

Final Report

June 2016

SCHEDULING WORK ZONES IN MULTI-MODAL NETWORKS

Phase I: Scheduling Work Zones in Transportation Service Networks

SOLARIS Consortium, Tier 1 University Transportation Center

Center for Advanced Transportation Education and Research

Department of Civil and Environmental Engineering

University of Nevada, Reno

Reno, NV 89557

Pitu B. Mirchandani, Principal Investigator.

Dening Peng

School of Computing, Informatics, and Decision Systems Engineering

Arizona State University

Tempe, AZ 85287

i DISCLAIMER

DISCLAIMER:

The contents of this report reflect the views of the authors, who are responsible for the facts and

accuracy of the information presented herein. This document is disseminated under the

sponsorship of the U.S. Department of Transportation’s University Transportation Centers

Program, in the interest of information exchange. The U.S. Government assumes no liability for

the contents or use thereof.

ii EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

The purpose of this project is to study the optimal scheduling of work zones so that they have minimum

negative impact (e.g., travel delay, gas consumption, accidents, etc.) on transport service vehicle flows. In

this project, a mixed integer linear programming model is developed to schedule work zones in

transportation service (i.e., trucking service) networks. The model schedules lane closures of links that need

maintenance in a transportation network. When some lanes of a link are closed, the available capacity of

that link is reduced. In the assumed scenarios, based on the available capacities on the links, given origin-

destination (OD) flow demands are provided system optimal routing through the network to achieve total

minimum flow cost for all the OD pairs. The link flow cost function is piece-wise linear such that regular

flow cost is incurred for all the units flowing through the link at free flow while extra congestion cost is

incurred for the units exceeding the link’s nominal capacity. The goal is to schedule the work zones, that

is, the corresponding lane closures, so that all maintenance work can be completed before a given

completion date while the total flow cost over the project period is minimized. An innovative randomized

fix-and-optimize (RFO) heuristic is developed to solve the problem efficiently. Various networks are tested

for the performance comparison between CPLEX and RFO. It is concluded that the RFO heuristic is able

to obtain optimal or near-optimal solutions with much less time than CPLEX. In Phase 2 of the project

planned in the next period, Scheduling Work Zones in Commuter Transportation Networks,

commuters from their origins to their destinations are included in the work zone scheduling

problem.

Keywords: Transportation Service Network, Work Zone Scheduling; Mixed Integer Linear Programming

(MIP); Randomized Fix-and-optimize Heuristic (RFO)

Acknowledgements: The research reported was partially supported by SOLARIS, a U.S. Department of

Transportation’s Tier 1 University Transportation Center led by the University of Nevada at Reno,

and partially by the Arizona State University, Tempe, Arizona.

Pitu B. Mirchandani and Dening Peng

iii TABLE OF CONTENTS

TABLE OF CONTENTS

Disclaimer…………………………………………………………………………………………………i

Executive Summary……………………………………………………………………………………...ii

List of Tables………………………………………………………………………………………………v

List of Figures……………………………………………………………………………………………..vi

1. Introduction .. iii

2. Related Literature Review .. 1

3. Work Zone Scheduling in Transportation Service Networks (WZS-TS) Model 4

3.1 Piecewise Linear Cost Structure .. 4

3.2 Model Formulation... 5

3.3 Computational Implementation .. 10

4. Solution Approach .. 10

4.1 Randomized Fix-and-Optimize (RFO) Heuristic ... 10

4.2 Parameters Affecting the Performance of RFO.. 13

4.3 Numerical Results .. 15

5. Conclusion .. 24

Reference .. 25

Appendix ... 27

Radial Network Link Information ... 27

Radial Network OD Demand Information .. 27

Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Radial Network 28

Grid Network Link Information .. 28

Grid Network OD Demand Information ... 29

Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Grid Network 30

Sioux-Falls Network Link Information ... 30

Sioux-Falls Network OD Demand Information .. 32

Pitu B. Mirchandani and Dening Peng

iv TABLE OF CONTENTS

TABLE OF CONTENTS(CONT'D)

Appendix

Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Sioux-Falls Network with 10%

of Links to Repair .. 35

Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Sioux-Falls Network with 20%

of Links to Repair .. 36

C++ Code of the Randomized Fix-and-Optimize Heuristic .. 36

Pitu B. Mirchandani and Dening Peng

v LIST OF TABLES

LIST OF TABLES

TABLE 1: Notations………………………………………………………………………………………………......9

TABLE 2: RFO VS CPLEX in Radial Network……………………………………………………………………...19

TABLE 3: RFO VS CPLEX in Grid Network………………………………...……………………………………...21

TABLE 4: RFO VS CPLEX in Sioux Falls Network with 10% of Links to Repair………………………………24

TABLE 5: RFO VS CPLEX in Sioux Falls Network with 20% of Links to Repair………………………………25

Pitu B. Mirchandani and Dening Peng

vi LIST OF FIGURES

LIST OF FIGURES

FIGURE 1: Three-Lane Link Flow Cost Curve……………………………………………………………………6

FIGURE 2: Work Zone Scheduling in Transportation Service Networks (WZS-TS) Model……………..…10

FIGURE 3: WZS-TS Model with a Feasible Schedule…………………………………………………………..11

FIGURE 4: Schedule Comparison…………………………………………………………………………………13

FIGURE 5: Radial Network…………………………………………………………………………………….…..18

FIGURE 6: Grid Network…………………………………………………………………………………………..21

FIGURE 7: Sioux Falls Network…………………………………………………………………………………...23

Pitu B. Mirchandani and Dening Peng

1 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

1. Introduction

The repair and maintenance of road network results in “work zones”, where some lane segments of a

link are out of commission for a predicted period of time until the work is completed. Temporary link

capacity reductions caused by lane closure can result in significant delays of commuters and transport

services. Americans lose 3.7 billion hours and 2.3 billion gallons of fuel every year sitting in traffic jams.

Work zones are estimated to cause about 10% of overall congestion which translates into annual fuel loss

of over 700 million US dollars (FHWA, 2013).

Road construction companies and transportation management agencies do a reasonable job of

coordinating work zone activities after the work zone is initiated through appropriate scheduling and staging

of day-to-day and week-to-week operations so that the overall cost is contained, while safety and traffic

congestion is not overly affected during peak periods. While a single, or few widely scattered concurrent

work zones, will not have a large effect upon travel patterns, several work zones that are spatially and

temporally close together, and which affect large flows of traffic, may result in traffic patterns that are both

costly to the travelers and vehicle-based services, resulting in significant negative environmental and safety

consequences. In 2010, there were 87,606 crashes in work zones and 526 of these crashes were fatal (FHWA,

2013). While large trucks accounted for only 4% of all registered vehicles in the United States, 27% of

work zone fatal crashes involved at least one large truck (FHWA, 2013). Through proper scheduling of

work zones with respect to the spatial locations in the network and the time periods of the work zones, a

reduction of negative impacts is expected.

In this project, we consider a network that provides transport logistics services (e.g., freight and parcel

delivery) from origins to destinations, where the overall objective is to minimize system transportation costs.

The traveling cost of a link is treated as the cost in general sense, which can be interpreted as combinations

or functions of travel time, monetary cost, and road unsafety. Origin-Destination (OD) flows of vehicles

are reactive to the network topology changes resulted from temporary lane closures, which means the routes

chosen by each vehicle could change in response to work zone activities to minimize their flow costs. Since

this project focuses particularly on trucks and other delivery vehicles, we use the term “trucks” instead of

the generic “vehicles” term. The model developed finds the optimal lane closure schedule that has the

minimum negative impact (e.g. gas usage, congestion) on the trucks’ flows in the network.

2. Related Literature Review

Work zone planning is a challenging task since there are multiple parties involved and more than many

factors need to be taken into consideration. Bayraktar and Hastak (2009) reviewed the factors impacting

the success of work zone projects. They modeled the relationships between the goals of the project

Pitu B. Mirchandani and Dening Peng

2 Related Literature Review

stakeholders and public satisfaction of the project using Bayesian belief networks. The model was aimed

to assist highway agencies in developing suitable contracting strategies considering 52 interrelated factors

impacting the success of work zone projects, which were grouped into four categories (contract

characteristics, motorist issues, public issues, and resource issues). Despite the comprehensive list of factors

taken into account, the model can only help prepare bids and not help to actually schedule the work zones.

Most of the literature related to the problem of this project can be grouped into three categories. The

first category includes research that investigates the long term network rehabilitation planning problem with

the objective of maintaining the roads in good condition with least cost in different aspects. For example,

Chu and Chen (2012) developed a bi-level hybrid dynamic model in which the upper level problem decides

the optimal threshold for each road that triggers maintenance action and the lower level problem solves the

user equilibrium problem. These two levels of problems are connected by the road deterioration function

which models the effects of traffic loads on a road and the impacts of road roughness on users’ traveling

cost. This type of research considers network-wide maintenance planning over a relatively long period of

time (a year or longer). By assuming the project period is much shorter than the planning horizon, they

omitted the impact of temporary link capacity reductions on traffic flow caused by the maintenance work.

However, this assumption is not always reasonable especially for the maintenance work like resurfacing

sets of links which would take months or longer. When the length of project period is comparable to the

planning horizon, it is necessary to consider the effect of temporary link capacity reductions and to schedule

the work zones in the way that minimizes the negative impacts on traffic flows.

Research in the second category focuses on developing operational strategies for work zone scheduling

on a highway segment or a local arterial. Some research in this category has studied the short term work

zone scheduling with time horizons less than a day. This research focuses on optimizing the workzone

planning of a single link but does not consider the impact of diverting traffic and possible resulted from

workzones to other links that are connected to or close to the focusing link; see e.g., works of Meng and

Weng (2013), Tang and Chien (2008), and Jiang and Adeli (2003). However, in reality, as long as traffic

congestion exists and there are alternative routes available, some portion of the traffic will divert to other

routes which will affect the traffic on those alternative routes. Chien and Tang (2014) proposed a genetic

algorithm to optimize the work zone length and start time in a day of the maintenance work on a highway

stretch. The optimal schedule minimizes the total cost to the agencies conducting the maintenance plus the

cost to the road users. Even though the temporary link capacity reductions, and resulting increased road

user cost, and possible traffic diversion, were modeled, only one alternative route for the diverted traffic

was considered. Often there are more than two lanes for some segments of highway, but Chien and Tang

(2014) did not explicitly explore different lane closing scenarios. Schroeder and Rouphail (2010) compared

different lane closure scenarios and discussed the operational impacts of freeway work zones on traffic.

Pitu B. Mirchandani and Dening Peng

3 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

Their approach can only compare every limited number of scenarios since each scenario requires extensive

analysis. Summarizing, the research in this category focuses on scheduling work zones on single links and

has very limited or no consideration on the impact of traffic diversion resulting from multiple link capacity

reductions.

The third category consists research that studied the scheduling of network expansion projects. These

research specifically considered the flow pattern changes caused by the increase of link capacities or the

addition of new links over the planning time horizon. This research topic is closely related to the network

design problem, which selects among a set of candidate links to be added to a network with budget

constraints, so as to achieve lowest total cost at users’ equilibrium state or system optimum. It is an

extension of the network design problem since the addition of the chosen links need to be scheduled, and

possible traffic flow pattern changes need to be evaluated after the addition of each link. Fontaine and

Minner (2014) developed a mixed-integer programming model to select and schedule network expansion

projects with minimum total project cost and system optimum flow cost, and solved it using Bender’s

decomposition. Bagloee and Asadi (2015) presumed the set of network expansion projects were given and

only one of these projects could be worked on at a time, and studied the network expansion scheduling

problem as a traveling sales man problem to determine the optimal sequence of the expansion projects. The

inter-dependency of the expansion projects was evaluated using the artificial neural network model, so that

the “cost” of “moving” from one expansion project to another could be computed. Gao et al. (2011)

combined the problems of road maintenance and road expansion planning, and developed a mixed-integer,

nonlinear, bi-level model that scheduled the repair or expansion of every road with budget constraints. In

the model proposed, the road capacity increase after maintenance and expansion were considered, and the

road degradation process was modeled. General Bender’s decomposition method was applied to obtain the

optimal maintenance and expansion schedule that gave the minimum total users’ cost at equilibrium state.

Although literature reviewed in this category modeled the capacity increase after the maintenance or

expansion, they did not consider the link capacity reductions during the time period when these activities

were being performed.

Only a handful of works considered the impact on traffic over the network due to multiple work zones

and they comprised the fourth category. Orabi and El-Rayes (2012) developed a complex model with three

genetic algorithm based modules – scheduling, network performance, and user savings, to select and

prioritize rehabilitation projects, subject to budget constraints. Lee (2009) proposed a work zone scheduling

model which considered the routing-changing behavior of road users. The schedule was optimized with an

ant colony algorithm, where the users’ equilibrium under each schedule scenario was obtained through

simulations using VISSIM software. Hosseininasab and Shetab-Boushehri (2015) studied the work zone

scheduling problem as a time-dependent network design problem. They formulated the problem as bi-level

Pitu B. Mirchandani and Dening Peng

4 Work Zone Scheduling in Transportation Service Networks (WZS-TS) Model

programming models, and used genetic algorithm to obtain the link maintenance schedule that gave the

minimum total traveling cost at equilibria over the planning time horizon. All the three of Orabi and El-

Rayes (2012), Lee (2009) and Hosseininasab and Shetab-Boushehri (2015) did not explicitly discuss partial

link capacity reductions resulting from work zones. Zheng et al. (2014) assumed the link capacity would

reduce by 50% in their decision model developed. However, a link might have more than two lanes and it

is not always true or optimal to close half of the lanes at a time for maintenance. Ma et al. (2004) developed

a hybrid simulation methodology with genetic algorithm to schedule multiple lane closures with minimum

total traffic delay of the network. However, the flexible lane-level maintenance scheduling required high

computation effort for the solution approach proposed in Ma et al. (2004). For a problem instance of

scheduling the maintenance of 20 lanes, it took more than 120 hours.

In this project, a mixed integer linear programming model is developed to schedule work zones in the

perspective of networks that are used by trucks fulfilling transportation services. A randomized fix-and-

optimize (RFO) heuristic is developed to solve the problem efficiently. In Section 3 provides a complete

description of the work zone scheduling model for transportation service networks (WZS-TS) and its

computational implementation. Section 4 describes the details of the heuristic developed and illustrates its

performance by comparing it with an exact CPLEX-based approach on various test cases. Section 5

provides conclusions and gives some directions of possible future research.

3. Work Zone Scheduling in Transportation Service Networks (WZS-TS) Model

3.1 Piecewise Linear Cost Structure

In transportation service networks, linear flow cost structure is commonly used for minimum flow cost

problems, where we set the cost of travelling on a link linear with respect to the total flow on that link when

the total flow is smaller than or equal to the available nominal capacity of the link. In applications where

the demand on a link is more than the available capacity, the excess flow is either detoured or given a very

high cost for using the link thereby softening the hard capacity constraint. In this project we will use the

latter approach by modeling the cost as a piece-wise linear cost to approximate the traffic condition

aggravation effects in transportation networks. With the piece-wise linear cost functions the work zone

scheduling model, developed later, can be solved by commercial solvers like CPLEX, the performance of

which can be used to compare with the new heuristic developed later in the project.

In the workzone scheduling model, it is assumed that there are Origin-Destination (OD) flow demands

of trucks every time period (e.g., peak period of a day). Each truck can choose its own route to minimize

its travel cost and is treated as a unit of flow. When a link is under maintenance, one or more lanes are

closed, inducing the temporary link capacity reductions, and thus the link cannot fully serve the flows

Pitu B. Mirchandani and Dening Peng

5 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

satisfactorily. That is likely to cause the current flow on the link to exceed the available nominal capacity,

incurring the expensive extra flow cost. Suppose a link has three lanes and all three lanes have the same

“flow capacity” 𝑢, Figure 1 below illustrates the relation between the flow units and flow cost for different

lane closure situations:

FIGURE 1: Three-Lane Link Flow Cost Curve.

When two lanes are closed for maintenance, the available capacity of the link is 𝑢. If the units of flows

on the link is more than 𝑢, then the extra flow cost will be incurred. This is why the slope of the cost curve

is much steeper when the flow units is more than 𝑢 for the case of two-lane closure. Same cost curve pattern

can be seen in the cases of no-lane closure and one-lane closure. When some of the lanes in a link is closed

for maintenance, some of the flow that is originally on this link could divert to other paths and links to reach

the destination with lower total, that is, the network flows are reactive to the maintenance schedules.

3.2 Model Formulation

The objective of the model is to schedule the lane closures so that all links that need maintenance are

repaired before a given completion date for the whole network, while the total flow cost for all the OD pairs,

which includes regular flow cost and extra congestion flow cost, is minimized over the project period.

Denote 𝑐𝑖 as the regular unit flow cost of link 𝑖, 𝑦𝑖𝑘𝑡 as the flow units of OD pair 𝑘 that flow through link 𝑖

on day 𝑡, and 𝑧𝑖𝑡 as the difference between flow units of all the OD pairs that flow through link 𝑖 and the

available capacity of link 𝑖 on day 𝑡 , the objective function (1) is formulated as 𝑚𝑖𝑛 ∑ {∑ [𝑐𝑖 ∗𝑡=𝑇
𝑡=1𝑖∈𝐸

(∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷) + 𝑧𝑖𝑡ρc𝑖]}, where 𝐸 is the set of links, 𝑂𝐷 is the set of OD demand, and 𝑇 is the common

completion date of all the maintenance work. 𝜌 is the congestion flow cost multiplier which makes the extra

unit flow cost 𝜌𝑐𝑖 much larger than the regular unit flow cost 𝑐𝑖. Note that 𝑧𝑖𝑡 is non-negative in the sense

No Lane Closed

Flow Units on Link

Flow Cost

One Lane Closed

Two Lanes Closed

𝑢 2𝑢 3𝑢

Pitu B. Mirchandani and Dening Peng

6 Work Zone Scheduling in Transportation Service Networks (WZS-TS) Model

that it will have positive value only when the total flow units on link 𝑖 exceed the available capacity and it

will be zero otherwise.

Binary variables 𝑠𝑖𝑚𝑡 are introduced to indicate whether the repair of the 𝑚𝑡ℎ lane of link 𝑖 starts on

day 𝑡, and 𝑠𝑖𝑚𝑡 = 1 if it is. The WZS-TS model assumes once a lane is closed for repair, it cannot open to

serve the flows until its repair is completed. Hence we have the constraints (2): ∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 1 for ∀𝑖 ∈ 𝑅

and ∀𝑚 ∈ [1, 𝑛𝑖], where 𝑅 is the set of links that need repair and 𝑛𝑖 is the number of lanes in link 𝑖. This

set of constraints force every lane of all the links that need repair to have one and only one repair start date.

To indicate whether 𝑚𝑡ℎ lane of link 𝑖 is closed for maintenance on day 𝑡, binary variables 𝑥𝑖𝑚𝑡 are

added to the model. 𝑥𝑖𝑚𝑡 equal to 1 if the 𝑚𝑡ℎ lane of link 𝑖 is closed for maintenance on day 𝑡. Let 𝑝𝑖 be

the number of days needed to repair a lane of link 𝑖, we formulate the constraints (3) ∑ 𝑥𝑖𝑚𝑡 = 𝑝𝑖
𝑡=𝑇
𝑡=1

for ∀𝑖 ∈ 𝑅 and ∀𝑚 ∈ [1, 𝑛𝑖] to ensure the repair on all the links be completed by the common completion

date 𝑇. Since each lane of the links needing maintenance have one and only one repair start date and the

number of days needed to repair a lane is given, whether a lane is closed or not on a day is determined once

the repair start date of that lane is determined. And thus, we develop the set of constraints (4) 𝑥𝑖𝑚𝑡 =

∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡
𝑎=𝑚𝑎𝑥(𝑡−𝑝𝑖+1,1) for ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ 𝑇 and ∀𝑚 ∈ [1, 𝑛𝑖] to make sure that once a lane is closed for

repair, it will not open to serve the flows until the repair work on this lane is finished and that it will be

open on other dates. Constraints (5) ∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 0 for ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] and (6) ∑ 𝑥𝑖𝑚𝑡 = 0𝑡=𝑇

𝑡=1

for ∀𝑖 ∉ 𝑅 and ∀𝑚 ∈ [1, 𝑛𝑖] are added to the model so that all the lanes of links that do not need repair will

not have maintenance start date and will be open to serve the flows throughout the project period.

For each OD pair on each day, flow conservation constraints, consisting of three groups, are needed.

The first group of constraints makes sure the total incoming flow units minus the total outgoing flow units

equal to the OD demand for the origin node of the OD pair. Let 𝐷𝑘 be the demand of OD pair 𝑘, the first

part is formulated as (7) 𝐷𝑘 = ∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

−,𝑗∈𝐸}
 for ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇] ,

where 𝑂𝐷𝐾
− is the origin node of OD pair 𝑘, 𝐸𝑖

− is the head node of link 𝑖 and 𝐸𝑗
+ is the tail node of link 𝑗.

The second group ensures the total outgoing flow units minus the total incoming flow units equal to the

demand of OD pair 𝑘 for its destination node and is formulated as (8) 𝐷𝑘 = ∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

+,𝑖∈𝐸} −

∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

+,𝑗∈𝐸} for ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇], where 𝑂𝐷𝐾
+ is the destination node of OD pair 𝑘, 𝐸𝑖

+ is the

tail node of link 𝑖 and 𝐸𝑗
− is the head node of link 𝑗. For the rest of the nodes, other than origin and

destination nodes of OD pair 𝑘, the total incoming flows on the node from the origin of OD pair 𝑘 should

equal to the total outgoing flows from the node to the destination of the OD pair 𝑘. This is the third group

Pitu B. Mirchandani and Dening Peng

7 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

of the flow conservation constraints and it is formulated as (9) ∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸} for

∀𝑙 ∈ 𝑁, ∀𝑡 ∈ [1, 𝑇], ∀𝑘 ∈ {𝑘: 𝑂𝐷𝑘
− ≠ 𝑙}⋂{𝑘: 𝑂𝐷𝑘

+ ≠ 𝑙}, where 𝑁 is the set of nodes in the network.

In addition, binary variables 𝑣𝑖𝑚𝑡 are introduced to calculate the increased lane capacities and 𝑣𝑖𝑚𝑡

equals to 1 if lane 𝑚 of link 𝑖 is repaired before day 𝑡, since it is obvious that when a segment of road is

repaired, the road condition should be improved and the capacity should increase. Constraints (10) 𝑣𝑖𝑚𝑡 =

∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡−𝑝𝑖
𝑎=1 , for ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] and ∀𝑡 ∈ [𝑝𝑖 + 1, 𝑇] determine the values of 𝑣𝑖𝑚𝑡 by values of

𝑠𝑖𝑚𝑡. In the constraints, the date ranges from 𝑝𝑖 + 1 to 𝑇 since the lane will be repaired and open to serve

the flows on day 𝑝𝑖 + 1 the earliest, because even if the maintenance starts on day 1, it would take 𝑝𝑖 days

to complete the repair work for this lane. Constraints (11) 𝑣𝑖𝑚𝑡 = 0, for ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] and ∀𝑡 ∈

[1, 𝑝𝑖] make sure each lane of the links that need maintenance stay in the status of not repaired in the first

𝑝𝑖 days. And constraints (12) 𝑣𝑖𝑚𝑡 = 0, for ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] and ∀𝑡 ∈ [1, 𝑇] force lanes of links that

do not need repair stay in the status of not repaired throughout the project period.

Let 𝜃 be the percentage increase in lane capacity after the lane is repaired, and let 𝑢𝑖 be the capacity of

a lane of link 𝑖, the available capacity of link 𝑖 on day 𝑡 is (𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 + ∑ 𝜃𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1)𝑢𝑖. Hence the

values of 𝑧𝑖𝑡 are determined by constraints (13) ∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 − (𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 + ∑ 𝜃𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1)𝑢𝑖 ≤ 𝑧𝑖𝑡

and 𝑧𝑖𝑡 ≥ 0 for ∀𝑖 ∈ 𝐸 and ∀𝑡 ∈ [1, 𝑇], where ∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 are the total flow units from all OD pairs on link

𝑖 on day 𝑡.

Because of the introduction of 𝑧𝑖𝑡, flows can exceed the available capacity. Hence it is needed to make

sure there won’t be flows on links with all lanes closed for maintenance, that is, entirely closed links cannot

serve any flow. For this reason, the set of variables 𝑤𝑖𝑡 are added into the model, the values of which equal

to 1 if all the lanes of link 𝑖 are closed on day 𝑡. Constraints (14) 1 − 𝑤𝑖𝑡 ≤ 𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 for ∀𝑖 ∈ 𝑅 and

∀𝑡 ∈ [1, 𝑇] make sure 𝑤𝑖𝑡 equal to 1 when all the lanes of link 𝑖 are closed on day 𝑡, and constraints (15)

𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 ≤ 𝑛𝑖(1 − 𝑤𝑖𝑡) for ∀𝑖 ∈ 𝑅 and ∀𝑡 ∈ [1, 𝑇] force 𝑤𝑖𝑡 to be 0 if at least one lane of link 𝑖

is open on day 𝑡. Finally, constraints (16) ∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 ≤ ∑ 𝐷𝑘𝑘∈𝑂𝐷 (1 − 𝑤𝑖𝑡) for ∀𝑖 ∈ 𝑅 and ∀𝑡 ∈ [1, 𝑇]

prevent links with all lanes closed from serving flows.

The sets, parameters, and variables mentioned in the model description above are summarized in Table

1 below:

TABLE 1: Notations

Term Definition

Sets

𝑵 Node set of the network

𝑬 The set of existing links in the network

Pitu B. Mirchandani and Dening Peng

8 Work Zone Scheduling in Transportation Service Networks (WZS-TS) Model

𝑹 The set of existing links that need to be repaired in the network, 𝑅 ⊆ 𝐸

𝑶𝑫 The set of Origin-Destination pairs of flows

Parameters

𝑻 Completion date for all the maintenance work (the earliest start date of a work zone is Day 1)

𝒏𝒊 Number of lanes of link 𝑖

𝒖𝒊 Capacity of a lane of link 𝑖

𝒄𝒊 The regular flow cost incurred by one-unit flow on link 𝑖 per day

𝒑𝒊 The number of days needed to repair a lane of link 𝑖

𝝆 Extra flow cost multiplier, 𝜌𝑐𝑖 is the extra flow cost incurred by the available link capacity being one unit less than

the flow demand on link 𝑖

𝜽 Percentage of lane capacity increased after maintenance

𝑫𝒌 Flow demand of OD pair 𝑘

Variables

𝒔𝒊𝒎𝒕 Binary variable indicating whether to repair on the 𝑚𝑡ℎ lane of link 𝑖 starts on day 𝑡. If repair work starts on day 𝑡,

𝑠𝑖𝑚𝑡 = 1; otherwise, 𝑠𝑖𝑚𝑡 = 0

𝒙𝒊𝒎𝒕 Binary variable indicating whether the 𝑚𝑡ℎ lane of link 𝑖 is closed for maintenance on day 𝑡, if it is closed, 𝑥𝑖𝑚𝑡 =

1; otherwise 𝑥𝑖𝑚𝑡 = 0

𝒚𝒊𝒌𝒕 The flow units incurred by the Origin-Destination (OD) flow of OD pair 𝑘 on link 𝑖 on day 𝑡

𝒛𝒊𝒕 Flow units on link 𝑖 exceeding the available capacity of the link on day 𝑡. If the available capacity of link 𝑖 on day 𝑡

is less than the total flow units on link 𝑖, 𝑧𝑖𝑡 equals to the difference between the available capacity and total

flow on link 𝑖; otherwise 𝑧𝑖𝑡 = 0

𝒘𝒊𝒕
 Binary variable indicating whether all the lanes of link 𝑖 on day 𝑡 are closed, if it is, 𝑤𝑖𝑡 = 1; otherwise 𝑤𝑖𝑡 = 0

𝒗𝒊𝒎𝒕
 Binary variable indicating whether the 𝑚𝑡ℎ lane of link 𝑖 is repaired before day 𝑡, if it is, 𝑣𝑖𝑚𝑡 = 1, otherwise 0; for

all the links that don't need maintenance, 𝑣𝑖𝑚𝑡 = 0 all the time

The complete model of work zone scheduling in transportation service networks (WZS-TS) is

presented in Figure 2, where the number of each expression matches the bracketed numbers in the model

description earlier in this subsection.

𝑚𝑖𝑛 ∑ {∑ [𝑐𝑖 ∗ (∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷) + 𝑧𝑖𝑡ρc𝑖]𝑡=𝑇
𝑡=1 }𝑖∈𝐸 (1)

∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 1, ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] (2)

∑ 𝑥𝑖𝑚𝑡 = 𝑝𝑖
𝑡=𝑇
𝑡=1 , ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] (3)

𝑥𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡
𝑎=𝑚𝑎𝑥(𝑡−𝑝𝑖+1,1) , ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ [1, 𝑛𝑖] (4)

∑ 𝑠𝑖𝑚𝑡
𝑡=𝑇
𝑡=1 = 0, ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] (5)

∑ 𝑥𝑖𝑚𝑡 = 0𝑡=𝑇
𝑡=1 , ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖] (6)

𝐷𝑘 = ∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

−,𝑗∈𝐸} , ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇] (7)

𝐷𝑘 = ∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

+,𝑗∈𝐸} , ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇] (8)

∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸} , ∀𝑙 ∈ 𝑁, ∀𝑡 ∈ [1, 𝑇], ∀𝑘 ∈ {𝑘: 𝑂𝐷𝑘
− ≠ 𝑙}⋂{𝑘: 𝑂𝐷𝑘

+ ≠ 𝑙} (9)

Pitu B. Mirchandani and Dening Peng

9 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

𝑣𝑖𝑚𝑡 = ∑ 𝑠𝑖𝑚𝑎
𝑎=𝑡−𝑝𝑖
𝑎=1 , ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [𝑝𝑖 + 1, 𝑇] (10)

𝑣𝑖𝑚𝑡 = 0, ∀𝑖 ∈ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑝𝑖] (11)

𝑣𝑖𝑚𝑡 = 0, ∀𝑖 ∉ 𝑅, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑇] (12)

∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 − (𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 + ∑ 𝜃𝑣𝑖𝑚𝑡

𝑛𝑖
𝑚=1)𝑢𝑖 ≤ 𝑧𝑖𝑡, ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇] (13)

1 − 𝑤𝑖𝑡 ≤ 𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 , ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ [1, 𝑇] (14)

 𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑛𝑖
𝑚=1 ≤ 𝑛𝑖(1 − 𝑤𝑖𝑡), ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ [1, 𝑇] (15)

∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 ≤ ∑ 𝐷𝑘𝑘∈𝑂𝐷 (1 − 𝑤𝑖𝑡), ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ [1, 𝑇] (16)

𝑤𝑖𝑡 = 0, ∀𝑖 ∉ 𝑅, ∀𝑡 ∈ [1, 𝑇] (17)

𝑤𝑖𝑡 ∈ {0, 1}, ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇] (18)

𝑠𝑖𝑚𝑡, 𝑥𝑖𝑚𝑡, 𝑣𝑖𝑚𝑡 ∈ {0, 1}, ∀𝑖 ∈ 𝐸, ∀𝑚 ∈ [1, 𝑛𝑖], ∀𝑡 ∈ [1, 𝑇] (19)

𝑧𝑖𝑡 ≥ 0, ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇] (20)

𝑦𝑖𝑘𝑡 ≥ 0, ∀𝑖 ∈ 𝐸, ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇] (21)

FIGURE 2: Work Zone Scheduling in Transportation Service Networks (WZS-TS) Model.

The WZS-TS model possesses the features of both scheduling models and multi-commodity flows

models. For each feasible schedule on each day, there is a multi-commodity flows problem over the network

based on links’ available capacities after the scheduled lane closures. As shown in Figure 3, with lane

closure schedules fixed, variables 𝑥𝑖𝑚𝑡, 𝑣𝑖𝑚𝑡, and 𝑤𝑖𝑡 become parameters 𝑥𝑖𝑚𝑡
𝑜 , 𝑣𝑖𝑚𝑡

𝑜 , and 𝑤𝑖𝑡
𝑜 that define

the links’ available capacities for each day, which is calculated as (𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑜𝑛𝑖

𝑚=1 + ∑ 𝜃𝑣𝑖𝑚𝑡
𝑜𝑛𝑖

𝑚=1)𝑢𝑖 in

Constraint (13’). And the remaining problem is a multi-commodity flows problem for each day over the

planning time horizon. In the multi-commodity flows subproblem of WZS-TS, the available link capacity

can be exceeded with a very high extra flow cost. This is different from the traditional multi-commodity

flows problem, where link capacity constraints are hard constraints and the total amount of flows on the

link has to be less than or equal to the link’s capacity.

𝑚𝑖𝑛 ∑ {∑ [𝑐𝑖 ∗ (∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷) + 𝑧𝑖𝑡ρc𝑖]𝑡=𝑇
𝑡=1 }𝑖∈𝐸 (1)

𝐷𝑘 = ∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑂𝐷𝑘

−,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗
+=𝑂𝐷𝑘

−,𝑗∈𝐸} , ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇] (7’)

𝐷𝑘 = ∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
+=𝑂𝐷𝑘

+,𝑖∈𝐸} − ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗
−=𝑂𝐷𝑘

+,𝑗∈𝐸} , ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇] (8’)

∑ 𝑦𝑖𝑘𝑡{𝑖:𝐸𝑖
−=𝑙,𝑖∈𝐸} = ∑ 𝑦𝑗𝑘𝑡{𝑗:𝐸𝑗

+=𝑙,𝑗∈𝐸} , ∀𝑙 ∈ 𝑁, ∀𝑡 ∈ [1, 𝑇], ∀𝑘 ∈ {𝑘: 𝑂𝐷𝑘
− ≠ 𝑙}⋂{𝑘: 𝑂𝐷𝑘

+ ≠ 𝑙} (9’)

∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 − (𝑛𝑖 − ∑ 𝑥𝑖𝑚𝑡
𝑜𝑛𝑖

𝑚=1 + ∑ 𝜃𝑣𝑖𝑚𝑡
𝑜𝑛𝑖

𝑚=1)𝑢𝑖 ≤ 𝑧𝑖𝑡, ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇] (13’)

∑ 𝑦𝑖𝑘𝑡𝑘∈𝑂𝐷 ≤ ∑ 𝐷𝑘𝑘∈𝑂𝐷 (1 − 𝑤𝑖𝑡
𝑜), ∀𝑖 ∈ 𝑅, ∀𝑡 ∈ [1, 𝑇] (16’)

𝑧𝑖𝑡 ≥ 0, ∀𝑖 ∈ 𝐸, ∀𝑡 ∈ [1, 𝑇] (20’)

𝑦𝑖𝑘𝑡 ≥ 0, ∀𝑖 ∈ 𝐸, ∀𝑘 ∈ 𝑂𝐷, ∀𝑡 ∈ [1, 𝑇] (21’)

Pitu B. Mirchandani and Dening Peng

10 Solution Approach

FIGURE 3: WZS-TS Model with a Feasible Schedule.

3.3 Computational Implementation

Even et al. (1975) proved that the decision version of the multi-commodity flow problem is NP-

Complete even for only two commodities and unit capacities. By setting 𝑇 = 1 and 𝑅 = ∅, the problem

discussed in this project is converted to a multi-commodity flow problem, which proves that this problem

can be reduced from multi-commodity flow problem in polynomial time. Thus the WZS-TS problem is

strongly NP-Hard.

The WZS-TS model is programmed in C++ with IBM® ILOG® CPLEX® Concert Technology. Some

preliminary experiments are conducted and the results indicate the non-polynomial nature of the problem.

To give an example, with a computer of 3.7 GHz quad-core CPU and 24.0 GB memory, it takes 0.51 second

to solve a problem instance of 4 nodes, 12 links, 30 lanes, 12 OD pairs, 25 days of project completion period

with all links needing repair; while to solve a problem instance of 16 nodes, 48 links, 108 lanes, 16 OD

pairs, 27 days of project period with 50% of the links needing maintenance, CPLEX still has a 32%

optimality gap after 14 hours of computation. Therefore, it is clear an efficient heuristic to solve the problem

quickly with satisfactory accuracy is needed.

4. Solution Approach

4.1 Randomized Fix-and-Optimize (RFO) Heuristic

There are two layers of problems that constitute the problem of work zone scheduling in transportation

service networks. The upper layer is the scheduling problem which decides the repair start date for each

lane of the links that need maintenance. The lower layer is a series of multi-commodity flow problems

based on the available capacities of links on each day, which is determined by the current lane closures.

Once the schedule is set, solving the multi-commodity flow problems for each day is a relatively easy

problem since the flow variables are all continuous variables. And thus the solution approach proposed in

this project focuses on the upper layer of obtaining good work zone schedules.

To motivate the heuristic, suppose at a point in the algorithmic process we obtain a feasible schedule

that has some aspects similar to the optimal schedule. For example, Figure 4 on the next page gives a

comparison between the Gantt charts of the optimal schedule and one of the feasible schedules obtained for

a small test network of 4 nodes, 12 links and 12 OD pairs. The vertical axis shows the lanes of links that

need maintenance and the horizontal axis shows the date during the project period. Each bar represents the

time period when a lane is closed for maintenance and cannot be used to serve the OD flows. For example,

in the optimal schedule, Lane 1 of Link 2 is closed on Day 1 and will be reopen on Day 8, and Lane 2 of

Link 2 will be closed from Day 7 to Day 13. Hence this two-lane link will have one lane available from

Pitu B. Mirchandani and Dening Peng

11 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

Day 1 to Day 6 and from Day 8 to Day 13. On Day 7 Link 2 is not available to serve any flows since both

of the two lanes are closed.

From the Gantt charts we can see that the feasible schedule has lane closures of Link 1, 3, 7, and 12

different from the optimal schedule. If we only optimize the lane closure schedules of these four links and

fix the schedules of all the other links, the problem size will be much smaller and the time needed to solve

the problem instance will reduce dramatically since there are much fewer integer variables to go through in

the branch-and-bound process performed by solvers like CPLEX. This observation leads to the adoption of

the fix-and-optimize heuristic as the core of the solution approach

FIGURE 4: Schedule Comparison.

Optimal Schedule Some Feasible Schedule

Pitu B. Mirchandani and Dening Peng

12 Solution Approach

The fix-and-optimize heuristic was first introduced by Helber et al. (2010). It is an iterative

optimization-based heuristic developed to solve the multi-level capacitated lot sizing problem which is a

mixed integer program. The basic process of the fix-and-optimize heuristic is to partition the integer

variables into subsets, based on an initial solution, and then optimize the values of a subset of integer

variables together with all continuous variables while the values of the other integer variables in other

subsets are fixed (this is called a subproblem of the fix-and-optimize procedure). If the new objective

function value is better than current best objective value, then the current candidate optimal values are

updated; iterate this process for other subsets of variables until a specified stopping criteria is met. The

integer variables were decomposed into subsets based on the descending order on cost of each product in

the lot-sizing problem, since usually a quite reasonable schedule was found after the first round of the

product-oriented decomposition.

In the problem of scheduling work zones in transportation service networks, the relation among work

zones is more complex than that among products in the capacitated lot-sizing problem. Products just

compete with each other for resources (machine hours) in the capacitated lot-sizing problem. On the other

hand, in the WZS-TS problem there are no resource constraints that work zones compete for, but instead

the work zones affect the capacity of the network to serve the OD demands. Therefore, only the schedules

that consider all or many work zones will have the lowest increase in total flow cost, because OD demands

happen over the whole network and each OD pair has network-wide minimum cost routing. This means

applying fix-and-optimize heuristic with small subsets of work zones (one or two links) will hardly find

satisfactory schedules since it only considers the maintenance of a few links at a time.

However, if the size of the work zone subsets is large, the size of each fix-and-optimize subproblem

will also be large and it would take long time to solve. To mitigate the conflict between solution quality

and solving time length, we developed the fix-and-optimize procedure with varying subset sizes and used

a truncated branch-and-bound method.

Initially, CPLEX tries to solve the entire problem within a given time limit (e.g. 60 seconds). If the

problem is solved optimally, then the optimal schedule will be output and the program will terminate. If the

problem is not solved optimally, the best feasible schedule obtained so far will be stored and used as the

initial feasible solution for the fix-and-optimize procedure. A feasible schedule should be able to both

complete all the maintenance work before the specified completion date and make sure each OD demands

can be met.

The randomized fix-and-optimize (RFO) iteration starts with randomly dividing links that need

maintenance into two subsets and solving each fix-and-optimize subproblem (FO subproblem) with a

specified time limit. A RFO iteration is finished when the schedules of all the generated subsets of links are

Pitu B. Mirchandani and Dening Peng

13 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

optimized. The RFO will be performed for a preset number of iterations and if any of the FO subproblems

is not solved within the time limit in the last iteration, the RFO will enter a new stage where the number of

subsets which the links to repair are randomly divide into is three. The RFO proceeds similarly in stages

with more subsets of links and each RFO iteration is performed the same way as it is in the initial stage

when there are only two subsets.

The reason of randomly grouping links that need maintenance into subsets is because we do not know

the set of links with schedules that are different from the optimal schedule since we do not have the optimal

schedule. Also, consideration of various OD demand patterns, and flows being reactive to network capacity

changes, makes it formidable to pin-point the links that can have better schedule through classical network

flows optimization models. Hence random grouping is applied to explore various combinations of links for

better schedules. Both the decomposition of the links based on the required number of days to repair and

decomposition based on links’ unit flow cost were tested, but both of them had inferior performance

compared to the random grouping approach. Through the iterative randomized fix-and-optimize process,

the work zone schedule changes gradually towards the optimal schedule.

4.2 Parameters Affecting the Performance of RFO

The randomized fix-and-optimize heuristic has two layers of computation procedures. The first layer

randomly decomposes the links that need maintenance into a specific number of subsets and the second

layer optimizes the repair schedules of each link subset with the schedules of links in other subsets fixed

(FO subproblem) within a specified time limit. Hence the efficiency of RFO heuristic is mostly determined

by two parameters: the number of iterations RFO performs for a specific number of groups which the links

to repair are randomly partitioned, and the time limits for the initial attempt on solving the entire problem

and for the attempts on each FO subproblem.

More RFO iterations means that the heuristic can solve FO subproblems for more combinations of

links to repair for a specific subset size and is more likely to obtain better feasible solutions with objectives

that are closer to the optimal solution. However, after a considerable amount of experimentation, we found

that increasing the number of iterations does not effectively improve the solution quality. This is because

there are too many possible combinations of links to repair for any specific subset size, and the chance is

little that the links, which have schedules different from the optimal schedule, are in the same subset through

random decomposition. Fewer subsets with more links in each subset can increase the chance of grouping

together the links with repair schedules different from the optimal schedule. However, the time needed to

find better schedules for each FO subproblem will be longer since now the FO subproblem has large number

of integer variables. Thus, performing large number of iterations with fewer subsets with many links in one

group will either result in poor solution quality with low time limit for each FO subproblem, or result in

Pitu B. Mirchandani and Dening Peng

14 Solution Approach

very long solving time with high time limit for each FO subproblems. As default values, we set the number

of iterations the same as the specified number of link groups (e.g. perform 2 RFO iterations when the

number of groups is 2), and the numerical results in next section will show the RFO gives good feasible

solutions within reasonable amount of time.

We also need the time limits for the initial attempt on solving the entire problem and for attempts on

each FO subproblem. Problem instances with a few work zones have less integer variables, and is more

likely to obtain a feasible solution that is close to the optimal solution (solution with less than 5% relative

optimality gap) in a short time during the initial attempt to solve the entire problem. For each FO

subproblem, if there is a feasible schedule that is better than the current best feasible schedule, the solver

should be able to find it very quickly since the FO subproblem has even less integer variables. As long as

a feasible schedule is found that is better than the current best feasible schedule, it can be used as the initial

schedule for the next RFO iteration. Increasing the time limit in this case is pointless since a better schedule

is already found and increased time will be wasted on improving the lower bound to prove the solution is

optimal for the FO subproblem or the entire problem.

As the number of work zones increases, the dramatic increases in the number of combinations of

integer variables complicates the branch-and-bound process substantially. This makes it nearly impossible

to quickly obtain a feasible solution that is close to the optimal solution in the initial attempt on the entire

problem. Improving the quality of initial feasible solution through increasing the time limit is not wise since

it is very likely that the relative optimality gap is still larger than 5% after hours of calculation. With an

initial feasible solution which is not close to the optimal solution to start the RFO process, it would also be

challenging for the solver to find feasible solutions that are much better than the current best feasible

solution found in a short time in the FO subproblem. Therefore, increasing the time limit on solving the FO

subproblem will be much more effective in finding better solutions since the FO subproblem has much

fewer integer variables. And thus, both the time limits on the initial attempt on the entire problem and on

the attempts on each FO subproblem should be relatively higher to allow the solver to spend more time on

searching for better feasible solutions.

The C++ code of the randomized fix-and-optimize heuristic (RFO) is attached in the appendix, and the

detailed procedure of the RFO is shown below:

Randomized Fix-and-optimize Heuristic

1. Solve the entire problem with time limit 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡𝑆𝑉

 If optimal solution obtained, proceed to 4.

 Otherwise store the best feasible schedule and objective, and go to 2.

2. Set number of subsets 𝑁 = 2

Pitu B. Mirchandani and Dening Peng

15 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

3. Randomly divide links to repair into 𝑁 groups

 3.1. Fix (𝑣, 𝑠, 𝑥, 𝑤) for links in 𝑁 − 1 groups, set L𝑜𝑛𝑆𝑜𝑙𝑇𝑖𝑚𝑒 = 0, set iteration number 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 = 1

 3.2. Solve the FO subproblem with time limit 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡𝐹𝑂 for the subset (𝑛) of links the (𝑣, 𝑠, 𝑥, 𝑤) of which are not fixed

If optimal solution is not obtained in 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡𝐹𝑂 proceed to 3.2.1.

 3.2.1. Store the current best feasible schedule and objective, and set L𝑜𝑛𝑆𝑜𝑙𝑇𝑖𝑚𝑒 = 1

Otherwise directly proceed to 3.3.

3.3. If the objective obtained in current FO subproblem is lower than the best objective of the FO subproblems obtained so far

(𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐹𝑂), update the 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐹𝑂 and the schedule of links in subset 𝑛

Otherwise directly proceed to 3.4.

3.4. Check whether there are subsets of links of which the FO subproblems are not solved

If there are, proceed to 3.4.1.

3.4.1. Choose one of the subsets to be subset 𝑛 and go back to 3.1

Otherwise proceed to 3.4.2.

 3.4.2. If 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐹𝑂 < 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 (best objective overall), proceed to 3.4.2.1.

3.4.2.1. Update the value of 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 with the value of 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐹𝑂, increase 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 by 1, go back

to 3.

Otherwise proceed to 3.4.2.2.

 3.4.2.2. If 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 < 𝑁, proceed to 3.4.2.2.1.

3.4.2.2.1. Increase 𝑖𝑡𝑒𝑟_𝑛𝑢𝑚 by 1, go back to 3.

Otherwise proceed to 3.4.2.2.2.

3.4.2.2.2. If 𝐿𝑜𝑛𝑆𝑜𝑙𝑇𝑖𝑚𝑒 = 1, proceed to 3.4.2.2.2.1.

3.4.2.2.2.1. If 𝑛𝑢𝑚𝐿𝑖𝑛𝑝𝐵𝑎𝑡 > 3, increase subsets number 𝑁 by 1, set iteration

number 1, go back to 3.

Otherwise proceed to 4.

4. Output the best schedule and flows obtained

4.3 Numerical Results

The randomized fix-and-optimize heuristic is tested on three representative networks: a radial network,

a grid network, and the Sioux Falls network. For each network, the links that need maintenance are

randomly selected based on the preset percentage of links to repair. Test cases of a network vary by the

parameter 𝑇, which is the completion date for all the maintenance work. The extra flow cost multiplier 𝜌 is

set to 10000 and the percentage of lane capacity increase after repair 𝜃 is set to 20% for all the test cases.

The computer used to run these tests cases is the same computer mentioned in Section 3.3.

We begin the test on the heuristic designed with a radial network. Radial transportation network

structure is commonly found in large cities with long history like London and Paris. The radial network

tested is a small network with 6 nodes, 20 links and 20 OD pairs (shown in Figure 5) with 10 randomly

selected links that need maintenance. This network has a total number of 30 work zones to be scheduled

(since a link has multiple lanes and each lane is an independent work zone). Details of this radial network

(i.e., number of lanes of each link, number of days required to repair a lane, lane capacity, unit flow cost,

Pitu B. Mirchandani and Dening Peng

16 Solution Approach

and whether maintenance is required) and the OD demand are listed in the appendix. The time limits for

solving the entire problem initially and for each FO subproblem are both 60 seconds. The performance

comparison between solving the test cases by randomized fix-and-optimize heuristic (RFO) and solely by

CPLEX is shown in Table 2.

 FIGURE 5: Radial Network

Pitu B. Mirchandani and Dening Peng

17 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

TABLE 2: RFO VS CPLEX in Radial Network

For the solving time of CPLEX that has “>”, it means CPLEX is not able to solve the test case optimally

after a long time and the solving process is terminated manually with the best upper bound and lower bound

obtained recorded. The upper bound is the objective value of the best feasible solution obtained at the time

of terminating the solving process. The optimality gap is calculated as the objective obtained by RFO minus

the objective (or upper bound if solving process is terminated manually) obtained by CPLEX and divide

the difference by the objective (or upper bound) obtained by CPLEX. These result display formats are the

same for the illustration on the experiments on the grid network and Sioux Fall network later.

Since the grouping of links that need maintenance is random for each RFO iteration, the time needed

to solve the same test case for each run will be different and the best solution obtained in each run may also

be different from each other. To obtain the representative solving time and objective value for each test

case that are not solved optimally by CPLEX in 60 seconds, we run RFO to solve each test case for five

times, choose the pair of the objective value and solving time that can represent the average performance

of RFO, and compare them with the objective and solving time of CPLEX. The objective values and solving

Completion

Date (𝑻)

Solving Time Objective Value Optimality Gap

RFO CPLEX RFO CPLEX

12 1.89 sec 1.89 sec 489892 489892 0.00%

13 4.37 sec 4.37 sec 404316 404316 0.00%

14 10.70 sec 10.70 sec 318741 318741 0.00%

15 1.52 min 29.75 min 233166 233166 0.00%

16 3.25 min >14.87 hr. 170591 170591 (UB) 167322 (LB) 0.00%(UB Gap)

17 5.8 min >40.82 hr. 101516 101516 (UB) 92039 (LB) 0.00%(UB Gap)

18 6.5 min >2.69 hr. 25645 25645 (UB) 573 (LB) 0.00%(UB Gap)

19 6.52 min >2.54 hr. 19067 19264 (UB) 6762 (LB) -1.02%(UB Gap)

20 4.07 min > 15.73 hr. 9888.26 9790 (UB) 3320 (LB) 1.00%(UB Gap)

26 4.62 sec 4.62 sec 623.34 623.34 0.00%

36 49.79 sec 49.79 sec 856.62 856.62 0.00%

46 1.88 min 1.07 hr. 1090.17 1090.17 0.00%

Pitu B. Mirchandani and Dening Peng

18 Solution Approach

times of five runs of each test case are listed in the appendix. For the test cases of other networks presented

later in this report, we use the same approach to obtain the representative objective and solving time, and

append their objectives and solving times in the appendix as well. The solving time of RFO and CPLEX

for some test cases are the same because CPLEX was able to solve the entire problem in 60 seconds and

the randomized fix-and-optimize procedure did not start.

From Table 2 we can see that even for a 20-link radial network with 50% of the links need maintenance,

CPLEX is not able to solve some of the test cases in tolerable amount of time. Also, the RFO heuristic is

able to obtain optimal or near-optimal solutions within little amount of time compared to CPLEX. Notice

that for the test case when 𝑇 = 19, the objective value from RFO is better than the best feasible solution

obtained by CPLEX. To obtain the best feasible solution of this test case, RFO takes less than 7 minutes

and the solution dominates the best feasible solution from CPLEX after nearly 3 hours of computation.

A larger network tested is a grid network with 16 nodes, 48 links and 24 OD pairs (network is shown

in Figure 6). Grid transportation network structure is frequently found in large modern cities like Phoenix

and Vancouver, and their central business districts. Like the radial network tested, the grid network tested

also has 50% of links randomly selected as the links to be repaired and the total number of work zones to

be scheduled is 52. Details of this grid network (i.e., number of lanes of each link, number of days required

to repair a lane, lane capacity, unit flow cost, and whether maintenance is required) and the OD demand are

listed in the appendix. The time limits set for solving the entire problem initially and for the FO subproblems

are both 60 seconds. RFO is used to solve each test case for five times and representative result is chosen

to compare with CPLEX as well. The comparison between the average performance of RFO and the

performance of CPLEX is displayed in Table 3 on the next page.

Pitu B. Mirchandani and Dening Peng

19 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

FIGURE 6: Grid Network.

Table 3 below shows that RFO is much more efficient than CPLEX on solving the test cases of the

grid network, especially when the test case is difficult to solve. And the solution quality of RFO is also

quite good. Usually the percentage of links that need maintenance in a network won’t be as much as 50%.

The reason we set the percentage of links to repair 50% for the radial network and grid network tested is

because we would like to show how difficult the WZS-TS problem can be and how efficient the RFO is

compared to solving the test cases solely by CPLEX.

TABLE 3: RFO VS CPLEX in Grid Network

Completion

Date (𝑻)

Solving Time Objective Value

Optimality Gap

RFO CPLEX RFO CPLEX

12 52.21 sec 52.21 sec 255576 255576 0.00%

13 2.35 min 1.24 min 186740 186740 0.00%

14 5.33 min 25.78 min 143429 142525 0.63%

15 3 min 37.03 min 105997 105502 0.47%

16 4.02 min 27.36 min 67711.7 66209.3 2.27%

17 7.92 min >14.28 hr. 51773.7 51771(UB) 37692(LB) 0.00%(UB Gap)

Pitu B. Mirchandani and Dening Peng

20 Solution Approach

We also test the randomized fix-and-optimize heuristic on the Sioux Falls network which is a real

network with 24 nodes, 76 links and 87 OD pairs. There are two sets of problem instances created for the

Sioux Falls network, the first set of test cases are based on the scenario that 10% of the links are randomly

selected as the links that need maintenance which results in a total number of 16 work zones need to be

scheduled. The percentage of links to repair in the second set of test cases is 20% and the total number of

work zones to be scheduled is 25. Details of the Sioux-Falls network (i.e., number of lanes of each link,

number of days required to repair a lane, lane capacity, unit flow cost, and whether maintenance is required)

and the OD demand are listed in the appendix. The time limits on solving the entire problem initially and

on solving each FO subproblem are both 40 seconds for first set of test cases, and both are 120 seconds for

the second set of test cases. Table 4 and Table 5 give the performance comparison between RFO and

CPLEX on the first and second set of test cases respectively. Again, RFO solves each test case five times

and the data shown in the table is the one we think represents the average performance of RFO.

18 9.95 min >1.23 hr. 37350 37344.6(UB) 25990.6(LB) 0.01%(UB Gap)

19 7.32 min >13.39 hr. 26672.5 26666.25(UB) 19660.61(LB) 0.02%(UB Gap)

20 5.22 min >3.98 hr. 15988.9 15988.21(UB) 12611.43(LB) 0.00%(UB Gap)

21 4 min >2.98 hr. 7810.32 7807.98(UB) 5806.61(LB) 0.03%(UB Gap)

22 48.72 sec 48.72 sec 1630.4 1630.4 0.00%

23 57.45 sec 57.45 sec 1701.99 1701.99 0.00%

26 1.97 min 2.75 min 1915.75 1915.66 0.00%

36 2.6 min 2.61 min 2631.65 2630.46 0.05%

46 57.73 sec 57.73 sec 3347.04 3347.04 0.00%

56 31.64 sec 31.64 sec 4066.15 4066.15 0.00%

66 1.38 min 1.75 min 4786.15 4782.58 0.07%

Pitu B. Mirchandani and Dening Peng

21 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

FIGURE 7: Sioux Falls Network.

From Table 4 we see that when the completion date is small the RFO takes more time to give the final

solution than CPLEX does. This is because the problem instance of Sioux Falls network with 10% of links

to repair is relatively easy to solve especially when the completion date is small, since the number of integer

variables are not large. As the completion date gets larger, the problem instance has more integer variables

and gets harder to solve. As a result, the solving times of test cases with larger completion dates are much

longer for CPLEX. As a comparison, the solving times for RFO on these test cases increase slightly and the

objectives obtained are close to the optimal objectives given by CPLEX. Data in Table 5 also shows that

RFO generally has better performance compared to CPLEX when 20% of links of the Sioux Falls network

need repair.

Pitu B. Mirchandani and Dening Peng

22 Solution Approach

TABLE 4: RFO VS CPLEX in Sioux Falls Network with 10% of Links to Repair

Completion Date

(𝑻)

Solving Time Objective Value

Optimality Gap

RFO CPLEX RFO CPLEX

18 33 sec 33 sec 232233.88 232233.88 0.00%

19 2.05 min 1.92 min 237542 237458.8 0.04%

20 3 min 2.22 min 242532 242531.8 0.00%

21 2.47 min 1.1 min 247325 247342.39 -0.01%

22 2.6 min 57.67 sec 252201 252203.14 0.00%

23 3.05 min 1.12 min 260302 260489.83 -0.07%

24 2.97 min 2.11 min 268570 268666.57 -0.04%

25 6.87 min 3.85 min 277223 277160.17 0.02%

26 4.12 min 6.21 min 285841 285930.8 -0.03%

27 6.72 min 3.16 min 294744 294426.42 0.11%

28 8.27 min 16.39 min 303279 302816.79 0.15%

29 8.82 min 12.8 min 311643 311690.72 -0.02%

30 8.7 min 13.27 min 320798 320326.55 0.15%

31 10.78 min 18.85 min 329476 329038.46 0.13%

32 9.35 min 11.79 min 338665 338241.54 0.13%

33 6.48 min 12.82 min 349015 347560.79 0.42%

34 9.1 min 17.7 min 357045 356870.16 0.05%

35 9.47 min 23.64 min 366280 366126.06 0.04%

36 9.38 min 16.4 min 375585 375420.78 0.04%

37 10.95 min 16.12 min 385649 385436.84 0.06%

38 10.53 min 24.18 min 395879 395675.45 0.05%

Pitu B. Mirchandani and Dening Peng

23 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

TABLE 5: RFO VS CPLEX in Sioux Falls Network with 20% of Links to Repair

Completion Date

(𝑻)

Solving Time Objective Value

Optimality Gap

RFO Original RFO Original

26 20.63 min 1.02 hr. 429644 429621.64 0.01%

27 27.45 min 1.18 hr. 441998 436397.52 1.28%

28 38.73 min 2.15 hr. 446316 443226.27 0.70%

29 44.5 min 2.37 hr. 451943 451307.57 0.14%

30 53 min 3.22 hr. 462005 459098.29 0.63%

31 53.72 min 2.39 hr. 468724 466737.54 0.43%

32 1.2 hr. 3.68 hr. 474658 474657.98 0.00%

33 47.63 min 3.14 hr. 486761 483550.96 0.66%

34 1.29 hr. 4.37 hr. 495502 492508.96 0.61%

35 1.43 hr. >1.29 hr. 502656 445782.53 (LB) 502912.96 (UB) -0.05%

36 1.24 hr. >1.37 hr. 512588 463690.32 (LB) 511092.08 (UB) 0.29%

37 1.28 hr. >1.38 hr. 523197 459461.32 (LB) 521498.54 (UB) 0.33%

38 30.32 min >1.4 hr. 547711 464731.92 (LB) 529503.64 (UB) 3.44%

39 40.72 min 10.4 hr. 544046 537251.06 1.26%

40 38.82 min >1.42 hr. 563160 469568.44 (LB) 547592.55 (UB) 2.84%

41 43.07 min >1.4 hr. 563869 52061.60 (LB) 555430.09 (UB) 1.52%

42 47.62 min >1.43 hr. 585013 482454.42 (LB) 566841.84 (UB) 3.21%

Notice that in Table 4 and 5 the objective obtained by RFO for some test cases is better than the optimal

objective obtained by CPLEX. For example, in Table 4 for the test case when 𝑇 = 23, the objective

obtained by RFO is 260302, which is less than the optimal objective 260489.83 from CPLEX. This is

because the relative MIP gap tolerance is set to 0.5% for the CPLEX and FO subproblems. CPLEX stops

solving process as soon as the relative optimality gap (which is calculated as upper bound minus lower

bound and then divide the difference by the upper bound) is under 0.5% and uses the best feasible solution

obtained as the optimal solution, which is same for FO subproblems. But because of the randomized

grouping of links that need repair, it is possible for a FO subproblem start with a branching node that leads

to a better upper bound when the 0.5% relative optimality gap is reached, and this node is not selected or

reached by CPLEX in the regular branch-and-bound process. So when the 0.5% relative optimality gap is

Pitu B. Mirchandani and Dening Peng

24 Conclusion

reached, the upper bound obtained by CPLEX is not as good as the one obtained by RFO. If we reduce the

relative MIP gap tolerance to 0.1% or smaller for CPLEX, CPLEX should be able to obtain the same final

solution but certainly with much more time spent on the branch-and-bound process.

5. Conclusion

In this project a mixed integer linear programming model is developed to schedule work zones in

transportation service networks (WZS-TS). The model coordinates scheduling of work zones with network-

wide perspective to achieve minimum total flow cost of all OD demands throughout the entire project period.

The WZS-TS problem is very challenging and CPLEX is not able to solve many test cases, even for a small

network with 20 links, after hours of computation on a personal computer. The randomized fix-and-

optimize heuristic (RFO) is developed to solve the WZS-TS problem efficiently, which can obtain optimal

or near-optimal solutions with much less time compared to solving the WZS-TS problem solely with

CPLEX. To illustrate the advantage RFO has over CPLEX, the performance comparison between RFO and

CPLEX is made on various tests cases created based on three different networks. The authors note that

optimal repair and maintenance of other flow carrying service networks, such as power networks, water

distribution networks, and communication systems, may benefit from the model and solution method

developed in this project.

This project completes the first phase of the research project “Scheduling Work Zones in Multi-modal

Networks”, whose ultimate goal is to study the optimal work zone scheduling that has minimum negative

impacts on both transport service vehicle flows and commute vehicle flows. The next phase of the research

project is to consider the work zone scheduling in networks serving OD flows of personal cars (commuter

vehicles). The flow cost of commuter vehicles is nonlinear and depends on the relation between the link

capacity and the total volume of the traffic that is already using the link. The problem of scheduling work

zones in networks of commuter vehicles (CV) is similar to the WZS-SV problem discussed in this project

on the scheduling part. But for the OD flow routing part, the CV problem is different in the way that each

OD pair will choose its own route or set of routes to minimize its own flow cost and all the OD pairs will

reach a user equilibrium that every OD pair won’t be able to reduce its flow cost by changing its flow

routing unilaterally (Wardrop’s first principle). The CV problem is an interesting but challenging mixed

integer nonlinear programming problem that cannot be solved by commercial solvers like CPLEX. Study

the CV problem is of great value since the majority users of city transportation networks are commuter

vehicles. With the results from the first two phases of the research project, the third phase, which studies

the work zone scheduling with considerations for both transport service vehicles and commuter vehicles,

and the interactions between these two types of vehicle flows, will be carried out.

Pitu B. Mirchandani and Dening Peng

25 Scheduling Work Zones in Multi-Modal Networks Phase 1 Final Report

Reference

Bagloee, S. A., & Asadi, M. (2015). Prioritizing road extension projects with interdependent benefits under time

constraint. Transportation Research Part a-Policy and Practice, 75, 196-216. doi:10.1016/j.tra.2015.03,016

Bayraktar, M. E., & Hastak, M. (2009). A decision support system for selecting the optimal contracting strategy in

highway work zone projects. Automation in Construction, 18(6), 834-843. doi:10.1016/j.autcon.2009.03.007

Chien, S. I. J., & Tang, Y. (2014). Scheduling highway work zones with genetic algorithm considering the impact

of traffic diversion. Journal of Advanced Transportation, 48(4), 287-303. doi:10.1002/atr.213

Chu, J. C., & Chen, Y. J. (2012). Optimal threshold-based network-level transportation infrastructure life-cycle

management with heterogeneous maintenance actions. Transportation Research Part B-Methodological, 46(9),

1123-1143. doi:10.1016/j.trb.2012.05.002

Even, S., Itai, A., Shamir, A. (Oct. 1975). On the complexity of time table and multi-commodity flow

problems. Paper presented at the 16th Annual Symposium on Foundations of Computer Science, Washington,

DC, USA.

Fontaine, P., & Minner, S. (2014). Benders Decomposition for Discrete-Continuous Linear Bilevel Problems with

application to traffic network design. Transportation Research Part B-Methodological, 70, 163-172.

doi:10.1016/j.trb.2014.09.007

FWHA. (September, 2013). Facts and Statistics - Work Zone Delay. Facts and Statistics. Retrieved

fromhttp://www.ops.fhwa.dot.gov/wz/resources/facts_stats/delay.htm#fn1

Gao, L., Xie, C., Zhang, Z. M., & Waller, S. T. (2011). Integrated Maintenance and Expansion Planning for

Transportation Network Infrastructure. Transportation Research Record(2225), 56-64. doi:10.3141/2225-07

Helber, S., & Sahling, F. (2010). A fix-and-optimize approach for the multi-level capacitated lot sizing

problem.International Journal of Production Economics, 123(2), 247-256. doi:10.1016/j.ijpe.2009.08.022

Hosseininasab, S.-M., & Shetab-Boushehri, S.-N. (2015). Integration of selecting and scheduling urban road

construction projects as a time-dependent discrete network design problem. European Journal of Operational

Research, 246(3), 762-771. doi:10.1016/j.ejor.2015.05.039

Jiang, X. M., & Adeli, H. (2003). Freeway work zone traffic delay and cost optimization model. Journal of

Transportation Engineering-Asce, 129(3), 230-241. doi:10.1061/(asce)0733-947x(2003)129:3(230)

Lee, H. Y. (2009). Optimizing schedule for improving the traffic impact of work zone on roads. Automation in

Construction, 18(8), 1034-1044. doi:10.1016/j.autcon.2009.05.004

Ma, W. T., Cheu, R. L., & Lee, D. H. (2004). Scheduling of lane closures using genetic algorithms with traffic

assignments and distributed simulations. Journal of Transportation Engineering-Asce, 130(3), 322-329.

doi:10.1061/(asce)0733-947x(2004)130:3(322)

Meng, Q., & Weng, J. X. (2013). Optimal subwork zone operational strategy for short-term work zone projects in

four-lane two-way freeways. Journal of Advanced Transportation, 47(2), 151-169. doi:10.1002/atr.153

http://www.ops.fhwa.dot.gov/wz/resources/facts_stats/delay.htm#fn1

Pitu B. Mirchandani and Dening Peng

26 Reference

Orabi, W., & El-Rayes, K. (2012). Optimizing the Rehabilitation Efforts of Aging Transportation

Networks. Journal of Construction Engineering and Management-Asce, 138(4), 529-539.

doi:10.1061/(asce)co.1943-7862.0000445

Schroeder, B. J., & Rouphail, N. M. (2010). Estimating Operational Impacts of Freeway Work Zones on Extended

Facilities.Transportation Research Record(2169), 70-80. doi:10.3141/2169-08

Tang, Y. M., & Chien, S. I. J. (2008). Scheduling Work Zones for Highway Maintenance Projects Considering a

Discrete Time-Cost Relation. Transportation Research Record(2055), 21-30. doi:10.3141/2055-03

Zheng, H., Nava, E., & Chiu, Y.-C. (2014). Measuring Networkwide Traffic Delay in Schedule

Optimization for Work-Zone Planning in Urban Networks. Ieee Transactions on Intelligent Transportation

Systems, 15(6), 2595-2604. doi:10.1109/tits.2014.2318299

Pitu B. Mirchandani and Dening Peng

27 Appendix

Appendix

Radial Network Link Information

Link ID Head Node Tail Node
Number of

Lanes

Capacity per

Lane

Regular Unit

Flow Cost

Number of Days to

Repair a Lane

Need to

Repair?

1 1 2 3 50 0.01 6 1

2 1 3 3 50 0.01 6 1

3 1 4 3 50 0.01 6 1

4 1 5 3 50 0.01 6 0

5 1 6 3 50 0.01 6 1

6 2 1 3 50 0.01 6 0

7 2 3 3 50 0.015 9 1

8 2 6 3 50 0.015 9 1

9 3 1 3 50 0.01 6 0

10 3 2 3 50 0.015 9 0

11 3 4 3 50 0.015 9 0

12 4 1 3 50 0.01 6 0

13 4 3 3 50 0.015 9 1

14 4 5 3 50 0.015 9 0

15 5 1 3 50 0.01 6 0

16 5 4 3 50 0.015 9 1

17 5 6 3 50 0.015 9 1

18 6 1 3 50 0.01 6 0

19 6 2 3 50 0.015 9 0

20 6 5 3 50 0.015 9 1

Radial Network OD Demand Information

OD ID Origin Node Destination Node Demand Units

1 1 2 64

2 1 4 80

3 2 3 50

4 3 1 72

5 3 4 74

6 4 5 63

7 4 1 54

8 5 6 56

9 6 5 119

10 6 2 39

11 2 4 70

12 3 5 64

13 4 6 92

Pitu B. Mirchandani and Dening Peng

28 Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Radial Network

OD ID Origin Node Destination Node Demand Units

14 5 2 73

15 6 3 53

16 5 3 67

17 2 5 55

18 3 6 92

19 4 2 56

20 5 4 60

Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Radial Network

Completion

Date (𝑻)

Run 1 Run 2 Run 3 Run 4 Run 5

Objective

Value

Solving

Time

Objective

Value

Solving

Time

Objective

Value

Solving

Time

Objective

Value

Solving

Time

Objective

Value

Solving

Time

15 233166 1.6 min 233166 1.45 min 233166 1.58 min 233166 1.52 min 233166 1.5 min

16 170591 3.25 min 170591 2.85 min 170591 3.02 min 170591 4.4 min 170591 4.95 min

17 101516 8.35 min 101516 4.93 min 101516 6.12 min 101516 5.45 min 101516 5.8 min

18 25644.7 7.1 min 25644.7 6.5 min 26547.7 5.92 min 25677.7 6.1 min 25647.7 4.97 min

19 19668.1 4.92 min 19067.3 12.87 min 19067.3 6.52 min 19067.4 6.52 min 19067.4 4.32 min

20 10889.6 6.15 min 10389.2 6.56 min 9888.26 7.4 min 9888.26 9.42 min 9888.07 7.42 min

Grid Network Link Information

Link ID Head Node Tail Node
Number of

Lanes

Capacity per

Lane

Regular Unit

Flow Cost

Number of Days to

Repair a Lane

Need to

Repair?

1 1 2 2 50 0.08 16 1

2 1 5 2 50 0.07 14 0

3 2 1 2 50 0.055 11 1

4 2 3 2 50 0.04 8 1

5 2 6 2 50 0.045 9 0

6 3 2 2 50 0.055 11 1

7 3 4 2 50 0.07 14 1

8 3 7 3 50 0.04 8 1

9 4 3 2 50 0.09 18 0

10 4 8 2 50 0.035 7 0

11 5 1 2 50 0.06 12 0

12 5 6 2 50 0.015 3 0

13 5 9 2 50 0.06 12 0

14 6 2 2 50 0.04 8 1

15 6 5 2 50 0.04 8 1

16 6 7 2 50 0.07 14 0

Link ID Head Node Tail Node
Number of

Lanes

Capacity per

Lane

Regular Unit Flow

Cost

Number of Days to

Repair a Lane

Need to

Repair?

Pitu B. Mirchandani and Dening Peng

29 Appendix

17 6 10 2 50 0.02 4 1

18 7 3 3 50 0.09 18 0

19 7 6 2 50 0.02 4 1

20 7 8 2 50 0.11 22 0

21 7 11 3 50 0.075 15 0

22 8 4 2 50 0.05 10 1

23 8 7 2 50 0.09 18 1

24 8 12 2 50 0.065 13 0

25 9 5 2 50 0.055 11 0

26 9 10 3 50 0.035 7 0

27 9 13 2 50 0.03 6 1

28 10 6 2 50 0.04 8 0

29 10 9 3 50 0.045 9 0

30 10 11 3 50 0.04 8 1

31 10 14 2 50 0.085 17 1

32 11 7 3 50 0.045 9 0

33 11 10 3 50 0.095 19 0

34 11 12 3 50 0.06 12 0

35 11 15 3 50 0.06 12 1

36 12 8 2 50 0.065 13 0

37 12 11 3 50 0.08 16 0

38 12 16 2 50 0.04 8 1

39 13 9 2 50 0.05 10 0

40 13 14 2 50 0.04 8 1

41 14 10 2 50 0.09 18 0

42 14 13 2 50 0.03 6 1

43 14 15 2 50 0.02 4 1

44 15 11 3 50 0.1 20 1

45 15 14 2 50 0.015 3 0

46 15 16 2 50 0.055 11 1

47 16 12 2 50 0.11 22 1

48 16 15 2 50 0.015 3 1

Grid Network OD Demand Information

OD ID Origin Node Destination Node Demand Units

1 1 8 39

2 1 16 11

3 1 11 26

4 1 3 20

OD ID Origin Node Destination Node Demand Units

5 4 9 23

Pitu B. Mirchandani and Dening Peng

30 Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Grid Network

6 4 13 39

7 4 10 32

8 4 2 24

9 13 12 18

10 13 4 37

11 13 7 25

12 13 15 25

13 16 9 47

14 16 1 29

15 16 6 33

16 16 14 28

17 6 12 39

18 6 15 51

19 7 9 14

20 7 14 38

21 10 3 19

22 10 8 48

23 11 2 29

24 11 5 19

Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Grid Network

Completion

Date (𝑻)

Run 1 Run 2 Run 3 Run 4 Run 5

Objective

Value

Solving

Time

Objective

Value

Solving

Time

Objective

Value

Solving

Time

Objective

Value

Solving

Time

Objective

Value

Solving

Time

14 143.23 4.9 min 144071 4.2 min 143630 2.78 min 143033 5.23 min 143429 5.33 min

15 105997 3 min 105997 6.5 min 105991 5.71 min 105989 3.75 min 106000 3.5 min

16 67527.2 3.05 min 68704.6 5.43 min 67711.7 2.23 min 66211.3 3.25 min 67711.7 4.02 min

17 51773.6 5.87 min 51773.7 4.1 min 51773.7 7.92 min 51772 7.28 min 51772 8.18 min

18 37350 9.95 min 37350.5 4.53 min 37348.3 3.95 min 37350.3 13 min 38602 7.98 min

19 26921.2 7.53 min 26671.2 6.56 min 26921.4 6.58 min 26672.5 7.32 min 26671.4 6.25 min

20 15989.2 6.68 min 15988.9 5.22 min 15989.5 3.62 min 15989.2 3.75 min 15989.3 6.5 min

21 7809.33 4.48 min 7810.41 7.67 min 7809.9 3.65 min 7810.32 4 min 7809.11 6.7 min

26 1915.95 2.13 min 1915.51 2.17 min 1914.49 2.15 min 1915.75 1.97 min 1915.97 2.02 min

36 2631.65 2.6 min 2630.52 2.6 min 2631.65 2.57 min 2628.9 2.93 min 2631.65 2.65 min

Sioux-Falls Network Link Information

Link ID Head Node Tail Node
Number of

Lanes

Capacity per

Lane

Regular Unit

Flow Cost

Number of Days to

Repair a Lane

Need to Repair?

10% Case 20% Case

1 1 2 4 259 0.0006 18 0 0

Pitu B. Mirchandani and Dening Peng

31 Appendix

2 1 3 4 234 0.0004 15 0 0

3 2 1 4 259 0.0006 18 1 0

4 2 6 1 198 0.0005 14 0 0

5 3 1 4 234 0.0004 15 0 0

6 3 4 3 228 0.0004 13 0 1

7 3 12 4 234 0.0004 15 0 0

8 4 3 3 228 0.0004 13 0 0

9 4 5 4 178 0.0002 10 0 0

10 4 11 1 196 0.0006 12 0 1

11 5 4 4 178 0.0002 10 0 0

12 5 6 1 198 0.0004 12 0 1

13 5 9 2 200 0.0005 10 0 0

14 6 2 1 198 0.0005 14 1 0

15 6 5 1 198 0.0004 12 0 0

16 6 8 1 196 0.0002 9 0 1

17 7 8 2 157 0.0003 10 0 0

18 7 18 4 234 0.0002 11 1 0

19 8 6 1 196 0.0002 9 0 0

20 8 7 2 157 0.0003 10 0 0

21 8 9 1 202 0.001 14 0 1

22 8 16 1 202 0.0005 11 0 0

23 9 5 2 200 0.0005 10 0 0

24 9 8 1 202 0.001 14 0 0

25 9 10 3 186 0.0003 6 0 0

26 10 9 3 186 0.0003 6 0 0

27 10 11 2 200 0.0005 9 0 0

28 10 15 3 180 0.0006 10 0 0

29 10 16 1 194 0.0004 10 0 1

30 10 17 1 200 0.0008 13 0 0

31 11 4 1 196 0.0006 12 0 1

32 11 10 2 200 0.0005 9 0 0

33 11 12 1 196 0.0006 14 0 0

34 11 14 1 195 0.0004 9 0 0

35 12 3 4 234 0.0004 15 0 0

36 12 11 1 196 0.0006 14 0 0

37 12 13 4 259 0.0003 14 0 0

38 13 12 4 259 0.0003 14 0 1

39 13 24 1 204 0.0004 12 0 1

Link ID Head Node Tail Node
Number of

Lanes

Capacity per

Lane

Regular Unit Flow

Cost

Number of Days to

Repair a Lane

Need to Repair?

10% Case 20% Case

40 14 11 1 195 0.0004 9 0 0

41 14 15 1 205 0.0005 10 0 0

42 14 23 1 197 0.0004 9 0 0

Pitu B. Mirchandani and Dening Peng

32 Sioux-Falls Network OD Demand Information

43 15 10 3 180 0.0006 10 0 0

44 15 14 1 205 0.0005 10 0 0

45 15 19 3 194 0.0003 10 0 0

46 15 22 2 192 0.0003 11 0 0

47 16 8 1 202 0.0005 11 0 1

48 16 10 1 194 0.0004 10 0 1

49 16 17 1 209 0.0002 6 1 1

50 16 18 4 197 0.0003 9 0 0

51 17 10 1 200 0.0008 13 1 0

52 17 16 1 209 0.0002 6 0 0

53 17 19 1 193 0.0002 8 0 0

54 18 7 4 234 0.0002 11 0 0

55 18 16 4 197 0.0003 9 0 0

56 18 20 4 234 0.0004 16 0 0

57 19 15 3 194 0.0003 10 1 0

58 19 17 1 193 0.0002 8 0 0

59 19 20 1 200 0.0004 10 0 0

60 20 18 4 234 0.0004 16 0 1

61 20 19 1 200 0.0004 10 0 0

62 20 21 1 202 0.0006 11 0 0

63 20 22 1 203 0.0005 12 0 0

64 21 20 1 202 0.0006 11 0 0

65 21 22 1 209 0.0002 8 0 0

66 21 24 1 195 0.0003 10 0 0

67 22 15 2 192 0.0003 11 0 1

68 22 20 1 203 0.0005 12 0 1

69 22 21 1 209 0.0002 8 0 0

70 22 23 1 200 0.0004 10 0 0

71 23 14 1 197 0.0004 9 0 0

72 23 22 1 200 0.0004 10 1 1

73 23 24 1 203 0.0002 7 1 0

74 24 13 1 204 0.0004 12 0 0

75 24 21 1 195 0.0003 10 0 0

76 24 23 1 203 0.0002 7 0 0

Sioux-Falls Network OD Demand Information

OD ID Origin Node Destination Node Demand Units

1 1 4 92

2 1 8 100

Pitu B. Mirchandani and Dening Peng

33 Appendix

3 1 10 108

4 1 14 88

5 1 16 112

6 1 19 108

7 1 22 120

8 1 24 88

9 2 4 104

10 2 8 96

11 2 10 100

12 2 14 104

13 2 16 84

14 2 19 96

15 2 22 92

16 7 4 80

17 7 8 104

18 7 10 96

19 7 14 100

20 7 16 92

21 7 19 112

22 7 22 92

23 7 24 112

24 12 4 96

25 12 8 108

26 12 10 104

27 12 14 96

28 12 16 120

29 12 19 92

30 12 22 100

31 12 24 120

32 13 4 92

33 13 8 96

34 13 10 108

35 13 14 104

36 13 16 92

37 13 19 120

38 13 22 108

39 13 24 112

OD ID Origin Node Destination Node Demand Units

40 20 4 80

41 20 8 100

42 20 10 96

43 20 14 104

Pitu B. Mirchandani and Dening Peng

34 Sioux-Falls Network OD Demand Information

44 20 16 108

45 20 19 104

46 20 22 80

47 20 24 104

48 4 1 5

49 4 2 5

50 4 7 4

51 4 12 5

52 4 20 5

53 4 13 4

54 8 1 5

55 8 2 5

56 8 7 5

57 8 12 5

58 8 20 5

59 8 13 5

60 10 1 5

61 10 2 5

62 10 7 5

63 10 12 5

64 10 20 5

65 10 13 5

66 14 1 4

67 14 2 5

68 14 7 5

69 14 12 5

70 14 20 5

71 14 13 5

72 16 1 6

73 16 2 4

74 16 7 5

75 16 12 6

76 16 20 5

77 16 13 5

78 19 1 5

79 19 2 5

80 19 7 6

OD ID Origin Node Destination Node Demand Units

81 19 12 5

82 19 20 6

83 19 13 5

84 22 1 6

Pitu B. Mirchandani and Dening Peng

35 Appendix

85 22 2 5

86 22 7 5

87 22 12 5

88 22 20 5

89 22 13 4

90 24 1 4

91 24 7 6

92 24 12 6

93 24 20 6

94 24 13 5

Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Sioux-Falls Network with 10% of Links to

Repair

Completion

Date (𝑻)

Run 1 Run 2 Run 3 Run 4 Run 5

Objective

Value
Solving Time

Objective

Value

Solving

Time

Objective

Value
Solving Time

Objective

Value

Solving

Time

Objective

Value

Solving

Time

19 237459 2.68 min 237494 4.63 min 237515 5.12 min 237487 2.17 min 237542 2.05 min

20 242532 4.67 min 242542 2.2 min 242518 4.47 min 242532 3 min 242542 2.58 min

21 247317 2.17 min 247325 2.63 min 247325 2.47 min 247325 2.58 min 247325 2.35 min

22 252140 2.57 min 252201 2.38 min 252201 2.6 min 252203 3.62 min 252140 2.77 min

23 260386 3.05 min 260302 2.87 min 260302 5.6 min 260318 2.75 min 260302 3.05 min

24 268500 2.87 min 268570 2.97 min 268498 6.53 min 268603 3.25 min 268631 3.03 min

25 277223 6.87 min 277258 3.35 min 277170 7.15 min 277339 3.07 min 277216 7.28 min

26 285841 7.65 min 285791 3.13 min 285841 4.12 min 285841 7.63 min 285843 3.35 min

27 294744 7.07 min 294744 4.75 min 294744 6.72 min 294573 5.3 min 294591 7 min

28 302933 7.92 min 303279 8.27 min 303278 8.92 min 303529 3.93 min 303396 7.5 min

29 311643 7.37 min 311643 8.82 min 311691 4.77 min 311447 8.37 min 311723 8.23 min

30 320849 5.45 min 320798 8.7 min 320522 8.27 min 320756 8.28 min 320798 8.75 min

31 329556 9.12 min 329368 10.77 min 329476 10.78 min 329430 8.18 min 329436 8.93 min

32 338608 10.93 min 338334 10.35 min 338860 9.08 min 338829 10.62 min 338665 9.35 min

33 349090 8.18 min 349265 2.67 min 347910 6.83 min 347897 3.83 min 349015 6.48 min

34 357086 8.43 min 357090 8.63 min 357045 9.5 min 357064 9.1 min 256866 10.38 min

35 366209 11.55 min 366280 9.47 min 366242 9.22 min 366256 11.11 min 366335 9.8 min

36 375665 9.62 min 375585 9.38 min 375633 9.57 min 375407 9.52 min 375516 10.18 min

37 385649 10.08 min 385649 11.1 min 385649 12.07 min 385649 10.95 min 358649 9.5 min

38 395879 10.53 min 395879 11.17 min 395879 10.75 min 395743 10.05 min 395861 12.45 min

Pitu B. Mirchandani and Dening Peng

36 Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Sioux-Falls Network with 20% of Links to Repair

Objective and Time Consumption of Five Runs by RFO for Each Test Case of the Sioux-Falls Network with 20% of Links to

Repair

Completion

Date (𝑻)

Run 1 Run 2 Run 3 Run 4 Run 5

Objective

Value

Solving

Time

Objective

Value

Solving

Time

Objective

Value

Solving

Time

Objective

Value

Solving

Time

Objective

Value

Solving

Time

26 429644 20.63 min 419612 19.38 min 429673 23.15 min 430182 18.85 min 430182 18.33 min

27 441983 24.33 min 439772 28.43 min 440444 34.22 min 441998 27.45 min 441053 55.08 min

28 446741 1.03 hr. 446946 25.7 min 446316 38.73 min 444821 1.13 hr. 447709 26.4 min

29 451943 44.5 min 451798 1.06 hr. 452415 41.88 min 451972 1.17 hr. 451404 23.28 min

30 461263 37.18 min 462005 53 min 465685 42.33 min 463749 22.77 min 460272 49.8 min

31 468504 1.17 hr. 468968 52.93 min 468724 53.72 min 468724 1.33 hr. 467886 1.18 hr.

32 474658 1.2 hr. 475698 33.17 min 475486 1.14 hr. 474658 1.34 hr. 474848 48.28 min

33 486761 47.63 min 485102 1.11 hr. 485800 1.23 hr. 487476 24.58 min 486772 44.37 min

34 495069 1.3 hr. 496514 1.25 hr. 496356 1.24 hr. 495278 1.21 hr. 495502 1.29 hr.

35 502656 1.43 hr. 502775 1.48 hr. 502704 1.31 hr. 502616 1.47 hr. 502656 1.3 hr.

36 513889 1.5 hr. 513445 1.04 hr. 512527 1.25 hr. 512588 1.24 hr. 514482 1.14 hr.

37 523158 1.41 hr. 521056 1.27 hr. 523197 1.28 hr. 521984 1.14 hr. 523766 1.35 hr.

38 547711 30.32 min 550335 38.5 min 535769 17.73 min 554759 52.37 min 558797 44.03 min

39 543698 26.23 min 544046 40.72 min 553827 46.6 min 560203 33.07 min 542010 38.35 min

40 568072 56.52 min 563160 38.82 min 575092 56.82 min 556089 39.6 min 551897 19.53 min

41 563869 43.07 min 562826 31.43 min 561137 30.55 min 581717 1.16 hr. 573486 40.75 min

42 571838 49.55 min 594626 1.02 hr. 567858 30.08 min 585013 47.62 min 588380 1.07 hr.

C++ Code of the Randomized Fix-and-Optimize Heuristic

//RFO of Workzone Scheduling for Transportation Service Networks -- Two Layer Structure
with Network Connectivity Check Ensuring the Feasibility of a Schedule
//Dening Peng
//%%%
%%%%%%%%%%
#include <ilcplex/ilocplex.h>
#include <vector>
#include <time.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <cmath>
#include <random>

ILOSTLBEGIN // macro that allows the use of standard libraries

//%%%
%%%%%%%%%%

Pitu B. Mirchandani and Dening Peng

37 Appendix

//===
==========
//Declare MIP callbacks
//===
==========
ILOMIPINFOCALLBACK1(AbortCriteria, IloNum, TotalCostFO){
 if(getBestObjValue() > TotalCostFO){
 abort(); //abort current fix and optimize subproblem if the
lower bound is larger than the current best FO objective
 cout << endl;
 cout << "The optimization of current FO subproblm is aborted." << endl;
 //cin.get();
 }
}

//%%%
%%%%%%%%%%
//===
==========
//Declare functions
//===
==========
void InputData();
void Initialization();

//%%%
%%%%%%%%%%
//===
==========
//Declare struct for data
//===
==========
struct generalInfo{
 // from text file "general"
 int numNodes; //number of
nodes
 int numLinks; //number of
links
 int numODs;
 //number of Origin-Destination (OD) pairs
 int maxnumLanes; //max number
of lanes among all links
 float rho;
 //ratio of unit extra flow cost to regular flow cost
 int T;
 //required maintenance completion date (RMCD)
 float theta; //percentage
of capacity increase once the lane is repaired, 0<theta<0.5
 //int batchMethod; //the method
of batching the links for sequential fix and optimize procedure, 0 is random batching, 1
is batching based on pindex
 float numLinpBat;
 //number of links per batch
};

struct linkInfo{
 // from MS Excel file worksheet "link"

Pitu B. Mirchandani and Dening Peng

38 C++ Code of the Randomized Fix-and-Optimize Heuristic

 int ID;
 //link ID
 int FN;
 //from node
 int TN;
 //to node
 int n; //# of
lanes of the link
 int u;
 //capacity upper bound of a lane
 float c; //cost
inccured by one unit flow on link when the link is regularly open to serve traffic
 int p; //the
number of days needed to repair a lane of the link
 bool R;
 //indicator of whether the lane needs repair at the begining of the repair project
 int obindex; //obindex is
the sequence of different batches of links to have their maintenance start dates
optimized
};

struct ODInfo{
 // from MS Excel file worksheet "od"
 int ID;
 //Origin-Destination (OD) pair ID
 int ON;
 //origin node
 int DN;
 //destination node
 int D;
 //traffic flow demand of OD pair each day
};

//%%%
%%%%%%%%%%
//===
==========
// parameters
//===
==========
//special structs
 generalInfo general; // general parameters
 vector<linkInfo> link; // link information
 vector<ODInfo> OD; // OD information

//parameters
 float timeLimitSA, // time stopping criteria for SA
problem
 timeLimitFO, // time stopping criteria
for FO subproblems
 mipGap, // optimality gap stopping
criteria
 cplexLB; // lower bound on solution
 float cplexUB; // upper bound on solution

 float TotalCostFO; //store the obejctive value of
current iteration of the Fix and Optimize problem

Pitu B. Mirchandani and Dening Peng

39 Appendix

 float TotalCost; //store the objective value of the
best feasible solution in FO relaxation iteration
 int sumD; //the summation of all the
OD demand. This number is used to construct the constraint that ensures entirely closed
links can not serve any flows
 float numBatches; //total number of batches
of links to go through fix and optimize procedure
 bool aborted; //flag variable indicating that at least one FO subproblem of
current batching has aborted the optimization process because of LB is greater than
TotalCost

 vector<vector<vector<float> > >y_o; //variables used for final
solution output
 vector<vector<float> >z_o;

//parameters used for lower layer multi-commodity flow problem
 vector<vector<vector<bool> > > s_o, x_o, v_o; //store the schedule with
the best objective so far of upper layer scheduling problem
 vector<vector<bool> >w_o;

//%%%
%%%%%%%%%%
//===
==========
// the class of the entire workzone scheduling problem for networks of service agents
(SA)
//===
==========
class SA{
public:
 IloEnv env;
 IloModel SA_Opt; //model for the SA problem
 IloCplex SA_Solver; //solver for the SA problem
 IloObjective obj;
 IloExpr expr;
 IloInt k, a, t, m, i, j;
 IloNumVar dummy, dummy1;
 IloRangeArray con_Nonpremp, con_StartDate, con_EntireClose, con_RepairClose,
con_ODDemand, con_FlowConserve, con_V, con_W, con_Z;
//desicion variables
 IloArray<IloArray<IloArray<IloNumVar> > > s, x, v, y;
 IloArray<IloArray<IloNumVar> > w, z;

public:
/********************************Function that builds the model FO and solves the problem
instance*******************************/
 void BuildSolveSA(){
 IloModel SA_Opt(env);
 IloCplex SA_Solver(SA_Opt);
 IloExpr expr(env); //expression used while building model
 IloExpr expr1(env); //expression used while building mode
 IloNumVar dummy(env, 0, 0, ILOFLOAT);
 IloNumVar dummy1(env, 0, 0, ILOFLOAT);

//Define Variables
 IloArray<IloArray<IloArray<IloNumVar> > > s(env, general.numLinks);
 //variable for the repair start date of each lane of each link

Pitu B. Mirchandani and Dening Peng

40 C++ Code of the Randomized Fix-and-Optimize Heuristic

 IloArray<IloArray<IloArray<IloNumVar> > > x(env, general.numLinks);
 //variable indicating whether the lane of a link is open or closed
 IloArray<IloArray<IloArray<IloNumVar> > > v(env, general.numLinks);
 //if the mth lane of link (i,j) is repaired before day t, v_{ijmt}=1, otherwise 0
 IloArray<IloArray<IloArray<IloNumVar> > > y(env, general.numLinks);
 //flow variable used to ensure the schedule generated is feasible

 for (i = 0; i < general.numLinks; i++){
 //link index
 s[i] = IloArray<IloArray<IloNumVar> >(env, general.maxnumLanes);
 x[i] = IloArray<IloArray<IloNumVar> >(env, general.maxnumLanes);
 v[i] = IloArray<IloArray<IloNumVar> >(env, general.maxnumLanes);
 for (m = 0; m < link[i].n; m++){
 //lane index
 s[i][m] = IloArray<IloNumVar>(env, general.T);
 x[i][m] = IloArray<IloNumVar>(env, general.T);
 v[i][m] = IloArray<IloNumVar>(env, general.T);
 for(t = 0; t < general.T; t++){
 //date index
 s[i][m][t] = IloNumVar(env, 0, 1, ILOBOOL);
 x[i][m][t] = IloNumVar(env, 0, 1, ILOBOOL);
 v[i][m][t] = IloNumVar(env, 0, 1, ILOBOOL);
 }
 }
 }

 for (i = 0; i < general.numLinks; i++){
 //link index
 y[i] = IloArray<IloArray<IloNumVar> >(env, general.numODs); //OD
index
 for(k = 0; k < general.numODs; k++){
 y[i][k] = IloArray<IloNumVar>(env, general.T);
 //date index
 for(t = 0; t < general.T; t++){
 y[i][k][t] = IloNumVar(env, 0, IloInfinity, ILOFLOAT);
 }
 }
 }

 w = IloArray<IloArray<IloNumVar> >(env, general.numLinks);
 //whether all the lanes of link (i,j) is closed on day t, if it is, w_{ijt}=1;
otherwise 0
 z = IloArray<IloArray<IloNumVar> >(env, general.numLinks);
 for (i = 0; i < general.numLinks; i++) {
 w[i] = IloArray<IloNumVar>(env, general.T);
 z[i] = IloArray<IloNumVar>(env, general.T);
 for (t = 0; t < general.T; t++){
 w[i][t] = IloNumVar(env, 0, 1, ILOBOOL);
 z[i][t] = IloNumVar(env, 0, IloInfinity, ILOFLOAT);
 }
 }
//Define Constraints
//Constraints ensuring once a lane is closed for repair, it won't open to serve the flows
until it is fully repaired
 IloRangeArray con_Nonpremp(env);
 for(i = 0; i < general.numLinks; i++) {
 if(link[i].R > 0.5){
 for(m = 0; m < link[i].n; m++){

Pitu B. Mirchandani and Dening Peng

41 Appendix

 for(t = 0; t < general.T; t++){
 expr = dummy;
 if((t - link[i].p + 1) > 0){
 for(a = t - link[i].p + 1; a < t + 1;
a++){
 expr += s[i][m][a];
 }
 }
 else{
 for(a = 0; a < t + 1; a++){
 expr += s[i][m][a];
 }
 }
 expr = x[i][m][t] - expr;
 con_Nonpremp.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 }
 }
 SA_Opt.add(con_Nonpremp);
//Constraints ensuring each lane of the links to be repaired has a repair start date, and
those do not need repair does not have a repair start date
 IloRangeArray con_StartDate(env);
 for(i = 0; i < general.numLinks; i++) {
 for(m = 0; m < link[i].n; m++){
 expr = dummy;
 for(t = 0; t < general.T; t++){
 expr += s[i][m][t];
 }
 if(link[i].R > 0.5){
 expr = expr - 1;
 }
 con_StartDate.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 SA_Opt.add(con_StartDate);
//All links that need maintenance have to be repaired before the end of the time horizon,
all links that don't need repair can't close any lanes at any time
 IloRangeArray con_RepairClose(env);
 for(i = 0; i < general.numLinks; i++) {
 for(m = 0; m < link[i].n; m++){
 expr = dummy;
 for(t = 0; t < general.T; t++){
 expr += x[i][m][t];
 }
 if(link[i].R == 1){
 expr = expr - link[i].p;
 }
 con_RepairClose.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 SA_Opt.add(con_RepairClose);
//Constraint ensuring entirely closed link won't serve flows
 IloRangeArray con_EntireClose(env);
 for(i = 0; i < general.numLinks; i++){

Pitu B. Mirchandani and Dening Peng

42 C++ Code of the Randomized Fix-and-Optimize Heuristic

 if(link[i].R > 0.5){
 for(t = 0; t < general.T; t++){
 expr = dummy;
 m = 0;
 for(k = 0; k < general.numODs; k++){
 expr += y[i][k][t];
 m += OD[k].D;
 }
 expr = (1 - w[i][t]) * m - expr;
 IloRange EntireClose(env, 0, expr, IloInfinity, 0);
 con_EntireClose.add(EntireClose);
 expr.end();
 expr1.end();
 }
 }
 }
 SA_Opt.add(con_EntireClose);
//definition of w[i][t]
 IloRangeArray con_W(env);
 for(i = 0; i < general.numLinks; i++){
 if(link[i].R > 0.5){
 for(t = 0; t < general.T; t++){
 expr = dummy;
 expr1 = dummy1;
 for(m = 0; m < link[i].n; m++){
 expr1 += x[i][m][t];
 }
 expr = link[i].n - expr1;
 expr = expr - (1 - w[i][t]);
 con_W.add(IloRange(env, 0, expr, IloInfinity, 0));
 expr.end();
 expr = dummy;
 expr = link[i].n * (1 - w[i][t]);
 expr = expr - (link[i].n - expr1);
 con_W.add(IloRange(env, 0, expr, IloInfinity, 0));
 expr.end();
 expr1.end();
 }
 }
 else{
 for(t = 0; t < general.T; t++){
 expr = w[i][t];
 con_W.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 }
 SA_Opt.add(con_W);
//definition of v[i][m][t]
 IloRangeArray con_V(env);
 for(i = 0; i < general.numLinks; i++){
 for(m = 0; m < link[i].n; m++){
 if(link[i].R > 0.5){
 for(t = 0; t < link[i].p; t++){
 expr = v[i][m][t];
 con_V.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }

Pitu B. Mirchandani and Dening Peng

43 Appendix

 for(t = link[i].p; t < general.T; t++){
 expr = dummy;
 for(a = 0; a < t - link[i].p + 1; a++){
 expr += s[i][m][a];
 }
 expr = expr - v[i][m][t];
 con_V.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 else{
 for(t = 0; t < general.T; t++){
 expr = v[i][m][t];
 con_V.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 }
 }
 SA_Opt.add(con_V);
//OD demand constraint
 IloRangeArray con_ODDemand(env);
 for(k = 0; k < general.numODs; k++){
 for(t = 0; t < general.T; t++){
 expr = dummy;
 expr1 = dummy;
 for(i = 0; i < general.numLinks; i++){
 if(link[i].FN == OD[k].ON){
 expr += y[i][k][t];
 }
 else if(link[i].TN == OD[k].ON){
 expr1 += y[i][k][t];
 }
 }
 expr = expr - expr1;
 con_ODDemand.add(IloRange(env, OD[k].D, expr, OD[k].D, 0));
 expr.end();
 expr1.end();
 expr = dummy;
 expr1 = dummy;
 for(i = 0; i < general.numLinks; i++){
 if(link[i].TN == OD[k].DN){
 expr += y[i][k][t];
 }
 else if(link[i].FN == OD[k].DN){
 expr1 += y[i][k][t];
 }
 }
 expr = expr - expr1;
 con_ODDemand.add(IloRange(env, OD[k].D, expr, OD[k].D, 0));
 expr.end();
 }
 }
 SA_Opt.add(con_ODDemand);
//Flow Conservation Constraint
 IloRangeArray con_FlowConserve(env);
 for(j = 1; j < general.numNodes + 1; j++){
 for(k = 0; k < general.numODs; k++){

Pitu B. Mirchandani and Dening Peng

44 C++ Code of the Randomized Fix-and-Optimize Heuristic

 if(OD[k].ON != j && OD[k].DN != j){
 for(t = 0; t < general.T; t++){
 expr = dummy;
 expr1 = dummy1;
 for(i = 0; i < general.numLinks; i++){
 if(link[i].FN == j){
 //OD flow out
 expr += y[i][k][t];
 }
 else if(link[i].TN == j){
 //OD flow in
 expr1 += y[i][k][t];
 }
 }
 expr = expr - expr1;
 con_FlowConserve.add(IloRange(env, 0, expr, 0,
0));
 expr.end();
 expr1.end();
 }
 }
 }
 }
 SA_Opt.add(con_FlowConserve);
//definition of z[i][t]
 IloRangeArray con_Z(env);
 for(i = 0; i < general.numLinks; i++){
 for(t = 0; t < general.T; t++){
 expr = z[i][t];
 IloRange Z(env, 0, expr, IloInfinity, 0);
 con_Z.add(Z);
 expr.end();
 expr = dummy;
 expr1 = dummy1;
 for(k = 0; k < general.numODs; k++){
 expr += y[i][k][t];
 }
 for(m = 0; m < link[i].n; m++){
 expr1 += (-x[i][m][t] + general.theta*v[i][m][t]);
 }
 expr1 = (link[i].n + expr1) * link[i].u;
 expr = expr - expr1;
 expr = z[i][t] - expr;
 IloRange Z1(env, 0, expr, IloInfinity, 0);
 con_Z.add(Z1);
 expr.end();
 expr1.end();
 }
 }
 SA_Opt.add(con_Z);
//Define Objective
 expr = dummy;
 for(i = 0; i < general.numLinks; i++) {
 for(t = 0; t < general.T; t++){
 expr1 = dummy1;
 for(k = 0; k < general.numODs; k++){
 expr1 += y[i][k][t];
 }

Pitu B. Mirchandani and Dening Peng

45 Appendix

 expr += link[i].c * expr1 + z[i][t] * general.rho * link[i].c;
 expr1.end();
 }
 }
 IloObjective obj(env, expr, IloObjective::Minimize);
 SA_Opt.add(obj);
 expr.end();
 expr1.end();
//Set Sch_Solver parameter
 SA_Solver.setParam(IloCplex::TiLim, timeLimitSA); //restrict
the solving time for the entire SA problem to be 60 sec
 SA_Solver.setParam(IloCplex::EpGap, mipGap);
 SA_Solver.setParam(IloCplex::CutUp, cplexUB);
 SA_Solver.setParam(IloCplex::CutLo, cplexLB);
 SA_Solver.setParam(IloCplex::Threads, 0);
 SA_Solver.setParam(IloCplex::FPHeur, 2); //use feasibility pump heuristic
 SA_Solver.setParam(IloCplex::MIPEmphasis, 1); //let cplex put more effort
on finding a better feasible solution

 cout<<"\n";
 cout<<"Constraints of the SA problem are constructed\n";

 if (SA_Solver.solve()){
 TotalCost = SA_Solver.getObjValue();
 for(i = 0; i < general.numLinks; i++){
 for(t = 0; t < general.T; t++){
 for(m = 0; m < link[i].n; m++){
 if(SA_Solver.getValue(s[i][m][t]) > 0.5){
 s_o[i][m][t] =
SA_Solver.getValue(s[i][m][t]);
 }
 else if(SA_Solver.getValue(s[i][m][t]) < 0.5){
 s_o[i][m][t] = 0;
 }
 if(SA_Solver.getValue(x[i][m][t]) > 0.5){
 x_o[i][m][t] =
SA_Solver.getValue(x[i][m][t]);
 }
 else if(SA_Solver.getValue(x[i][m][t]) < 0.5){
 x_o[i][m][t] = 0;
 }
 if(SA_Solver.getValue(v[i][m][t]) > 0.5){
 v_o[i][m][t] =
SA_Solver.getValue(v[i][m][t]);
 }
 else if(SA_Solver.getValue(v[i][m][t]) < 0.5){
 v_o[i][m][t] = 0;
 }
 }
 if(SA_Solver.getValue(w[i][t]) > 0.5){
 w_o[i][t] = SA_Solver.getValue(w[i][t]);
 }
 else{
 w_o[i][t] = 0;
 }
 }
 }
 for(i = 0; i < general.numLinks; i++){

Pitu B. Mirchandani and Dening Peng

46 C++ Code of the Randomized Fix-and-Optimize Heuristic

 for(t = 0; t < general.T; t++){
 for(k = 0; k < general.numODs; k++){
 y_o[i][k][t] = SA_Solver.getValue(y[i][k][t]);
 }
 z_o[i][t] = SA_Solver.getValue(z[i][t]);
 }
 }
 env.end();
 }
 else{
 cout<<endl;
 cout << "The original SA problem is not solved" << endl;
 cout << endl;
 //cin.get();
 env.end();
 }
 }
};

//%%%
%%%%%%%%%%
//===
==========
// the class of FO Relaxation problem for variable v,s,x,w,y,z
//===
==========
class FO
{
public:
 IloEnv env;
 IloModel FO_Opt; //model for the FO problem
 IloCplex FO_Solver; //solver for the FO problem
 IloObjective obj;
 IloExpr expr;
 IloInt k, a, t, m, i, j;
 IloNumVar dummy, dummy1;
 IloRangeArray con_Nonpremp, con_StartDate, con_EntireClose, con_RepairClose,
con_ODDemand, con_FlowConserve, con_V, con_W, con_Z, con_Fix;
//desicion variables
 IloArray<IloArray<IloArray<IloNumVar> > > s, x, v, y;
 IloArray<IloArray<IloNumVar> > w, z;

public:
/********************************Function that builds the model
FO*******************************/
 void Build(){
 FO_Opt = IloModel(env);
 FO_Solver = IloCplex(FO_Opt);
 IloExpr expr(env); //expression used while building model
 IloExpr expr1(env); //expression used while building mode
 IloNumVar dummy(env, 0, 0, ILOFLOAT);
 IloNumVar dummy1(env, 0, 0, ILOFLOAT);

//Define Variables
 s = IloArray<IloArray<IloArray<IloNumVar> > >(env, general.numLinks);
 //variable for the repair start date of each lane of each link
 x = IloArray<IloArray<IloArray<IloNumVar> > >(env, general.numLinks);
 //variable indicating whether the lane of a link is open or closed

Pitu B. Mirchandani and Dening Peng

47 Appendix

 v = IloArray<IloArray<IloArray<IloNumVar> > >(env, general.numLinks);
 //if the mth lane of link (i,j) is repaired before day t, v_{ijmt}=1,
otherwise 0
 y = IloArray<IloArray<IloArray<IloNumVar> > >(env, general.numLinks);
 //flow variable used to ensure the schedule generated is feasible

 for (i = 0; i < general.numLinks; i++){
 //link index
 s[i] = IloArray<IloArray<IloNumVar> >(env, general.maxnumLanes);
 x[i] = IloArray<IloArray<IloNumVar> >(env, general.maxnumLanes);
 v[i] = IloArray<IloArray<IloNumVar> >(env, general.maxnumLanes);
 for (m = 0; m < link[i].n; m++){
 //lane index
 s[i][m] = IloArray<IloNumVar>(env, general.T);
 x[i][m] = IloArray<IloNumVar>(env, general.T);
 v[i][m] = IloArray<IloNumVar>(env, general.T);
 for(t = 0; t < general.T; t++){
 //date index
 s[i][m][t] = IloNumVar(env, 0, 1, ILOBOOL);
 x[i][m][t] = IloNumVar(env, 0, 1, ILOBOOL);
 v[i][m][t] = IloNumVar(env, 0, 1, ILOBOOL);
 }
 }
 }

 for (i = 0; i < general.numLinks; i++){
 //link index
 y[i] = IloArray<IloArray<IloNumVar> >(env, general.numODs); //OD
index
 for(k = 0; k < general.numODs; k++){
 y[i][k] = IloArray<IloNumVar>(env, general.T);
 //date index
 for(t = 0; t < general.T; t++){
 y[i][k][t] = IloNumVar(env, 0, IloInfinity, ILOFLOAT);
 }
 }
 }

 w = IloArray<IloArray<IloNumVar> >(env, general.numLinks);
 //whether all the lanes of link (i,j) is closed on day t, if it is, w_{ijt}=1;
otherwise 0
 z = IloArray<IloArray<IloNumVar> >(env, general.numLinks);
 for (i = 0; i < general.numLinks; i++) {
 w[i] = IloArray<IloNumVar>(env, general.T);
 z[i] = IloArray<IloNumVar>(env, general.T);
 for (t = 0; t < general.T; t++){
 w[i][t] = IloNumVar(env, 0, 1, ILOBOOL);
 z[i][t] = IloNumVar(env, 0, IloInfinity, ILOFLOAT);
 }
 }
//Define Constraints
//Constraints ensuring once a lane is closed for repair, it won't open to serve the flows
until it is fully repaired
 IloRangeArray con_Nonpremp(env);
 for(i = 0; i < general.numLinks; i++) {
 if(link[i].R > 0.5){
 for(m = 0; m < link[i].n; m++){
 for(t = 0; t < general.T; t++){

Pitu B. Mirchandani and Dening Peng

48 C++ Code of the Randomized Fix-and-Optimize Heuristic

 expr = dummy;
 if((t - link[i].p + 1) > 0){
 for(a = t - link[i].p + 1; a < t + 1;
a++){
 expr += s[i][m][a];
 }
 }
 else{
 for(a = 0; a < t + 1; a++){
 expr += s[i][m][a];
 }
 }
 expr = x[i][m][t] - expr;
 con_Nonpremp.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 }
 }
 FO_Opt.add(con_Nonpremp);
//Constraints ensuring each lane of the links to be repaired has a repair start date, and
those do not need repair does not have a repair start date
 IloRangeArray con_StartDate(env);
 for(i = 0; i < general.numLinks; i++) {
 for(m = 0; m < link[i].n; m++){
 expr = dummy;
 for(t = 0; t < general.T; t++){
 expr += s[i][m][t];
 }
 if(link[i].R > 0.5){
 expr = expr - 1;
 }
 con_StartDate.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 FO_Opt.add(con_StartDate);
//All links that need maintenance have to be repaired before the end of the time horizon,
all links that don't need repair can't close any lanes at any time
 IloRangeArray con_RepairClose(env);
 for(i = 0; i < general.numLinks; i++) {
 for(m = 0; m < link[i].n; m++){
 expr = dummy;
 for(t = 0; t < general.T; t++){
 expr += x[i][m][t];
 }
 if(link[i].R == 1){
 expr = expr - link[i].p;
 }
 con_RepairClose.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 FO_Opt.add(con_RepairClose);
//Constraint ensuring entirely closed link won't serve flows
 IloRangeArray con_EntireClose(env);
 for(i = 0; i < general.numLinks; i++){
 if(link[i].R > 0.5){

Pitu B. Mirchandani and Dening Peng

49 Appendix

 for(t = 0; t < general.T; t++){
 expr = dummy;
 m = 0;
 for(k = 0; k < general.numODs; k++){
 expr += y[i][k][t];
 m += OD[k].D;
 }
 expr = (1 - w[i][t]) * m - expr;
 IloRange EntireClose(env, 0, expr, IloInfinity, 0);
 con_EntireClose.add(EntireClose);
 expr.end();
 expr1.end();
 }
 }
 }
 FO_Opt.add(con_EntireClose);
//definition of w[i][t]
 IloRangeArray con_W(env);
 for(i = 0; i < general.numLinks; i++){
 if(link[i].R > 0.5){
 for(t = 0; t < general.T; t++){
 expr = dummy;
 expr1 = dummy1;
 for(m = 0; m < link[i].n; m++){
 expr1 += x[i][m][t];
 }
 expr = link[i].n - expr1;
 expr = expr - (1 - w[i][t]);
 con_W.add(IloRange(env, 0, expr, IloInfinity, 0));
 expr.end();
 expr = dummy;
 expr = link[i].n * (1 - w[i][t]);
 expr = expr - (link[i].n - expr1);
 con_W.add(IloRange(env, 0, expr, IloInfinity, 0));
 expr.end();
 expr1.end();
 }
 }
 else{
 for(t = 0; t < general.T; t++){
 expr = w[i][t];
 con_W.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 }
 FO_Opt.add(con_W);
//definition of v[i][m][t]
 IloRangeArray con_V(env);
 for(i = 0; i < general.numLinks; i++){
 for(m = 0; m < link[i].n; m++){
 if(link[i].R > 0.5){
 for(t = 0; t < link[i].p; t++){
 expr = v[i][m][t];
 con_V.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 for(t = link[i].p; t < general.T; t++){

Pitu B. Mirchandani and Dening Peng

50 C++ Code of the Randomized Fix-and-Optimize Heuristic

 expr = dummy;
 for(a = 0; a < t - link[i].p + 1; a++){
 expr += s[i][m][a];
 }
 expr = expr - v[i][m][t];
 con_V.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 else{
 for(t = 0; t < general.T; t++){
 expr = v[i][m][t];
 con_V.add(IloRange(env, 0, expr, 0, 0));
 expr.end();
 }
 }
 }
 }
 FO_Opt.add(con_V);
//OD demand constraint
 IloRangeArray con_ODDemand(env);
 for(k = 0; k < general.numODs; k++){
 for(t = 0; t < general.T; t++){
 expr = dummy;
 expr1 = dummy;
 for(i = 0; i < general.numLinks; i++){
 if(link[i].FN == OD[k].ON){
 expr += y[i][k][t];
 }
 else if(link[i].TN == OD[k].ON){
 expr1 += y[i][k][t];
 }
 }
 expr = expr - expr1;
 con_ODDemand.add(IloRange(env, OD[k].D, expr, OD[k].D, 0));
 expr.end();
 expr1.end();
 expr = dummy;
 expr1 = dummy;
 for(i = 0; i < general.numLinks; i++){
 if(link[i].TN == OD[k].DN){
 expr += y[i][k][t];
 }
 else if(link[i].FN == OD[k].DN){
 expr1 += y[i][k][t];
 }
 }
 expr = expr - expr1;
 con_ODDemand.add(IloRange(env, OD[k].D, expr, OD[k].D, 0));
 expr.end();
 }
 }
 FO_Opt.add(con_ODDemand);
//Flow Conservation Constraint
 IloRangeArray con_FlowConserve(env);
 for(j = 1; j < general.numNodes + 1; j++){
 for(k = 0; k < general.numODs; k++){
 if(OD[k].ON != j && OD[k].DN != j){

Pitu B. Mirchandani and Dening Peng

51 Appendix

 for(t = 0; t < general.T; t++){
 expr = dummy;
 expr1 = dummy1;
 for(i = 0; i < general.numLinks; i++){
 if(link[i].FN == j){
 //OD flow out
 expr += y[i][k][t];
 }
 else if(link[i].TN == j){
 //OD flow in
 expr1 += y[i][k][t];
 }
 }
 expr = expr - expr1;
 con_FlowConserve.add(IloRange(env, 0, expr, 0,
0));
 expr.end();
 expr1.end();
 }
 }
 }
 }
 FO_Opt.add(con_FlowConserve);
//definition of z[i][t]
 IloRangeArray con_Z(env);
 for(i = 0; i < general.numLinks; i++){
 for(t = 0; t < general.T; t++){
 expr = z[i][t];
 IloRange Z(env, 0, expr, IloInfinity, 0);
 con_Z.add(Z);
 expr.end();
 expr = dummy;
 expr1 = dummy1;
 for(k = 0; k < general.numODs; k++){
 expr += y[i][k][t];
 }
 for(m = 0; m < link[i].n; m++){
 expr1 += (-x[i][m][t] + general.theta*v[i][m][t]);
 }
 expr1 = (link[i].n + expr1) * link[i].u;
 expr = expr - expr1;
 expr = z[i][t] - expr;
 IloRange Z1(env, 0, expr, IloInfinity, 0);
 con_Z.add(Z1);
 expr.end();
 expr1.end();
 }
 }
 FO_Opt.add(con_Z);
//Define Objective
 expr = dummy;
 for(i = 0; i < general.numLinks; i++) {
 for(t = 0; t < general.T; t++){
 expr1 = dummy1;
 for(k = 0; k < general.numODs; k++){
 expr1 += y[i][k][t];
 }
 expr += link[i].c * expr1 + z[i][t] * general.rho * link[i].c;

Pitu B. Mirchandani and Dening Peng

52 C++ Code of the Randomized Fix-and-Optimize Heuristic

 expr1.end();
 }
 }
 IloObjective obj(env, expr, IloObjective::Minimize);
 FO_Opt.add(obj);
 expr.end();
 expr1.end();
//Set Sch_Solver parameter
 FO_Solver.setParam(IloCplex::TiLim, timeLimitFO); //restrict
the solving time for each FO subproblem to be 30 sec
 FO_Solver.setParam(IloCplex::EpGap, mipGap);
 FO_Solver.setParam(IloCplex::CutUp, cplexUB);
 FO_Solver.setParam(IloCplex::CutLo, cplexLB);
 FO_Solver.setParam(IloCplex::Threads, 0);
 FO_Solver.setParam(IloCplex::FPHeur, 2); //use feasibility pump heuristic
to find a good feasible point to start with
 FO_Solver.setParam(IloCplex::MIPEmphasis, 1); //let cplex put more effort
on finding a better feasible solution

 cout<<"\n";
 cout<<"Constraints of the FO problem are constructed\n";
 }
/*********************function that adds the constraint fixing the values of scheduling
variables of links not in the currect FO batch ***************/
 void Fix(int FOBatchNum){
 con_Fix = IloRangeArray(env);
 for(i = 0; i < general.numLinks; i++){
 if(link[i].obindex != FOBatchNum){
 for(t = 0; t < general.T; t++){
 /*IloRange fixw(env, w_o[i][t], w[i][t], w_o[i][t], 0);
 //fix all the variables of the link, when time horizon is long, removing the
con_Fix takes a very long time
 con_Fix.add(fixw);
 for(m = 0; m < link[i].n; m++){
 IloRange fixs(env, s_o[i][m][t], s[i][m][t],
s_o[i][m][t], 0);
 IloRange fixx(env, x_o[i][m][t], x[i][m][t],
x_o[i][m][t], 0);
 IloRange fixv(env, v_o[i][m][t], v[i][m][t],
v_o[i][m][t], 0);
 con_Fix.add(fixs);
 con_Fix.add(fixx);
 con_Fix.add(fixv);
 }*/
 for(m = 0; m < link[i].n; m++){
 if(s_o[i][m][t] == 1){
 IloRange fixs(env, 1, s[i][m][t], 1, 0);
 //just fix the s variable when s=1
 con_Fix.add(fixs);
 }
 }
 }
 }
 }
 FO_Opt.add(con_Fix);
 //cin.get();
 }

Pitu B. Mirchandani and Dening Peng

53 Appendix

/********************function that deletes the constraint fixing the value of scheduling
variables of links not in the currect FO batch **************/
 void Unfix(){
 FO_Opt.remove(con_Fix);
 con_Fix.end();
 }
/************************function that solves the Fix and Optimize problem for the
optimizatio batch***************/
 bool Solve(int FOBatchNum){
 IloCplex::Callback abortcriteria = FO_Solver.use(AbortCriteria(env,
TotalCostFO));
 if (FO_Solver.solve()){
 cout << endl;
 cout << "The best lower bound of current FO subproblem is: " <<
FO_Solver.getBestObjValue() << endl;
 //cin.get();
 if(FO_Solver.getBestObjValue()>TotalCostFO){
 aborted = 1;
 }
 if(TotalCostFO > FO_Solver.getObjValue()){
 TotalCostFO = FO_Solver.getObjValue();
 for(i = 0; i < general.numLinks; i++){
 if(link[i].obindex == FOBatchNum){
 for(t = 0; t < general.T; t++){
 for(m = 0; m < link[i].n; m++){

 if(FO_Solver.getValue(s[i][m][t]) > 0.5){
 s_o[i][m][t] =
FO_Solver.getValue(s[i][m][t]);
 }
 else
if(FO_Solver.getValue(s[i][m][t]) < 0.5){
 s_o[i][m][t] = 0;
 }

 if(FO_Solver.getValue(x[i][m][t]) > 0.5){
 x_o[i][m][t] =
FO_Solver.getValue(x[i][m][t]);
 }
 else
if(FO_Solver.getValue(x[i][m][t]) < 0.5){
 x_o[i][m][t] = 0;
 }

 if(FO_Solver.getValue(v[i][m][t]) > 0.5){
 v_o[i][m][t] =
FO_Solver.getValue(v[i][m][t]);
 }
 else
if(FO_Solver.getValue(v[i][m][t]) < 0.5){
 v_o[i][m][t] = 0;
 }
 }
 if(FO_Solver.getValue(w[i][t]) > 0.5){
 w_o[i][t] =
FO_Solver.getValue(w[i][t]);
 }
 else{

Pitu B. Mirchandani and Dening Peng

54 C++ Code of the Randomized Fix-and-Optimize Heuristic

 w_o[i][t] = 0;
 }
 }
 }
 for(i = 0; i < general.numLinks; i++){
 for(t = 0; t < general.T; t++){
 for(k = 0; k < general.numODs; k++){
 y_o[i][k][t] =
FO_Solver.getValue(y[i][k][t]);
 }
 z_o[i][t] = FO_Solver.getValue(z[i][t]);
 }
 }
 //cout << endl;
 //cout << "Best schedule for the links in FO batch is
updated" << endl;
 //cin.get();
 }
 }
 cout<<"\n";
 cout<<"The Fix and Optimize problem is solved, the objective is
"<<TotalCostFO<<"\n";
 cout << endl;
 stringstream ss8;
 stringstream ss9;
 stringstream ss10;
 string fileName8;
 string fileName9;
 string fileName10;
 ofstream ofileSol8;
 ofstream ofileSol9;
 ofstream ofileSol10;
 ss8 << "FO_s_x.csv";
 fileName8 = ss8.str();
 ofileSol8.open(fileName8.c_str());
 ss9 << "FO_y.csv";
 fileName9 = ss9.str();
 ofileSol9.open(fileName9.c_str());
 ss10 << "FO_z_w_mu.csv";
 fileName10 = ss10.str();
 ofileSol10.open(fileName10.c_str());
 ofileSol8 << "Schedule when time horizon = " << general.T << endl;
 ofileSol8 << "OBJECTIVE: " << TotalCostFO << endl;
 ofileSol8 << "Values of the s and x matrice: " << endl;
 ofileSol8 << "Link ID ," << "From Node ," << "To Node ," << "Lane
No. ," << "Date ," << "s_value ," << "x_value ," << "v_value" << endl;
 for(i = 0; i < general.numLinks; i++){
 for(m = 0; m < link[i].n; m++){
 for(t = 0;t < general.T; t++){
 ofileSol8 << link[i].ID << "," << link[i].FN << "," <<
link[i].TN << "," << m + 1 << "," << t + 1 << "," << s_o[i][m][t] << "," << x_o[i][m][t]
<< "," << v_o[i][m][t] << endl;
 }
 }
 }
 ofileSol8.close();
 ofileSol9 << "Schedule when time horizon = " << general.T << endl;
 ofileSol9 << "OBJECTIVE: " << TotalCostFO << endl;

Pitu B. Mirchandani and Dening Peng

55 Appendix

 ofileSol9 << "Values of the y matrix: " << endl;
 ofileSol9 << "Link ID ," << "From Node ," << "To Node ," << "OD
ID ," << "Origin Node ," << "Destination Node ," << "Date ," << "y_value ," << endl;
 for(i = 0; i < general.numLinks; i++){
 for(k = 0; k < general.numODs; k++){
 for(t = 0;t < general.T; t++){
 ofileSol9 << link[i].ID << "," << link[i].FN << "," <<
link[i].TN << "," << OD[k].ID << "," << OD[k].ON << "," << OD[k].DN << "," << t + 1 <<
"," << y_o[i][k][t] << endl;
 }
 }
 }
 ofileSol9.close();
 ofileSol10 << "Schedule when time horizon = " << general.T << endl;
 ofileSol10 << "OBJECTIVE: " << TotalCostFO << endl;
 ofileSol10 << "Values of the z and w matrice: " << endl;
 ofileSol10 << "Link ID ," << "From Node ," << "To Node ," <<
"Date ," << "z_value ," << "w_value " << endl;
 for(i = 0; i < general.numLinks; i++){
 for(t = 0;t < general.T; t++){
 ofileSol10 << link[i].ID << "," << link[i].FN << "," <<
link[i].TN << "," << t + 1 << "," << z_o[i][t] << "," << w_o[i][t] << endl;
 }
 }
 ofileSol10.close();
 abortcriteria.end();
 return true;
 }
 else{
 cout<<endl;
 cout << "The FO relaxation problem is not solved" << endl;
 cout << endl;
 //cin.get();
 return false;
 }
 }
/************************function that set the solver spend more effort on finding better
lower bounds************************/
 void BLB(){
 FO_Solver.setParam(IloCplex::MIPEmphasis, 2);
 }
/************************function that set the solver spend more effort on finding better
feasible solutions************************/
 void BFS(){
 FO_Solver.setParam(IloCplex::MIPEmphasis, 1);
 }
};

//%%%
%%%%%%%%%%
//===
==========
//main function
//===
==========
int main(int argc, char** argv) {

 time_t startTime, endTime, startTimeC, endTimeC;

Pitu B. Mirchandani and Dening Peng

56 C++ Code of the Randomized Fix-and-Optimize Heuristic

 double runTime;
 int i, j, k, m, t;
 int FOBatchNum;
 int iter_num; //record the number of iterations performed

 /***
******************/
 InputData(); //obtain network information
 /***
******************/

 /*********************************** Initialization
**/
 Initialization();

 /********************************* Construct the models of the entire SA problem
****************************/
 /***
***************************/
 startTime = time(0); //time stamp of the starting point of the whole solving
process
 SA modelSA;
 startTimeC = time(0); //time stamp of cples starts solving the entire SA
problem
 modelSA.BuildSolveSA();
 endTimeC = time(0); //time stamp of cplex stops solving the entire SA
problem

 FO modelFO;
 modelFO.Build();

 if(difftime(endTimeC, startTimeC)<timeLimitSA){
 cout << endl;
 //cin.get();
 goto stop;
 }
 else{
 cout << endl;
 cout << "Optimality is not reached in " << timeLimitSA << " seconds.
Continue to fix and optimize procedure." << endl;
 //cin.get();
 goto FOStart;
 }

 /***

***********************************/
 /***
**************** FO Iteration

*****/
 FOStart:
 iter_num = 1;
 numBatches = 2.0; //start with 2 batches
 int numLinpBat; //number of links per batch
 bool LonSolTime; //flag variable indicating that at least one FO subproblem of
current batching has solving time longer than 30 sec
 cout << endl;

Pitu B. Mirchandani and Dening Peng

57 Appendix

 cout << "Start of FO iteration." << endl;
 //cin.get();
 while(iter_num < 10000){
 vector<int> LintoRep; //the set of links that need repair and
haven't been assigned to a batch
 for(i = 0; i < general.numLinks; i++){
 if(link[i].R == 1){
 LintoRep.push_back(i); //construct the set with
the IDs of links that need repair
 }
 }
 numLinpBat = floor(LintoRep.size()/numBatches+0.5); //calculate
the number of links in a batch
 cout << endl;
 cout << "Number of links per batch: " << numLinpBat << endl;
 //cin.get();
 cout << endl;
 cout << "Total number of links that need repair is " << LintoRep.size() <<
endl;
 for(j = 1; j < numBatches+1; j++){
 for(k = 1; k < numLinpBat+1; k++){
 int index;
 int ID;
 if(k == 1 && LintoRep.size() == 1){
 ID = LintoRep.at(0); //if there is one
link to be batched in a new batch, put the link in the batch formed in last iteration
 link[ID].obindex = j - 1;
 LintoRep.erase(LintoRep.begin());
 numBatches = numBatches - 1; //when the only link
left is put in the batch in last iteration, the total number of batches will be 1 less
 }
 else{
 srand(time(0));
 index = rand() % LintoRep.size(); //randomly pick a
link from the set, assign it to the current batch
 ID = LintoRep.at(index);
 link[ID].obindex = j;
 LintoRep.erase(LintoRep.begin()+index);
 //after the assignment, delete the link ID from the set
 }
 if(LintoRep.empty()){
 goto endofbatchingFO;
 }
 }
 }
 endofbatchingFO:
 cout << endl;
 cout << "Number of batches to go through the fix and optimize process: " <<
numBatches << endl;
 cout << endl;
 //cin.get();
 cout << "All links that need repair are grouped into batches." << endl;
 cout << endl;
 for(j = 1; j < numBatches+1; j++){
 cout << "Batch " << j << ":" << endl;
 for(i = 0; i < general.numLinks; i++){
 if(link[i].obindex == j){
 cout << "Link[" << i+1 << "]" << endl;

Pitu B. Mirchandani and Dening Peng

58 C++ Code of the Randomized Fix-and-Optimize Heuristic

 }
 }
 cout << endl;
 }
 //cin.get();
 LonSolTime = 0; //before the solve the FO subproblems of current
batch set the LonSolTime 0
 aborted = 0;
 for(FOBatchNum = 1; FOBatchNum < numBatches+1; FOBatchNum++){
 modelFO.Fix(FOBatchNum);
 cout << endl;
 cout << "Schedules of links other than the Fix and Optimize Batch "
<< FOBatchNum << " are fixed." << endl;
 startTimeC = time(0); //record the start time of the
solving process of current FO subproblem
 modelFO.Solve(FOBatchNum);
 endTimeC = time(0); //record the end time of the
solving process of current FO subproblem
 //cout << endl;
 //cout << difftime(endTimeC, startTimeC) << endl;
 //cin.get();
 if(difftime(endTimeC, startTimeC)>timeLimitFO-1){
 LonSolTime = 1; //if one of the subproblems
has solving time longer than 30 sec, set LonSolTime 1
 //cin.get();
 }
 modelFO.Unfix();
 cout << endl;
 cout << "Schedules of links other than the Fix and Optimize Batch "
<< FOBatchNum << " are unfixed." << endl;
 }
 cout << endl;
 cout << "iter_num = " << iter_num << endl;
 cout << "LonSolTime = " << LonSolTime << endl;
 cout << "TotalCostFO = " << TotalCostFO << endl;
 cout << "TotalCost = " << TotalCost << endl;
 cout << "aborted = " << aborted << endl;
 //cin.get();
 if((TotalCost-TotalCostFO)/TotalCost > 0.000001){
 TotalCost = TotalCostFO; //if the best objective of current
batching is better than the best objective in record, re-batch the links again and do the
fix and optimize iteration
 iter_num = iter_num + 1;
 }
 else{
 if(iter_num < numBatches+1){
 iter_num = iter_num + 1; //if no better schedule if found
in current batching and the number of iterations performed is less than 3, random batch
again with the same batch number and resolve the FO subproblems
 }
 else{
 if(LonSolTime == 1){
 if(numLinpBat > 3){
 numBatches = numBatches + 1; //increase
the number of batches by 1 only if the number of links in per batch is greater than 2
 iter_num = 1; //if
no better schedule is found and the solving time of at least one FO subproblem is longer
than 30 sec, reset the iter_num

Pitu B. Mirchandani and Dening Peng

59 Appendix

 }
 else{
 goto stop; //if the
numLinpBat=3, and no better schedule is found, stop
 }
 }
 else{
 goto stop; //if the
LonSolTime=0 and no better schedule is found, stop
 }
 }
 }
 if(LonSolTime == 0){
 modelFO.BLB(); //if no FO subproblem takes long solving time in
current batching, set the solver on finding better lower bounds
 }
 else if(LonSolTime == 1){
 modelFO.BFS(); //if there is FO subproblem taking long solving
time in current batching, set the solver on finding better feasible solutions
 }
 }
 /***

************************************/
 stop:
 stringstream ss1;
 stringstream ss2;
 stringstream ss3;
 string fileName1;
 string fileName2;
 string fileName3;
 ofstream ofileSol1;
 ofstream ofileSol2;
 ofstream ofileSol3;
 ss1 << "c_network_repair_s_x.csv";
 fileName1 = ss1.str();
 ofileSol1.open(fileName1.c_str());
 ss2 << "c_network_repair_y.csv";
 fileName2 = ss2.str();
 ofileSol2.open(fileName2.c_str());
 ss3 << "c_network_repair_z_w.csv";
 fileName3 = ss3.str();
 ofileSol3.open(fileName3.c_str());

 cout << endl;
 cout << "Problem instance is solved." << endl;
 cout << "The objective value is :" << TotalCost << "." << endl;
 ofileSol1 << "Schedule when time horizon = " << general.T << endl;
 ofileSol1 << "OBJECTIVE: " << TotalCost << endl;
 ofileSol1 << "Values of the s and x matrice: " << endl;
 ofileSol1 << "Link ID ," << "From Node ," << "To Node ," << "Lane No. ," <<
"Date ," << "s_value ," << "x_value ," << "v_value" << endl;
 for(i = 0; i < general.numLinks; i++){
 for(m = 0; m < link[i].n; m++){
 for(t = 0;t < general.T; t++){
 ofileSol1 << link[i].ID << "," << link[i].FN << "," << link[i].TN <<
"," << m + 1 << "," << t + 1 << "," << s_o[i][m][t] << "," << x_o[i][m][t] << "," <<
v_o[i][m][t] << endl;

Pitu B. Mirchandani and Dening Peng

60 C++ Code of the Randomized Fix-and-Optimize Heuristic

 }
 }
 }
 ofileSol1.close();
 ofileSol2 << "Schedule when time horizon = " << general.T << endl;
 ofileSol2 << "OBJECTIVE: " << TotalCost << endl;
 ofileSol2 << "Values of the y matrix: " << endl;
 ofileSol2 << "Link ID ," << "From Node ," << "To Node ," << "OD ID ," << "Origin
Node ," << "Destination Node ," << "Date ," << "y_value ," << endl;
 for(i = 0; i < general.numLinks; i++){
 for(k = 0; k < general.numODs; k++){
 for(t = 0;t < general.T; t++){
 ofileSol2 << link[i].ID << "," << link[i].FN << "," << link[i].TN <<
"," << OD[k].ID << "," << OD[k].ON << "," << OD[k].DN << "," << t + 1 << "," <<
y_o[i][k][t] << endl;
 }
 }
 }
 ofileSol2.close();
 ofileSol3 << "Schedule when time horizon = " << general.T << endl;
 ofileSol3 << "OBJECTIVE: " << TotalCost << endl;
 ofileSol3 << "Values of the z and w matrice: " << endl;
 ofileSol3 << "Link ID ," << "From Node ," << "To Node ," << "Date ," <<
"z_value ," << "w_value" << endl;
 for(i = 0; i < general.numLinks; i++){
 for(t = 0;t < general.T; t++){
 ofileSol3 << link[i].ID << "," << link[i].FN << "," << link[i].TN << ","
<< t + 1 << "," << z_o[i][t] << "," << w_o[i][t] << endl;
 }
 }
 ofileSol3.close();

 endTime = time(0); //time stamp of the time point when the entire program
ends
 runTime = difftime(endTime, startTime) / 60;
 cout << endl;
 cout << "Total Solving Time: \t" << runTime << " min" << endl;
 cin.get();
 return 0;
}

//===
===========
//InputData function
//===
===========
void InputData(){

//if stream
 ifstream modelParams,
 linkData,
 ODData;

//read general data
 modelParams.open("Input_modelParameters.txt");
 modelParams >> timeLimitSA;
 modelParams >> timeLimitFO;

Pitu B. Mirchandani and Dening Peng

61 Appendix

 modelParams >> mipGap;
 modelParams >> cplexUB;
 modelParams >> cplexLB;
 modelParams >> general.numNodes;
 modelParams >> general.numLinks;
 modelParams >> general.numODs;
 modelParams >> general.maxnumLanes;
 modelParams >> general.rho;
 modelParams >> general.T;
 modelParams >> general.theta;
 modelParams.close();

// read link data
 linkData.open("Input_links.txt");
 int j = 1;
 int i = 0;
 for(i = 0; i < general.numLinks; i++){
 link.push_back(linkInfo());
 linkData >> link[i].ID;
 linkData >> link[i].FN;
 linkData >> link[i].TN;
 linkData >> link[i].n;
 linkData >> link[i].u;
 linkData >> link[i].c;
 linkData >> link[i].p;
 linkData >> link[i].R;
 if(link[i].R == 1){
 link[i].obindex = 0;
 }
 }
 linkData.close();

// read generator parameters
 ODData.open("Input_ODs.txt");
 int D = 0;
 for(int k = 0; k < general.numODs; k++){
 OD.push_back(ODInfo());
 ODData >> OD[k].ID;
 ODData >> OD[k].ON;
 ODData >> OD[k].DN;
 ODData >> OD[k].D;
 D = D + OD[k].D;
 }
 sumD = D;
 ODData.close();

 cout << "Import Data complete." << endl;
}

//===
===========
//InitSolution function
//===
===========
void Initialization(){
 int i, j, m, k, t;
 TotalCost = 1e38;
 TotalCostFO = 1e38;

Pitu B. Mirchandani and Dening Peng

62 C++ Code of the Randomized Fix-and-Optimize Heuristic

 for (i = 0; i < general.numLinks; i++){
 //link index
 s_o.push_back(vector<vector<bool> >());
 x_o.push_back(vector<vector<bool> >());
 y_o.push_back(vector<vector<float> >());
 v_o.push_back(vector<vector<bool> >());

 for (m = 0; m < link[i].n; m++){
 //lane index
 s_o[i].push_back(vector<bool>());
 x_o[i].push_back(vector<bool>());
 v_o[i].push_back(vector<bool>());

 for(t = 0; t < general.T; t++){
 //date index
 s_o[i][m].push_back(0);
 x_o[i][m].push_back(0);
 v_o[i][m].push_back(0);
 }
 }
 for (k = 0; k < general.numODs; k++){
 y_o[i].push_back(vector<float>()); //OD index
 for (t = 0; t < general.T; t++){
 y_o[i][k].push_back(0.0);
 //date index
 }
 }
 }
 for (i = 0; i < general.numLinks; i++) {
 z_o.push_back(vector<float>()); //link
index
 w_o.push_back(vector<bool>());
 for (t = 0; t < general.T; t++){
 z_o[i].push_back(0.0);
 //date index
 w_o[i].push_back(0);
 }
 }
}

