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The Region 2 University Transportation Research Center (UTRC) is one of ten original University
Transportation Centers established in 1987 by the U.S. Congress. These Centers were established
with the recognition that transportation plays a key role in the nation's economy and the quality
of life of its citizens. University faculty members provide a critical link in resolving our national
and regional transportation problems while training the professionals who address our transpor-
tation systems and their customers on a daily basis.

The UTRC was established in order to support research, education and the transfer of technology
in the field of transportation. The theme of the Center is "Planning and Managing Regional
Transportation Systems in a Changing World." Presently, under the direction of Dr. Camille Kamga,
the UTRC represents USDOT Region II, including New York, New Jersey, Puerto Rico and the U.S.
Virgin Islands. Functioning as a consortium of twelve major Universities throughout the region,
UTRC is located at the CUNY Institute for Transportation Systems at The City College of New York,
the lead institution of the consortium. The Center, through its consortium, an Agency-Industry
Council and its Director and Staff, supports research, education, and technology transfer under its
theme. UTRC’s three main goals are:

Research

The research program objectives are (1) to develop a theme based transportation research
program that is responsive to the needs of regional transportation organizations and stakehold-
ers, and (2) to conduct that program in cooperation with the partners. The program includes both
studies that are identified with research partners of projects targeted to the theme, and targeted,
short-term projects. The program develops competitive proposals, which are evaluated to insure
the mostresponsive UTRC team conducts the work. The research program is responsive to the
UTRC theme: “Planning and Managing Regional Transportation Systems in a Changing World.” The
complex transportation system of transit and infrastructure, and the rapidly changing environ-
ment impacts the nation’s largest city and metropolitan area. The New York/New Jersey
Metropolitan has over 19 million people, 600,000 businesses and 9 million workers. The Region’s
intermodal and multimodal systems must serve all customers and stakeholders within the region
and globally.Under the current grant, the new research projects and the ongoing research projects
concentrate the program efforts on the categories of Transportation Systems Performance and
Information Infrastructure to provide needed services to the New Jersey Department of Transpor-
tation, New York City Department of Transportation, New York Metropolitan Transportation
Council , New York State Department of Transportation, and the New York State Energy and
Research Development Authorityand others, all while enhancing the center’s theme.

Education and Workforce Development

The modern professional must combine the technical skills of engineering and planning with
knowledge of economics, environmental science, management, finance, and law as well as
negotiation skills, psychology and sociology. And, she/he must be computer literate, wired to the
web, and knowledgeable about advances in information technology. UTRC’s education and
training efforts provide a multidisciplinary program of course work and experiential learning to
train students and provide advanced training or retraining of practitioners to plan and manage
regional transportation systems. UTRC must meet the need to educate the undergraduate and
graduate student with a foundation of transportation fundamentals that allows for solving
complex problems in a world much more dynamic than even a decade ago. Simultaneously, the
demand for continuing education is growing - either because of professional license requirements
or because the workplace demands it — and provides the opportunity to combine State of Practice
education with tailored ways of delivering content.

Technology Transfer

UTRC’s Technology Transfer Program goes beyond what might be considered “traditional”
technology transfer activities. Its main objectives are (1) to increase the awareness and level of
information concerning transportation issues facing Region 2; (2) to improve the knowledge base
and approach to problem solving of the region’s transportation workforce, from those operating
the systems to those at the most senior level of managing the system; and by doing so, to improve
the overall professional capability of the transportation workforce; (3) to stimulate discussion and
debate concerning the integration of new technologies into our culture, our work and our
transportation systems; (4) to provide the more traditional but extremely important job of
disseminating research and project reports, studies, analysis and use of tools to the education,
research and practicing community both nationally and internationally; and (5) to provide
unbiased information and testimony to decision-makers concerning regional transportation
issues consistent with the UTRC theme.
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not constitute a standard, specification or regulation. This document is disseminated under the
sponsorship of the Department of Transportation, University Transportation Centers Program, in
the interest of information exchange. The U.S. Government assumes no liability for the contents
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This report explores the compression of trajectories with multiple attributes.
Section 2 is a review on trajectory compression using point selection algorithms.
Section 3 presents attribute partition methods used in traditional relational
databases. Section 4 summarizes metrics used in previous work. Section 5 com-
pares the performance of two known compression algorithms, namely CompreX
and PROXIMUS. Section 6 presents some conclusions and directions for future

Techniques for Information Extraction from
Compressed GPS Traces

January 6, 2016

Abstract

Developing techniques for extracting information from compressed GPS
traces requires a good understanding of methods used to compress the
traces. Many techniques for compressing trace data consisting of posi-
tion (i.e., latitude/longitude) and time values have been developed. Since
current vehicles are equipped with many on-board instruments, traces
generated by such vehicles contain many attributes in addition to posi-
tion and time. The problem of compressing such multi-attribute traces is
currently being studied by a number of researchers.

We consider the Multiple Attribute Trajectory Compression problem
with defined error bounds on attributes. Our focus is on solving this
problem using attribute partition methods. Such methods partition at-
tributes into groups with the aim of reducing the total storage cost after
compression methods are applied to each group individually. We present
a comprehensive overview of various trajectory compression algorithms,
concentrating on the most recent works since SQUISH-E [20]. New accu-
racy metrics for measuring the difference between a trajectory and its com-
pressed representation are also explained. Lastly, we present some prelim-
inary experimental results on two real trajectory data sets with multiple
attributes using two known compression algorithms, namely PROXIMUS
and CompreX.

Organization of the Report

research.



2 Trajectory Compression

2.1 Need for Trajectory Compression

Many trajectory compression techniques have been developed over the years
to deal with the drastic growth of trajectory data. The recent interest in con-
nected vehicle initiatives to increase auto safety will produce not only additional
trajectory data, but also a large volume of multiple attributes associated with
vehicle operations (e.g., data when brakes are applied). The overall purpose of
compression is to minimize storage space while preserving the accuracy of the
data sets to the maximum possible extent. Typical algorithms achieve compres-
sion by retaining a subset of the points from a given trajectory. Algorithms for
trajectory compression can be classified along several different axes: offline or
online, local or global, lossy or lossless, etc. In the literature, algorithms have
been compared on the basis of their space complexity, running time as well as
their ability to achieve certain levels of accuracy with respect to known metrics.

2.2 Trajectory Compression Methods
2.2.1 Position Preserving Framework

Position preserving error can be measured in terms of Euclidean distance or syn-
chronized Euclidean distance. While Euclidean distance is considered a minimal
requirement, the synchronized version has the advantage of incorporating tem-
poral information and leads to better decisions in terms of choosing relatively
significant points in a trajectory. Both metrics have been considered in the lit-
erature. In the following, we summarize some of the known methods which use
these metrics.

Uniform Sampling Uniform sampling selects points from a trajectory at a
constant interval determined by the space and rate of source data. This method
can reduce storage requirements, but at the cost of the level of accuracy. This
technique is particularly effective when dealing with quick and simple compres-
sions with reasonable error rates. However, it can introduce large errors if data
exhibits no particular pattern with respect to time domain. If the data does
exhibit a regular pattern with respect to time, the sampled points provide a
coarse resolution of the data set in time domain.

Top-down Split Top-down split methods split a trajectory into segments
and recursively apply the same optimization criteria to the segments treated as
new trajectories. Generally, top-down methods can only be carried out in an
offline fashion. Recall that comparison based sorting algorithms have a running
time of ©(nlogn). Top down split algorithms achieve this time complexity by
carefully choosing an appropriate data structure. The most famous top-down
split approaches are the Douglas-Peucker method [3] and the modified Douglas-
Peucker method [5] using a convex hull to reduce the time complexity. The
Douglas-Peucker method is a greedy method which chooses the most deviated
points with respect to the segments of trajectory which have already been con-
sidered. The method can also be adapted for online use with a fixed buffer as



proposed by Liu [15]. While the original method using Euclidean distance met-
ric can achieve the minimum running time bound by using the convex hull, the
method using synchronized Euclidean distance metric is asymptotically slower.
Another method which has been studied is the top-down time ratio method
[18], which uses top down split to improve the compression rate/error balance.
However, the focus of this algorithm is to showcase the importance of temporal
information in the compression of trajectory data.

Sliding Window Merge Methods based on sliding windows are suitable
for online trajectory compression. This type of algorithm can achieve linear
running time with error bounds. The criterion used to decide whether to keep
or discard incoming points differentiates the methods. To achieve better time
complexity and better error bounds, an appropriate data structure is needed.
Time complexity of algorithms without any enhanced data structures can be
quadratic. For example, there is such an algorithm for online time series which
achieves the worst running time [11]. However, with appropriate data structure
and careful usage of data, Liu’s method [15] achieves linear time complexity on
average, though the more appropriate running time bound is O(nlog(n)). It
sets up a coordinate bounded system and uses the structure of a convex hull to
decide whether or not to calculate the Euclidean distance for a new point. Based
on that calculation, it determines whether or not to keep or discard the incoming
point. The Squish-E algorithm [20] uses a priority queue to achieve O(nlog(n))
time complexity. Dead Reckoning algorithm [24] achieve linear time complexity
by using the speed information derived from previously chosen points. However,
the performance of sliding window algorithms is drastically different with respect
to error metrics [19].

2.2.2 Direction Preserving Framework

Direction-based angular error was first introduced by Long [16]. It claims that in
some cases, it is more reasonable to use angular error as the error bound since it
better reflects the simplified trajectory compared to the original trajectory and
the clusters produced by trajectory clustering algorithm by Lee [13]. Position
information can be derived from the direction information [16]. The problem of
minimizing the direction-based angular error with a space constraint is proposed
in [17]. An offline 2-factor approximation algorithm is introduced. Lee’s angular
framework is very useful in 3-dimensional space; however, there is more work to
be done in order to extend it to four and higher dimensional spaces. Further,
the algorithm’s time complexity needs to be improved if one needs to use it in
an online setting.

Line simplifications can be categorized as either online or batch model based.
Batch model based methods focus on discarding locations with minimal error
from the original trajectory. The uniform sampling algorithm is effectively a
line simplification that uses only the 1th location and discarding the others.The
Douglas-Peucker algorithm considers the trajectory as a line segment and recur-
sively selects the point with the largest error as a split point, until the trajectory
satisfies the error requirement. Bellman’s algorithm uses dynamic programming
to minimize the area between the original trajectory and the compressed one.
While these methods are efficient, PRESS is much more efficient with respect
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Figure 1: (a) Curvature as signed angle of turn, clockwise turn as negative
curvature. (b) Transformation of trajectory to curvature function. Trajectory
input is represented as a sequence of locations, then is processed according to the
definition of curvature. Sequence beginning with s, ending at t is transformed
into sequence of curvature values.

to time complexity compared to DP-variants and Bellman’s algorithms. Other
benefits of PRESS include spatial losslessness and temporal error-bound.

2.2.3 Topological Persistence Preserving Framework

Persistence Preserving Framework usually defines a score function for each
point of a trajectory. The accuracy of an algorithm in this category is based on
whether or not the algorithm can detect and preserve the points with high score
values according to the definition of the score function used by the algorithm.
A good example to demonstrate topological persistence preserving framework
is from Katsikouli et al.’s work [10] discussed below.

Katsikouli et al. [10] proposed a trajectory simplification algorithm named S
Persistence Algorithm which attempts to identify large scale sharp features of
trajectory. The points closer to those with large features of trajectory should be
preserved by the [ Persistence Algorithm to represent the original trajectory.
The entire compression method consists of two steps.

In the first step, it converts the trajectory to a sequence of curvature values.
Fig.1(a) illustrates what the curvature means and Fig.1(b) shows the process
of transformation from trajectory data points to sequence of curvature values.
In order to better explain the sweep algorithm, we use terminology of graph
theory such as vertex to represent curvature value of a location point, and con-
nected component to represent a set of curvature values of consecutive points
in a trajectory. Then, from the sequence of curvature values from the first
step, it identifies the set of local maxima {Vj,, -+ Vi, } and the set of local
minima {V,, ---Vy,} of the curvature function values. Initially, for each local



minimum vertex V,,;, it creates a connected component with only one such ver-
tex C{V,,}. Then, it iteratively expands each connected component by one
neighboring vertex. Note that each vertex (other than the first and last) has
two neighboring vertices V, and V;. It chooses V;, if V, > V;. Each connected
component C{V;,, ---V,.} is annotated as a pair of vertices, one is the starting
local minimum vertex of the connected component V;,, the other is the most
recently added vertex of the connected component V,.. A connected compo-
nent will stop expanding once one local maxima vertex Vi, € {Vin, -+ Vi, }
is added to the connected component. When the other connected component
C{an -+ Vz} adds the above local maxima vertex V;,,, and V”i < Vi, the pre-
vious connected component {V,,, - -+ V,,,} will be terminated and merged into
the other connected component C{V,. -+~ V;, Vi, }.

Once the connected component {V,, --- Vi, } is complete, the lifespan of
that component will be calculated as V,,, — Vi, The higher the lifespan of a
connected component, the sharper is the feature it defined by that component.

The algorithms of persistence based framework can achieve linear running
time; however, their performance is not guaranteed when the error bound is
tight; further, the sharp features used to process the incoming points must be
defined by users.

3 Compression Using Attribute Partitioning

3.1 What is Attribute Partitioning?

Attribute partitioning [4] in relational databases splits a relation into a set of
sub-relations, each containing a subset of attributes of the original relation [2].
Every new sub-relation thus obtained should contain attributes of the original
relation and the union of the sub-relations should be equivalent to the original
relation. However, several new sub-relations may contain the same attributes.
We will use the phrase “attribute partitioning” to ensure consistency with exist-
ing literature. In general, attribute partitioning attempts to reduce transaction
costs associated with databases. Previous work has shown that correlations be-
tween attributes can be exploited in compressing multi-attribute trajectories by
placing such attributes in the same sub-relation. Solving the challenges associ-
ated with efficient compression of the multi-attribute data generated from con-
nected vehicle operations is critical to transportation planners and researchers.
This section will survey previously developed heuristic methods which aim to
solve attribute partition effectively and efficiently.

3.2 Attribute Partition Methods

There are two perspectives to view the problem, and they lead to two different
methodologies. The first approach is designing heuristic methods to overcome
the intractable nature of the underlying mathematical optimization problem.
The other is to study the problem using graph theoretic techniques. In the
literature, graph theoretic methods chronologically follow those based on math-
ematical optimization.



Current attribute partition methods have three components in common.
The first component is the Similarity Metric which measures the similarity or
distance between attributes or usage among data items. This metric is the basis
for clustering and any other possible learning methods which require distance
metric. The second is the Cost Function which incorporates the information
about the usage pattern and data characteristics while considering the access
cost for different levels of the memory hierarchy (e.g. cache, main memory and
disk) in a computer system.

The third component is the algorithm used to search a partition which
optimizes the cost or utility functions. The number of partitions of a set is
known as the Bell number, which grows faster than the factorial function. Due
to this level of complexity, there are many heuristic algorithms in previous works
that attempt to reduce the search space, leading to two classes of methods. One
class is based on machine learning methods, such as the bond energy clustering
and greedy hill-climbing. Under the hill-climbing method, there exists some
subtlety with respect to the initial state. The initial choice is generally problem
or context sensitive. The other class of methods address the attribute partition
problem using graph theoretic techniques. The primary advantage with graph-
related algorithms is the cost function need not be explicitly defined.

3.2.1 Clustering Methods

The problem of attribute partition is cast as the problem of clustering in
machine learning [6]. Clustering methods group observations into different clus-
ters, where differences within clusters are minimized and difference between
clusters are maximized. Many comprehensive reviews on clustering methods
are available in the literature [9][26]. Therefore, we focus on a detailed example
to illustrate the application of clustering methods for the problem of attribute
partition. Two major components of any clustering method are the definition of
similarity metric and the algorithm for generating clusters. The example below
will illustrate the two components in detail.

Hoffer et al. [7][4][21] discuss the process of formulating a similarity metric
between attributes. The following is one example from their paper.

Given a set of attributes A = Uiillai and a set of records R = ZL@l T, a
collection of n attribute partitions are represented as a collection of n pairs
(Ai, R;), where, U A, = A and U;R; = R. The quantity l,, denotes the
encoding length of attribute a;.

Given a set of retrieval requests T' = Zﬁlel tk, p(tx,a;) denotes the proba-

bility of retrieving attribute a; in request i, and p(tx, a;, a;) denotes the prob-
ability of retrieving attributes a; a; together in request t;. Also wy, is defined
as the weight of request t; in T.



With the above definitions, for each combination of attributes a;, a; and
request ty, a metric ¢(a;, aj, tx) is defined as follows:

laq‘, * Pty,a; + laj * Dty,a;
(lai + laj) * max(ptk,(lq,7ptk,aj)

and s(a;,a;, @) as an aggregate function of c(a;, aj,ty) is defined by

k=|T
Zk:‘l ‘ wtkc(a’ia a’jvtk)a

k=|T
Si= i, elag, ag, t)e

The function s(a;, a;, o) is defined to capture the intuition that attributes with
similar retrieval patterns are closer in metric value. Also, it is context sensitive
and can vary according to the context of the attribute partition problem. In
general, the similarity function is monotonic in each parameter chosen by users.

After the calculation of similarity matrix M,, where M(i,j) = s(a;, a;, @),
there are a variety of clustering algorithms [9] to apply to the matrix depending
on the application. We present the Bond Energy Algorithm [7].

The Bond Energy Algorithm permutes the columns and rows of M, to get a
new matrix M,. The new M, maximizes the objective function

hS
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. An intuitive explanation of such an objective function is that it maximizes
the nearest neighbor strengths. The procedure of partitioning the attributes is
based on the new matrix M,.

There are a variety of clustering algorithms other than the Bond Energy
Algorithm. They differ in the formation of objective function and algorithms to
find clusters. The appropriateness of each algorithm depends on the application.

In essence, clustering methods free users from the burden of defining objective
functions. However, users must choose the number of clusters beforehand.

3.2.2 Hill-climbing Method

Hammer [4] applies Hill-climbing method to the attribute partition problem.
The Hill-climbing algorithm consists of two components. The first component
is informed search for a next partition derived from a previous partition. The
second one is a heuristic function to examine the gain of a new partition over
previous partition. It greedily chooses the best new partition as current partition
according to the heuristic function and user-defined condition. It terminates
when the current partition cannot be improved.



Given a set of attributes A = Ulillai, and an evaluation function F', the
beginning partition is initialized as a set of single attribute blocks {P!} where
P! = {a;}, [{P}!}| = |A|. One possible next partition with respect to the
previous partition {P7} where [{P7}| = ¢ > 0 is created by merging any two
attribute blocks P/ and Pg indexed by z,y respectively where 0 < z < ¢,
0 <y < cand = # y and keeping other attribute blocks P/ where | # x and
l#yandle{l,...,c} intact.

For all the possible partitions with respect to {P7}, choose one partition
P as {P’*!} with the condition that F(P) > F({P/*!}), where F(P) is the
maximum of F' among all possible next partitions. The Hill-climbing algorithm
terminates once there exist no such P that satisfies the condition.

The Hill-climbing method is a greedy approach because it only explores the
branch {P’7T1} that currently scores the best with respect to an evaluation
function F and ignores other possible partitions with respect to {P7}. So,
in each iteration, the set of possible next partitions shrinks as the algorithm
continues.

The method of Navathe et al. [22] differs from Hammer’s [4] approach. In-
stead of merging attribute blocks in a bottom-up fashion like Hammer, it splits
an attribute block into two during the process starting from the coarsest parti-
tion {ay,az, - a4} in a top-down fashion.

A straightforward implementation of hill-climbing is very inefficient in terms
of time complexity. In order to reduce the number of attribute block evaluations,
it memoizes the gain induced by merged attribute blocks, which is assumed
to be consistent along the search process. The cost reduction between a new
merged attribute block and other blocks will be calculated and memoized. The
memoization leads to time complexity O(]A|?).

3.2.3 Graph-based Methods

Son et al. [8] views the problem from the perspective of graph theory and
propose Fuzzy a-cut Algorithm. It defines a graph G(V, E), where the ver-
tex set V corresponds to the set of attributes and the edge set E corresponds
to the affinity value between any two vertices. Then, it defines two variables
X (€)conesive, X (€)disconesive Tor each edge e € F with the constraint that

X(e)cohesive + X(e)discohesive =1

Here, X (€)conesive defines the degree of affinity between the two vertices con-
nected by e, which is calculated through the user defined affinity score function
of two vertices. Finally, a variable named certainty given by

0(6) = maX(X(e)cohesivea X(e)discohesive)

is defined over each edge e.



The Fuzzy a-Cut Algorithm is based on the assumption that if the certainty
C(e) is closer to 1, then it is easier to decide whether the two vertices connected
by e are better placed together or not; if C(e) is close to 0.5, then it is harder
to determine whether the two vertices should be together. The algorithm cuts
any edge e € E if such e satisfies the condition C(e) < a. The process creates
several sub-graphs G(V, EA)7 where V € V and F € E. Also, a new sub-graph
G(V,E), where E is made of any e deleted from the previous cutting steps.

The determination of an optimal a-cut is based on an aggregation function
f(a) which is directly based on score values of G(V, E)s and G(V, E). For any
sub-graph G(V, E), the score value is given by

ZeiEE and e EE |C(el) - C(ej)‘v

which denotes the total uncertainty within the sub-graph G(V, E). An optimal
G-cut is denoted by Amint{ fla)}

The running time of the Fuzzy a-Cut Algorithm is very sensitive to [{a}], the
size of the set of distinct affinity values. The worst case is when every affinity
value between any two attributes is distinct, then the time complexity is O(n?),
where n = |V|.

4 Metric

4.1 Accuracy Metric

Accuracy metric measures the similarity between the compressed trajectory
and the original trajectory. Accuracy metrics can be spatial, temporal-spatial,
direction-based, speed-based, or direction-speed based, or temporal based. Each
error metric is associated with the requirement of specific applications and
moving objects traveling mode and geographic conditions. Applications with
direction-based metrics can easily capture the swift direction transition in trav-
eling mode. However, this representation of simplified trajectory may be too
fine for applications which may require only the rough positional information.
Speed error metric is used in many online compression algorithms with linear
running times. Temporal-spatial error metrics are popular in O(nlog(n)) online
and offline compression algorithms.

Accuracy metric is also highly related to the algorithm for recovering an
uncompressed trajectory from a compressed one. It is of interest to explore the
relationship between different combinations of accuracy metrics in compression
and decompression parts of algorithms.

Accuracy of a single point in the compressed trajectory with respect to a
point in the original trajectory can be readily defined. It is also easy to define
an aggregation function on the accuracy of all points. Some use the maximum
value [16] while others use geometric means [19]. Spatial and spatial-temporal
metric have been discussed in many other survey papers [20]. Here we focus
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Figure 2: Compression Accuracy Metrics: Direction-based error metric and
Speed-based error metric are illustrated in (a) and (b) respectively.

on the other metrics such as Direction-based metric, Speed-based metric and
Semantics-based metric, none of which has been surveyed in other papers. In
Fig.2, given a trajectory T which consists of (Py, Pe, Ps, Py, Ps, Ps) and its com-
pressed representation T which consists of (Py, Py, Ps), we will illustrate the
following metrics on the trajectories 7' and 7.

4.1.1 Direction-Based Error Metric

Direction-based error metric has been studied in several research papers [10][16].
It can be used to detect important points in trajectory. In the paper by Long
et al. [17], it also theoretically proven that Direction Persistence Simplification
algorithm with error bound with respect to Direction-based error metric can
achieve bounded approximation error defined by the spatial error metric.

In Fig.2(a), the direction-based error of T with respect to a specified period
of time e(z,y) in T is defined as the maximum angular difference between the
direction of movement in 7' and the direction of the movement in 7. The dis-
tinct feature of the Direction-based metric is that it specifies the range of time.
For the specified time €e(z,y), it identifies all the location points (P, Ps, Py)
generated during the same time span. For any location point P;, and time of
location point ¢(P;), it will be included if < (P;) < y. For each of (P, Ps, Py),
it identifies a pair of predecessor and successor points in 7' as compressed an-
gles. This is stored as the edge list E = {(Py, Py), (P, Py), (P1, Py), (P4, Pg)}.
Then, for each of (Ps, Ps, Py), it identifies a pair of predecessor and succes-
sor points in T as the original angles. This is stored as the edge list E =
{(P1, P2),(Ps, Ps),(P3, Py),(Py,Ps)}. Then a maximum absolute angle dif-
ference between corresponding edge lists represents the Direction-based error
ate(x,y). Fig 2(a) showcases the calculation of angular difference between two
edges. The reason for using maximum angular difference instead of average an-
gular difference is that the former can better preserve the shape of the original
trajectory.
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4.1.2 Speed-Based Error Metric

Speed-based error metric is used whenever it is important to preserve the
speed information in the compressed form [25][23]. It is very similar to Direction-
based error metric. Fig.2(b) illustrates the calculation of Speed-based error
metric. Fach point P; occurs at time stamp ¢;. Given the point P3 at time t3
and another point Py at time t4, the speed at P is computed as (Ps, Py)/t4 — t3.
Given a time span €(t1,ts), the speed error during the time span can be an
aggregate of speed error of each location point which happens in the same time
span. The appropriate aggregate function depends on the specific application.
For example, it can be the average, median or maximum of the list of speed
errors of individual points.

4.1.3 Semantics-Based Metric

Semantics-based metric usually incorporates road network information or
other information to measure the accuracy of compression. Such metrics have
been used in many studies [27][14][23]. In Zheng et al. [27], two specific
semantics-based metrics are proposed. One is Time Synchronized Network Dis-
tance and the other is Network Synchronized Time Distance. Both of these
error metrics utilize the road network information. Given two Euclidean space
trajectories with time stamps

T((Plvtl)v (P27t2)a e 7(Pn,tn))

and o R .
T((Ph{l)’ (P2atA2)a T (PnatAn))a

the approach in [27] converts them into an appropriate distance and time space
d — t. The process starts with a matching step which transforms the sequence
T into another sequence ((e1,t1), (ea,t2), -, (e, tr), where (e;, t;) denotes at
the time t;, the trajectory at the beginning of e;. The transformation process
must shift the time stamp to obtain a correct presentation of such a trajectory.
In a road network, the length e of each edge is known, so the distance covered
at the time ¢; is just > .7 e;.

Given a trajectory T and its compressed version T , TSND measures the maxi-
mum difference between the distance object travels via trajectory T and that via
trajectory 7' during any time span. The concept is illustrated at Fig.3(a). The
figure shows the TSND value which is the maximum vertical distance between
T and T.

NSTD defines the maximum time difference between a trajectory T and its
compressed form 7' while traveling the same distance with N STD(T, T) =
Mazxg, (|Tim(T,dy) — Tim(T, d,)|). This is illustrated at Fig.3(b). The figure
indicates the NSTD value which is the maximum horizontal distance between
T and T.

4.2 Performance Metric

The performance of an algorithm is generally specified using space and time
complexity measures. When there is a bound on the compression ratio or a

11
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Figure 3: TSND and NSTD

Table 1 Compression Schemes Summary (m: number of attributes, n: length
of trajectory, r: size of reduced set of original attributes, A: target compression
ratio, W: spatial error bound, u: SED error bound, o: discretization error
bound, e: timing error bound, I: loss function bound).

Scheme Method Param. Time Complexity Space Comiirs)s(iiinll;atio)
Douglas Peucker b O(nm?) O(nm) large
Trajectory Squish-E(X) A O(nmlog(n/X)) O(mlog(nmM\)) small
Squish-E(u) 7 O(nmlog(n)) O(nm) small
Hill Climb A O(m” +nmlog(n/N)) O(mlog(n/\)) small
Partition Optimized HC A O(m? 4 nmlog(n/\)) O(mlog(n/\)) small
‘ Clustering A O(m? 4+ nmlog(n/\)) O(mlog(n/X)) small
Graph A O(mlog(m) + nmlog(n/X)) | O(mlog(n/N)) small
Reduction Selectin')n Al O(mlog(m) + rnlog(n/X)) constant large
Extraction A\l O(mlog(m) + rnlog(n/\)) constant large
, Multi-Pattern 0,6l O(mlog(m)log(n constant large
TS Method Single-Pattern o, €l Oo(m log?(n))( ) constant large

strict accuracy requirement, it is usually necessary to choose algorithms with
larger space or time complexity measures.

4.2.1 Space Complexity

Space complexity refers to the amount of internal memory for compression
schemes. The linear time complexity implies linear space complexity. Normally,
a time complexity of O(nlog(n)) usually means that the space complexity is
also O(nlog(n)).

4.2.2 Time Complexity

Comparison based algorithms typically have a time complexity of O(nlog(n)).
Examples of such algorithms include Squish-E [20], Douglas-Peucker (modified)
[5] and Bounded Convex Hull [15]. These algorithm use efficient data structures
to avoid the comparison between the incoming point and all the previous points.
However, these algorithm still need at least Q(log(n)) look up time in order to
determine weather or not to keep the incoming point. The reason why some
online algorithms have linear running times is that they discard each incoming
point using a constant running time decision function which doesn’t depend on
the total number of points. However, these algorithms with linear running times
may have significantly larger values for error metrics.
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5 Comparisons

In this section we are going compare two known compression techniques, namely
PROXIMUS and CompreX.

5.1 PROXIMUS

The first result tested through was PROXIMUS, which provides a technique
for compressing larger data sets of representative patterns, on which traditional
analysis algorithms can be applied. This framework is a non-orthogonal matrix
transform and it relies on recursive partitioning of a data set. The dominant
pattern is computed as a binary approximation vector of the matrix of relations.
PROXIMUS provides several facilities to analyze data with discrete attributes.
These include:

e discovering dominant and inconsistent patterns in the data in a hierarchi-
cal manner,

e clustering of data in an error-bounded and physically understandable form,
e finding accurate data representation and
e isolating signal from noise in a multi resolution framework [12].

Previous research has shown that PROXIMUS has the ability to accurately
represent data after compression. By focusing on the binary nature of discrete
data, the compression technique provides a framework and takes advantage of
the discrete data in order to improve efficiency.

5.1.1 Computational Procedure

Unlike singular value decomposition (SVD)-based techniques, PROXIMUS
uses a rank-one approximation of the input matrix for row decomposition. Given

m binary vectors ai,as,...,a, in an n-dimensional space, we find binary ap-
proximation vectors y1, y2, ..., Yi, where each y; is anx 1 vector (1 < j < k),
such that

Vi (1 <i<m)3j suchthat ||a; —y,|[5 < e

We also need to minimize k, when there is a prescribed error bound [12]. This
algorithm proceeds by recursively computing discrete rank-one approximation
to the matrix, locating appropriate patterns and organizing them. The purpose
of finding a discrete rank-one approximation of binary matrices is find a low
rank decomposition that approximates groups of rows with local patterns. The
solution will be associated with a local pattern and we can apply additional
methods to collect other local patterns in the matrix. The partition process
continues until the set represents the entire matrix. Then the concept of Ham-
ming radius is used to determine whether the pattern represent all rows of the
corresponding submatrix. While finding the rank-one approximation, the initial
pattern vector must have a magnitude which is strictly larger than zero. Possible
methods for finding a correct initial pattern vector include the following:

e Partition: Select a separator column and identify the rows that have a
nonzero at that column.
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e Greedy Graph Growing: The initial pattern vector is set to the centroid of
rows in this part. (This approach is also useful in association rule mining.)

First, we formulate the problem of error-bounded approximation of binary ma-
trices. Our approach to solving this problem is based on recursively computing
discrete rank-one approximation to the matrix. The rank-one approximation
problem for matrix A with m columns and n rows is equivalent to finding two
vectors, x and y, that maximize the number of zeros in the matrix. That is,

14 =2y} = lay; € (A—ay") : ai; =1].

The error for a rank-one approximation is the number of nonzero entries in the
residual matrix. the main purpose here is to find a low-rank decomposition that
approximates groups of rows with local patterns rather than a globally optimal
rank-one approximation. Next, recursively decompose the binary matrices in or-
der to get rows corresponding to 1’s in the presence vector which are maximally
connected submatrices of the main matrix. Let 1 <4 < m. Then

a: € A1 if xXr; = 1
t Ap otherwise

with a; denoting the ith row of A. The partitioning-and-approximation pro-
cess continues until the matrix cannot be further partitioned or the resulting
approximation adequately represents the entire matrix. Finally, the concept of
Hamming radius is used as the major stopping criterion for the algorithm to de-
cide whether the underlying pattern can represent all rows of the corresponding
submatrix adequately. Given a set of binary vectors R = {x1,x2,...,xz,} and a
binary vector y, the Hamming radius of R directly centered within y is defined
by
r(R,y) = maX{h(wi, y)}

where h(z,y) = ||z —yl||3 is the Hamming distance between binary vectors z and
y. If all the conditions hold, the pattern vector is considered a dominant pattern
in matrix A; and recorded with its presence vector within the approximation of

A.

5.2 CompreX

This method identifies anomalies in large multi-dimensional databases using
pattern-based recognition. It finds a collection of dictionaries that describe the
norm of a database succinctly, and subsequently flags those points which differ
significantly from the norm. Simply put, the plan of action is to use a set of
dictionaries to encode a database. CompreX builds off of previous research from
the KRIMP compressor. It employs the Minimum Description Length (MDL)
principle to decide on the number of groups. This avoids the mining and filtering
the collection of patterns.

We use the set of code tables to compress. According to the MDL principle
we calculate the length of the codes and the tables to find the minimum possible
size of the compressed representation.

To begin, one must compute the IG matrix for all pairs of the current feature
sets; this is a non-negative and symmetric matrix. Let |F;| denote number of
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features in set F;. Pairs of feature sets are placed in a decreasing order of 1G-
per-feature (normalized by total cardinality), and the outer iterations begin to
revise the pairs as the candidate CT’s to be merged (CT; and CT;). The initial
cost given by CT;,;+ is equivalent to the total cost with the initial set of CTs.
Then we construct CT;|; using the existing patterns p; 1, ...pin, and pj 1, ...pjn,
from CT; and CT}; into the new CT. They are first ordered by length and next
by usage. Removing code table sets CT; and CT; along with the inclusion of
the concatenated set C'T i from P builds our candidate tables cT ; the same
process is used for candidate partitioning of F'.

Afterwards, all the unique rows of the database induced on Fj; are collected.
These are then organized in decreasing order of their occurrence in the database
and directly inserted into the new CT'. Let p;; 1, wes Diljingy denote these pat-
terns of the combined feature set Fj; in their sorted order of frequency. In our
inner iterations, we insert these one-by-one, update the usages of the existing
overlapping patterns, remove those patterns whose usage drops to zero, recom-
pute the code word lengths with updated usages and compute the total cost
after each insertion. If total cost is reduced, we store the candidate partitioning
P and associated set of coded tables dT; otherwise, we continue insertions with
the next candidate patterns for possible future cost reduction.

In the outer iterations, if total cost is reduced, the IG between the new feature
set Fj; and the rest are computed. Otherwise, the merge is rejected and the

candidates P and C'T are discarded. Next, the algorithm continues to search
for future merges, until no more pairs of feature sets can be merged to reduce
the cost. The resulting set of feature sets and their corresponding set of code
tables represents the solution [1].

5.3 Results

The datasets which were compressed using PROXIMUS and CompreX were
donated by a member of the UTRC consortium. Each dataset is a trajectory
with additional attributes produced by on-board truck operations equipment.
Each data set had a total of 22 columns, each with its own unique set of rows.
Data set 1 contained 926 rows, set 2 contained 645 rows and the third and final
set contained 1004 rows.

Table 2 Results of compressing the same files using Proximus and CompreX

Datasets | Original Size(.txt file) | CompreX Output Proximus Output
Dataset1 83kb 139kb 5kb

(.csv file size-109kb) | (input size-194kb) | (I.Size 35kb, After binary conversion)
Dataset2 60kb 78kb 3.6kb

(.csv file size-T7kb) (input size-95kb) (I.Size-31kb, After binary conversion)
Dataset3 80kb 117kb 3.4kb

(.csv file size-111kb) | (input size-163kb) | (I. Size-31kb, After binary conversion)

Figure 4 above represents the rankings of Proximus and CompreX based on
three criteria, namely data recovery, compression ratio and compression time.
The data is first run through the Hill-Climbing method for grouping before
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1. CompreX (Lossless)

Data Recovery <
2. Proximus (Lossy)
1. Proximus
Compression Ratio <:
2. CompreX
1. Proximus
Compression Time <
2. CompreX

Figure 4: Ranking of compression methods Proximus and CompreX

applying the compression methods. The results show that both methods have
their own strengths and weaknesses. PROXIMUS, being a more Lossy com-
pression technique, is time efficient. On the other hand, CompreX, a lossless
compression technique, takes more time to compress the data. Our results show
that neither of these methods is superior to the other. The decision regarding
which to choose depends on which compression criteria are more important to
a user.

6 Summary, Conclusions and Future Research

We implemented some attribute partition algorithms for multiple attribute
trajectory compression. We view the trajectory data as a big table. This en-
ables us to apply previous work on big table compression on multi-attribute
trajectory data sets. Different views of data can lead to different compression
schemes. We used a point selection algorithm to compress both spatial and
non-spatial parts of data sets. Non-spatial data sets can also be compressed
using methods other than point selection. In general, highly correlated data
attributes can be compressed together to reduce the size of the compressed
representation. However, our results indicate that the attributes in our data
sets are not correlated. Also, for most combinations of error bounds, the best
partition for compression is the finest one (i.e., each attribute in a group by
itself). In some cases, even though some attributes appear to be related, having
them in the same group did not improve the compression ratio. We believe that
further work should consider methods other than point selection to compress
non-spatial attributes; instead, it may be best to view these non-spatial at-
tributes as a time series and employ methods for compressing time-series data.
A probabilistic view of error bounds may also achieve better compression ratios
for non-spatial attributes. Such methods can also exploit ideas and results from
the machine learning literature.

We chose Douglas-Peucker compression technique as the baseline method for
trajectory compression. The reason is that it provides a high compression ra-
tio. In addition, Douglas-Peucker method can be conveniently adapted for non-
trajectory compression since it is a line simplification algorithm. Further, the
Douglas-Peucker method does not rely on many assumptions about the data be-
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ing compressed besides the definition of a distance. In contrast, newly developed
trajectory compression methods such as Bounded Convex Hull rely on many
geometric properties of a trajectory and cannot be used for non-spatial data
compression. Even though the running time of Douglas-Peucker compression is
quadratic, it achieves better compression ratios compared to other trajectory
compression methods. For very large trajectory datasets, it is more appropri-
ate to use an O(nlog(n)) compression algorithm such as Squish-E. When the
allowed error bound is large, linear running time trajectory compression algo-
rithms can be used.

For compressing non-spatial attributes in multi-attribute trajectory data, we
chose attribute grouping. Attribute grouping method do not require any prepro-
cessing steps. Methods based on attribute reduction would incur severe penalties
with respect to accuracy. A naive method to achieve an optimal attribute par-
tition is exhaustive search. This method, which tries all possible groupings, is
computationally feasible only when the number of attributes is reasonably small.
So we adopted the hill climbing heuristic method with compression size as the
objective function to reduce the time complexity. Since naive hill climbing has
a time complexity of O(n?), we implemented a hill climbing method with an
internal data structure to reduce time complexity to O(n?). Clustering-based
attribute grouping method also has a time complexity of O(n3). Graph-based
attribute grouping has a time complexity of O(nlog(n)); however, in general,
its compression ratio is worse than that of the hill-climbing method.

Further work should explore some new directions with respect to non-spatial
attribute compression and multi-attribute compression. One direction is to con-
sider appropriate modifications to attribute reduction methods for non-spatial
attributes. When some attributes are highly correlated or can be predicted with
high accuracy from the values of other attributes, attribute reduction methods
may be appropriate. If error bounds can be relaxed, interdependence among at-
tributes can be utilized in attribute selection. This approach has the potential
to completely eliminate redundant attributes.

In our work, we found that point selection methods perform poorly on at-
tributes which are essentially binary-valued. It may be appropriate to use
methods other than point selection to compress such attributes. Also, it is
of interest to explore representations of non-spatial attributes as time series and
develop appropriate compression techniques. One disadvantage of such repre-
sentations is that they may introduce other errors related to time. However,
these representations provide several benefits with respect to space when there
are relationships among the attributes along the time domain.

As mentioned earlier, a clear understanding of the techniques for compressing
multi-attribute trajectory data is an essential first step for developing techniques
for extracting information from compressed traces. In general, information ex-
traction techniques will rely on both the method used to compress the data as
well as the set of queries that will arise in applications. Also, one may choose an
appropriate compression method given the set of queries that must be processed
on the compressed traces. In such a case, the expected levels of accuracy in the
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responses to the queries may determine the error bounds on the attributes to
used by a compression method. Thus, techniques for information extraction
must address the complex interaction between compression techniques and the
classes of queries that are of interest to transportation planners.
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