRORS AND THE FIRST TEN POINTS WITHIN THE SPECIFIED ERROR RANGE

PROGRAM PRINTS THE FUNCTION VALUE COMPUTED FROM THE FIT

IMPLICIT REAL*8(A-H,0-Z)
REAL*4 STAR, CNT,B,CNTM, CCS, BLANK, HY
DIMENSION HY(20,2)

C DIMENSION PROGRAM FOR 3 INDEPENDENT VARIABLES, 7 DEPENDENT VARIABLES
C AND 90 DATA SETS

DIMENSION Y(90,7),X(3,90),YP(90),XX(3,90),XM(3),XS(3)
DIMENSION NDG(3).NIW(3),LIW(3)

C DIMENSION PROGRAM FOR A MAXIMUM OF 20 COEFFICIENTS
DIMENSION U ( 20 ) , Z ( 20 ) , C ( 20 , 22

)

C DIMENSION PROGRAM FOR A MAXIMUM OF 10 POINTS ON HISTOGRAM
DIMENSION CNT (11), MM (11), JH (11) , JHP( 10,11)
DATA NMAX/3/.MMAX/ 90/,KMAX/20/

r
DATA STAR/'*'/, BLANK/' ’/

w

C NY NUMBER OF DEPENDENT VARIABLES
c N NUMBER OF INDEPENDENT VARIABLES
c MDEG MAXIMUM DEGREE

c NDG MAXIMUM DEGREE OF INDEPENDENT VARIABLE J

c NMAX STORAGE LIMIT ON INDEPENDENT VARIABLES
c MMAX STORAGE LIMIT ON DATA POINTS
c
c

KMAX STORAGE LIMIT ON COEFFICIENTS

c Y(K,L) VALUE OF FUNCTION L AT POINT K

c X(J,K) VARIABLE J POINT K

C OPEN INPUT FILE
CALL OPEN (9, ’RMAFG.DAT ')

2 READ(9,4)HY
4 FORMAT (20A4)

READ(9,6,END=12)NY,N, (NDG(J) , J = 1 ,N)

6 FORMAT (2014)
IF(N.EQ.0)ST0P 100

MDEG=NDG (N

)

CALL SETZ ( N , MDEG , NDG , NIW , LIW , NM , Z , NMAX , KMAX

)

READ ( 9 , 6 ) NDATA ,MODE , I VAL

WRITE (1 , 6)NY, N, {NDG (J),J=1,N), NDATA, MODE, IVAL

IF (NDATA. LE.MMAX)GO TO 10

WRITE (1 , 8)NDATA,MMAX
8 FORMAT (' THE NUMBER OF DATA POINTS ', 15,/ 'EXCEEDS THE

X ALLOWED STORAGE' ,15, ' PROGRAM TERMINATED')
STOP

10 IF (NDATA. GE.NM(MDEG+I ))GO TO 14

WRITE ( 1 , 22) NDATA, NM (MDEG* 1

)

12 STOP
14 DO 16 K=1, NDATA

READ(9, 18, END=12) (XX ( J ,K) , J=1 ,N) , (Y(K, J) , J=1 ,NY)

16 WRITE ( 1,20) (XX(J,K), 1=1, N) , (Y(K, J) , J=1 ,NY)

18 FORMAT ( 10F8. 0) i

20 FORMAT (1X,F7.2,9F8.3)
22 FORMAT (' THE NUMBER OF DATA POINTS ',15/' IS LESS THAN THE

X NUMBER OF COEFFICIENTS ' ,15, ’ PROGRAM TERMINATED')
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24 WRITE (1,26)

26 FORMAT (' ENTER LP,L1,L2'/
X ' LP : 2 FOR LINE PRINTER, 1 /

X • L1,L2 SELECTS DEPENDENT VARIABLES, L = L1.L2 ’)

READ( 1 , 6)LP,L1 ,L2

IF (LP.NE.2)LP = 1

DO 92 L = L 1 ,L2

DO 28 K = 1.NDATA
DO 28 J = 1,N

28 X(J,K) = XX(J,K)
CALL SIGM(N, NDATA ,NMAX, MODE ,YM , YS,XM,XS,Y(1,L),X)
M=KMAX+2
DO 30 K= 1 , KMAX
DO 30 Js

1 ,M

30 C(K,J)sO.
FER=0.
I =NM(MDEG+1

)

DO 36 ND=1, NDATA
WRITE (1,32)ND
CALL SETU(N,MDEG,NIW,LIW,NDG,U,X( 1 ,ND)

)

32 FORMAT (' ND »,I4)

DO. 34 J= 1,1

C(j,I+1)=C(J,I+1)+U (J)*Y(ND,L)
DO 34 KsJ.I

34 C(J,K)=C(J,K)+U(J)*U(K)
36 FER=FER+Y (ND,L)**2

DO 38 Jr 1 ,

1

38 C ( J , I +2 ) =C ( J , I + 1

)

WRITE (LP,40)HY
40 FORMAT ( 1X.20A4/20A4/)

WRITE (LP, 42 )YM,YS
42 FORMAT (

' Mean , ,F20.5, , Sigma ',F20.5,' for Function Y'//
X ' J Degree ' ,5X,' Mean',5X,' Sigma: for Parameters X( )’)

WRITE (LP, 44 )(J,NDG(J),XM(J) ,XS(J) , J=1 ,N)

44 FORMAT ( IX, 13, 15, 2F 15. 5)

IF(MODE.EQ. 1 )WRITE(LP,46)
IF (MODE. EQ. 2)WRITE (LP, 48)

46 FORMAT(/' MEAN removed from Parameters X( ).')

48 FORMAT(/' MEAN removed from Parameters X( ), X normalized.')
12=1+2
ArNDATA
Mr 1

DO 54 J=1,I
CALL SOLVE ( J , C , I , KMAX

)

IF( J.LT.NM(M) )GO TO 54
KM=NM(M)
M=M + 1

ERRrFER
DO 50 Krl.KM

50 ERR rERR-C (K, 1+1 )*C (K, I-r2)

IF (ERR .GT . 0. )ERR=DSQRT (ERR/A

)

WR ITE (LP, 52)KM, ERR, (Z(K),C(K, 1+1), K=1,KM)
52 FORMAT(/' The error using', 15,' coefficients is',F15.5/

X ' Coefficients’ , 10X, ' Value ' //25 ( IX, K 10. 0.F20.6/)

)

54 CONTINUE
DO 56 J = 1, 1

1
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JH ( J ) =0

56 CNT(J)=0.
CNTM =0.

DO 60 ND=1,NDATA
CALL SETU (N ,MDEG , NIW , LIW , NDG , U , X( 1 , MD )

)

FCN=0.
DO 58 K=1 ,

1

58 FCN=FCN+U(K)»C(K,I+1)
C SET UP HISTOGRAM

J=2.*(FCN-Y(ND,L))/ERR+6.5
YP (ND) =FCN

IF( J.LT. 1 )J=1

IFCJ.GT. 11)J=11
CNT( J )=CNT (J )+1

.

IF(JH(J).GE. 10)GO TO 60

JH (J )=JH ( J ) + 1

M=JH ( J

)

JHP(M,J)=ND
60 IF (CNT( J ) .GT. CNTM) CNTM =CNT ( J

)

WRITE(LP, 62)

62 FORMAT (' Error Distribution -Histogram’/
X ' Sigma # Points' ,20x, 'Point IndeX')

CCS=1.

IF ( CNTM . GT . 20 )CCS =20 . /CNTM
B=-2.5
DO 64 4=1,11
M=CNT (J)*CCS
IF(M.EQ.O. AND.CNT (J).NE.0.)M=1
M2=JH ( J

)

Ml =21-M

IF(M.EQ.0)WRITE(LP,66)B,CNT (J)

IF(M.GT. 0. AND. M2. E0.0)WRITE (LP, 66)B,CNT (J) , (STAR ,K=1 ,M)

IF(M.GT. 0. AND.M2.GT. 0)WRITE (LP , 66 )B,CNT (J),(STAR,K=1,M),

X (BLANK, K=1,M1),(JHP(K f J) ,K=1,M2)

64 B=B+.5
66 FORMAT (1X,F6. 2, F 10.0, IX, 21 A 1

, 1014)

C PRINT FUNCTION Y AT VALUES OF X( ) USED TO DETERMINE FIT

WRITE (LP, 68 )L

68 FORMAT('1 Function' ,12, ' Evaluations at Given Input Points,'/
X ' Point Y(Input) Y(Fit) Parameters X( )')

DO 72 M=1 ,NDATA
IF(MODE.EQ.O)GO TO 72
DO 70 K=1,N
IF(MODE.EQ.2)X(K,M)=XS(K)*X(K,M)

70 X(K,M)=X(K,M) +XM (K

)

72 WRITE (LP, 74 )M,Y(M,L) ,YP(M),(X(J,M),J=1 ,N)

74 FORMAT ( IX, 13, 5F 12. 3)

IF(IVAL.EQ.O)GO TO 92

C

COMPUTE AND PRINT EVALUATED VALUES AT SPECIFIED INPUT POINTS

C

READ(9 , 6)NV
IF (NV.EQ.O)GO TO 92

WRITE (LP, 76 )L

76 F0RMAT(/' Function ', 12, ' Evaluations at Specified Input Points.'

X /' Point Y(Input) Y(Fit) Parameters X( )')
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DO 78 M = 1 , NV

78 READ (9 , 80 , END =92 )(X(J,M),J=1,N),(Y(M,K) f K=1 , NY

)

80 FORMAT ( 1 0F 8.0)
DO 90 M = 1 , NV

IF(MODE.EQ.O)GO TO 84

DO 82 K= 1 , N

X(K,M)=X(K,M)-XM(K)
82 IF ( MODE . EQ . 2 ) X (K , M ) =X (K , M ) /XS ( K

)

84 CALL SETU(N,MDEG,NIW,LIW,NDG,U,X( 1 ,M))

YP (M) =0.

DO 86 K= 1 ,

I

86 YP (M) = YP(M)+U (K)*C(K, 1+1

)

IF(MODE.EQ.O)GO TO 90
DO 88 K=1 ,

N

IF(M0DE.E0.2)X(K,M)=X(K,M)»XS(K)
88 X(K,M)=X(K,M) +XM (K

)

90 WRITE (LP, 74 )M, Y(M t L), YP (M) ,(X(J,M) , J=1,N)
C RETURN FOR OTHER DATA SETS

92 IF (L.LT.L2)WRITE(LP, 94

)

94 FORMAT (1H1)

STOP
END
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COMPUTATION OF SUBSCRIPTS Z

C INITIAL COEFFICIENT CHECK; MODIFIED DEC 3 1981 FOR WP
SUBROUTINE SETZ ( N ,MDEG , NDG , NIW , LIW , NM , Z , NMAX , KMAX

)

IMPLICIT REAL*8 (A-H ,0-Z)

DIMENSION NIW(1) ,LIW(1) ,NDG(1) ,NM(1) ,Z(1)

IF(N.LE.NMAX)GO TO 10

WRITE (1,5 )N,NMAX

5 FORMAT (’ THE NUMBER OF VARIABLES ', 14 , ’EXCEEDS THE STORAGE LIMIT
X OF ' , 1 4

,
' N HAS BEEN SET TO NMAX')

10 Z(1)=0.
IF(N.EQ. 1 )GO TO 25

DO 20 J=2,N
IF(NDG(J).GE.NDG(J-1))G0 TO 20

WRITE (1,15) (NDG (K) ,K=1 ,N

)

15 FORMAT (
' THE VARIABLES ARE NOT ORDERED ON DEGREE-PROGRAM HAS

X BEEN TERMINATED* /(IX, 1013))
STOP

20 CONTINUE
25 1 = 1

DO 30 J=1 ,

N

30 NIW(J) = I

DO 55 Msl.MDEG
NM(M)=I
LU =1

DO 50 J=1,N
LL = NIW(J)
NIW(J) =1+1
IF(NDG(J).LT.M)LL = LL + 1

DO 45 LrLL.LU
IF ( I . LT . KMAX )G0 TO 40

WRITE (1,35) KMAX

35 FORMAT (
* THE NUMBER OF COEFFICIENTS EXCEEDS THE STORAGE

X LIMITS’, 14,' PROGRAM HAS BEEN TERMINATED')
STOP

40 1=1+1

Z(I )= 10.*Z(L)+J
45 CONTINUE
50 CONTINUE
55 CONTINUE

NM(MDEG+1 )=I

RETURN
END
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C RMSUB.FOR
COMPUTATION OF U VECTOR; MODIFIED DEC 3 1981 FOR WP

SUBROUTINE SETU (N ,MDEG , NIW , LIW, NDG , U , X

)

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION NIW( 1 ) , LIW ( 1 ) , NDG (1),U(1),X(1)
U(1)=1.
I =1

DO 5 J=1 ,N

5 NIW(J)=I
DO 20 Mrl.MDEG
LUrl
DO 15 J = 1,N

LL = NIW(J)
NIW(J) =1+1
IF (NDG(J) .LT.M)LL = LL + 1

DO 10 L=LL,LU
1 =1+1

U(I)=X(J)*U(L)
10 CONTINUE
15 CONTINUE
20 CONTINUE

RETURN
END



CALCULATION OF MEANS AND SIGMAS, DATA NORMALIZATION
SUBROUTINE SIGM (N , NDATA , NMAX .MODE , YM , YS , XM , XS , Y , X

)

IMPLICIT REAL*8 ( A-H , O-Z

)

DIMENSION XM( 1 ) ,XS( 1 ) ,Y( 1 ) ,X(3, 1

)

YM =0

.

YS=0.
DO 5 1=1 ,NMAX
XM(I )=0*

5 XS(I)=0.
DO 10 ND=1 , NDATA
YM=YM+Y(ND)
YS=YS+Y(ND)*«2
DO 10 J=1 ,N

XM ( J ) =XM ( J ) +X ( J , ND

)

10 XS ( J ) =XS ( J ) +X ( J , ND )
* *2

A=NDATA
YM=YM/A
DO 15 J=1 ,N

XM(J)=XM(J)/A
15 XS(J)=DSQRT (XS(J)/A-XM( J)**2)

YS=DSQRT (YS/A-YM##2)
IF ( MODE . EQ . 0 )G0 TO 25

DO 20 NDsI, NDATA
DO 20 J=1 ,

N

X ( J , ND ) =X ( J , ND ) -XM ( J

)

20 IF ( MODE ,EQ,2)X(J,ND)=X(J,ND) /XS ( J

)

25 RETURN
END
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C SOLUTION OF SYSTEM EQUATIONS, SINGLE ROW AT EACH CALL
SUBROUTINE SOLVE(I,A,N,M)
IMPLICIT REAL*8 (A-H ,0-Z

)

DIMENSION A (20, 1

)

IF(I.E0. 1)G0 TO 15

IM =1-1

DO 10 Jrl.IM
A (I , J ) =0.

DO 5 K=1 , IM

5 A(I , J) = A(I,J)+A(J,K)»A(K,I)
A(I ,N+1 )= A(I,N+1)-A(J,I)»A(J,N+1)

10 A(I,I) = A(I,I)-A(I,J)*A(J,I)
15 IF(A(I,I).NE.0.)A(I,I)=1./A(I,I)

A(I,N+1 )= A ( I ,N+1 )*A ( I , I )

IF(I.EQ.1)G0 TO 30
DO 25 J = 1 , IM

A ( J , I ) =-A(I , J )*A(I , I

)

DO 20 K=J, IM

A(J,K) = A(J,K)-A(I,K)*A(J,I)
20 A(K, J) = A(J,K)

A( J ,N+1 )= A(J,N+1)-A(I,N+1)*A(I,J)
25 A (I , J ) = A(J,I)
30 RETURN

END
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APPENDIX C

LISTING OF DELTA ALGORITHM FORTRAN PROGRAM
FOR COMPUTATION OF DYNAMICALLY EQUIVALENT SYSTEM
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O

O

o

o

COMPUTATION OF DYNAMICALLY EQUIVALENT SYSTEM USING DELTA ALGORITHM
C N JNT=NSEG-1 ONLY

IMPLICIT REAL*8 ( A-H , O-Z

)

BYTE TITLE(80,6)
DIMENSION SEG(22) ,CGS(22) .PHI (3, 3,22) ,CK(3,22)
DIMENSION W ( 22 ) , RW ( 22 ) ,

DM ( 22 ) , PH ( 3 , 22 ) ,BD(6,22)
DIMENSION SR (3, 42) ,YPR 1(3,21) , YPR2(3 , 21

)

DIMENSION JOINT (21 ) , JS (21 ) , JNT (21 ) , IPIN (21

)

DIMENSION D(3,3,22),ANG(3,22),PHS(3,3,22)
C TEMP ********************* DATA FOR SAMPLE CASE

DATA LP/2/
DATA DM/-1.25, 0.00, 0.50,-1.00, 0.50,-0.25, 0.25, 0.50,

X -0.25, 0.25, 0.50,-0.25, 0.50,-0.25, 0.50,7*0.0/
C TEMP********************* END DATA FOR SAMPLE CASE

DASIN(Z) = DTAN2(Z,DSQRT(1 .0D0 - Z*Z))
PI = DTAN2 (0.0D0.-1.0D0)
RADIAN = 180.0/PI

C OPEN INPUT FILE, USES STANDARD CVS FORMAT FOR MODEL DESCRIPTION
CALL OPEN (6, 'CVSKANE.DAT ')

1 READ (6, 2, END =1 10,ERR=1 10)TITLE
2 FORMAT (80A1)

READ(6,5 ) NSEG,NJNT,G
5 FORMAT(2I6,F10. 0)

DO 10 I = 1 , NSEG
10 READ(6 , 15 ) SEG(I ) ,CGS (I ),W(I),(PH(J,I) ,J=1 ,3) ,(BD(J,I),J=1 ,6)

15 FORMAT (A4, 1X,A1,10F6.0)
DO 20 J = 1.NJNT

20 READ (6, 25 ) JOINT ( J) , JS ( J ) , JNT ( J ) , IPIN ( J ) , (SR ( 1, 2*J-1 ) , 1 = 1 , 3)

,

* (SR(I,2*J),I=1,3).(YPR1(I,J),I=1,3).(YPR2(I,J),I=1,3)
25 F0RMAT(A4, IX, A1 ,2I4,6F6.0/14X,6F6.0)

ENTER WEIGHT PERTURBATIONS: (FROM TERMINAL)
TEMPORARILY USE DATA STATEMENT **INSERT DESIRED INPUT STATEMENTS

WRITE ( 1,26)
C 26 FORMAT (

f ENTER LP,DM(I); LP = 2 FOR PRINTER, SUM DM'S = 07
C X ’ PROGRAM WILL COMPUTE DM(1) TO PRODUCE A ZERO SUM’/)
C READ(1,27)LP,(DM(I), 1=1, NSEG)
C 27 FORMAT (13, 15F5.0)
C TEMPORARILY USE DATA STATEMENT a*****************************

C END OF INPUT FROM TERMINAL
IF(LP. NE. 2) LP = 1

SUM = O.ODO
DO 28 I = 2, NSEG

28 SUM = SUM + DM(I)

DM ( 1 ) = - SUM
C

30 F0RMATO0F6.0)
WRITE (LP, 31 ) TITLE

31 FORMAT (
’ DYNAMICALLY EQUIVALENT SYSTEM • /6 ( 1 X , 80A 1 /)

)

WRITE (LP, 35) NSEG, N JNT
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35 FORMATOX, 'SEGMENTS’, 15, ' JOINTS ',15//
* 32X, ’SEGMENT MOMENT OF INERTIA' , 19X* 'SEGMENT CONTACT ELLIPSOID'/
* ' SEGMENT ' ,7X, 'WEIGHT ' , 45X, 'SEMIAXES

'
, 1 9X, 'CENTER ' /)

DO 40 I = 1 , NSEG
40 WRITE (LP, 45 )I,SEG(I),CGS(I) ,W(I ) , (PH ( J , I ) ,J = 1 ,3) t (BD(J,I) ,J = 1 ,6)

45 FORMAT(I3,1X,A4,2X,A1,5X,F7.3,3X,3F11.5,2(5X,3F7.2))
WRITE (LP, 50)

50 FORMAT (///
* 3X, 'JOINT' ,15X, 'LOCATION' ,8X, 'SEG(JNT)'

,

* 3X, 'LOCATION ',8X, 'SEGQ+1 )'
,

* 2X, 'PRIN. AXIS (DEG) -SEG(JNT)',
* 2X, 'PRIN. AXIS (DEG) -SEG(J+1)'/
* ' J SYM PLOT JNT PIN

'
,2(6X, 'X

'
,8X, 'Y »

,8X, 'Z ' , 3X)

,

» 2(5X, 'YAW' , 5X, 'PITCH' ,5X, 'ROLL* , IX)/)

DO 55 J = 1 , NJNT

55 WRITE (LP, 60 )J, JOINT (J) , JS (J) , JNT ( J) , IPIN (J) , (SR (I,2*J-1 ) ,1=1 ,3)

,

* (SR (I , 2*J ) , 1=1 , 3) , ( YPR 1(1, J), 1=1, 3) , ( YPR2(I , J) ,1=1,3)

60 FORMAT (1X,I2,1X,A4,2X,A1,2I4,4(1X,3F9.2))
WRITE(LP,65)(DM(I) ,1=1 ,NSEG)

65 FORMAT (//' WEIGHT PERTURBATIONS' //2(4X, 15F8. 4/))

WRITE(LP,66)
66 FORMAT ( 1H1

)

DO 75 N = 1 , NSEG
DO 75 I = 1,3

DO 70 J = 1,3
70 PHKI, J,N)=0.

75 PHI (I , I, N)=PH (I , N)

CALL DELTA (NSEG, NJNT, JNT, DM, SR, CK, PHI, G,W,RW,LP)

WRITE(LP,66)
DO 85 N = 1 , NSEG

DO 80 I = 1,3
DO 80 J = 1,3

80 PHS(I, J,N)=PHI(I, J,N)

CALL EIGEN (PHI ( 1 , 1 ,N )
,D( 1 , 1 ,N)

)

ANG(1,N) = DTAN2(D(2, 1 ,N) ,D(1 , 1 , N))*RADIAN
ANG(2,N) = -DAS IN (D( 1 , 3.N ) )*RADIAN
ANG(3, N) = DTAN2(D(2, 3,N),D(3,3,N)) 1‘RADIAN

WRITE (LP, 90 )N,W(N) , ( ( PHS(I, J,N) , J=1 ,3) ,CK ( I ,N) , PHI (I, I , N)

,

* (D(I,J,N),J=1,3) ,ANG(I , N) , 1=1 , 3)

85 IF(MOD(N,8).EQ.O)WRm(LP,66)
90 FORMAT (/' SEGMENT ', 14 ,

' WEIGHT
'
,F7. 3/

* 12X, 'INERTIA MATRIX’ , 12X, 'OFFSET' ,2X, 'EIGENVALUES’ , 6X,
* 'DIRECTION COSINE ',9X,' Y-P-R'/
* 3 (5F1 1 .5, 3F10. 6,F 1 1 .5 ^)

)

WRITE (LP, 95)

95 FORMAT (1H1,
* 2X, 'JOINT' ,15X, 'LOCATION' ,8X, 'SEG(JNT)'

,

* 3X, 'LOCATION' ,8X, 'SEG(J+1 )'/

* 20X, 2(6X, 'X ' ,8)(, 'Y ' ,8X, 'Z '
,
3X)/)

DO 100 J = 1.NJNT
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100 WRITE (LP, 1 05 )J,(SR(I,2*J-1), 1=1,3), (SR(I, 2*J ) , 1=1 , 3)

105 FORMAT (4X, 1 3, 12X,2( IX, 3F9.2))
GO TO 1

110 WRITE (LP, 111)

111 FORMAT (/' END OF DELTA PROGRAM.')
STOP 111

END
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ooo

ooo

ooo

c

SUBROUTINE DELTA ( NSEG , NJNT , JNT ,
DM , SR , CK , PHI , G , W , RW , LP

)

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION JNT(21),JT(21),IG(22)
DIMENSION PHI ( 3 , 3 . 22 ) , CK ( 3 , 22 ) ,W(22) , RW(22) , DM ( 22* ) , SR (3, 42

)

WRITE(LP, 1)

1 FORMAT (’ COMPUTATIONS OF DELTA ALGORITHM’/)
SUM = 0.0
DO 5 N = 1 , NSEG
W(N ) = W(N ) + DM(N)
RW(N ) = G/W(N

)

SUM = SUM + DM(N)
DO 5 I =1,3

5 CK(I , N)=0.

C DELTA ALGORITHM
C

DO 90 N = 1 , NSEG

COPY JOINT ARRAY

DO 10 Jsl.NJNT
10 JT ( J ) = JNT(J)

SUMT = 0.0
DO 35 J = 1 , NJNT

CHECK DIRECT REFERENCE TO JOINT

IF (JT(J).NE.N) GO TO 35

K = N

M = 1

IG(M) = J + 1

JM = 2*J - 1

JT (J) = 0

SUM = DM( J+1

)

SUMT = SUMT + SUM
WRITE (LP, 100)N , J,IC, DM( J+1 ) , SUM, SUMT

100 FORMAT ( IX, 314, 3F10 ,4

)

15 DO 20 K=1 , NJNT

CHECK FOR STRING

IF (JT(K).NE.IG(M)) GO TO 20

M = M + 1

IG(M) = K + 1

SUM = SUM + DM(K+1

)

SUMT = SUMT + DM(K+1)
WRITE (LP, 100 )N, J, K, DM(K+1 ) , SUM, SUMT
JT(K) = 0 i

20 CONTINUE
M = M - 1
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25

30

35

40

45

50

55

60

65

70

75

90

CHECK FOR BRANCHES

IF ( M . GT . 0 > GO TO 15

»* PROCESS JOINT JM FOR RK ODD **

SRR = SR ( 1 , JM) **2 + SR (2 , JM) **2 + SR(3,JM)**2
DO 30 L = 1,3
tK(L,N) = CK(L,N) + SUM*SR (L , JM)

DO 25 I = 1,3
PH I ( I , L , N ) = PHI(I,L,N) + SUM*SR (I , JM) *SR (L , JM) /G

PHI (L, L,N) = PHI (L, L,N ) - SUM*SRR/G
CONTINUE

IF (N.EQ.1) GO TO 50

ALL REMAINING SEGMENTS

SUM = -(SUMT+DM(N )

)

** PROCESS JOINT N-1 FOR RK EVEN **

JM=2* (N-1

)

SRR=SR( 1 , JM) **2+SR (2 , JM) * #2+SR (3 , JM) *#2

DO 45 J = 1,3
CK( J , N) =CK(J , N)+SUM*SR ( J , JM)

DO 40 I = 1,3

PH I ( I , J , N ) = PHI(I, J,N) + SUM*SR (I , JM) *SR ( J , JM) /G

PHI ( J, J,N )=PHI ( J, J,N )-SUM*SRR/G
CKK =0.

DO 55 J = 1,3
CK(J ,N)=CK(J , N)/W(N

)

CKK =CKK+CK ( J , N ) **2

CKK=CKK/RW(N)
DO 60 I = 1,3
PHI (I , I, N)=PHI (I , I, N)-CKK

DO 60 J = 1,3
PH I ( I , J , N ) = PHI(I , J, N)+CK(I , N)*CK(J , N)/RW(N

)

DO 65 I = 1,3

IF(N.NE. 1 )SR(I, JM)=SR(I, JM)+CK(I,N)
DO 75 J = 1 ,N JNT

IF ( JNT ( J ) . NE . N )G0 TO 75

DO 70 1=1,3
SR (I , 2*J-1 )=SR(I,2*J-1 )+CK(I , N)

CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE EIGEN ( A, D)

C

C

C

C

C

C

C

C

10

11

12

13

14

15

21

COMPUTES EIGENVALUES AND EIGENVECTORS OF A 3X3 SYMMETRIC MATRIX A

EIGENVALUES ARE IN A(I,I), A(I,J)=0 FOR I//J.

EIGENVECTORS ARE THE COLUMNS OF D(I,J).
D IS THE DIRECTION COSINE MATRIX RELATING THE ORIGINAL A MATRIX
TO THE PRINCIPAL SYSTEM OF COORDINATES.
A SUCCESSIVE ROTATION ALGORITHM IS USED.

IMPLICIT REAL*8 ( A-H.O-Z)
DIMENSION A(3, 3) ,

D(3,3) , TEMP(3.3)
TEST =0.0
DO 11 1=1,3

DO 10 J = 1 ,

3

TEST = TEST + DABS(A(I,J))
D(I, J) = 0.0

D(I , I) = 1.0

TEST = TEST*1 . OD-16
J = 2

K = 3

I = 6-K-J
IF ( DABS (A(I,J)).LT. TEST ) GO TO 15

B = A(I , I) - A( J , J)

R = DSQRT(B**2 + 4.0*A(I, J)**2)

S = DABS(0. 5*B/R)
C = DSQRTC0.5+S)
S = DSQRT(0. 5-S

)

IF (B*A(I, J) .GT.O.O) S = -S

T1 = C*A(I, I) - S*A(I , J)

T2 = S*A(I,I) + C*A(I, J)

A(I , I) = C*T 1 - S*(C*A(I, J)-S*A(J, J))

A( J, J) = S*T2 + C*(S*A(I, J)+C*A( J, J)

)

T1 = C*A(I , K) - S*A( J ,K)

A(J,K) = S*A(I,K) + C*A( J,K)
A(I, K) = T

1

DO 14 L = 1 ,

3

T 1 = C#D(L,I) - 3*D(L,J)
D(L, J) = S *D ( L , I ) +

l

C*D(L, J)

D(L, I) = T

1

A(K, I ) = A(I,K)
A(K, J) = A(J,K)
A(I, J ) = 0.0
A( J , I) = 0.0
IF ( DABS ( A ( I , K ) ) +DA'3S (A(J,K)).LT. TEST ) GO TO 21

J = 3

K = K-1

IF (K-1) 12,13,13
!

DO 23 ITER=1 , 10

CALL CFACTT (D.TEMP, DET)
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22

DO 22 1=1,3
DO 22 J=1 ,

3

D ( I , J ) = 0 . 5 * (D ( I , J ) +TEMP ( J , I ) /DET

)

IF (DABS(D(I, J)) .LT. 1.0D-15) D(I,J)=0.0
IF (DABS (DET- 1 .0) . LT. 1 . OD-6 ) GO TO 25

23 CONTINUE
WRITE (1,24) DET i

24 FORMAT ( '0 EIGEN RENORMALIZATION DID NOT CONVERGE, DET

X , 1PD25. 15

)

25 RETURN
END
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SUBROUTINE CFACTT ( A,B,D)

GIVEN 3X3 MATRIX A

COMPUTE B TRANSPOSE OF COFACTORS (SIGNED MINORS)
AND D THE VALUE OF THE DETERMINANT OF A.

INVERSE OF A IS B(J,K)/D

IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION A( 3, 3) ,B(3,3)
M = 4

L = 2

N r 3

D = 0.0
DO 20 J=1 ,

3

B( J, J) = A(L,L)*A(N f N)-A(L,N)*A(N,L)
IF (J.EQ.3) GO TO 20

L = N

N = J

KK = J+1

DO 15 K=KK,

3

M = M-1
B(K, J) = A(K,M)*A(M,J)-A(K, J)*A(M,M)
B(J,K) = A(J,M)*A(M,K)-A(J,K)*A(M,M)

D = D+A( 1 , J)*B( J , 1

)

RETURN
END








