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1. Introduction 

 

Railroad grade crossings are potential conflict points between train and highway vehicles, and train 

and pedestrians. Grade crossings pose a risk to all the travelers and the degree of risk depends on 

factors such as  train and vehicle volumes, presence and operation of traffic control devices (TCD), speed 

of trains and vehicles, geometry of the crossing, interaction with interconnected intersection, 

pedestrians, number of tracks, etc.  The risk assessment at grade crossings is important to prioritize 

locations for safety improvements and for assigning economic resources to locations that could provide 

the greatest returns in investments. 

To assess the safety and risk of grade crossings, one may utilize macroscopic models derived 

from regression analysis using data from an entire state or country. Macroscopic analysis is mainly used 

to study the correlation between crossing characteristics (i.e. conflicting volumes and their physical 

characteristics) and the past accident frequency, to generate predictions about accidents in the future. A 

common macroscopic model currently used is the US DOT Accident Prediction Formula, which predicts 

the annual number of crashes at a given crossing. While this model provides useful information for 

ranking grade crossings for resource allocation, it was developed in the late 1970s and thus it has 

potential for improvement.  

The analysis of macroscopic models is one of the two main topics from this study, where a series 

of alternative models are explored and compared to the US DOT formula. Through these comparisons, it 

is possible to understand strengths and weaknesses of the current state-of-practice and also to identify 

models for future improvements. A multi-scale analysis using macro models with input from a micro 

analysis is also planned for the future.  

In addition to macroscopic analysis, the second main topic discussed here is the analysis of 

accidents from a microscopic perspective, where individual characteristics of accidents at a given 

location are investigated to determine potential contributing factors. A microscopic analysis procedure 

is described in this study takes  into account detailed information such as driver characteristics, 

surrounding development type, lighting conditions, weather and visibility, direction of travel, speed and 

location of vehicle and train, etc. The proposed microscopic analysis is used to discover local trends that 

could not be identified at a macro scale and may help in assessing the risk at a crossing.  Examples for 



the use of the micro analysis are provided to show the benefits of such a combined methodology and its 

potential use as a tool for on-site inspection. 

The next sections describe the macroscopic approach using the US DOT formula, the exploration 

of alternative models, and their performance for assessing the risk using data from Illinois as an 

example. Then, the micro analysis is described and exemplified as a tool for risk analysis and trend 

discovery. Finally, conclusions are presented along with proposed directions for future research and 

improved risk assessments.  

 

2. Macroscopic Analysis of Accidents at Railroad-Highway Grade 

Crossings 

 

As mentioned above, the analysis of accident data at railroad-highway grade crossings is often 

performed at a macroscopic scale, where models are created using datasets that include crossings at a 

regional or national level to identify general accident trends. These models are mainly used to analyze 

the correlation between crossing characteristics (i.e. conflicting volumes and their physical 

characteristics) and the past accident frequency, and thus, to generate predictions about accidents in 

the future.  

Safety improvements on grade crossings have been studied since the railroads have been in 

place in the second half of the nineteenth century, when gates had already been conceived as a mean 

for crossing protection. However, recent mainstream estimation of risks at grade crossings date back to 

the early 1970s with the consolidation of an inventory of all crossings, developed by public agencies 

(FHWA, FRA, AAR) and private railroads.  

A crossing inventory, along with a collection of accident records at grade crossings, were 

essential to put in practice a systematic method for identifying and prioritizing grade crossings for safety 

improvements, in accordance to the mandates in the Federal-Aid Policy Guide, which contains the HSIP 

(US DOT and Federal Highway Administration, 2007). 



After these databases were available, they could be used for estimation of risks, accidents, and 

accident severity at a large scale. A number of approaches to analyze safety at grade crossings over time 

have taken a number of forms including hazard or risk indices (e.g. New Hampshire Hazard Index), 

accident prediction models (e.g. U.S. DOT Accident Prediction Model), or methodologies to find hot or 

black spots (e.g. Saccomanno et al., 2004), among many others. The techniques and approaches for 

accident analysis cover several areas ranging from a variety of traditional regression analyses (e.g. 

Miranda-Moreno et al., 2005), to clustering (e.g. Anderson, 2009), to Bayesian modifications (e.g. 

Washington and Oh, 2006), to behavioral models (e.g. Leibowitz, 1985), just to mention a few. 

Conflicting volumes and crossing characteristics that are associated with the locations with 

higher accidents can be seen as potential contributing factors, and improvements on crossings with 

these characteristics can be planned based on the models’ results. Also, the  prediction models may be 

useful in identifying “hot spots” and allocating monetary resources.  

In this Chapter, an approach that is commonly used by public agencies (the US DOT Accident 

Prediction Formula) is described and its prediction results are compared to alternative statistical models.  

Comparison of the most significant contributing variables from the DOT formula and the models 

developed in this study could provide insights on different trends at a local or regional level (as opposed 

to a nationwide level), in particular for the state of Illinois, which is the focus in this study. In this regard, 

it is noted that the statistical models were created based on data from the state of Illinois, while the 

existing US DOT formula was created using crossings nationwide. 

The following sections describe the US DOT formula and the statistical models, highlighting the 

crossing characteristics that appear as the most relevant contributing factors to explain the accident 

frequency. Then, the models are compared and similarities and differences are presented.  

 

2.1. The US DOT Accident Prediction Formula  

A common method to rank grade crossings for resource allocation and improvements is to predict 

the likelihood of an accident over a time period. This value can also be used as a measure of the risk of 

an accident, and therefore, it is of importance for agencies responsible for the safety of grade crossings. 

The Railroad-Highway Grade Crossing Handbook describes the use of the US DOT Accident Prediction 



Formula, which can be used for assessing the likelihood of an accident at a given crossing based on its 

traffic and geometric characteristics.  

The US DOT Accident Prediction Formula has three elements that result in an initial accident 

prediction, a second accident prediction, and a final collision prediction. The functional forms of these 

three elements were the result of multiple regression based on the FRA database from 1975. The 

current version of the US DOT Prediction Formula is presented in the Railroad-Highway Grade Crossing 

Handbook, Revised Second Edition from 2007 by the FHWA. The current formula has the same 

coefficients for the crossing characteristics presented in 1980 (Mengert, 1980), except for the third 

model element which consists of a normalizing constant that is factored in the model right before the 

final prediction is obtained. The variables included in the models or their coefficients have not been 

modified since the original study was published, and thus there could be potential for improvements in 

the identification of newer variables, different effects of the contributing factors, and the overall 

predictions. 

 

 

2.1.1. Background 
 

The research project that lead to the development of the current US DOT accident prediction 

formula was conducted in the late 1970s and presented in a report titled “Rail-Highway Crossing Hazard 

Prediction Research Results” by Peter Mengert (1980).  

The main goal of this study was to determine absolute predicted number of crashes at grade 

crossings and identifying causal factors. The study states, however, that there is no connection between 

prediction and isolating factors that are causally related to accidents, thus the formulas are not intended 

to be used partially or using only some of the variables it contains. The end result was expected to serve 

as input for a resource allocation procedure that was being developed by the US DOT. 

Different approaches were analyzed in the process of finding an appropriate functional form for 

the model. A subset from the original FRA database was created by selecting crossings with accidents 

and assigning a dummy variable of 1, as opposed to other crossings that were assigned a zero value. The 

database was explored using an initial set of 51 variables that included exposure, geometric, and other 



characteristics of all crossings. However, models with too many variables (say 10 or more, based on the 

study) may suffer of collinearity, limiting the usability of some of them.  

The first attempts at finding a functional form for the model relied on liner regression to obtain 

a relative rank of predictability among the selected variables. Also, it is explained that the decision of 

dividing the predictions by warning devices was based on previous studies. The analysis of crossings with 

crossbucks was conducted first, noticing that the variables related to vehicular and train volumes 

contributed the most to the models.  

Expressions were obtained using only volume variables, and several functional forms were 

explored. Other variables were added to the model once the expression for the volume variables were 

found, following a step-wise procedure. Among the first findings, it was said that a Log 10 functional 

form was found more adequate than others tested. The final linear regressions showed that volume 

variables accounted for about 90% of the predicted powers of the regression.  

Nonetheless, linear models were deemed not good enough because results were not better 

than those obtained with previous models, namely the New Hampshire and Coleman-Steward. In 

addition, it was noted that there was a concentration of the probability of accidents at the two ends of 

the spectrum in the models. This is, an approximation that assumes a linear distribution between the 

probabilities of having 0 or 1 crashes may not be adequate. 

The next steps focused on non-linear methods and at most 6 variables (at that time) in order to 

reduce noise in the models. The dataset was carefully divided into test and validation subsets, each with 

the same number of observations per device and accidents. 

The model construction for the non-linear model using the test subset followed similar steps as in the 

linear model attempts, and include the following: 

o Construct the best volume model, only with volume variables 

o Refine the best volume model, shaping it to a polynomial up to the third degree 

o Incorporate non-volume variables 

These steps and additional refinements lead to the final models that now are part of the US DOT 

prediction formula used today.  

Understanding how the current prediction formula was created is a stepping stone in potential 

improvements using other prediction models. Lessons learned and contributions from the study briefly 



described above were put to use in the development of the models described in this chapter. Before 

that, the next section presents a short introduction of the actual US DOT prediction formula and how it 

is used today.  

 

2.1.2. Implementation of the Accident Prediction Formula 

 

The process to obtain a predicted number of accidents in a year for a given crossing starts with the 

estimation of the initial collision prediction using the basic formula, defined as: 

a = K x EI x MT x DT x HP x MS x HT x HL 

where: 

 a = initial collision prediction, collisions per year at the crossing 

 K = formula constant 

 EI = factor for exposure index based on product of highway and train traffic 

 MT = factor for number of main tracks 

 DT = factor for number of through trains per day during daylight 

 HP =factor for highway paved (yes or no) 

 MS = factor for maximum timetable speed 

 HT = factor for highway type 

 HL = factor for number of highway lanes 

There are three different equations, one for each warning device:  passive devices, flashing 

lights, and automatic gates.  

It should be noted that not all variables in the model are significant for all three types of warning 

devices. Some of the variables have a value of 1 indicating that it doesn’t affect the model outcome, as it 

is seen in Figure 2.1. Expressing the three equations in terms of the same variables is convenient. For 

example, for crossings with flashing lights the coefficients for the terms HP, MS, and HT are always 1, 

but of course these variables have an active role for a different group (passive devices). 



 

Figure 2.1. U.S. DOT Collision Prediction Equations for Crossing Characteristics Factors (Source: 

Railroad-Highway Grade Crossing Handbook, FHWA, 2007) 

 

After obtaining the initial collision prediction value (a), a second collision prediction value (B) is 

computed using the actual crash history of the crossing and the value a, as shown below:  

 

𝐵𝐵 =
𝑇𝑇0

𝑇𝑇0 + 𝑇𝑇
(𝑎𝑎) +

𝑇𝑇
𝑇𝑇0 + 𝑇𝑇

�
𝑁𝑁
𝑇𝑇
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Where: 

 B = second collision prediction, collisions per year at the crossing 

N/T = collision history prediction, collisions per year, where N is the number of observed 

collisions in T years at the crossing 

 T0 = Formula weighting factor, 𝑇𝑇0 =  1.0
(0.05+𝑎𝑎) 

 



Finally, the second collision prediction is adjusted using a single normalizing constant for each 

type of warning device. The FRA explains that the constants need to be periodically adjusted in order to 

keep the procedure matched with the current accident trends, the current number of open crossings, 

and the change in the warning devices. The most recent normalizing constants date back to 2010 and 

are shown in Table 2.1, obtained from the periodic document released by the FRA (FRA, 2010). 

 

Table 2.1. Accident Prediction and Resource Allocation Procedure Normalizing Constants 

 

 

2.2. Alternative Models for Accident Prediction 

In addition to the US DOT Model, other statistical models are explored to obtain accident frequency 

predictions at grade crossings. These models have been used in the past for event counts where 

frequencies of such events are generally low, such as in our case. The three models explored are 

Poisson, negative binomial, and a zero-inflated negative binomial.  

 

2.2.1. Poisson 

A common way to model event count data, which may contain positive and integer events with low 

frequency such as accidents at grade crossings, is using a Poisson model. A Poisson distribution is a 

discrete probability distribution that can describe the frequency of events over a time period, and can 

be defined by its mean 𝜇𝜇𝑖𝑖. The probability of observing yi events over a given time period can be 

described by:  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) =  
𝑒𝑒−𝜇𝜇𝑖𝑖𝜇𝜇𝑖𝑖𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖!

 



Where e is the base of the natural logarithm (e = 2.71828) and y! is the factorial of y. 

A regression analysis to fit a Poisson distribution and to model to the accident count data can be 

performed using a log-linear model. A log-linear function ensures that the predicted number of 

accidents is positive, and the model is fit to predict the logarithm of the average number of accidents 

using a linear combination of predictors.  

In this particular application, the predictors are the explanatory variables with significant 

influence in the model, e.g. vehicle and train volumes, geometry characteristics, etc. Thus, a standard 

linear model of the form 𝜇𝜇𝑖𝑖 = 𝑎𝑎 + 𝑥𝑥𝑖𝑖′𝛽𝛽 can be transformed using the log function as: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑖𝑖) = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎) + 𝑥𝑥𝑖𝑖′𝛽𝛽 

Where, a is an intercept, β are the parameters estimated in the model fitting, and xi are the 

explanatory variables. Therefore, βi represents the expected change in the left-hand side of the 

expression (the log of the mean) when the variable xi changes by one unit. A predictor for the mean 

itself can be obtaining by exponentiation of the previous equation, leading to: 

 

𝜇𝜇𝑖𝑖 = 𝑏𝑏 + 𝑒𝑒𝑥𝑥𝑖𝑖
′𝛽𝛽 

 

Where b is an intercept or an offset. This log-linear model will be used to create an accident 

prediction formula and will be compared to the U.S. DOT model.  

However, it is noted that the data may not adequately fit a Poisson distribution, particularly due 

to the variance being greater than the mean, one of the Poisson’s main properties. Therefore, additional 

models that may account for “excess” of variance or “over-dispersion” were also investigated and are 

described next.  

2.2.2. Negative Binomial 

Another functional form that can be used to model count data is a negative binomial model. This 

model is of most interest when the variance of the predicted variable increases at a higher rate than the 

mean (when a Poisson model does not fit properly).   



A set of parameters commonly used to describe a negative binomial model are the expected 

mean of the predicted variable 𝐸𝐸(𝑦𝑦𝑖𝑖) = 𝜇𝜇𝑖𝑖 and the variance, denoted as: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖) = 𝜇𝜇𝑖𝑖 + 𝜔𝜔𝜇𝜇𝑖𝑖2 

Where, 𝜇𝜇𝑖𝑖 = 𝛼𝛼𝛼𝛼 and ω= 1
𝛼𝛼

 . 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, 𝛼𝛼 and 𝜃𝜃 are the shape and scale parameters of a gamma 

distribution that describe the distribution of the mean in a Poisson distribution. Thus, the predicted 

variable follows Poisson, and its mean follows a gamma distribution. Since 𝛼𝛼 and 𝜃𝜃 are positive values, it 

is easy to observe that a negative binomial model can accommodate over-dispersion (greater variance) 

but it cannot adequately deal with a Poisson distribution when there is under-dispersion. 

In a negative binomial regression, the predicted variable can be expressed in terms of the new 

distribution with mean 𝜇𝜇𝑖𝑖 and variance 𝜇𝜇𝑖𝑖 + 𝜔𝜔𝜇𝜇𝑖𝑖2 and the coefficients of the explanatory variables will 

be estimated using a log link function with an equation form similar to that used for the Poisson 

distribution: 

𝑦𝑦𝑖𝑖 = 𝑁𝑁𝑁𝑁(𝜇𝜇𝑖𝑖, 𝜔𝜔) 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖) = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑐𝑐) + 𝑥𝑥𝑖𝑖′𝛽𝛽 

 

Where NB is a negative binomial distribution. 

 

2.2.3. Zero-inflated Negative Binomial 

In cases where the data displays high frequency of zero counts, such as data with accident counts at 

railroad-highway crossings, zero-inflated models can be considered to improve the fit of the regression 

analysis.  

The main idea behind zero-inflated models is to consider that there are two types of individuals 

in the population trying to be modeled. One type contains the individuals distributed according to a 

given event count distribution, say a Poisson or a negative binomial, and the other type contains those 

individuals with zero even counts. Thus, a zero-inflated model is a two-part model that accounts for the 

existence of excessive zeroes using the probability of being part of one category (the zero category), 

leaving the remaining individuals to be part of a second category that is fitted to a given distribution.  



Conceptually, if 𝑦𝑦𝑖𝑖  is the number of accidents at a crossing, a zero-inflated negative binomial 

distribution can be generated as: 

 

𝑦𝑦𝑖𝑖~ �
0            𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜑𝜑𝑖𝑖

𝑔𝑔(𝑦𝑦𝑖𝑖)            𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 − 𝜑𝜑𝑖𝑖
 

 

Where 𝜑𝜑𝑖𝑖 is the process that generates individuals with event counts and 𝑔𝑔(𝑦𝑦𝑖𝑖) is the process 

that generates the number of accidents following a negative binomial distribution. Thus, the probability 

of 𝑌𝑌𝑖𝑖 = 𝑦𝑦𝑖𝑖  is: 

- Individuals with zero counts: 

𝑃𝑃(𝑦𝑦𝑖𝑖 = 0|𝑥𝑥𝑖𝑖) =  𝜑𝜑𝑖𝑖 + (1 − 𝜑𝜑𝑖𝑖)𝑔𝑔(0) 

- Individuals with counts greater than zero: 

 

𝑃𝑃(𝑦𝑦𝑖𝑖 > 0|𝑥𝑥𝑖𝑖) =  (1 − 𝜑𝜑𝑖𝑖)𝑔𝑔(𝑦𝑦𝑖𝑖) 

 

It follows that zero-inflated models can be constructed using link functions such as logit or 

logistic. In this study, a logit link function was used to model the excessive zeroes thereby extending a 

generalized linear model. More specifically, the following model definition implemented in the 

Statistical Analysis Software (SAS) was selected:  

 

𝑃𝑃(𝑦𝑦𝑖𝑖) =  

⎩
⎪
⎨

⎪
⎧ 𝜑𝜑𝑖𝑖 + (1 − 𝜑𝜑𝑖𝑖)(1 + 𝑘𝑘 )           𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑖𝑖 = 0

(1 − 𝜑𝜑𝑖𝑖)
Γ �𝑦𝑦 + 1

𝑘𝑘�

Γ(𝑦𝑦 + 1)Γ �1
𝑘𝑘�

(𝑘𝑘𝑘𝑘)𝑦𝑦

(1 + 𝑘𝑘𝑘𝑘)𝑦𝑦+
1
𝑘𝑘

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑖𝑖 > 0
 

Where k is the negative binomial dispersion parameter and 𝜆𝜆 is the underlying distribution 

mean such that 𝐸𝐸(𝑌𝑌) = 𝜇𝜇 = (1 − 𝜑𝜑𝑖𝑖)𝜆𝜆 and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝜇𝜇 + � 𝜑𝜑𝑖𝑖
1−𝜑𝜑𝑖𝑖

+ 𝑘𝑘
1−𝜑𝜑𝑖𝑖

� 𝜇𝜇2  



 

2.3. Development of Alternative Models using FRA Inventory and Accident Data 

 

The analysis performed in this study was based on the current crossing inventory data from the FRA 

website (http://safetydata.fra.dot.gov/), as of fall 2013. Only crossings from the state of Illinois were 

analyzed in this study, and results from the database were post-processed and filtered for at-grade 

public crossings that remain open.  

 It is noted that the FRA database is kept up to date based on accident reports submitted by law 

by the railroad companies within 30 days after the month to which they pertain, and the inventory data 

reports from sight-survey data about individual crossings and is provided voluntarily by states and 

railroads. Therefore, accident frequencies are expected to be accurate and up to date, but the available 

records indicating the state of the crossings are based on the last voluntary data submission to the 

inventory. Records will reflect the latest information available, thus values for variables such as vehicular 

and train volume could be from any point in time depending on the update.  

Also, the history of modifications to grade crossings, including safety improvements is not in the 

database, which reflects only the latest reported information. Thus, if a crossing had an improvement in 

the type of warning device, the date and nature of this change is not kept in the inventory database, and 

it may only be partially observed in the variables of the accident reports, had any occurred after this 

improvement.  

These characteristics of the database pose some challenges for analysis of accident trends, and 

while it is very useful, caveats on the limitations of the data and the accuracy of the reported numbers 

need to be stated.  

In terms of accident records used in this study, a query for individual accidents at grade 

crossings by year was requested through the FRA website for the last 10 years of available data, from 

2003 to 2012. Similar to the grade crossing inventory, only accidents at grade public crossings that 

remain open were considered.  

After the datasets were obtained, the two files (inventory and accidents) were merged to find 

the locations with accidents and without accidents, as well as the accident frequency in the analysis 

http://safetydata.fra.dot.gov/


period. At this point, the total number of crossings with accidents was observed to be 938, and the 

number of crossings without accidents was 6072.  

 

2.3.1. Potential Predictor Variables 

Further observation of the data prompted the need for data cleaning. Fields for some variables of 

interest were found to be empty or inconsistent, and thus their distribution was analyzed to determine 

their usefulness in a regression analysis. These fields were the following: 

- AADT 

- AADTYEAR (Year for AADT) 

- TOTALTRN (Total trains) 

- MAXTTSPD (Maximum Timetable Speed) 

- PCTTRUK (Estimate Percent Trucks) 

- HWYSPEED (Posted Highway Speed) 

Data exploration for these fields returned the range and distributions shown in Tables 2.2 and 

2.3 for the crossings with and without accidents. 

TABLE 2.2. Range and distribution of variables of interest – crossings with accidents 

 

TABLE 2.3. Range and distribution of variables of interest – crossings without accidents 

AADTYEAR** AADT TOTALTRN* MAXTTSPD PCTTRUK HWYSPEED
100% Max 2012 39500 8008 (215 *) 79 75 55

99% 2011 28200 171 79 32 55
95% 2011 19700 106 79 16 50
90% 2011 14300 72 79 11 40

75% Q3 2010 6800 47 70 7 30
50% Median 2009 1500 21 60 4 0

25% Q1 2008 300 8 40 0 0
10% 2006 75 4 20 0 0
5% 2003 50 2 10 0 0
1% 1987 10 1 10 0 0

0% Min 1973 9 1 5 0 0

** El iminated cross ings  with AADTs  older than 2000

Crossings with Accidents (n = 887)Percentile

* El iminated cross ings  with tra in volumes  >2000



 

 

Based on the data, it was decided to discard crossings with AADT previous to the year 2000, 

avoiding crossings with information considerably outdated. A total of 23 crossings with accidents and 

185 crossings without accidents were in this category. In addition, crossings with a total daily train count 

greater than 2000 were eliminated, as they would represent an entry code instead of actual train traffic 

(for example, the code 8008 was found multiple times). A total of 3 crossings with accidents and 13 

without accidents were in this category. The maximum daily train volume in the remaining crossings was 

255 trains. 

After eliminating the abovementioned crossings, the total number of locations with accidents 

was 861 and without accidents it was 5874. This was the final database used in the analysis.  

Exploration of other variables such as the percentage of trucks and the highway speed (also 

shown in Tables 2.2 and 2.3) indicate that these variables may not be adequate for the models. About 

half of the crossings had missing information on these fields (a value of zero), thus including them in a 

regression analysis could generate inconsistent results.  

In addition, the distribution of values and categories for other variables of interest is shown in 

Table 2.4. These variables were considered worth of further investigation as predictors in the statistical 

models and were included in the initial regressions to determine their statistical significance.  

 

 

AADTYEAR** AADT TOTALTRN* MAXTTSPD PCTTRUK HWYSPEED
100% Max 2013 45500 8008 (255*) 79 2250 55

99% 2011 22600 156 79 30 55
95% 2011 10500 62 79 17 45
90% 2011 5950 43 79 12 35

75% Q3 2010 1750 21 60 7 20
50% Median 2009 400 8 49 2 0

25% Q1 2007 100 3 25 0 0
10% 2005 25 2 10 0 0
5% 2002 25 1 10 0 0
1% 1987 10 1 5 0 0

0% Min 1973 1 1 1 0 0

** El iminated cross ings  with AADTs  older than 2000

* El iminated cross ings  with tra in volumes  >2000

Crossings without accidents (n = 6072)Percentile



TABLE 2.4. Categories and range of other variables considered in the analysis 

 

 

2.3.2. Accident Frequencies 

The accident frequencies in the 861 locations in Illinois, together with those without accidents are 

shown in Table 2.5. The highest frequency in the 10-year period between 2003 and 2012 was observed 

at one location with 9 accidents, followed by a location with 7 accidents. As expected, the number of 

crossings with fewer accidents start increasing rapidly in each frequency group. From this table it is also 

CWT (constant warning time) 47.30% 29.90%
DC/AFO (direct current/audio frequency overlay) 27.30% 31.00%

None 22.20% 36.70%
Older code not used anymore/missing value 3.20% 2.40%

1 (0◦ - 29◦) 4.41% 2.49%
2 (30◦ - 59◦) 16.26% 16.24%
3 (60◦ - 90◦) 79.33% 81.27%

1 - no signs or signals 0.12% 0.61%
2 - other signs or signals 0.00% 0.07%

3 - crosbucks 14.05% 29.95%
4 - stop signs 1.16% 0.80%

5 - special active WD 0.12% 0.46%
6 - other active WD 0.23% 1.36%

7 - flash lights 13.94% 23.41%
8 - all other gates 69.92% 41.96%

9 - four quad gates 0.46% 1.38%
1 45.76% 66.50%
2 37.17% 25.54%
3 13.01% 6.01%
4 2.44% 1.38%
5 0.70% 0.36%
6 0.58% 0.15%
7 0.00% 0.07%
8 0.23% 0.00%
9 0.12% 0.00%
1 11.85% 17.79%
2 69.45% 75.57%
3 1.86% 0.92%
4 15.80% 5.16%
5 0.35% 0.32%
6 0.23% 0.15%
7 0.00% 0.05%
8 0.35% 0.03%
9 0.12% 0.00%

<75ft 42.86% 35.17%

75-200 ft 3.48% 2.96%
200-500 ft 2.90% 2.74%

N/A 50.75% 59.12%

CategoriesVariable
Crossings with 

accidents
Crossings without 

accidents

SPSEL                              
(Train detection)

XANGLE                 
(Minmum crossing 

angle)

WDCODE (Warning 
device code)

TOTAL TRACKS (Sum of 
MAINTRK and 

OTHERTRK)

TRAFICLN (Number of 
traffic lanes crossing 

RR)

HWYNEAR (Nearby 
intersecting highway?)



noted that it may be worth exploring zero-inflated models to accommodate the high number of 

locations without any accident. 

TABLE 2.5. Distribution of accident frequencies in Illinois (between 2003 and 2012) 

 

After deciding the final number of locations to be included in the analysis, additional exploration 

of the relationships between the values of some variables of interest and the accident frequency was 

conducted. This preliminary exploration helped understanding if there were clear trends that can 

explain an increase in accident frequency using a single variable in a model.  

The distribution of the accident frequencies with different volume variables (train and vehicular 

traffic, number of tracks and traffic lanes), which have shown the greatest influence in previous models 

including the US DOT model, are shown in Figure 2.2. As expected, the volume (or exposure) variables 

have a direct relationship with the accident frequency, where locations with higher accident frequencies 

tend to have a greater volume/exposure values such as greater AADT, train volume, number of tracks 

and number of traffic lanes. However, the magnitude of the relation between accident frequency and 

the value of the variable is not constant, indicating that the potential influence of each of these variables 

may vary. 

In addition, as part of observing the distribution of volume/exposure variables, a measure of 

exposure was created to evaluate the accident frequency for each of four types of warning control 

devices: passive, active, gates, and quad gates. Quad gates are analyzed separate from other type of 

gate configurations since they can prevent gate drive-arounds, similar to treatments using elements 

such as raised medians, barrier posts, raised traffic dots, etc. 

 

Frequency
Locations in 
the analysis

%

0 5874 87.22%
1 685 10.17%
2 128 1.90%
3 31 0.46%
4 11 0.16%
5 4 0.06%
7 1 0.01%
9 1 0.01%

Total 6735 100.00%



     

                                    a – ADDT                                                                        b – Train Volume                                                  

       

                               c – Traffic Lanes                                                              d – Railroad Tracks  

Figure 2.2. Relation between Accident Frequency and Exposure Variables 

 

Exposure was defined as the product of train and vehicular volume, and the accident frequency 

was normalized by the exposure measure in order to compare the warning devices. Thus, for each 

warning device type, the normalized average accident frequency shown in Figure 2.3 was calculated as 

follows: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 100

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 

0

5000

10000

15000

20000

25000

0 2 4 6 8 10

Av
er

ag
e 

AA
D

T

Accident Frequency

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

Av
er

ag
e 

D
ai

ly
 T

ra
in

 V
ol

um
e

Accident Frequency

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

Av
er

ag
e 

N
um

be
r o

f T
ra

ff
ic

 L
an

es

Accident Frequency

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

Av
er

ag
e 

N
um

be
r o

f T
ra

ck
s 

Accident Frequency



  

 

Figure 2.3. Relation between normalized accident frequency and warning device  

 

 Figure 2.3 shows that, as expected, crossings with passive warning devices have a much higher 

average risk per conflict compared to other types of crossings. Also, crossings with quad gates show 

reduced risks compared to those with other type of gates. Recall that the exposure levels are different 

for each warning type, being on average highest at crossings with gates, thus finding risk levels at 

locations with quad gates similar to those with other type of active warning device is a significant 

finding. 

 

2.3.3. Variables Analyzed in the Regression Models 

The set of variables that after the observational examination were considered suitable for being 

tested as potential contributing factors in the models are listed below. The exact labels used in the FRA 

database are shown in capitals, and the descriptions of the variable are shown in parenthesis. 

- AADT (Annual average daily traffic) 

- TOTALTRN (Total trains) 

- MAXTTSPD (Maximum timetable speed) 
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- Control Device (Variable created from WDCODE): 

o Passive: includes no sings or signals, crossbucks, and stop signs. 

o Active: Signals, bells, wigwags, flashing lights, other active devices 

o Gates: All gates except quad gates 

o Quad Gates 

- XANGLE (smallest crossing angle) 

- Total Tracks (Total number of tracks: Sum of MAINTRK and OTHERTRK) 

- TRAFFICLN (Number of traffic lanes) 

- HWYNEAR (Nearby intersecting highway)  

On the other hand, other variables that seemingly had good potential as contributing factors 

were not included in the models given their frequent missing or inaccurate values. Examples of those 

are the percentage of trucks, posted highway speed limit, and train detection. 

The results for the three models: Poisson, negative binomial, and zero-inflated negative 

binomial are described next.  

 

2.3.4. Poisson Model for all Crossings 

A model including the variables listed above was evaluated using the GENMOD procedure in SAS, 

specifying a Poisson distribution and a log link function. The goodness of fit measures for such model 

returned by SAS are shown below in Table 2.6, where the model does not seem to fit well the data 

because Pearson chi-square value divided by the degrees of freedom is greater than 1, indicating that 

the data may be over-dispersed.  

Table 2.6. Criteria for Assessing Goodness of Fit – Poisson Regression Analysis 

 

 

However, to illustrate the results of the regression, an illustration of the model results and the accident 

data is shown in Figure 2.4. The model parameters, their estimates, and their significance are shown in 

Table 2.7. The average number of accidents predicted by the model was 0.16494 accidents per crossing 

Criterion DF Value Value/DF
Deviance 6723 4096.642 0.6093

Pearson Chi-Square 6723 8188.518 1.218



for a total of 1111 accidents for all accidents together. In comparison, the FRA database had a total of 

1114 accidents, thus the model was effective at predicting the overall accident frequency. However, the 

variance of the model was 0.03, which is significantly lower than in the database (0.25) and evidencing 

the over-dispersion indicated in the model fitting.  

Table 2.7. Results of the Poisson Regression for all crossings 

 

 

Figure 2.4. Results of the Poisson Model Compared to Field Data 

 

Parameter Category DF Estimate Standard 
Error Pr > ChiSq

Intercept 1 -4.247 0.522 <.0001
aadt3 1 3.90E-05 5.13E-06 <.0001

total_train3 1 0.007 0.001 <.0001
max_ttspeed3 1 0.004 0.002 0.0093
control_device A 1 0.889 0.510 0.0814
control_device B 1 0.959 0.509 0.0598
control_device C 1 1.471 0.503 0.0034
control_device D 0 0 0 .
cross_angle3 1 1 0.435 0.139 0.0017
cross_angle3 2 1 0.053 0.083 0.5215
cross_angle3 3 0 0.000 0.000 .
total_tracks 1 0.165 0.035 <.0001
traf_lanes3 1 0.129 0.041 0.0016
hwy_near2 1 1 0.163 0.062 0.0086
hwy_near2 2 0 0 0 .
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A scatter plot of the residuals is shown in Figure 2.5. Note that the crossings ID were created from 

the original FRA database, and thus they are not in any particular order. The total number of observations 

in the scatter plot is 6735, as described earlier. The residuals are estimated as the difference between the 

observed number of accidents (yi) and the predicted value from the model (fi). The sum of square errors 

(SSE), the root mean squared error (RMSE), and the AIC (Akaike's Information Criterion),  

AICC (corrected Akaike's Information Criterion), and BIC (Bayesian Information Criterion) values 

(Table 2.8) were also found to determine the fit of the model comparatively with other models developed 

in this chapter: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �(𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)2
6735

1

= 1514.5 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �
𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛 − 𝑣𝑣

�
1
2

= �
1514.5

6735 − 12
�
1
2

= 0.4746 

 

 

Figure 2.5. Scatter plot of the Residuals for the Poisson Model 

 

Table 2.8. Criteria for Poisson Model  



 

 

2.3.5. Negative Binomial Model for all Crossings 

After identifying over-dispersion in the Poisson model and observing the predicted number of 

crashes with respect to the FRA database, a model using a negative binomial distribution was fitted to 

the data. Similar to the Poisson model, the GENMOD procedure in SAS was used, but this time specifying 

a negative binomial distribution with a log link function. The same variables were initially included in the 

model. Results of the goodness of fit are shown in Table 2.9. 

Table 2.9. Criteria for Assessing Goodness of Fit – Negative Binomial Regression Analysis 

 

 

The negative binomial model shows a better overall fit compared to the Poisson model based on 

the Pearson chi-square values and its ratio when divided by the degrees of freedom. As a whole, the 

model generated an average of 0.1675 accidents per crossing, for a total of 1128 accidents (compared to 

1114 accidents in the FRA database). The regression results and the comparison of the generated 

distribution with field data is shown in Table 2.10 and Figure 2.6. 

Table 2.10. Results of the Negative Binomial Regression for all crossings 

Criteria Value
AIC (smaller is better) 5975.65

AICC (smaller is better) 5975.7
BIC (smaller is better) 6057.43

Criterion DF Value Value/DF
Deviance 6723 3119.932 0.4641

Pearson Chi-Square 6723 6860.395 1.0204



 

 

Figure 2.6. Results of the Negative Binomial Model Compared to Field Data 

Similar to the analysis with a Poisson distribution, the residuals, the SSE and the RMSE are 

provided for the negative binomial model, as well as criteria for assessing the goodness of fit (Table 

2.11), and the residuals (Figure 2.7) as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 = �(𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)2
6735

1

= 1534.7 

Parameter Category DF Estimate Standard 
Error Pr > ChiSq

Intercept 1 -4.1458 0.554 <.0001
aadt3 1 4.50E-05 6.88E-06 <.0001

total_train3 1 0.0081 0.0012 <.0001
max_ttspeed3 1 0.0038 0.0019 0.0429
control_device A 1 0.845 0.5347 0.114
control_device B 1 0.9003 0.5343 0.092
control_device C 1 1.4235 0.5275 0.007
control_device D 0 0 0 .
cross_angle3 1 1 0.4251 0.1754 0.0153
cross_angle3 2 1 0.0529 0.095 0.5776
cross_angle3 3 0 0 0 .
total_tracks 1 0.1263 0.0429 0.0032
traf_lanes3 1 0.131 0.05 0.0088
hwy_near2 1 1 0.1361 0.0708 0.0547
hwy_near2 2 0 0 0 .

Scale 1 1.1563 0.1553
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Figure 2.7. Scatter plot of the Residuals for the Negative Binomial Model 

Table 2.11. Criteria for Negative Binomial Model  

 

2.3.6. Zero Inflated Negative Binomial (ZINB) Model for all Crossings 

A third model was also obtained after fitting a zero inflated negative binomial (ZINB) distribution to 

the data. As described in Section 2.2.3, this model can account for a greater proportion of observations 

with zero event counts, thus it was possible to obtain a better fit than with a standard negative binomial 

distribution. The deviance and Pearson chi-square goodness of fit for the ZINB model are shown in Table 

2.12, indicating a better fit than with the NB model in the previous section. The results of the regression 

with the significance levels of each variable, as well as the distribution of the values compared to the 

data is shown in Table 2.13 and Figure 2.8. It is noted that the total number of crashes predicted by the 

ZINB model was the same as those from the NB model.  

Table 2.12. Criteria for Assessing Goodness of Fit – ZINB Regression Analysis 

Criteria Value
AIC (smaller is better) 5848.5

AICC (smaller is better) 5848.55
BIC (smaller is better) 5937.09



 

Table 2.13. Results of the ZINB Regression for all crossings 

 

 

 

Figure 2.8. Results of the ZINB Model Compared to Field Data 

The goodness of fit criteria for the ZINB model are provided in Table 2.14, Figure 2.9, and the 

following criteria: 

Criterion DF Value Value/DF
Deviance 5766.969

Pearson Chi-Square 6722 6754.581 1.0048

Parameter Category DF Estimate Standard 
Error Pr > ChiSq

Intercept 1 -3.3021 0.5665 <.0001
aadt3 1 4.90E-05 7.00E-06 <.0001

total_train3 1 0.0043 0.0014 0.0016
control_device A 1 0.7077 0.5482 0.1968
control_device B 1 0.7326 0.5476 0.1809
control_device C 1 1.1188 0.5448 0.04
control_device D 0 0 0 .
cross_angle3 1 1 0.4263 0.173 0.0137
cross_angle3 2 1 0.0553 0.0949 0.5597
cross_angle3 3 0 0 0 .
total_tracks 1 0.1164 0.0422 0.0058
traf_lanes3 1 0.1253 0.049 0.0106
hwy_near2 1 1 0.1404 0.0711 0.0484
hwy_near2 2 0 0 0 .
Dispersion 1 0.8088 0.1433
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It is noted that the zero inflated model has to estimate two additional parameters for the probability of 

an observation having a zero value: An intercept and an estimate for the total number of trains (the 

variable chosen for the zero model).  

 

Figure 2.9. Scatter plot of the Residuals for the ZINB Model 

 

Table 2.14. Criteria for ZINB Model  

 

Criteria Value
AIC (smaller is better) 5795.75

AICC (smaller is better) 5795.82
BIC (smaller is better) 5897.98



 

2.3.7. Summary of the Three Models by Warning Device 

Results of fitting the three models to predict the accident frequency at the grade crossings in the 

FRA database showed that some (thoughsmall) improvement was obtained by changing from a Poisson 

distribution, to a negative binomial, to a zero inflated negative binomial.  

Also, a closer look at the models reveals that the model performance across the different types 

of warning devices was not necessarily the same. Table 2.15 shows the residuals and the square 

standard errors (SSE) for the three models described above, by warning device: Passive (Device A), 

active (Device B), gates (Device C), and quad gates (Device D).  

In particular, it is observed that the residuals and the SSE for the crossings with gates (Device C) 

had a larger deviation from the actual data, mainly due to greater accident frequencies in this group. 

Crossings with Device C were the only ones having 5 or more accidents (6 crossings), and also 9 of the 11 

crossings with 4 accidents.  

In addition, the proportion of zero values between warning device groups varies significantly for 

Device C. Specifically, for devices A, B, and D, about 92% to 95% of the crossings did not have accidents, 

compared to about 79% of the crossings with Device C.  

Table 2.15. Summary of the Three Models by Warning Device 



 

 

These findings indicate that models created for each warning device, may offer advantages over 

the models just presented above. However, the sample size of crossings with quad gates is not enough 

for reliable model estimation, as it is mentioned in the following section, thus devices C and D (all types 

of gates) were modeled together. Also, predictions from such model could be directly compared to the 

current US DOT prediction formula. 

The next section presents device-specific formulas created from a zero inflated negative 

binomial model, since this functional form dealt somewhat more favorably with the data over-

dispersion and had the best goodness of fitness values.  

 

2.4. Alternative Models by Warning Device  

 

Models for the three categories of warning devices described in previous sections were created based 

on a zero-inflated negative binomial (ZINB) distribution. It is noted that even though the warning device 

categorization presented here is similar to the one used in the US DOT formula, data analysis indicated 

that separating crossing with quad gates from those with other gate configurations could be advantageous 

sum var sum var
Device A 1978 0.02 0.08 161.0 0.15
Device B 1605 0.3 0.13 210.2 0.56
Device C 3067 2.8 0.37 1139.2 3.33
Device D 85 0.02 0.05 4.0 0.04

Total 6735 3.1 1514.5
Device A 1978 0.5 0.08 160.8 0.15
Device B 1605 0.5 0.13 210.2 0.56
Device C 3067 -14.6 0.38 1159.5 3.33
Device D 85 -0.3 0.05 4.2 0.04

Total 6735 -13.9 1534.7
Device A 1978 0.5 0.08 160.3 0.15
Device B 1605 -0.1 0.13 209.5 0.54
Device C 3067 -14.2 0.38 1165.4 3.32
Device D 85 -0.6 0.05 4.3 0.04

Total 6735 -14.3 1539.6

Poisson

Negative 
Binomial

Zero-
inflated 

Negative 
Binomial

Model NWarning Device
Residuals SSE



(Figure 2.3). Quad gates provide a drive-around protection by blocking traffic at both entry and exit lanes, 

and this feature seems to play a significant role in accident frequency. However, the number of crossings 

with quad gates (85 in total) was too low for properly fitting the model, thus crossings with gates 

regardless of the gate configuration were analyzed altogether (Devices C and D).  

In order to properly test the models, the original FRA dataset was divided into two subsets: one 

dataset for building the models, and one dataset for validation. The two datasets were defined such that 

there were the same number of crossings in each warning device category and the same number of 

crossings by accident frequency. The general summary of the two datasets is shown in Table 2.16. 

Table 2.16. Building and validation datasets for model developing 

 

 

The models for each warning device type were generated using the same contributing factors as 

those described for all the crossings together and using the observations in Subset 1 from Table 2.16. After 

the coefficients were obtained, the models were applied to crossings in Subset 2 and the accidents were 

predicted. The US DOT model was also implemented and the expected accident frequency was obtained 

Subset 1 Subset 2
0 923 923
1 60 60
2 6 5
3 0 1

Total 989 989
0 741 741
1 51 50
2 8 9
3 2 1
4 1 1

Total 803 802
0 1273 1273
1 232 232
2 50 50
3 14 13
4 4 5
5 2 2
7 1 1

Total 1576 1576
3368 3367

6735

Device C + D     
(Gates)

Device B 
(Active 

Warning 
Devices)

Device A 
(Passive 
Warning 
Devices)

Total

Number of CrossingsAccident 
Frequency

Warning 
Device



using the crossing characteristics, the past accident history, and the normalizing constant, as described in 

Section 2.1.2.  

In light of the adjustment performed to the US DOT model’s initial prediction using the accident 

frequency, in this section, the results from the ZINB model were also adjusted using the same 

methodology. In this way, the models could be compared by using the direct results from the ZINB 

regression, and also by adjusting them by the accident frequency.  

In this particular case, there is an inherent advantage of adjusting the predictions by the accident 

frequency, since the objective is to predict the exact same number of accidents that have occurred in the 

analysis period. A perfect model is expected to predict the same accident frequency that has been 

observed in the past, assuming that the crossing conditions, conflicting volumes, or any other contributing 

factor do not change. This is precisely the situation modeled in this case, thus adjusting by the accident 

history will always bias the model results towards improved predictions. A different situation may be 

observed for true prediction, when past history and the desired prediction may differ. This case is explored 

in the next section. 

The ZINB models and the results for each of the warning devices, together with the US DOT 

predictions and comparisons with the actual data, are described next. 

 

2.4.1. Crossings with Passive Warning Devices (Device A) 

The initial ZINB model for this warning device type was the following: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �1 −
1

1 + 𝑒𝑒3.8023−(0.0976∗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�  

∗ 𝑒𝑒−3.0052+(0.000151∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)+(0.005593∗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)−(0.1140∗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)−(0.05865∗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)+𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �
0.1843       𝑖𝑖𝑖𝑖 0 < 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 30
−0.1601     𝑖𝑖𝑖𝑖 30 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 60

0                       𝑖𝑖𝑖𝑖 60 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤  90
 

𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �0.1951  𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 200𝑓𝑓𝑓𝑓
0                                                                                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 



Where trains and aadt are the daily train and vehicular volume, tracks and lanes are the number 

of tracks and lanes, and fangle and fnear are factors for the different categories of crossing angle and distance 

from nearest intersection, respectively.  The first term in the equation is of the form (1- 𝜑𝜑), where 𝜑𝜑 

represents the probability of a crossing of having zero observations (the zero-model), followed by a factor 

with the negative binomial model.  

However, even though the results of the original regression are shown in the equation above, 

including all variables explored in the previous chapter, not all variables turned out to be significant. The 

Pvalues of each variable and the final decision about including it in the model or not is shown in Table 

2.17.  

Table 2.17. Regression results from the ZINB model for passive warning devices (Device A) 

 

* Model fit improved significantly with the zero-inflated model even though the Pvalues 

for the zero model estimates were high. A type 3 analysis for total_train showed a 

Pvalue of 0.10, showing significance in the model. Model convergence was only 

achieved if the ZINB distribution was fitted 

 

Based on the variables selected in Table j2.17, and confirming an improvement in the model 

results by means of the goodness of fit criteria (Table 2.18), the model for crossings with passive warning 

devices was only defined in terms of the daily train and vehicular volume, as follows: 

 

Final Regression

Pvalue
Selected for 
Final Model

Pvalue

Intercept - < 0.0001  < 0.0001
aadt - 0.0328  0.0383

total_train - 0.008  0.0098
1 (0◦-29◦) 0.8071
2 (30◦-59◦) 0.6346
3 (60◦-90◦) -

total_tracks - 0.6603 x N/A
traf_lanes - 0.8008 x N/A

1 (0-200ft) 0.1951
2 (>200ft) -

Intercept (zero model) - 0.35  0.35 *
total_train (zero model) - 0.16  0.18 * 

N/A

Variable Category
Initial Regression

N/Across angle

hwy_near

x

x



𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �1 −
1

1 + 𝑒𝑒4.2446−(0.1015∗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠)�  ∗ 𝑒𝑒−3.1167+(0.000138∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)+(0.05069∗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

 

Table 2.18. Criteria for Assessing Goodness of Fit – ZINB Passive Warning Devices 

 

 

2.4.2. Crossings with Active Warning Devices (Device B) 

In a similar way, the initial regression analysis for active warning devices (Device B) included all 

variables described for Device A, but not all variables were significant predictors. It was noted that the 

regression for the zero inflated model indicated that the total train volume was not a good predictor of 

the probability of zero accidents. Instead, the AADT showed to be a better predictor for this particular set 

of devices and it was used to determine the results of the initial regression for variables selection, shown 

in Table 2.19.  

Table 2.19. Regression results from the ZINB model for active warning devices (Device B) 

 

 

After observing these results, the regression analysis was performed again without the total 

number of tracks and the variable for the distance from the crossing to the nearest intersection. The final 

Criterion DF Value Value/DF
Pearson Chi-Square 979 979.952 1.001

Final Regression

Pvalue
Selected for 
Final Model

Pvalue

Intercept - < 0.0001  < 0.0001
aadt - 0.0107  0.0089

total_train - 0.0107  0.0226
1 (0◦-29◦) 0.1021 0.0746

2 (30◦-59◦) 0.0533 0.0667
3 (60◦-90◦) - -

total_tracks - 0.1378 x N/A
traf_lanes - 0.0025  0.0044

1 (0-200ft) 0.6657
2 (>200ft) -

Intercept (zero model) - 0.0453  0.0438
aadt (zero model) - 0.0276  0.0275

Variable 

N/A

Initial Regression
Category

cross angle 

hwy_near x



regression without these variables improved the model fit (Table 2.20) and resulted in the following 

expression, using the coefficients from the last column in Table 2.19: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �1 −
1

1 + 𝑒𝑒−(4.8251−(0.0003∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎))�

∗ 𝑒𝑒−3.8738+(0.000132∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)+(0.02451∗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)+(0.4523∗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)+𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

 

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �
1.0324       𝑖𝑖𝑖𝑖 0 < 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 30
−0.8104     𝑖𝑖𝑖𝑖 30 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 60

0                       𝑖𝑖𝑖𝑖 60 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤  90
 

Table 2.20. Criteria for Assessing Goodness of Fit – ZINB Active Warning Devices 

 

 

2.4.3. Crossings with Gates (Devices C+D) 

The initial regression for crossings with gates showed low influence of the crossing angle and the 

number of traffic lanes. All other variables were significant. The final regression improved the model fit 

by having the zero-inflated term, similar to the observation for crossings with active warning devices. 

The significance of each variable in the regressions is shown in Table 2.21. 

 

 

 

 

 

Table 2.21. Regression results from the ZINB model for crossings with gates (Devices C and D) 

Criterion DF Value Value/DF
Pearson Chi-Square 795 781.29 0.983



 

 

The final Pearson chi-square results (Table 2.22) and the full model for crossings with gates is also shown 

below: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �1 −
1

1 + 𝑒𝑒−�40.52−(0.2317∗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�
�

∗ 𝑒𝑒−2.5701+(0.000055∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)+(0.01037∗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛)+(0.2227∗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)+𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

 

𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �0.2511   𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 200𝑓𝑓𝑓𝑓
0                                                                                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 

Table 2.22. Criteria for Assessing Goodness of Fit – ZINB Crossings with Gates 

 

 

Final Regression

Pvalue
Selected 
for Final 
Model

Pvalue

Intercept - < 0.0001  < 0.0001
aadt - < 0.0001  < 0.0001

total_train - < 0.0001  < 0.0001
1 (0◦-29◦) 0.18

2 (30◦-59◦) 0.12
3 (60◦-90◦) -

total_tracks - 0.0005  0.0003
traf_lanes - 0.18 x N/A

1 (0-200ft) 0.044 0.0283
2 (>200ft) - -

Intercept (zero model) - 0.2586  0.2521*
total_train (zero model) - 0.2563  0.2495*

N/A

Variable Category

Initial Regression

cross angle x

hwy_near 

Criterion DF Value Value/DF
Pearson Chi-Square 1569 1577.93 1.006



 

2.5. Comparison of US DOT Accident Prediction Formula and Alternative Models - 

by Device 

 

After defining the models for each of the warning devices, comparisons were made between the 

model results and the results from the US DOT accident prediction formula in terms of general 

prediction accuracy, the overall distribution of the predictions, and the ability to reproduce the crossing 

ranking based on actual accident frequency. Recall that models were developed using a subset of the 

total data, and a completely separate set of observations for the validation or comparison of the 

models, as described in section 2.4 and shown in Table 2.16. The same validation dataset used for the 

ZINB models was used for the predictions with the US DOT formula. 

 

2.5.1. General Prediction Accuracy 

For the general prediction accuracy, the residuals were observed to identify biases in the model 

predictions. The residuals were defined as the difference between the actual accident count and the 

predicted value, and were plotted for each warning device, as it is shown in Figure 2.10. It is noted that 

even though the crossings are labeled from 1 through 25000+, there were only as many points as 

crossings per device category, thus for device A there were 989 points, for Device B there were 802 

points, and for Device C+D there were 1576 points.  

From the residual plots, it is observed that both models have a tendency to have negative 

residuals at crossings with zero accidents, given that the prediction value is always greater than zero. 

Also, the overall ZINB predicts a better overall number of accidents (sum of residuals) than the US DOT 

model, which is expected given that the regressions were developed using the “test data”, which is 

similar than the “validation data”. In addition to the residuals, a better description of the over and under 

prediction can be observed by plotting the predicted and the observed values and observing where the 

predictions fall with respect to a diagonal line (predicted = observed). These plots are shown in Figure 

2.11.  

 

 



             
A- Device A (ZINB model and US DOT formula) 

 

             
B- Device B (ZINB model and US DOT formula) 

 

              
C- Devices C and D (ZINB model and US DOT formula) 

 
Figure 2.10. Scatter plot of the Residuals using the Validation Subset 

 

N = 1576 

Sum residuals= -1.0 

N = 1576 

Sum residuals= 49.5 

N = 802 

Sum residuals= -101.2 

N = 802 

Sum residuals= -2.9 

N = 989 

Sum residuals= 0.2 

N = 989 

Sum residuals= -23.4 



            
A- Device A (ZINB model and US DOT formula) 

 

            
B- Device B (ZINB model and US DOT formula) 

 

             
C- Devices C and D (ZINB model and US DOT formula) 

 
Figure 2.11. Predicted and Observed Accident Frequencies using the Validation Subset 

 

N = 1576 

Sum residuals= -1.0 

N = 1576 

Sum residuals= 49.5 

N = 802 

Sum residuals= -2.9 

N = 802 

Sum residuals= -101.2 

N = 989 

Sum residuals= 0.2 

N = 989 

Sum residuals= -23.4 



The sum of squared errors (SEE) was also observed for the models and the US DOT formula, as a 

measure of the accuracy of the model predictions. A summary of the SEE is shown in Table 2.23. 

Table 2.23. Sum of Squared Errors for ZINB and US DOT Formula 

 

 

2.5.2. Overall distribution of the predictions 

An aspect that was also important to determine for the models was the deviation of the cumulative 

number of crashes over the cumulative number of crossings. This is a measure similar to the power 

factors used by XX to evaluate the models in the development of the US DOT formula in 1980. Two plots 

were generated for each warning device category: one for the proportion of crashes with respect to the 

actual data , and one for the proportion of the accidents relative to each model. 

The plots for the proportion of crashes with respect to the actual data show how the cumulative 

predictions match the total number of crashes when the crossings are sorted from highest to lowest. 

Figure 2.12 shows absolute prediction accuracy and also the shape of the function in absolute terms. 

Absolute (or raw) predictions are important as the magnitude of the predicted number of crashes could 

be used in benefit/cost analysis and resource allocation rankings.  

sum var sum var
Device A 32.1 0.02 50.6 0.05
Device B 38.6 0.07 62.0 0.08

Device C+D 164.6 0.19 291.0 0.86
Total 235.3 - 403.5 -

US DOT FormulaWarning Device
Sum of Squared Errors (SSE)

ZINB Model



  
                      A- Passive Warning Devices                   B- Active Warning Devices  

 
C- Crossings with Gates 

Figure 2.12. Absolute predictions for the ZINB Model and the US DOT Formula 

 

2.5.3. Crossing Rankings  

Lastly, the comparison of the models and the US DOT formula includes the rankings based on 

accident frequency. These rankings were found by sorting the crossings by the predicted accident 

frequency from largest to smallest. Different top lists were generated and compared between the field 

data, the ZINB models and the US DOT formula, as shown in Tables 2.24, 2.25, and 2.26.   
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Table 2.24. Ranking for crossings with passive warning devices (Device A) 

 

Table 2.25. Ranking for crossings with active warning devices (Device B) 

 

Table 2.26. Ranking for crossings with gates (Devices C and D) 

 

 

2.5.4. An Example of True Prediction   
In this section, an example to illustrate the actual prediction ability of the DOT prediction formula 

and the alternative model is presented. Five years of data (from 2003 to 2007) was used to develop an 

alternative model and to predict the number of crashes that were observed from 2008 to 2012 (also a 5-

year span).  

Top 5 
Crossings

Top 10 
Crossings

Top 66                               
(all crossings with 

accidents)
Field Data 12 18 74
ZINB Model 11 18 74
US DOT Model 11 18 66
* Max accident frequency at a crossing = 3

Total Accidents

Data or Model

Top 5 
Crossings

Top 10 
Crossings

Top 20 
Crossings

Top 61                       
(all crossings with 

accidents)
Field Data 13 23 29 75
ZINB Model 13 20 29 73
US DOT Model 13 22 29 71
* Max accident frequency at a crossing = 4

Data or Model

Total Accidents

Top 5 
Crossings

Top 10 
Crossings

Top 20 
Crossings

Top 303                       
(all crossings 

with accidents)
Field Data 27 45 75 410
ZINB Model 26 42 71 398
US DOT Model 27 44 70 373
* Max accident frequency at a crossing = 9

Data or Model

Total Accidents



The zero-inflated negative binomial (ZINB) model described in previous sections was used to 

obtain the predictions. Regressions were run for each of the three groups of warning device types 

(passive, active warning devices, and gates) to obtain the model coefficients. This first prediction was 

then corrected by the actual accident history of each of the crossings using not only the procedure 

described in the DOT prediction formula (and applied above), but also using two additional methods 

that could be considered for future use: an empirical Bayes approach, and the average of the prediction 

and the past accident history. 

The empirical Bayes approach described by Persaud et al. (2001) was implemented for the 

prediction correction. In this approach, the initial prediction from the model is updated based on the 

past accident frequency at a given crossing, the length of the time period analyzed, and the dispersion 

parameter estimated in the model. This correction was used by Persaud et al. to obtain estimates of the 

accident frequency for a before-after study if the location being analyzed was not modified in the after 

period. Thus, in our case, it provides with an estimation of the accidents assuming that no changes took 

place at the crossing during the prediction period. The formulation for the expected annual number of 

accidents in the before period (𝑚𝑚𝑏𝑏), assumed the same for the after period, is the following: 

𝑚𝑚𝑏𝑏 =
𝑘𝑘 + 𝑥𝑥𝑏𝑏
𝑘𝑘
𝑃𝑃 + 𝑦𝑦𝑏𝑏

 

Where k is the dispersion parameter estimated in the model, 𝑥𝑥𝑏𝑏is the actual number of crashes 

observed in the before period (i.e. from 2003 to 2007), and 𝑦𝑦𝑏𝑏 is the length of the before period. 

It is important to note that this exercise does not use the accident frequency to be predicted at 

any point, and thus it is an example of true prediction. However, even though the performance of the 

two models (US DOT and the ZINB) for this particular dataset is indicative of their capabilities, it is not a 

direct estimation of their performance in other datasets. With this caveat, the results of the prediction 

models are shown as follows.  

Also, it is noted that for the US DOT Formula, the normalizing constant issued by FRA in 2007 

was used to estimate the accidents between 2008 and 2012.  

Figure 2.13 shows the absolute number of accidents predicted by the two models and using 

different adjustments of the initial predictions for the ZINB model.  



  
                       A- Passive Warning Devices      B- Active Warning Devices 

 

 
C- Crossings with Gates 

 
Figure 2.13. Absolute predictions for 2008-2012 with the ZINB Model and the US DOT Formula 

 

From figure 2.13, it is observed how the two models compared with the actual distribution of the 

total accidents observed from 2008 to 2012. The US DOT formula produced predictions that 

overestimated the accident frequency for all three types of devices, by a factor between 1.8 and 3.6 times 

the observed accidents, whereas the ZINB model had a closer fit with factors ranging between 1 and 1.6 

times the observed accidents depending on the adjustment method.  

The type of correction applied to the initial model prediction did have a significant effect, mostly 

on the shape of the curve for the accident distribution. Higher accident frequencies were observed at 
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crossings with active warning devices and gates, where the corrections using an average of the predicted 

and the past accident history had the greatest effects and projected the initial portion of the curve closer 

to the actual data. On the other hand, for locations with passive warning devices, the empirical Bayes 

placed significant weight to the past history and concentrated most accidents in a few locations and 

significantly closer to the data.  

In general, regardless of the correction used to include the past history, the ZINB model predicted 

a more accurate total number of accidents for all three groups compared to the results from the US DOT 

formula.  

Nonetheless, the general distribution of the accidents is only one of many possible criteria to 

compare the two models. The crossing rankings obtained from the two models and their comparison with 

the rankings based on actual accidents observed from 2008 to 2012 were also investigated, as shown in 

Table 2.27.  

Table 2.27. Rankings predicted by different methods for 2008-2012 

 

   

Table 2.27 shows two types of results from the models and contrasted with the actual data. The 

first one is the number of crashes predicted in top locations, with result shown for top 10, 20, and 50 

Top 10 Top 20 Top 50 Top 10 Top 20 Top 50
Data (observed) 11 21 51 11 21 51
US DOT Formula 6 10 19 1 2 7

ZINB - Empirical Bayes 14 24 54 2 3 7
ZINB - DOT correction 6 9 17 1 2 7

ZINB - Average model and data 8 14 29 2 3 7
Data (observed) 16 26 56 16 26 56
US DOT Formula 8 13 26 4 5 8

ZINB - Empirical Bayes 6 9 17 3 5 6
ZINB - DOT correction 7 10 18 3 5 5

ZINB - Average model and data 11 19 35 2 7 9
Data (observed) 28 48 101 28 48 101
US DOT Formula 18 31 58 11 23 44

ZINB - Empirical Bayes 15 25 46 13 24 40
ZINB - DOT correction 18 30 56 13 22 40

ZINB - Average model and data 20 35 69 11 19 33

Active 
(Device B)

Gates 
(Devices C 

and D)

Cumulative accidents 
observed in top locations

Number of crashes predicted 
in top locations Ranking Method

Warning 
Device 

Passive 
(Device A)



locations for each type of warning device. To obtain these values the data was sorted based on the 

accident prediction values, and predictions of the top locations were added to determine how many 

accidents were expected at the locations with higher risk values. In general, models underestimate the 

number of accidents at these locations, particularly those with higher frequencies, as it has been shown 

in previous sections. The predictions of the ZINB models fluctuated significantly depending on the 

correction for accident history that was applied, without a single correction being dominant in all three 

types of warning devices.  

The second set of results in the last three columns of Table 2.27 shows the actual number of 

accidents observed in the top locations chosen by each model. As expected, prediction with macro models 

for low accident frequencies in the past, such as those crossings with passive warning devices is more 

difficult and models did not accurately rank most of the locations compared to the ranking based on the 

actual data. For example, in the top 50 locations of all models, only 7 accidents were actually observed 

between 2008 and 2012, whereas in the ranking by frequency it is possible to find 51 accidents in the top 

50. Predictions improved with higher frequencies, being the most accurate the ones found for the top 

locations with gates.  

It is noted that given the randomness involved in accident prediction for low frequencies, more 

accurate modeling of the accidents for a group of crossings may not necessarily result in a more accurate 

ranking. This can be seen with the ZINB models, which from Figure 2.13 are observed to have a better fit 

for the accident distribution, but resulted in similar rankings to those from the US DOT formula.  

 

3. Micro Analysis of Accidents at Railroad-Highway Grade Crossings 
 

As described in the Introduction, in addition to a macro analysis, accidents could be analyzed using a 

micro approach to include variables that may be significant at a local or microscopic level. Such procedure 

may be able to account not only for traditional variables such as conflicting volumes and geometry, but 

also for variables that describe the position and direction of trains and vehicles, areas surrounding the 

crossing, driver demographics, and the environmental conditions when the accidents occurred, among 

others.  



The proposed microscopic analysis may be similar to manual or informal procedures already in 

place at some jurisdictions, but the methodology proposed here attempts to enumerate a few basic and 

practical steps to identify trends based on crash history using a tree diagram and a sketch of the crossing. 

Results of the micro analysis can then be combined with results from the macroscopic model for a more 

accurate identification of crossings for safety improvements. 

In this chapter, the steps to perform a simple micro analysis are described, followed by examples 

of applications using data from Illinois. The methodology for micro analysis is in its simplest form and 

targeted for manual implementation at the level of a single crossing at a time. The authors plan to extend 

this approach to more complex tasks with automated sorting of the attributes in the tree structure, 

temporal analysis of the accident occurrences, and for corridor and regional analysis.  

 

3.1. Description of the Micro Analysis Procedure  
 

The procedure for the proposed micro analysis for one single crossing is simple and it is described as 

follows: 

1. The location of the train and vehicles or pedestrians involved in each of the accidents is mapped 

using a marker (e.g. circle, star) on a sketch of the crossing that can be easily constructed based on an 

aerial image. Markers should also be numbered to associate accident locations with other accident 

characteristics.  

2. In the sketch, a table with the position, direction, and speed of train and vehicles is created. This 

table will help in visualizing possible patterns when all information for the crossing is extracted.  

3. Then, a tree diagram is created to classify the accidents using the following variables: highway 

user type involved in the accident, action of the motorist, highway user direction, time table direction, 

circumstance of accident, vehicle driver age and gender, and weather condition and visibility. An 

illustration of the variables and their possible values is shown in Figure 3.1. The tree diagram helps 

identify trends in the accidents and therefore, possible contributing factors. 

4. Trends observed in the tree structure can be further explored using information extracted from 

other variables, and images of the crossing, among other sources.  

  



Highway User Type 
(typveh)

Action of Motorist 
(motorist)

Highway User Direction 
(vedir)

Time Table Direction
(trndir)

Circumstance of Accident
(typacc)

Vehicle Driver Age and Gender 
(drivage, drivgen)

K = Pedestrian
A-J = Motorized vehicle 

M = Other

1 = Drove around or thru the gate
2 = Stopped and then proceeded

3 = Did not stop
4 = Stopped on crossing

5 = Other

1 = north, 2 = south, 3 = east, 4 = west
(Depend on the actual  

Geometrical direction on the map)

1 = north, 2 = south, 3 = east, 4 = west
(Depend on the actual  

Geometrical direction on the map)

1 = rail equipment struck highway user
2 = rail equipment struck by highway user

(drivage): Numerical value of the age
(drivgen): 1 = male, 2 = female

Weather Condition and Visibility
(weather, visiblty)

(weather): 
1 = clear, 2 = cloudy, 3 = rain, 

4 = fog, 5 = sleet, 6 = snow
(visiblty): 

1 = dawn, 2 = day, 
3 = dusk, 4 = dark  

Figure 3.1. Variables for proposed micro analysis 

The proposed micro analysis has similarities and differences with other proposed methods for 

detail analysis of accidents. Two of such methods are the diagnosis used for roadway safety 

management process from the Highway Safety Manual (AASHTO, 2010), and a field investigation 

procedure specifically for grade crossings proposed in the Railroad-Highway Grade Crossing Handbook, 

Revised Second Edition, 2007. 

In the HSM, the diagnosis has three main steps: 1) review previous safety data from police 

reports, 2) access other supporting documentation about the site condition, such as construction plans, 

land use mapping, etc., which could be used to provide historical site context and define the roadway 

environment, and 3) to conduct field investigation to the site, which could serve to validate the previous 

data gathered from police report and other supporting documentation. 

In the first step, the previous safety data is compiled from police reports to create descriptive 

crash statistics, which could be used to find specific type of crashes that exceed the threshold 



proportion. The statistics include multiple types of crash data which could be categorized as crash 

identifiers (e.g. date, day of week, time of day), crash type (e.g. rear-end, sideswipe, angle, etc.), crash 

severity, sequence of events (e.g. direction of travel and location of parties involved), and contributing 

circumstances (e.g. parties involved, road condition, lighting condition, etc.). In addition, crashes are 

summarized by location using three different diagrams or maps: collision diagrams, condition diagrams 

and crash mapping. The collision diagram shows the crashes represented by arrows with the direction of 

the vehicles and the type of crashes, vehicle type, crash type, vehicle movement, severity, road surface 

and lighting. This diagram is similar to the sketch produced in the micro analysis, which was developed 

for grade crossings. Additional information not included in a collision diagram and shown in the sketch 

includes the speeds of the train and vehicles. Examples of the collision diagram from HSM and the 

proposed sketch are shown in Figure 3.2. 

 

     

                              A- HSM Collision Diagram                                           B- Sketch in micro analysis 

Figure 3.2. Collision Diagram from HSM and Proposed Sketch in Micro Analysis 

 

Other diagrams described in the HSM include the condition diagram and crash mapping. The 

condition diagram is a sketch of the site containing several important characteristics, including roadway 

features (e.g. lane configuration, traffic control, pedestrian, bicycle, and transit facilities in the vicinity of 

the site, etc.), land uses and pavement conditions. These collision and condition diagrams can be 

integrated together to show a further relation between crashes and road conditions. The crash mapping 



is a way of using GIS to conduct spatial analysis for crashes, such as analyzing crash data with other GIS 

data (e.g. the presence of schools, posted speed limit signs, etc.), report crash clusters by certain query 

conditions and showing the crash density along a corridor.   

The sketch proposed in the micro analysis is similar to the end result of the first step in the HSM 

diagnosis, but it focuses on aspects specific to grade crossings and can be completed without some of 

the details specified in the HSM. In addition, the second step in the diagnosis includes data from the site 

condition, but it does not have a defined method for trend discovery. In the micro analysis, the tree 

structure provides such method, and serves as a visualization tool not included in the HSM diagnosis or 

in the Railroad-Highway Grade Crossing Handbook. Moreover, a dynamic tree structure is in its 

development process and will serve for more complex analysis of not only a single location, but also for 

corridor and regional analysis. The tree structure will be complemented by a temporal analysis of past 

accident frequencies to enhance the understanding and predictions of future crashes. 

Lastly, the procedure in the Railroad-Highway Grade Crossing Handbook is aimed at reviewing 

the crossing and its environment, identifying the nature of the problem and recommending alternative 

improvements. This diagnostic team method could be categorized into three areas: traffic operation, 

traffic control devices and administration. A questionnaire is used during the field investigation, and 

three study points are used to inspect the surrounding features of a certain crossing. The first point is 

where the driver first obtain the information of a crossing ahead. The data collected at this point are 

concerned with the visibility of the crossing, effectiveness of advance warning signs and signals, etc. The 

second point is where a safe stop could be made by the driver before approaching the crossing. The data 

collected at this point include obstruction of view of train approach, availability of information for 

proper stop or go decisions by the driver, etc. The third point is located 15 feet from the nearest rail. 

Data collected at this point include sight distance down the tracks, pavement markings, etc. The 

investigation result could be used together with the accident frequency, accident type and accident 

circumstances to evaluate a certain crossing.  

The nature itself of the micro analysis is different from that in the Handbook, since it is an 

evaluation of the accident trends before a field visit is scheduled, and it is expected to enhance the 

information available in the preparation of such field visits.  

Thus, the idea of a micro analysis falls between a very detailed analysis of the crash site prior to 

a field visit, currently included in the HSM, and the current macro analysis techniques, where local 

trends are not identified. The authors believe that the tree structure to visualize trends at a single 

location, and for corridor and regional analysis can be very useful, and even more in a future 



implementation that automates the process of sorting the attributes to maximize trend discovery. Also, 

a new temporal analysis of accidents will be added to the micro analysis in the near future.    

 

 

3.2. Dataset from FRA 
 

According to the FRA online inventory data, there were 1459 accidents in Illinois from 2003 to 2012. 

Table 3.1 shows a summary of the accidents based on different vehicle type and accident type. It also 

contains the dollar amount in property damages caused by different type of accidents. 

The number of accidents per year are shown in Figure 3.3, including fatal and non-fatal 

accidents in the same time period and indicate a downward trend in the total number of accidents and 

in the non-fatal accidents. However, fatal accidents did not show any clear trend and remained at a 

similar level over time. 

In addition, Figure 3.4 shows the ratio of motorized vehicle accidents, pedestrian accidents and 

other accidents by each year. The number of motorized vehicle accidents account for the majority of all 

accidents and had a downward trend, similar to the total number of accidents, while the number of 

pedestrian accidents and other accidents did not show any particular trend. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.1. Accident summary by year and type 

  

Year of Accidents Type of Accidents No. of Accidents Non-Fatal Fatal Fatalities Prop. Damage 

2003  

Total 169 141 28 30 652601 

Motorized Vehicles 150 132 18 20 560001 

Others 7 5 2 2 92600 

Pedestrians 12 4 8 8 0 

2004 

Total 178 153 25 28 636137 

Motorized Vehicles 156 141 15 18 584537 

Others 9 7 2 2 51600 

Pedestrians 13 5 8 8 0 

 
2005 

  

Total 180 152 28 31 955250 

Motorized Vehicles 150 133 17 20 818350 

Others 15 13 2 2 136900 

Pedestrians 15 6 9 9 0 

2006 

Total 174 157 17 25 990000 

Motorized Vehicles 147 136 11 19 869500 

Others 16 12 4 4 115500 

Pedestrians 11 9 2 2 5000 

2007 

Total 160 134 26 29 1095148 

Motorized Vehicles 135 122 13 16 1065848 

Others 10 8 2 2 29300 

Pedestrians 15 4 11 11 0 

2008 

Total 153 127 26 27 896000 

Motorized Vehicles 126 111 15 16 832300 

Others 12 11 1 1 63700 

Pedestrians 15 5 10 10 0 

2009 

Total 106 91 15 18 664580 

Motorized Vehicles 85 79 6 9 630780 

Others 12 9 3 3 33800 

Pedestrians 9 3 6 6 0 

2010 

Total 128 102 26 28 544985 

Motorized Vehicles 99 88 11 11 460485 

Others 10 8 2 2 84500 

Pedestrians 19 6 13 15 0 

2011  

Total 103 86 17 19 569638 

Motorized Vehicles 84 76 8 10 567338 

Others 4 3 1 1 2300 

Pedestrians 15 7 8 8 0 

2012 

Total 108 85 23 26 429106 

Motorized Vehicles 85 77 8 11 388181 

Others 10 7 3 3 40925 

Pedestrians 13 1 12 12 0 

2003-2012 

Grand Total 1459 1228 231 261 7433445 

Motorized Vehicles 
Total 

1217 1095 122 150 6777320 

Others total 105 83 22 22 651125 

Pedestrians Total 137 50 87 89 5000 



 

Figure 3.3. Accidents from 2003 to 2012 by type 

 

Figure 3.4. Accidents from 2003 to 2012 by type 

 

In 2012, Illinois had 14842 open at grade railroad crossings, including public, private, and 

pedestrian only crossings. A summary of the accident frequency at these crossings by crossing type is 

shown in Table 3.2, from which the focus will be given to public crossings. This is because public 

agencies have direct jurisdiction over this type of crossings and also these are typically the locations with 

highest crossing volumes.  
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Table 3.2. Accident frequency of different types of crossings 

 Type of Crossings  
Accident Frequency 
From 2003 to 2012 

Pedestrian Only  
Crossing  

Private  
Crossing 

Public  
Crossing 

Grand  
Total 

9 0 0 1 1 
8 0 2 0 2 
7 0 1 1 2 
6 0 4 0 4 
5 0 1 4 5 
4 0 2 11 13 
3 0 3 31 34 
2 2 190 136 157 
1 12 90 765 867 
0 400 3930 9427 13757 

Grand Total 414 4052 10376 14842 

 

Thus, the micro analysis will be conducted for public crossings with high accident frequency, 

which for the purposes of this study include locations with four or more accidents from 2003 to 2012. 

These crossings were identified and are shown Table 3.3 below and analyzed in the following sections. 

Table 3.3. Public Crossings with 4 or more accidents from 2003 and 2012 

Accident Frequency Number of crossings Crossing Inventory Number 
9 1 173887G 
7 1 608311K 

5 4 

175042V 
176909P 
372131E 
386411X 

4 11 

079493L 
174001M 
283190L 
289554E 
291378J 
294341E 
328516E 
608310D 
608846J 
609011A 
724578T 

 

3.3. Micro Analysis for Crossings with More than 4 Accidents  

 

The first crossing to be analyzed is the crossing with highest accident frequency, with nine accidents 

in the period between 2003 and 2012. Crossing 173887G is located at the crossing of UP-NW line and N 



Nagle Avenue in Chicago, as shown in the satellite image in Figure 3.5. The right side of image 3.4 shows 

a sketch of the crossing with a summary of the location of the accident, the direction of cars and trains, 

as well as their speeds. This sketch is part of the micro analysis and may help spotting possible trends at 

this crossing, for example the occurrence of four accidents involving southbound vehicles with trains in 

the southbound direction and on track #3. 

    

Figure 3.5. Image and sketch of Crossing 173887G 

 

The tree structure also provides a useful representation of the accidents, as shown in Figure 3.6. 

Out of the nine accidents, one of them involved a pedestrian and eight involved vehicles. Out of the 

accidents involving a vehicle, in four occasions the user drove around or through the gate and in the 

remaining four they were recorded as having other actions. All four accidents recorded as driving 

around or through the gate involved vehicles going northbound, while all the 4 other accidents involved 

vehicles going southbound and hitting by the trains going eastbound (they all happened on track #3). 

Thus, it is worthwhile exploring the possibility of vehicles waiting for the nearby signal or in long queues 

and not being able to prevent the accidents while occupying track #3. Also, it is noted that in Figure 3.6, 

the tree branches with more prominent trends are highlighted red for visualization purposes. This trends 

could not be observed in a macro analysis and may be useful for evaluating the risk at the crossing and 

studying potential safety improvements. 
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Figure 3.6. Tree diagram for accidents at Crossing 173887G 

 

The second crossing analyzed was 608311K. This crossing is located on W 119th Street in Blue Island 

and had 7 accidents over a period of 10 years. The aerial image and the sketch of the crossing are shown 

in Figure 3.7 where it can be seen that accidents were concentrated in tracks 1 and 2.  



    

Figure 3.7.  Image and Sketch of Crossing 608311K 

 

The seven accidents at this crossing involved vehicles, 5 of which drove around or through the 

gate, 1 stopped on crossing, and 1 was recorded as other. At this crossing the tree structure shows no 

clear trend from those 5 accidents where drivers went around or through the gates. This is an example 

of a location without a clear trend, and where accidents may be the result of higher exposure due to 

high train and vehicle volume (aadt is 21100 and train volume is 66 trains per day).  
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Figure 3.8. Tree diagram for accidents at Crossing 608311K 

 

The third analyzed crossing is 175042V, which is located at the crossing of a UP rail line and E 

Lincoln Highway in Dekalb. Five accidents happened at this crossing over 10 years, as it is shown in the 

sketch in Figure 3.9. 

    

Figure 3.9. Image and Sketch of Crossing 175042V 

 



In these 5 accidents, three of them were pedestrian accidents and the other two involved vehicles. 

This is a highly unusual frequency of pedestrian accidents, and based on the location of the crossing, an 

area with relatively high pedestrian traffic near the Northern Illinois University campus. From the tree 

structure (Figure 3.10), it is also noted that the train and vehicles (and one of the pedestrian cases) were 

traveling in the same direction. The combination of a small crossing angle (Figure 3.9), users and trains 

in the same direction, and nighttime conditions (red branches in the tree structure), seem to be an area 

worth further exploration in the causes of these accidents. Visibility at this crossing should probably be 

looked into based on the results of the micro analysis.  
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Figure 3.10. Tree diagram for accidents at Crossing 175042V 

  

 The forth crossing analyzed is 176909P, which is located at the crossing of a UPME rail line and S 

Mt Prospect Rd in Mt Prospect. Five accidents happened at this crossing over 10 years (Figure 3.11). 



    

Figure 3.11. Image and Sketch of Crossing 176909P 

 

At this crossing all five accidents involved vehicles, four of them with users driving around or 

through the gates and one of them stopping before the gates. From Figure 3.12, it is seen that in three 

occasions southbound vehicles were struck by eastbound trains. Even though it is not clear the reason 

for these accidents, it is worth exploring the causes of this combination of train-vehicle directions to 

evaluate safety improvements.  
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Figure 3.12. Tree diagram for accidents at Crossing 176909P 

   

The fifth analyzed crossing is 372131E, which is located at the crossing of a Metra line and Grand 

Avenue in Elmwood Park. Five accidents happened at this crossing over 10 years, as seen in Figure 3.13. 

     

Figure 3.13 Image and Sketch of Crossing 372131E 



In these 5 accidents, 1 of them was a pedestrian suicide and the remaining four involved vehicles. 

Unlike other previous crossings, users in accidents did not drive around or through the gate. The main 

trend spotted in the tree structure (Figure 3.14) is vehicles and trains traveling in the same direction 

when the accident happen, which combined with the narrow crossing angle may be an indicator of 

visibility issues.  
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Figure 3.14.  Tree diagram for accidents at Crossing 372131E 

 

In addition, it was observed that the roadway has raised medians right before the crossing, 

preventing users from driving around the gates, as it is seen in Figure 3.15. This treatment is thought to 

be the significant factor for the different user behavior at this location compared to previous crossings.  

 



     

Figure 3.15. Westbound (left) and Eastbound (right) Gates at Crossing 372131E 

 

The sixth analyzed crossing is 386411X, which is located at the crossing of a Metra line and Grand 

Avenue in Elmwood Park. Five accidents happened at this crossing over 10 years. An image and the 

sketch of this crossing are shown in Figure 3.16. 

    

Figure 3.16.  Image and Sketch of Crossing 386411X 

 

All five accidents at this crossing involved vehicles. It was also noted that this crossing is 

equipped with pedestrian gates, also reducing the risk of such events. The tree structure (Figure 3.17) 

shows that the most common characteristic of these crossings is the advanced age of the drivers, with 

four of them older than 80 years old and one of them older than 60, combined with three accidents 

during nighttime. This finding prompted for an exploration of the surroundings of the crossing, where it 

was noted that the area has a high number of assisted living facilities (Figure 3.18), explaining the 

predominance of older drivers in accidents at the crossing. Neither of these trends could have been 



observed by a macro model, and results from this simple micro approach enhance the information 

available to inspectors before site visits are conducted. 
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Figure 3.17. Tree diagram for accidents at Crossing 386411X 

 

 

Figure 3.18. Assisted Living Facilities around Crossing 386411X 



In summary, based on the previous analysis, the locations with more than four accidents from 2003 

to 2012 can be grouped in two main types of crossings, as shown in Figures 3.19 and 3.20: 1) crossings 

with a nearby intersection with a short distance between the stop bar and the tracks, and 2) crossings 

with a small crossing angle (smaller than 30 degrees).  

Even though there is no certainty about the causes of the accidents at these locations, the micro 

analysis has provided pointers to trends that could be further investigated to analyze the risk at these 

crossings. These trends would not have been flagged by a macro analysis, and may help assessing a 

more accurate measure of risk at these locations.  

    

Figure 3.19. Type 1 Crossing with High Accident Frequency 

  

Figure 3.20. Type 2 Crossing with high Accident Frequency 

 

3.4. Micro Analysis for Crossings with Four Accidents 
 

The micro analysis was also conducted for the eleven locations with four accidents between 2003 

and 2012. With fewer accidents, trends were not always clear to observe in the sketch or the tree 



structure, however two of the cases with the most apparent trends are shown in this section for 

illustration purposes:  

1. Crossing 328516E, located on the east side of Decatur, IL, near the intersection of N Brush College 

and East Faries Parkway, has an AADT of 11500 and an average of only eight trans per day moving 

at slow speeds. This crossing is equipped with cantilever flashing lights and had no gates. As 

shown in Figure 3.21 all accidents happened at low vehicle and train speeds, with vehicles 

traveling southbound and trains traveling eastbound. This trend can be clearly seen in the tree 

structure in Figure 3.22. The geometry of the crossing does not pose difficulties in terms of the 

approaching angle, and the visibility seems clear of obstacles.  

    

Figure 3.21.  Image and Sketch of Crossing 328516E 
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Figure 3.22. Tree diagram for accidents at Crossing 328516E 

2. Crossing 608310D is located in Morgan Park, IL, just south of Chicago, near the intersection of 

115th St and Paulina St. The roadway has an AADT of 6200 and an average of 66 daily trains. This 

crossing is equipped with gates and it is near a signalized intersection. In all four accidents, 

vehicles went around or through the gate and vehicles and trains were traveling in the same 

direction. In three accidents, vehicles and trains were traveling westbound, and in the remaining 

accident both train and vehicle were traveling eastbound, as it can be seen in Figures 3.23 and 

3.24. Visibility can be an issue at this location, particularly for westbound vehicles, given the 

structure on the right hand side of approaching vehicles. Westbound trains will not be visible to 

the drivers until they are very close to the crossing. It is also noted that train speeds were high, 

further increasing the difficulty to see trains before arriving to the crossing, and in all cases the 

train struck the vehicles, making this scenario a likely one. 

 



    

Figure 3.23.  Image and Sketch of Crossing 608310D 
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Figure 3.24. Tree diagram for accidents at Crossing 608310D 



3.5. Applications of Micro Analysis  
 

The implementation of the proposed micro analysis for high accident locations was described and 

exemplified in this section above. Trends can be easily visualized in the sketch and the tree diagram, 

helping the analyst in determining potential contributing factors in the accidents in ways that a macro 

model would not be able to do so. However, results from the micro analysis can be put to further use by 

incorporating such results into a macro model and the risk assessment for the crossings.  

The addition of results from the micro analysis into a macro model can be thought for a corridor 

analysis or an analysis of a region, where variables in the most significant trends from the micro analysis 

can be added to the macro model to improve predictions. Also, a different method could add correction 

factors developed based on the micro analysis to adjust the predictions of an already existing macro 

model.  

In addition, the micro analysis itself is a tool that can be used by diagnostic teams prior to field visits, 

enhancing their preparation and knowledge, potentially improving results of such visits.  

 

4. Conclusions and Future Work 
 

This report presented the exploration of methods to analyze accidents at grade crossing at both 

macro and micro scales. The macro models introduced here showed potential to improve the current 

state-of-practice using the US DOT accident prediction formula, opening a window for further study and 

the development of final models for prediction. The zero-inflated negative binomial model had the best 

fit to the data and its predictions were more accurate than those from the US DOT formula. In an 

example using data from Illinois, the overall accident frequency predicted by the ZINB model ranged 

between 1 and 1.6 times the observed frequency, whereas the US DOT formula found values between 

1.8 and 3.6 times the observed accidents.  

In terms of the micro analysis, a proposed methodology aiming at the analysis of single crossings 

with high accident frequency was presented. The micro analysis showed that it may be useful to identify 

trends and contributing factors not considered in macro models, providing information that can be 

incorporated and used for macro analysis and for diagnostic teams prior to site visits. The procedure to 



conduct the micro analysis is simple and it uses information from individual accidents. The micro 

analysis is still in development and additional features to improve it include a dynamic tree diagram, a 

probabilistic analysis of the accident frequency, and the extension of the methodology to corridor and 

regional analysis.  
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