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1 INTRODUCTION 

Bridge fires can present a severe hazard to the transportation infrastructure system.  In fact, 

a nationwide survey by the New York State Department of Transportation (NYSDOT) has shown 

that fires have collapsed approximately three times as many bridges as earthquakes (Garlock et al. 

2013).  Bridge fires are often intense as they may be fueled by gasoline from vehicles that have 

crashed in the vicinity of the bridge.  Additionally, code recommendations and guidelines for fire 

protection of bridges are lax.  Large fuel loads and a lack of code requirements for fire protection 

of bridges have left bridges quite vulnerable to fire, particularly unprotected steel bridges, which 

was established in recent research (Labbouz 2014).  The research focus has mainly been on 

traditional carbon steels at elevated temperatures and bridges of simple geometry such as plate 

girders.  It is therefore necessary to expand on this research to include additional materials such as 

weathering steel and additional bridge geometries such as curved box girders. 

Weathering steel has been widely used by State DOTs for construction of steel bridges 

because of the maintenance cost savings. New York State DOT’s preferred structural steel for 

bridge girders is weathering steel, and it was reported that they owned more than 1200 weathering 

steel bridges in 2000 (Labbouz 2014).  Weathering steel forms a protective layer of rust (patina) 

to prevent corrosion of the steel and only recently have the mechanical properties of weathering 

steel at elevated temperatures been determined (Cor-Ten 2014, Labbouz 2014).  The determination 

of these properties allows for discussion of the behavior of weathering steels in fire.   

1.1 Goals and Objectives 

The goal of this work is to determine critical parameters for curved steel box girders 

exposed to fire.  This goal will be evaluated through a series of objectives which consider both 

thermal and structural consequences for weathering steel box girders subject to fire loading. 

The objectives of the proposed work include: (1) determine critical location for fire in steel 

box girders; (2) determine critical temperature history and fire intensity for steel box girders; and 

(3) determine the reduction in bending moment and shear capacity – and thus load-carrying 

capacity – of steel box girders exposed to fire. 

To complete these objectives, this research was conducted using three major tasks in order 

to build knowledge of the task at hand.  Task one consisted of finite element modeling and 

validation of fire effects on steel structures.  This was carried out by comparing published 

laboratory test results (Wainman et al. 1987) with a computer model of a steel beam with a concrete 

slab.  The second task involved the modeling and analysis of a straight box girder bridge.  This 

leads into the third task which entailed the study of a curved box girder.  Each of these steps will 

be explained in detail along with the resulting data from each task. 
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2 BACKGROUND RESEARCH ACTIVITES/FRAMEWORK 

2.1 Literature Review  

The research performed by Wright et al. (2013) takes a broad look at fire hazards as a 

whole.  Countrywide data was compiled to discover trends (frequency, location, and severity) in 

bridge fires.  It was concluded that truck fires are the predominant cause of severe damage on 

steel and concrete bridges.  This data on crash instances and bridge failures will allow for the 

modeling of the worst-case scenarios.  For example, this paper discovered that a tanker truck fire 

would cause the most structural damage to a bridge when located at midspan.  

The primary reason for the paper presented by Cedeno et al. (2011) was to show 

verification of models and methods of finite element analysis.  The fire and loading scenario 

studied was duplicated to show that finite element analysis provides similar outcomes as testing a 

beam in a furnace.  To accurately predict behavior of steel beams in fire, a two-step analysis was 

used.  The first step consisted of a heat transfer analysis to accurately capture the temperature 

gradient through the member.  Step two analyzed the structural response to loading and thermal 

expansion, which resulted in deformations, especially at high temperatures.  Cedeno et al. 

concluded that shell and line elements in the finite element analysis accurately predict behavior 

of fire tests.  This conclusion allows for future analysis of full span bridges to be modeled 

without use of strictly solid elements, which greatly reduces computation time and power 

requirements. 

Kodur et al. (2013) discusses the characteristics of a fire event as it pertains to a bridge 

fire.  The qualities of a fire on a bridge girder (source, severity, ventilation, etc.) require entirely 

different modeling techniques as compared to beams of a building.  Additional data includes the 

variation of heat-transfer parameters over the depth of the beam. Data analysis shows the web, 

top flange, and slab of the girder were subject to lower radiation effects due to the increased 

depth of the girder. The work done by Kodur et al. (2013) must be expanded to explore how 

radiation values are affected by fire position and distance between adjacent girders on a bridge.  

Accurately capturing varying thermal conductivity values and emissivity factors for all members 

of the bridge is an integral factor in designing for fire protection. 

Garlock et al. (2014) discusses the need for research on the topic of fire resistance of steel 

structures and the importance of performance-based design.  Current design practices must be 

adjusted to consider fire events on an entire structure rather than fire events on isolated building 

elements.  Garlock et al. (2104) claims that performance based design would allow safer and 

more cost effective design ideas because engineers will have a better understanding of possible 

fire events and how they will impact the structure. 

The paper presented by Alos-Moya et al. (2014) begins by explaining the critical 

importance of bridges within the transportation system.  In addition, the threat of fire to the 

structural performance of bridges can cost the United States large sums of money and cost 

commuters’ time due to detours.  Using Fire Dynamics Simulator, the temperature change, heat 

flux, and gas pressures of a fire event can be studied.  In this report, a 2002 bridge fire on I-65 in 

Birmingham, Alabama was investigated.  By modeling the boundary conditions of the bridge, 

including abutments and effects of open air interaction, it was found that the temperature of the 

bridge components varies greatly.  This temperature gradient is dependent on the distance along 

the bridge.  This observation lead to the concept of a step down fire curve that could be easily 

applied to a finite element model.  Finally, when the fire was applied to the FEM, live loads were 
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applied along the bridge span.  It was found that live load has a very small effect on the response 

of the bridge during a fire event. 

The research performed by Xu (2015) investigates the effects of fire on orthotropic steel 

deck bridges.  In addition, the effect on cable supported bridges are modeled.  One main topic is 

the effect of the vertical distance that the fire occurs below the bridge.  Also, fires that occur on 

top of the bridge are investigated.  Additional parameters include power of fire, steel strength, 

and axial load applied to the bridge members.  Finally, a case study is performed to analyze the 

fire that occurred in 2013 under the Ed Koch Queensboro Bridge.    

Labboz (2014) investigates the strength and other properties of weathering steel at 

elevated temperatures.  Weathering steel elements are exposed to high temperatures and tested to 

determine the effect of fire on this material.  Using multiple samples, temperatures, and cooling 

methods, a full range of strength reduction factors are found for increasing temperatures.  These 

results are used in a Finite Element Model.  A case study is then performed on an I-195 bridge 

fire to further investigate the materials used in this bridge.   

 In the research done by Baskar et al. (2002), steel-concrete composite girders were 

analyzed using finite element modeling.  One very important part of this modeling was the analysis 

of the tensile behavior of the concrete slab that rests on top of the steel beam.  This becomes a 

difficult task in models in which many cracks occur because cracks effect the calculations using a 

damaged elasticity model.  Baskar et al. modeled the concrete using three material models.  The 

first was using the concrete model in which the concrete will crack at a certain ultimate tensile 

stress.  After this point, the concrete softens linearly to the point in which it can no longer hold any 

load.  The second model uses the Cast Iron model.  Using this model, once the ultimate tensile 

stress is reached, the stress strain plot flattens out resulting in a constant stress as strain increases.  

The final material model used is the Elastic-Plastic model.  Using this definition, concrete is 

assumed to behave the same in both tension and compression.  The authors draw the conclusion 

that using the Cast Iron model allows the FEM to predict an ultimate load that is closer the 

experimental value.   

 

2.2 Fire Properties 

2.2.1 Hydrocarbon Fire 

Fires vary in intensity based on given fuel sources and ventilation factors.  Additionally, 

effects of the fire on a structure will vary based on geometry of the structure and proximity to the 

fire.  The research described in this report assumed that a hydrocarbon fueled fire occurred 

directly below the bridge.   

Eurocode I (CEN 2002) documents three possible fire scenarios: standard temperature-

time, external fire, and hydrocarbon curves.  To simulate a worst case scenario, the hydrocarbon 

fire was chosen to represent an event in which a tanker truck carrying gasoline ignited under a 

bridge.  The hydrocarbon fire curve equation is shown in Eq. (1). 

 

Ѳ𝑔 = 1080 ∗ (1 − 0.325𝑒−0.167𝑡 − 0.675𝑒−2.5𝑡) + 20                                    ( 1) 

𝑤ℎ𝑒𝑟𝑒: 
Ѳ𝑔 = 𝑔𝑎𝑠 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 

𝑡 = 𝑡𝑖𝑚𝑒 
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Equation 1 shows that the gas temperature will range from 20 °C to 1100 °C.  Figure 1 shows the 

gas temperature versus time.  It can be seen that at 20 minutes, the temperature is approximately 

at the maximum of 1100 °C. 

 

 

 

Figure 1- Temperature of fire with respect to time 

2.2.2 Heat Transfer 

 

Heat is transferred from the fire (gas temperature) to the bridge elements through the three 

basic mechanisms of heat transfer: convection, conduction, and radiation.  The basic governing 

equations for the three mechanisms are discussed in the following sections.  Additional theory 

can be found by referring to various texts on the subject, such as Bergman et al. (2011).      

2.2.2.1 Conduction 

  

Conduction is the transfer of heat through a solid.  This will occur within the bridge itself 

when heat is transferred between adjacent points of the bridge.  Conduction can be described by 

Fourier’s Law shown in Eq. (2) (Bergman et al. 2011). 

 

𝑞𝑐𝑜𝑛𝑑 = −𝑘
𝑑𝑇

𝑑𝑥
                              ( 2) 

𝑤ℎ𝑒𝑟𝑒: 

𝑞𝑐𝑜𝑛𝑑 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑡 𝑓𝑙𝑢𝑥,
𝑊

𝑚2
 

𝑘 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦,
𝑤

𝑚 ∗ 𝐾
 

𝑑𝑇

𝑑𝑥
= 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 
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As Eq. (2) shows, a higher thermal conductivity will result in a faster rate of heat transfer.  The 

thermal conductivity of a material is temperature dependent and will be defined for each material 

in sections 2.3.1 and 2.4.1 of this paper.   

 

2.2.2.2 Convection 

 

Convection is the transfer of heat between moving fluids, in this case air at elevated fire 

temperatures, to a solid surface (the bridge); natural convection causes hot gases to rise.  

Convection is described by Newton’s Law of Cooling in Eq. (3) (Bergman et al. 2011). 

 

𝑞𝑐𝑜𝑛𝑣 = ℎ(𝑇𝑓 − 𝑇𝑠)                               ( 3) 

𝑤ℎ𝑒𝑟𝑒: 

𝑞𝑐𝑜𝑛𝑣 = 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑡 𝑓𝑙𝑢𝑥,
𝑊

𝑚2
 

ℎ = 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,
𝑤

𝑚 ∗ 𝐾
 

𝑇𝑓 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑, 𝐾 

𝑇𝑠 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 𝐾 
 

It can be seen in Eq. (3) that temperature large temperature difference between the air and the 

surface causes a greater heat flux due to convection.   

 

2.2.2.3 Radiation 

 

Radiation heat transfer is defined as the energy transfer of electromagnetic waves 

between two bodies.  In the case of a fire, the fire itself is considered a body and the structure is 

the second body.   The effects of radiation are shown in Eq. (4) (Bergman et al. 2011). 

 

 

𝑞𝑟𝑎𝑑 = 𝜀𝑠𝜀𝑡𝜎(𝑇𝑠
4 − 𝑇𝑢

4)                                         ( 4) 
𝑤ℎ𝑒𝑟𝑒: 

𝑞𝑟𝑎𝑑 = 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑡 𝑓𝑙𝑢𝑥,
𝑊

𝑚2
 

𝜀𝑠 = 𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
𝜀𝑡 = 𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑒 

𝜎 = 𝑆𝑡𝑒𝑓𝑎𝑛 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝑐𝑜𝑛𝑠𝑡𝑛𝑎𝑡, 5.67𝑒 − 08
𝑊

𝑚2 ∗ 𝐾4
 

𝑇𝑠 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 𝐾 
𝑇𝑢 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑛𝑛𝑠, 𝐾 
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Radiative heat transfer is highly nonlinear as it is based on temperature to the fourth power.  This 

causes large changes in temperature of the surface when there is a large temperature difference 

between the surface and surroundings.   

The total heat flux on a system is found by adding Eq. (2), (3), and (4) as shown in the 

total heat flux equation, Eq. (5).   

 

𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝑐𝑜𝑛𝑑 + 𝑞𝑐𝑜𝑛𝑣 + 𝑞𝑟𝑎𝑑                          ( 5) 

2.2.3 Distance Dependent Fire Intensity 

 

Due to the long span of the bridge, a model was created to represent the relationship 

between fire intensity and longitudinal distance from the fire.  A fire gradient created by Alos-

Moya et al. (2014) was adapted for application to a steel box girder.  The hydrocarbon fire was 

sectioned into five meter segments that decreased in temperature as the longitudinal distance 

from the center of fire increased.  Figure 2 shows the time dependent hydrocarbon fire curve 

along with the distance dependent reduction factors for the fire gradient.  The hydrocarbon fire 

gradient used in this paper is based on a vertical clearance of five meters from the bottom of the 

steel box girder to the roadway below (Alos-Moya et al. 2014). 

Figure 2 - Thermal loading fire properties: reduction factor with respect to distance. 

2.3 Steel Properties 

2.3.1 Steel Thermal Properties 

 

Thermal properties of weathering steel can be seen in Figure 3 (Cor-Ten 2014).  For 

comparison, properties of traditional (non-weathering) steel are also shown based on Eurocode-3 

(CEN 2005).   Referenced data for weathering steel was only given up to 600 oC.  For 

conductivity, data was extrapolated and then compared to Eurocode-3 data for steel (CEN 2005).  

For specific heat, referenced data was shown to closely follow Eurocode-3 up to 600 oC, thus 

Eurocode data was used.  The thermal properties for weathering and traditional steel are similar 
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and thus thermal performance (i.e. resulting temperature distribution in fire) is expected to be 

similar.   

 

 

                                (a)                                                                           (b) 

                                                                      (c) 

Figure 3-Temperature dependent thermal properties of weathering steel and traditional steel: (a) 

conductivity; (b) specific heat; and (c) thermal expansion. 

 

2.3.2 Steel Structural Properties 

 

Structural properties of weathering steel follow data developed by Labbouz (2014) for 

elevated temperatures.  The stress-stain relationships for weathering steel can be seen in Figure 

4.  For comparison, the stress-strain relationships for traditional steel are also shown in Figure 5.  

The greatest difference for the structural properties of weathering steel as compared to traditional 

steel is that traditional steel maintains yield strength up to 400oC while weathering steel begins to 

lose strength immediately beyond room temperature.   
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Figure 4 - Temperature dependent stress-strain curves for weathering steel. 

 

 

 

Figure 5- Temperature dependent stress-strain curves for traditional steel. 

 

 

Figure 6(a) shows the reduction in yield strength and Young’s modulus with respect to 

temperature for both weathering and traditional steel.  Weathering steel begins to lose yield 

strength at a faster rate than traditional steel, but they approach the same values around 800 

degrees Celsius.  Figure 6(b) shows a similar relationship with the Young’s modulus for both 

materials, however, the modulus for traditional steel drops below that of weathering steel around 

600 degrees Celsius. 
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   (a)          (b) 

Figure 6- Temperature dependent material properties of weathering steel and traditional steel: (a) 

yield strength; (b) Young’s Modulus 

2.4 Concrete Properties 

2.4.1 Concrete Thermal Properties 

The thermal properties for concrete were referenced from Eurocode-2 and shown in 

Figure 7.  Conductivity varies between siliceous and calcareous concrete as seen in part (a) of the 

figure, while specific heat is the same for both siliceous and calcareous concrete as shown in part 

(b) of the figure. The thermal expansion for siliceous and calcareous concrete is 1.8x10-5 

mm/mm/oC and 1.2x10-5 mm/mm/oC, respectively (CEN 2004).  The difference between the two 

types of concrete is the composition of the aggregate used in the mix.  Siliceous concrete is silica 

based while calcareous concrete is calcium based. 

Siliceous concrete was chosen for this research.  If calcareous concrete was instead 

chosen, the slab would act as a greater heat sink and lead to slightly lower temperatures in the 

steel and concrete.   

 

                             (a)                                                                               (b) 

Figure 7- Temperature dependent thermal properties of siliceous and calcareous concrete: (a) 

conductivity; (b) specific heat. 
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2.4.2 Concrete Structural Properties 

Stress-strain relationships for siliceous and carbonate concrete are shown in Figure 8 and 

Figure 9, respectively (CEN 2004).  Siliceous concrete was chosen for this research and has a 

more rapid loss of strength at elevated temperatures.  The direct comparison of reduction in 

compression strength can be seen in Figure 10.  In addition, Figure 8 and Figure 9 show a linear 

relationship between stress and strain up to a level of 0.4 f’c for each temperature level shown.  In 

Figure 10, the temperature dependent compressive strength reduction is shown for both siliceous 

and calcareous concrete.  

 

 

 

Figure 8- Temperature dependent stress-strain curves of siliceous concrete. 

 

Figure 9- Temperature dependent stress-strain curves of calcareous concrete. 
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Figure 10 - Temperature dependent compressive strength of siliceous and calcareous concrete 

2.4.3 Cast Iron Model Applied to Reinforced Concrete 

The concrete slab makes up a large part of the bridge models used in this research.  The 

tension behavior of concrete in Abaqus has been the subject of other researchers (Baskar et al. 

2002).  For this research, concrete in tension was modeled using the “Cast-Iron” model in 

Abaqus.  This allows for separate tension and compression behavior of the material.  Figure 11 

shows the tension values for concrete used in the numerical models.  It can be seen that once the 

concrete experiences a stress equal to 0.09 f`c, the relationship holds at a constant value.  For this 

behavior, it was assumed that once concrete reached the cracking stress, the residual stress would 

then be taken by longitudinal steel reinforcement.  Using discrete reinforcement in the model 

would require individual reinforcement members to be embedded into the concrete slab.  This 

would greatly increase the model complexity as well as run time.  In addition, the conclusion 

drawn by Baskar et al. (2002) was that using a cast iron model is the most accurate model to 

predict the ultimate loading. 

 

Figure 11- Cast iron stress-strain relationship model applied to concrete (Baskar et al. 2002). 

 

0

0.2

0.4

0.6

0.8

1

0 300 600 900 1200

R
ed

u
ct

io
n

 F
a

ct
o

r 
o

f 
f'

c

Temperature (°C)

siliceous

calcareous



12 

 

2.5 Finite Element Modeling 

2.5.1 Hardware/Software 

A model of this magnitude and element count requires a high level of computing power 

to complete the analysis.  The research team is equipped with state-of-art computer hardware and 

software. These include a 10-Core Intel Xeon E5-2687W v3 (20 Threads, 25MB Cache, 3.1GHz 

Base, 3.5 GHz Turbo) Workstation with 64 GB of 2133MHz DDR4 RAM. 

2.5.2 Elements 

The 3D models were created using shell elements for the steel tub members and solid 

elements for the slab.  Shell elements were used to reduce the computational effort which is 

important when modeling large, geometrically complex structures through nonlinear analysis.  

The bracing used in the model was created using line elements.  The shell elements used in the 

thermal and structural models are DS4 and S4R.   The solid elements used in the thermal and 

structural models are 8-noded continuum elements DC3D8 and C3D8R, respectively.  The line 

elements used for heat transfer were DC1D2.  In the structural model, both beam (B31) and truss 

(T3D2) elements were used.  Figure 12 illustrates the four basic element types that were used in 

the Abaqus models.     

 

Figure 12- Basic Element Types (Dassault Systèmes 2013) 

2.5.2.1 Heat Transfer Elements 

First a thermal model is constructed for the heat transfer analysis.  Heat transfer elements 

are restricted from all movement and they only consider temperature degrees of freedom.  

Material properties assigned to each element includes thermal conductivity, specific heat, and 

density.   

 

DS4 – four node, quadrilateral heat transfer shell elements.  This element only has degrees of 

freedom as defined by the thickness of the element.  In this research, shell elements were 

given five points along the thickness to define a temperature gradient. 

 

DC3D8 – eight node, linear, solid, diffuse heat transfer elements.  This element has one 

temperature degree of freedom.  This element already is in three dimensions, therefore a 

gradient will be shown between nodes.   

 

DC1D2 – two dimensional link elements.  Each node is allowed one temperature degree of 

freedom (Dassault Systèmes 2013).   
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2.5.2.2 Structural Elements 

 

The second model for each box girder bridge consists of structural elements.  Four types 

of structural elements were used to model solids, plates, trusses, and beams.  These structural 

elements have higher degrees of freedom than the temperature elements.  The structural elements 

are capable of calculating stresses and modeling the thermal expansion of heated materials.  

Using the same mesh as the thermal model, the resulting temperature data is input into the 

structural nodes.  While structural elements do not have temperature degrees of freedom, 

temperature can still be applied to complete the model, which is then correlated to temperature 

dependent material properties.   

 

S4R – 4-node conventional structural shell elements with reduced integration.  Figure 13 shows 

the difference between conventional and continuum shell elements.  Reduced integration 

elements use lower order integration to model the element stiffness. While stiffness 

integration is reduced, the matrices for mass and loading are still exactly integrated.  

Using reduced integration elements greatly reduces run time and provides a more 

accurate result (Dassault Systèmes 2013).  This element type allows for six degrees of 

freedom.  Translation and rotation along all axes is permitted.  Bending and shear forces 

can be calculated along the thickness of the element.  When assigning section properties, 

a thickness and material property is assigned.   

  

Figure 13 – Conventional versus continuum shell models (Dassault Systèmes 2013).  

 

C3D8R – 8-node, linear, solid, structural brick elements with reduced integration. These 

elements have three degrees of freedom, allowing for translation along all axes.  While 

bending stresses are not directly calculated, the three dimensions allows for stresses to be 

measured.  Then, each element can calculate the bending using the distance between the 

elements nodes.  
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T3D2 – a three dimensional, two node, linear truss element.  This element has three degrees of 

freedom, allowing for translation along all three axes.  Truss elements are used to 

approximate elements that only carry axial load.  This element cannot carry shear forces 

or bending moments.  Trusses are created by assigning a cross sectional area and a 

material type.     

 

B31 – a three dimensional, two node, linear beam element.  This element has six degrees of 

freedom allowing for translation and rotation along all three axes.  This line element is 

used to approximate a three dimensional beam or column member.  Each beam is 

assigned a cross section and material type.  A beam element is capable of three 

deformations including axial stretch, bending, and torsion.  According to the beam theory 

used by Abaqus, the cross section of the beam will remain constant along the length.  In 

other words, a cross sectional plane will remain the same for the entire beam.  This 

neglects warping and transverse strains of the cross section (Dassault Systèmes 2013).   

2.6 Model validation 

2.6.1 Case Study 

The finite element modeling procedures were validated against existing test data to 

ensure accurate results.  An Abaqus model was created to replicate a steel beam and concrete 

slab that was subject to increased temperatures.  The test, conducted by Wainman et al. (1987), 

consisted of heating the beam in a furnace while four point loads were applied at different 

locations along the span.  The beam had a span of 4.53 m and the dimensions of the concrete and 

steel used are shown below.  Figure 14 shows a cross section of the beam. 

  

 Concrete Slab: 

  Concrete Quality: CP110:Part1: Grade 30:1972 

  Width = 635 mm 

  Depth = 135 mm 

  

 Steel Beam: 

  Steel Quality: BS4360: Grade 43A:1979 

  Width = 146 mm 

  Depth = 257 mm 

  Flange thickness = 12.45 mm 

  Web thickness = 7.08 mm 
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Figure 14- Cross section of composite beam   

Hydraulic jacks applied 32.5 kN to four points located at 1/8, 3/8, 5/8, and 7/8 span.  

These loads were applied to the top of the concrete slab before the heating of the specimen.  

Once the loads were applied, the beam was subject to increased temperatures.  According to the 

literature, the exposed length of the beam was 4 meters.  Figure 15 shows the arrangement of the 

load and supports.  The top of the furnace was closed by the concrete slab, therefore, only the 

bottom side of the concrete was exposed to direct temperature change.  During the test, 

temperatures of the beam, the furnace gas, and the midspan deflection were recorded.   

 

 

 

Figure 15- Elevation view of beam showing fire application area, supports, and loading points 

2.6.2 Model Parameters 

2.6.2.1 Thermal Model 

To obtain accurate results of the bridge model, the simulation was carried out using 

sequential thermal and structural finite element analyses.  First a transient, non-linear heat 

transfer analysis was performed.  Appropriate thermal boundary conditions (radiation and 

convection) were applied to the beam in order to obtain a temperature history of the members.  

Figure 16 shows the cross section of the beam along with the applied thermal boundary 
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conditions.  Radiation boundary conditions require the definition of the emissivity of each fire 

exposed surface.  The emissivity of the beam surfaces decreases with distance from the source of 

the furnace fire.  In addition to emissivity, a convection coefficient of 25 W/m2K was used to 

replicate the standard fire curve as defined by Eurocode-1 (CEN 2002).  This coefficient is used 

because the beam is heated in a furnace as opposed to being an open fire scenario.   

In order to confirm the validity of the thermal boundary conditions, a two dimensional 

model was used to compare the FEM results to the experimental data.  A two dimensional model 

is beneficial due to the inexpensive nature of the model due to a much lower number of nodes as 

compared to the three dimensional model.  Once adequate testing was completed, the thermal 

boundary conditions were applied to the three dimensional beam.  Table 1 shows the resulting 

temperatures of the experimental data along with the two dimensional model.  Similar 

temperatures confirm the initial modeling of the system.  Due to the short span of the beam, the 

temperature reduction due to horizontal distance from the fire was not used in this modeling.   

 

Figure 16- Cross section of beam showing thermal boundary conditions 

 

Table 1 - Resulting temperatures from Abaqus models and physical model. 

 

 

 

 

 

 

 

 

Temperatures were recorded at several points on each member of the beam.  Figure 17 

shows the points on the cross section that were used in analysis.  On the top and bottom flange, 

temperature was recorded from the bottom face of each flange at the quarter points.  For the web, 

5 equally spaced points over the web depth were used in the data analysis.     

 Temperature at 50 Minutes (°C) 

 Experimental 2-D Abaqus 3-D Abaqus 

Top Flange 606 586 (-3.3%) 583 (-3.8%) 

Web 749 802 (+7.1%) 813 (+8.5%) 

Bottom 

Flange 
762 812 (+6.6%) 802 (+5.2%) 
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Figure 17 - Cross section of beam and slab showing locations used for temperature 

analysis (adapted from Wainman et al. 1987) 

 

 

The resulting temperatures of the three dimensional finite element model are shown in 

Figure 18.  The web and bottom flange are subject to higher temperatures than the top flange.  

The concrete slab acts as a heat sink.  The low thermal conductivity and high thermal mass of the 

concrete slab causes heat to be drawn out of the top flange, preventing the top flange from 

reaching the high temperatures that are seen in the bottom flange and web.  Figure 18 shows the 

thermal results of the tested beam compared to the finite element model.  The temperature 

history of the finite element model closely reflects the temperatures obtained from the laboratory 

test.  These values are within acceptable range given that exact furnace conditions of the 

experiment are unknown.  In addition, our verification study produced similar results to those 

presented by Cedeno et al. (2011). 
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Figure 18 - Comparison of Abaqus data and laboratory test for temperature data. 

2.6.2.2 Structural Model 

The temperature results output from the thermal analysis are input into a structural model that 

will capture the deformation of the beam due to the thermal load.  Structural boundary conditions 

were set to create a simple span condition.  Loading was broken into three steps: (1) self-weight; 

(2) point loads; and (3) temperatures.  After the self-weight was applied to the model, four 32.5 

kN concentrated dead loads were applied, centered around the midpoint of the beam and spaced 

at equal intervals along the span length.  Finally, the temperatures determined in the heat transfer 

model were applied to the structural model. Resulting deflection can be seen in Figure 19 as well 

as comparison between the finite element model and the lab test. 
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Figure 19 - (a) Comparison of Abaqus data and laboratory test.  (b) Abaqus model showing 

undeformed steel beam with a concrete slab.  (c) Abaqus model showing deflection of a steel 

beam with a concrete slab when exposed to fire and loading. 
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3 STRAIGHT BOX GIRDER 

3.1 Geometry 

3.1.1 Cross Section 

During this project, a multi-span, straight steel box girder bridge is subject to sequential 

thermal and structural finite element analyses.  Dimensions of the bridge follow the U.S. 

Department of Transportation FHA Steel Bridge Design Handbook (FHWA 2012a).   Figure 20 

shows a section of the Abaqus bridge model including transverse web stiffeners.  The steel has a 

total cross section area of 0.288 square meters.  The slab has an approximate cross sectional area 

of 1.5 square meters.   The cross sectional dimensions of the bridge can be seen in Figure 22.  

The entire model can be seen in Figure 21  In order to limit model size, only a single box girder 

section is considered.   

 

Figure 20 - Cross section of straight box girder bridge Abaqus model. 

 

 

Figure 21 - Full straight box girder bridge model. 
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Figure 22 - Cross sectional dimensions of the straight steel box girder bridge (FHWA 2012a). 

Elevation 

Figure 23 shows an elevation view of the bridge that indicates the plate thicknesses along 

the bridge span.  Thickness of flange plates increase closer to the bridge pier.  The web is 

constant along the length of the bridge.  The bridge has a total length of 198.12 meters with two 

symmetrical interior piers.  The two outer spans each measure 57.15 meters and the middle span 

measures 83.82 meters in length.  The stiffeners used in this model were made from weathering 

steel that was 0.222 m wide and 0.019 m thick.   

 

Figure 23 - Elevation view of the straight box girder bridge showing plate thickness and location. 

Intermediate web transverse stiffeners are not shown for clarity (FHWA 2012a). 

3.1.2 Internal Bracing 

In addition to the steel tub and concrete slab, the bridge model included many bracing 

elements.  Figure 24 shows the plan view of the internal bracing for the bridge.  The bracing is 

composed of angle (L) members with a thickness of .0095 m and each side of the L being 0.127 

m in length (L0.127x0.127x0.0095).  The bracing was attached to the cross-section of the bridge 

at the stiffeners.    
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Figure 24 - Framing plan of the straight bridge showing view of all bracing members (FHWA 

2012a). 

3.2 Finite Element Model 

The bridge model was constructed using multiple element types.  The concrete slab was 

modeled using 20,740 solid (C3D8R) elements and the steel tub was made of 13,381 shell (S4R) 

elements.  In addition, 90 truss (T3D2) and 540 beam (B31) elements were used to model the 

bracing.  The use of shell elements was implemented to reduce the overall run time but still 

maintain a high level of accuracy.  The line elements that spanned the bridge horizontally and 

perpendicular to the bridge span were beam elements.  Beams were used to allow additional 

cross members to be attached and allow bending.  Diagonal cross bracing and vertical bracing 

was made of truss elements.  These truss elements are able to free rotate at each end but may 

only resist axial forces.  Once constructed, the model contained a total of 48,751 nodes. 

3.3 Fire Scenarios and Thermal Boundary Conditions 

Hydrocarbon fires are considered for this research.  Two fire locations have been 

modeled in this research.  The first fire is located in the center of the middle span.    Fire location 

1 represents the farthest distance from any of the bridge piers.  Figure 25 shows the fire location 

and fire reduction curve associated with the midspan fire.  Fire location 2 corresponds to the area 

adjacent to an inner pier.  This fire location represents the closest the fire can be to a support.  

Figure 26 shows the pier fire location along with the fire reduction curve. 

In initial testing, a two hour fire was used on the box girder bridge model.  However, a 

two hour fire was not required to reach the full model runtime of the bridge model.  In order to 

greatly reduce computation time, 30 minutes of fire was modeled in the straight bridge model as 

failure occurs much sooner than two hours.  In the event of the structural model running the full 

30 minutes of fire, this time would have been extended.  However, it will be shown that 30 

minutes of fire was adequate for this model.   
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Figure 25 - Midspan fire location of the straight bridge with fire reduction curve 

  

Figure 26 - Pier fire location of the straight bridge with fire reduction curve 
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The plate thicknesses shown in Figure 23 indicate that the bottom flange of the bridge at 

fire location 2 is much thicker than the bottom flange at fire location 1.  This is important 

because a member with a larger thickness will have a larger weight-to-heated perimeter (W/D) 

ratio.  Members with larger weight-to-heated perimeter ratios will inherently have a greater 

resistance to temperature increase due to fire.  A larger weight of the member will slow the heat 

transfer within the member as greater energy is required to raise the temperature.   Additionally, 

a smaller heated perimeter implies less surface area exposed to the fire and thus less heat 

entering into the member.  Therefore, the bottom flange at fire location 2 is expected to change 

temperature at a slower rate than the bottom flange at fire location 1. 

Figure 27 shows the thermal boundary conditions applied in the heat transfer model –

convection and radiation. According to Eurocode, the convection coefficient for a hydrocarbon 

fire is taken to be 50 W/m2K for the fire exposed surfaces.  A convection coefficient of 9 W/m2K 

is applied to the non-exposed surfaces to account for heat loss from the top of the bridge section 

into the ambient air above the bridge that is not affected by the fire.  For the radiative thermal 

boundary condition, the resultant emissivity between the fire surface and the bridge surface is 

defined.  The emissivity of the fire is taken as 1.0 (CEN 2002).  Due to the large depth of the 

cross section of the bridge, the emissivity value will decrease with vertical distance from the fire.  

The emissivity of the bottom flange, web, top flange and slab are 0.7, 0.5, 0.3, and 0.3 

respectively based on recommendations from Kodur et al. (2013). 

 

Figure 27 - Convection and emissivity values used in the thermal model 
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3.4 Structural Boundary Conditions 

Figure 28 shows the support conditions for the straight box girder bridge in all three 

directions.  Rollers are placed at support A, C, and D.  These allow for movement in the x-axis, 

and restricts movement in the y-axis and z-axis.  Also, rotation is restricted about the y-axis and 

x-axis, allowing only for moment about the z-axis.  A pin is used at support B.  At this support, 

no translational movement is allowed.  Moment is allowed about the z-axis and restricted about 

the y-axis and x-axis.  

Figure 28- Support conditions of the straight box girder bridge with arrows showing free 

displacement. 

 

3.5 AASHTO Design Requirements 

3.5.1 Shear Resistance 

Section 6.10.9 of the AASHTO Bridge Design Specifications outlines the strength limit 

state of web panels.  This section includes straight, curved, stiffened, and unstiffened panels.  For 

all panels, the general equation for shear resistance, shown in Eq. (6), must be satisfied.  It 

should be noted that Section 6.10.9 is for I-sections.  However, Section 6.11.9 states that that 

Section 6.10.9 should be used for web shear resistance of tub sections.  

 

𝑉𝑢 ≤ 𝜑𝑣𝑉𝑛                                               (6) 
𝑤ℎ𝑒𝑟𝑒: 
𝜑𝑣 = 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 
𝑉𝑛 = 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝑉𝑢 = 𝑠ℎ𝑒𝑎𝑟 𝑖𝑛 𝑤𝑒𝑏 

 

 

 

 



26 

 

The nominal shear resistance of an interior stiffened web panel is shown in Eq. (7). 

𝑉𝑛 = 𝑉𝑝

[
 
 
 
 
 

𝐶 +
0.87 (1 − 𝐶)

√1 + (
𝑑0

𝐷 )
2

]
 
 
 
 
 

                 (7) 

𝑤ℎ𝑒𝑟𝑒: 
𝑑0 = 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 
𝑉𝑝 = 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 

𝐶 = 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑠ℎ𝑒𝑎𝑟 − 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝑡𝑜 𝑠ℎ𝑒𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

 

And the plastic shear force is found using Eq. (8). 

 

𝑉𝑝 = 0.58𝐹𝑦𝑤𝐷𝑡𝑤                                  (8) 

𝑤ℎ𝑒𝑟𝑒: 
𝐹𝑦𝑤 = 𝑠𝑡𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

𝐷 = 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑤𝑒𝑏 
𝑡𝑤 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑤𝑒𝑏 

 

The ratio of the shear buckling resistance to the shear yield strength is determined by the Eq. (9) 

through Eq. (11). 

 

𝐼𝑓 
𝐷

𝑡𝑤
≤ 1.12√

𝐸𝑘

𝐹𝑦𝑤
, 𝑡ℎ𝑒𝑛 

𝐶 = 1.0                                                                       (9) 

𝐼𝑓  1.12√
𝐸𝑘

𝐹𝑦𝑤
<

𝐷

𝑡𝑤
≤ 1.40√

𝐸𝑘

𝐹𝑦𝑤
, 𝑡ℎ𝑒𝑛 

𝐶 =
1.12

𝐷
𝑡𝑤

√
𝐸𝑘

𝐹𝑦𝑤
                                                        (10) 

𝐼𝑓 
𝐷

𝑡𝑤
> 1.40√

𝐸𝑘

𝐹𝑦𝑤
, 𝑡ℎ𝑒𝑛 

𝐶 =
1.57

(
𝐷
𝑡𝑤

)
2     (

𝐸𝑘

𝐹𝑦𝑤
)                                                 (11) 

𝑤ℎ𝑒𝑟𝑒: 
𝑘 = 𝑠ℎ𝑒𝑎𝑟 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
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Eq. (12) shows the calculation for the shear buckling coefficient. 

 

𝑘 = 5 + 
5

(
𝑑0

𝐷 )
2                                                        (12) 

3.5.2 Moment Capacity 

When investigating the moment capacity of the box girder bridges, the bridge cross 

section can be analyzed in the same fashion as other composite cross-sections by using plastic 

analysis.  Figure 29 shows a cross section of the box girder showing associated tension and 

compression forces that are produced in positive bending at the fully plastic condition.   

 

 

Figure 29 – Plastic analysis with stress block in the flange 

Members located above the neutral axis will be in compression while members below the 

neutral axis will be in tension when positive bending is present.  To achieve equilibrium, the 

tension and compression forces must balance.  By setting each equation equal, we can solve for 

a, which is the depth of the compression stress block.  Eq. 13 shows this resulting formula, for 

the case when a≤tf.    

 

𝑎(𝑇) =  
∑𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝐹𝑜𝑟𝑐𝑒𝑠

0.85𝑓′
𝑐
(𝑇)𝑏𝑒𝑓𝑓

                                            (13) 

 

The temperature dependent yield strength, Fy(T), is found from Figures 4 and 5 while the 

temperature dependent concrete compressive strength, f’c(T), is found from Figure 8 and 9.  

Therefore, a becomes temperature (and therefore time) dependent, and denoted as a(T).    

The stress block may extend down to within the slab, the top flange, or in the web, 

depending on the properties of the cross-section.  Assuming that it is within the concrete slab 

before heating, as shown on Figure 28, an increase in temperature will affect the location.  It was 
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previously established in Figure 4 that the strength of weathering steel is reduced with an 

increase in temperature.  Therefore, if the yield strength of the steel in Figure 28 is reduced, a 

will also be reduced.  It should be noted that the compression strength of the concrete is also 

reduced with increased temperature, but the distance of the slab from the fire is much greater 

than the steel components of the box girder.  As a result, the slab remains considerably cooler 

and reduces strength at a lower rate.  As the term a decreases, the neutral axis of the system 

moves upward into the concrete slab.  This results in a lower amount of concrete in compression 

which further results in a lower moment capacity.  As time progresses, the moment capacity of 

the bridge continues to decreases and the moment demand remains the same.   

A simplified model, considering the tensile yield stress of the bottom flange has also been 

considered.  The moment capacity is calculated from the traditional beam bending stress 

equation, assuming the bottom flange (closest to the fire) tensile stress controls.  Eq. 14 

illustrates the moment capacity as a function of temperature: 

 

𝑀(𝑇) = 𝐹𝑦(𝑇) ∗ 𝑆𝑥−𝑏𝑓      (14) 

 

Where Sx-bf indicates the elastic section modulus with respect to the bottom flange.   

 

3.6 Heat Transfer Results 

 

First, the heat transfer analysis was performed on the box girder bridge.  Maximum 

temperature histories were recorded at four locations shown in Figure 30.  One node was selected 

from the center of the heated face of the bottom flange, web, top flange, and exposed slab.  Due 

to the fire gradient, only one node is needed because each element has the same surface 

temperature history in each gradation.  Figure 31 shows a plot of element temperatures versus 

time for both fire locations.  At the central location, the bottom flange had a thickness of 0.0143 

meters.  This flange thickness is the lowest of all steel elements.  Moreover, the cross section at 

this location has the lowest weight-to-heated perimeter ratio.  The bottom flange temperature of 

fire location 2 is lower than that of the fire location 1.  This is because the bottom flange 

thickness is 0.0413 meters, almost three times the thickness of the bottom flange plate at 

midspan of the bridge. The bridge cross section at fire location 2 also corresponds to the highest 

weight-to-heated perimeter ratio of all of the cross-sections.  This is because the sizes of the top 

and bottom flange plates are each at their maximum at the bridge pier location. 

In addition to the temperatures in the shell elements, Figure 32 shows the temperature of 

the center node of the interior bracing line element.  This represents the line element directly 

over the full strength fire.  This figure shows that the interior line elements remain at a low 

temperature and will not see the effect of reduced strength due to increased temperature.  

Therefore, the line elements have been removed from the thermal model and there is no 

temperature change in the structural model.  This allows for a savings in model run time. 
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3.7 Structural Results 

In the analysis of the structural model of the box girder bridge, significant deflections 

occur during the application of temperature histories.  Figure 33 shows the maximum bridge 

deflection over the duration of the fire for each fire location.  Note that the first 5 minutes of the 

elapsed time is the duration of gravity load application.  The maximum deflection for fire 

location 1 occurs at the midspan of BC directly above the applied fire, indicated as node D1 in 

Figure 25.  The maximum deflection for fire location 2 occurs at the midspan of AB with the fire 

applied adjacent to support B, indicated as node D2 in Figure 26.   

 

Figure 30 - Cross section of the straight box girder bridge showing node locations 

(adapted from FHWA 2012a). 

 

Figure 31- Comparison of element temperatures versus time of the straight bridge for the (a) 

midspan fire, and (b) the pier fire. 
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As expected, maximum deflection for fire location 1 (at node D1 at midspan of BC) was much 

larger than the maximum deflection for fire location 2 (at node D2 at midspan AB) due to 

proximity of the fire to the bridge support in fire location 2.  Deflection at node D1 due to fire 

location 2 and node D2 due to fire location 1 are minimal as the fire is applied at a distance away 

from the D1 and D2, respectively, on different spans.  Figure 35 and Figure 35 show the 

amplified deflected shape for each fire location, from the Abaqus model. 

 

 Figure 32- Temperature of the line element directly over the full strength fire 

 

 

Figure 33- Comparison of maximum bridge deflection of the straight box girder bridge. 
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 For fire location 2, the Abaqus model runs for 17.1 minutes.  Maximum deflection occurs 

at approximately the mid-point of the Span A-B (Figure 25).  Minimal vertical deflection is seen 

at the location of the fire because the boundary conditions prevent movement in the vertical 

direction.  However, shear demand is greatest directly adjacent to the support at node D2.   

 Figure 38 shows maximum deflection for node D2 for fire location 2 over the duration of 

the fire along with the ratio of the shear demand of the girder to the nominal shear capacity of the 

section at that location.  Nominal shear capacity of the section was calculated based on 

AASHTO Bridge Design Specifications (2012) with adjustments made to account for 

temperature dependent (reduced) steel yield strength and elastic modulus based on the average 

temperature in the web of the girder over the duration of the fire.  Eq. 8 shows that yield strength 

of steel determines the shear resistance.  As yield strength decrease with time, shear resistance 

also decreases.   Shear demand was calculated based on dead load only to be 1700 kN at location 

D2.  The shear demand reaches the shear capacity of the girder at approximately 17 minutes into 

the fire, correlating precisely to the 17.1 minutes that the Abaqus model was able to run.  

Therefore, it is the authors’ conclusion that for the box girder presented in this paper when the 

fire is applied adjacent to the support (fire location 2) the bridge failed at 17.1 minutes into the 

fire due to shear buckling of the web.   Figure 36 shows a section above fire location 2. The 

stresses in the web are much lower than surrounding members due to the increase in temperature. 

For fire location 1, deflection increases rapidly once the temperature histories are applied.  

The maximum global deflection occurs at the same location as the fire.  Maximum displacement 

occurs at 11.1 minutes.  Web shear failure is not the mode of failure in this instance.  This is 

because the shear demand at the mid span is much lower (near zero) than at fire location 2.  Also, 

web temperatures are the same so there is not a difference in shear capacity.  However, the 

deflection at location D1, there is a buildup of stresses in the bottom flange.  At this location, the 

moment will be at its maximum due to dead load only.  In addition, the stresses due to the 

moment will be greatest along the bottom most member of the bridge.  Moment demand at mid 

span for fire location 1 was calculated to be 15473 kN-m.  Figure 37 shows a section above fire 

location 1.  The underside of the bridge is picutred to show that the bottom flange of the bridge 

can no longer hold significant stress due to the loss of strength in high temperature. 

Figure 39 shows maximum deflection for node D1 for fire location 1 over the duration of 

the fire along with the ratio of the moment demand (due to dead load only) of the girder at that 

location to the nominal moment capacity of the section.  The moment capacity is based on 

tension flange yielding calculated using reduced yield strength based on the average temperature 

of the bottom flange over the duration of the fire.  Similarly to yield strength, the moment 

resistance of the bridge is reduced as yield strength of the bottom flange decreases as shown in 

section 3.5.2.  Maximum displacement occurs at 11.1 minutes and the demand to capacity ratio 

reaches 1 at 12.9 minutes, using the simplified capacity calculation.  Using the full plastic 

analysis, the demand to capacity ratio reaches 1 at approximately 15 minutes.  This provides a 

larger discrepancy from the run time of the Abaqus model.  The authors believe there are some 

additional local effects that need to be considered to account for this difference.  
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Figure 34 - Deflected shape and Mises stress of the straight box girder bridge corresponding to 

fire location 1. 

 

 

Figure 35 - Deflected shape and Mises stress of the straight box girder bridge corresponding to 

fire location 2. 



33 

 

 

 

Figure 36 – Final step of analysis corresponding to fire location 2. 

 

 

Figure 37 - Final step of analysis corresponding to fire location 1. 
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Figure 38 - Maximum deflection at point D2 compared to the shear demand/capacity ratio. 

 

Figure 39 - Maximum deflection at point D1 compared to the moment demand/capacity ratio. 
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3.8  End Restraint Investigation 

In addition to the model explained above, an investigation was performed using different 

end conditions in order to analyze the effect of end restraints.  Figure 40 shows the alteration of 

support conditions.  The bridge abutment support D was made a pin support allowing only for 

rotation in the x-y plane.   

Figure 41 shows the deflection of both fire locations 1 and 2 with each support condition.  

It can be seen that for fire location 1 (midspan) the effect of the end restraint was minimal.  The 

suffix “ER” in the figure indicates the model with the additional end restraint at D.  The model 

with additional end restraint ran for 9.75 minutes with a total deflection of 0.5 m.  This is 

approximately a 1.5 minute difference in run time with the final deflection being equal. 

For the pier fire case, Figure 41 shows the end restraint condition alters the results of the 

structural model.  The maximum deflection of 0.28 m is reached after a total run time of 23.25 

minutes.  This deflection is 0.14 m larger and the model runs 6.1 minutes longer than then model 

without the additional end restraint condition.  

Table 2 shows a summary of the resulting data for the two fire locations applied to the 

straight box girder bridge. 

 

Figure 40 - Support conditions of the straight box girder bridge with additional end restraint. 
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Figure 41 - Vertical deflection of the straight steel box girder bridge with two different support 

conditions. 

 

 

Table 2 - Resulting deflection data for the straight box girder bridge different end restraint 

conditions 

 

    Run Time (min)  Max Deflection (m) 

Fire location 1: 

Mid Span Fire 

Original End Restraint 11.1 0.5 

Modified End Restraint 9.75 0.5 

Fire location 2: 

Pier Fire 

Original End Restraint 17.1 0.14 

Modified End Restraint 23.25 0.28 
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4 CURVED BOX GIRDER 

4.1 Geometry 

4.1.1 Cross Section 

Dimensions of the curved bridge follow the U.S. Department of Transportation FHA 

Steel Bridge Design Handbook (FHWA 2012b).   The cross sectional geometry of the bridge is 

similar to the straight model shown in section 3 of this report.  Figure 42 shows one section of 

the bridge that is located over one of the interior bridge supports.  The steel has a total cross 

section area of 0.218 square meters.  The slab has an approximate cross sectional area of 1.5 

square meters.  Figure 43 shows a cross section cut of the finite element model and Figure 44 

shows the full model. 

Figure 42 – Cross sectional dimensions of the curved steel box girder bridge (FHWA 2012b). 

 

Figure 43 – - Cross section of curved box girder bridge Abaqus model. 
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Figure 44 –Full curved box girder bridge model. 

 

4.1.2 Elevation 

Figure 45 shows an elevation view of the bridge that indicates plate thickness along the 

bridge span.  Thickness of flange plates increase closer to the bridge pier.  The web is constant 

along the length of the bridge.  The bridge has a total length of 161.54 meters with two 

symmetrical interior piers.  The two outer spans each measure 48.77 meters and the middle span 

measures 64.01 meters in length. 

 

 

 

Figure 45-Elevation view of the curved box girder bridge showing plate thickness and location 

(FHWA 2012b). 
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4.1.3 Framing 

Figure 46 shows the plan view of the framing of the curved box girder bridge.  The radius 

of the bridge is 216.79 meters.   

 

Figure 46 - Plan view of the curved box girder bridge showing framing. 

4.2 Finite Element Model 

The curved bridge model was constructed using multiple element types.  The concrete 

slab was modeled using 14,996 solid (C3D8R) elements and the steel tub was made of 10,254 

shell (S4R) elements.  In addition, 70 truss (T3D2) and 210 beam (B31) elements were used to 

model the bracing.  The use of shell elements was implemented to reduce the overall run time but 

still maintain a high level of accuracy.  The line elements that spanned the bridge horizontally 

and perpendicular to the bridge span were beam elements.  Beams were used to allow additional 

cross members to be attached and allow bending.  Diagonal cross bracing and vertical bracing 

was made of truss elements.  Once constructed, the model contained a total of 34,559 nodes.  

The difference in node count from the straight model is a combination of the smaller cross 

sectional area and shorter length.  The curved bridge model is approximately 30 meters shorter 

and has a cross sectional area that is 0.067 square meters less than the straight model.   

4.3 Fire Scenario and Location 

The same fire curve used in the straight box girder was used in the curved model.  This 

curve can be seen in section 2 of this report.  As with the straight box model, a two hour fire was 

not required to reach the full model runtime of the curved bridge.  In the event of the structural 

model running the full 30 minutes of fire, this time would have been extended.  However, it will 

be shown that 30 minutes of fire was adequate for this model.   
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Figure 47- Midspan fire location of curved bridge with fire reduction curve. 

 

 

 

Figure 48 - Pier fire location of curved bridge with fire reduction curve. 
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4.4 Support Conditions 

 

Figure 49 shows the support conditions for the curved box girder bridge in all three 

planes.  Rollers are placed at support A, C, and D.  It can be seen that the rollers are oriented so 

that translation is allowed only in the direction perpendicular to the cross-section of the bridge at 

that point.  Also, rotation is only allowed about the axis parallel to the cross-section at each 

point.  A pin is used at support B.  At this support, no translational movement is allowed.  Like 

the rollers, rotation is allowed only about the axis parallel to the cross-section of the bridge. 

Figure 49- Support conditions of the curved box girder bridge with arrows showing free 

displacements. 

4.5 Heat Transfer Results 

The first analysis performed on the curved box girder bridge was the heat transfer.  

Maximum temperature histories were recorded at four locations shown in Figure 50.  One node 

was selected from the center of the heated face of the bottom flange, web, top flange, and 

exposed slab.  Figure 51 shows a plot of element temperatures versus time for both fire locations.  

At the central location, the bottom flange had a thickness of 0.01905 meters.  This flange 

thickness is the lowest of all steel elements.  Moreover, the cross section at this location has the 

lowest weight-to-heated perimeter ratio.  The bottom flange temperature of fire location 2 is 

lower than that of the fire location 1.  This is because the bottom flange thickness is 0.0381 

meters, two times the thickness of the bottom flange plate at midspan of the bridge. The bridge 

cross section at fire location 2 also corresponds to the highest weight-to-heated perimeter ratio of 

all of the cross-sections.  This is because the sizes of the top and bottom flange plates are each at 

their maximum at the bridge pier location.  Is should be noted that location C2 and location C4 

have the very similar temperature histories for both fire cases.  This is because the size of web 

(C2) and the slab (C4) do not change along the span of the bridge.  Therefore, it would be 

expected to have similar results for both the midspan and pier fire scenarios. 

 

 

 

Figure 50-Cross section of the curved box girder bridge showing node locations (adapted from 

FHWA 2012b). 
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        (a)                   (b) 

Figure 51- Element temperatures verses time of the curved box girder bridge for the (a) midspan 

fire, and (b) the pier fire. 

 

 

 

 

4.6 Structural Results 

In the analysis of the structural model of the curved box girder bridge, the results have 

several similarities to the results of the straight box girder bridge.   The maximum vertical 

deflection resulting from the two fire applications can be seen in Figure 52.  As with the straight 

box girder bridge, the first 5 minutes of the elapsed time is the duration of gravity load 

application.  The maximum deflection for fire location 1 occurs at the midspan of BC directly 

above the applied fire, indicated as node D1 in Figure 25.  The maximum deflection for fire 

location 2 occurs at the midspan of AB with the fire applied adjacent to support B, indicated as 

node D2 in Figure 48.  Figure 53 and Figure 54 illustrate the final deflected shape of each bridge 

model.  Note that vertical deflections are exaggerated for clarity. 

When the pier fire is applied to the curved bridge, the Abaqus model runs for 18.25 

minutes.  In this scenario, maximum deflection occurs at a distance away from the fire which is 

shown in Figure 48.  Minimal vertical deflection is seen at the location of the fire because of the 

proximity to the support which prevents deflection.  The deflection that is observed in this case 

produces the greatest shear demand directly adjacent to the support at location D2. 

In Figure 57, the deflection of the bridge is compared to the ratio of the shear demand to 

nominal shear capacity.  Shear capacity is calculated at the location of maximum shear.  The 
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shear capacity is adjusted based on the decrease in yield strength of the steel.  In section 3.5.1 the 

AASHTO Bridge Design Specification for shear capacity are shown.  The shear demand at this 

location was found to be 1380 kN due to gravity load.  Shear capacity becomes equal to shear 

demand at approximately 16.5 minutes.  This is compared to an Abaqus model run time of 18.25 

minutes.  Therefore, the model runs slightly longer than would be predicted by the demand to 

capacity ratio.  However, it can be seen that once the demand to capacity ratio exceeds one, the 

deflection rapidly decreases until the model ends.  Figure 55 shows a section above fire location 

1.  The stresses in the web are much lower than surrounding members due to the increase in 

temperature. 

The maximum deflection for the midspan fire (location 1) resulted in a larger deflection 

then the fire adjacent to the bridge pier (location 2).  As with the straight model, this is due to the 

proximity of fire location 2 to the support of the bridge.  Deflection at node D1 due to fire 

location 2 and node D2 due to fire location 1 are minimal as the fire is applied at a distance away 

from the D1 and D2, respectively, on different spans. 

 The bridge model that represents fire location 1 has a sudden increase in deflection once 

the fire is applied.  The maximum deflection occurs at the same location as the application of 

fire.  At this location, the positive moment demand is the largest.  Maximum deflection occurs at 

9.5 minutes of runtime.  The final deflection of the bridge is 0.29 m.   

Figure 58 shows a plot of vertical deflection of the bridge along with the ratio of moment 

demand to nominal moment capacity.   As explained in section 3.5.2, as the bottom flange 

temperature increases, the yield strength of the steel is reduced resulting in a reduced moment 

capacity.  The moment demand at this location was found to be 6593 kN-m.  Using the 

simplified moment capacity calculation, the demand to capacity ratio exceeds 1 at approximately 

17 minutes.  The ratio between demand and capacity exceeds 1 at approximately 11.5 minutes 

according to the full plastic moment capacity calculations.  This is two minutes longer than the 

model run time and shows that using the full plastic analysis in this case, produces more 

favorable results of correlation with model run time.  Figure 56 shows a section above fire 

location 1.  The underside of the bridge is picutred to show that the bottom flange of the bridge 

can no longer hold significant stress due to the loss of strength in high temperature. 
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Figure 52-Comparison of maximum deflection of the curved box girder bridge.  

 

Figure 53- Deflected shape and Mises stress of the curved box girder bridge corresponding to 

fire location 2. 

 

Figure 54 - Deflected shape and Mises stress of the curved box girder bridge corresponding to 

fire location 1. 
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Figure 55 - Final step of analysis corresponding to fire location 2. 

 

Figure 56- Final step of analysis corresponding to fire location 1. 

 

 

Figure 57- Maximum deflection at point D2 compared to the shear demand/capacity ratio 
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Figure 58 - Maximum deflection at point D1 compared to the moment demand/capacity ratio 

4.7 End Restraint Investigation 

As with the straight box girder, support conditions were modified to observe any change 

to the results that would occur by adding additional end restraints.  Figure 59 shows the support 

conditions that were used to compare to the support conditions mentioned earlier in this section.  

In the additional end restraint model (“ER”), point D is no longer free tangentially, but instead 

resists displacement.   

Figure 60 shows the results of both support condition models related to the two fire 

location scenarios.  For fire location 1 with end restraint, the model reaches a maximum 

deflection of 0.28 m at a final time of 9.25 minutes.  This represents a 15 second shorter run time 

and a .01 m difference in vertical deflection compared to the model without end restraints. 

For fire location 2, it can be seen that the Abaqus model runs for the same amount of time with a 

difference in deflection of 0.01 m.  Table 3 shows a summary of the resulting data for each 

restraint condition.  Comparing the results for the straight and curved box girder illustrates that 

the additional restraint at D is more critical to the performance of the straight alignment.  The 

stability provided by the additional restraint is beneficial, as it allows for a longer runtime before 

failure. 
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Figure 59- Adjusted support conditions of the curved box girder bridge with addition end 

restraint.  

 

Figure 60- Vertical deflection of the curved box girder bridge with two different support 

conditions.   

Table 3 - Resulting deflection data for the curved box girder bridge different end restraint 

conditions 

    Run Time (min) Max Vertical Deflection (m) 

Fire location 1: 
Mid Span Fire 

Original End Restraint 9.5 0.29 

Modified End Restraint 9.25 0.028 

Fire location 2: 
Pier Fire 

Original End Restraint 18.25 0.27 

Modified End Restraint 18.25 0.026 
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In addition to the analysis of the vertical deflection of the different end restraint cases, the 

radial deflection was observed to determine the results for the curved geometry.  Figure 61 

shows the radial deflections of both end restraint cases for each fire event.  Deflections are 

plotted for both the slab and bottom flange to show relative movement of the top and bottom of 

the bridge section.  As with the vertical deflection plots, the deflection for the midspan and pier 

fire were calculated at points D1 and D2 shown in Figure 47 and Figure 48, respectively.  

Negative deflection represents movement towards the center of curvature of the bridge. 

 For fire location 1, the original end restrain condition results in negative horizontal 

deflection with differential deflection between the flange and slab.  When the end restraint 

condition is changed, the deflection is outward from the center of the bridge.  However, it can be 

seen that the horizontal deflection of the slab and flange occur at the same rate. 

 For fire location 2, Figure 61 shows that there is differential displacement between the 

flange and slab for both restraint cases.  The bottom flange deflects in the positive direction 

while the slab deflects in the negative direction.  The addition of the end restraint causes the 

differential deflection to be reduced by 14mm at the end of the analysis. 

 

 

Figure 61- Horizontal deflection of the curved box girder bridge 
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5 CONCLUSION 

Investigation of the response of bridges in fire is important to the future of the 

transportation infrastructure.  Current research begins to investigate many subjects regarding 

structures subject to fire temperatures.  However, prior research has not been performed on the 

thermal response of steel box girder bridges to fire. 

Upon completion of the two fire cases shown above on two different bridge geometries, it 

is clear that fires beneath box girder bridges pose a significant risk to the integrity of the 

structure.  By testing two extremes, significant differences can be seen in the behavior depending 

on the location of the fire in relation to the bridge supports.  A midspan fire causes large 

deformations and increased stresses in the bottom flange.  A fire near the bridge pier causes 

increased shear stress in the web of the girder and increased stress in the concrete slab. 

For the box girder studied in this research and a fire location adjacent to the support, the 

box girder fails due to web shear buckling.  Both the straight and curved box girder exhibit the 

same failure mode for this fire location.  The AASHTO shear capacity equation predicts the 

failure time of the Abaqus model reasonably well, when the reduced yield strength and modulus 

values are utilized.  For this fire location, the straight box girder model is more accruately 

predicted using the AASHTO shear capacity equation than the curved box model. 

For the fire location at the center of the bridge, the box girder fails due to moment 

capacity.  Both the straight and curved box girder alignments exhibit the same failure mode for 

this fire location.  The AASHTO composite section moment capacity (plastic analysis) 

procedures provide a reasonable estimate of the failure time.  The moment capacity calculation 

considering a simplified tension flange yielding model is more accurate for the straight box 

girder than the curved.  Using this method, the curved box girder is more acuratly predicted by 

the full plastic analysis model than the straight box girder. 

In addition to the two fire conditions, the two bridge alignments were analized.  With an 

equivelent fire scenario and similar cross sectional geometries, the curved girder resulted in 

lower vertical deflection compared to the straight girder.  While deflections were larger in the 

straight girder, model run times where similar for both fire scenarios.  The pier fire has 

consistently longer run times than the mid-span fire.  The failure times seen in both alignments 

indicate that a mid-span fire is the critical fire location for both.    

6 FUTURE WORKS 

  

 Future work is suggested in the following areas: 

 

 1. The interior thermal boundary condition of the tub girder was not thoroughly 

investigated.  Thermal effects of cavity conditions must be explored to increase the accuracy of 

temperature histories during long term fire exposure.     

 

 2. The effects of the bridge restraint should be further investigated.  Based on the results 

for the straight girder, additional stability can be obtained by resisting additional axial forces at 

the supports.  This may become and effective means of increasing bridge performance in fire. 
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 3. Additional curvatures should be investigated to illustrate the difference between 

straight, moderate or severe curvatures.  The curved box girder considered in this research can be 

considered a low to moderate curvature.   

 

 4.  Application of the AASHTO shear and moment capacity equations, considering 

temperature dependent material properties, should be investigated on additional bridge 

structures.  This research has shown it to be an effective predictor of the bridge failure time, 

compared to the 3-D Abaqus model.  Analysis effort can be reduced for application in design 

practice if it can be shown that this procedure provides universal results.  
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