
1

Proving Autonomous Vehicle
and Advanced Driver

Assistance Systems Safety
	

 FINAL RESEARCH REPORT

Nathan Fulton, Ran Ji, and Andr é Platzer

Contract No. DTRT12GUTG11

DISCLAIMER
The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy
of the information presented herein. This document is disseminated under the sponsorship of the U.S.
Department of Transportation’s University Transportation Centers Program, in the interest of information
exchange. The U.S. Government assumes no liability for the contents or use thereof.

1

Proving Autonomous Vehicle and Advanced
Driver Assistance Systems Safety

Nathan Fulton, Ran Ji, and André Platzer

February 15 2016

Abstract

The main objective of this project was to provide technology for an-
swering crucial safety and correctness questions about verification of au-
tonomous vehicle and advanced driver assistance systems based on logic.
In synergistic activities, we have significantly improved tooling for cyber-
physical systems (CPS) verification, including the development of the
completely new theorem prover KeYmaera X [7] based on a uniform sub-
stitution calculus for differential dynamic logic. This project saw a sub-
stantial advance in the foundation of proof certificates by developing the
logic of proof for differential dynamic logic (LPdL) [8] as a foundation for
CPS safety certificates. This report briefly explains the key benefits of
KeYmaera X over existing systems that are relevant for the goals of this
project and discusses the advances that LPdL bring in detail.

LPdL answers the key question of safety evidence for autonomous ve-
hicles and driver assistance safety technology or other cyber-physical sys-
tems:

What counts as undeniable mathematical evidence in support of
a safety claim for an autonomous vehicle or advanced safety-
critical driver assistance technology?

Without any doubt mathematical evidence for safety claims of these sys-
tems will differ from classical mathematical evidence, because the safety
argument somehow has to take both the relevant features of the computer
control into account together with an analysis of its impact on the mo-
tion of the vehicle. Such safety evidence is inherently about dynamics not
about static situations.

LPdL gives first-class access to safety properties and their safety cer-
tificates as proof terms. It extends both the syntax and semantics of dif-
ferential dynamic logic (dL), the logic for hybrid system models of cyber-
physical systems, with proof terms as syntactic representations of logical
deductions that serve as theoretically well-founded evidence or certificates
for the truth of the safety claim they prove. To support axiomatic theorem
proving, the logic allows equivalence rewriting deep within formulas and
supports both uniform renaming and uniform substitutions. In addition

2

to serving as unambiguous proof certificates, LPdL also advances KeY-
maera X in there major points: (1) provide a clean separation between
proof checking and proof search; (2) implement a mechanism for compos-
ing, reusing, or parameterizing proofs (merely mechanisms for composing
provability); (3) take advantage of procedures that require interrogating
or modifying the structure of a proof.

Models of cyber-physical systems are often stated as non-deterministic
programs because a non-deterministic model can capture a variety of en-
vironmental conditions and a variety of control decisions. For example,
a car’s sensors might sample at non-deterministic points in time, and its
control program might choose between acceleration and deceleration in
ways that are not known a priori (or that are overly laborious to spec-
ify during verification). Synthesizing a most-conservative deterministic
controller from these non-deterministic models plugs a major remaining
gap between CPS models and control software implementations. LPdL di-
rectly prepares for a supports of this goal in a way that truth-preserving
operations cannot.

1

Executive Summary
Autonomous vehicle and advanced driver assistance systems have been exten-
sively investigated nowadays, not only in academia but also in industry. We will
see self-driving cars or cars equipped with advanced driver assistance systems
on road in the near future, and their safety is of utmost importance. Validation
for such complex systems has been mostly limited to simulation, which can only
cover a minuscule fraction of the relevant state space. The main objective of this
project was to answer crucial safety and correctness questions about verification
of autonomous vehicle and advanced driver assistance systems based on logic.

We have significantly improved tooling for cyber-physical systems (CPS)
verification which is a key success factor for this project. Based on a uniform
substitution calculus for differential dynamic logic, we are developing the com-
pletely new theorem prover KeYmaera X [7] to allow for easier extension of CPS
modeling languages and automated proving tools. As a means for persisting and
communicating safety certificates for cyber-physical systems with the respective
stakeholders and authorities, we have developed a logic of proof for differential
dynamic logic (LPdL) [8] as a foundation for CPS safety certificates. The key
advantages of KeYmaera X [7,25] that are relevant to the goals of this project
are the following.

KeYmaera X has a minimal prover kernel (<2000 LOC that, unlike all extant
CPS analysis software, isolates all soundness-critical axiomatic reasoning. This
allows for the addition of experimental features (such as architecture or domain-
specific modeling formalisms and analyses) without introducing opportunities
for subtle errors to threaten the veracity of system verification results obtained
using the tool. The resulting increased trust in experimental features opens up
new possibilities for applying formal verification to more complicated CPS as
they do occur in the ever-more-complex traffic domain.

KeYmaera X features improved tooling for automating proof search. De-
creasing the number of manual steps necessary for performing a verification
task or eliminating these steps altogether is perhaps the most important way
that formal methods tools for CPS can be improved to scale to large and com-
plex applications. Unlike extant CPS analysis systems, KeYmaera X provides
a robust programming language and collection of libraries for specifying cus-
tom proof search procedures that can exploit domain or architecture-specific
properties of CPS.

3

certificates as proof terms. It extends both the syntax and semantics of differ-
ential dynamic logic (dL) with proof terms syntactic representations of logical
deductions that serve as theoretically well-founded evidence or certificates for
the truth of the formulas that they prove. To support axiomatic theorem prov-
ing, the logic allows equivalence rewriting deep within formulas and supports
both uniform renaming and uniform substitutions. In addition to serving as un-
ambiguous proof certificates, LPdL also advances KeYmaera X in there points:
(1) provide a clean separation between proof checking and proof search; (2) im-
plement a mechanism for composing, reusing, or parameterizing proofs (merely
mechanisms for composing provability); (3) take advantage of procedures that
require interrogating or modifying the structure of a proof.

Models of CPS are often stated as non-deterministic programs because a non-
deterministic model can capture a variety of environmental conditions and a
variety of control decisions. For example, a car’s sensors might sample at non-
deterministic points in time, and its control program might choose between
acceleration and deceleration in ways that are not known a priori (or that are
overly laborious to specify during verification). Synthesizing a most-conservative
deterministic controller from these non-deterministic models plugs a major re-
maining gap between CPS models and control software implementations. LPdL
directly prepares for a supports of this goal in a way that truth-preserving op-
erations cannot.

Main results. In this report, we will focus on the logic of proof for differential
dynamic logic (LPdL). Our primary results are:

• We present a semantic model that extends the standard reachability re-
lation semantics of differential dynamic logic with a notion of evidence
(following Fitting [6]).

• We extend a differential dynamic logic with an explicit notion of evidence
– a Logic of Proofs for Differential Dynamic Logic (LPdL).

• We establish the correctness of this logic by proving that all pieces of
evidence in LPdL correspond to a deduction in dL.

• We explain how the results established in this report can be used to con-
struct a proof term checker for LPdL without extending the soundness-
critical core of a theorem prover based on truth-preserving transforma-
tions to theorems, and discuss the details of an ongoing implementation
of an LPdL proof checker as an extension to KeYmaera X.

These results constitute a logical foundation for hybrid systems with an
explicit notion of evidence, which significantly advances the tooling support for
verifying safety of autonomous vehicle and advanced driver assistance systems.

Report overview. This report details the development of the logic of proof
for differential dynamic logic (LPdL). Section1gives an introduction to the

4

problem. Section2provides the background of differential dynamic logic (dL),
hybrid program and uniform substitutions. Section3presents the logic of proof
for differential dynamic logic (LPdL). Section4shows the relation of LPdL
proof terms and dL proofs. Section5reports on the implementation of LPdL in
KeYmaera X. Related works are discussed in Section6and Section7provides
a summary and future work discussion.

5

Contents
1 Introduction7

2 Background9

2.1 Modeling Cyber-Physical Systems Using Hybrid Programs9
2.2 The Uniform Substitution Calculus of Differential Dynamic Logic..10

2.2.1 Semantics of dL .. 12
2.2.2 Axioms of dL ... 12

2.3 Uniform Substitutions13
2.4 Comparison with Other Approaches .. …14

3 The Logic of Proofs for Differential Dynamic Logic16
3.1 Syntax ... 17
3.2 Semantics ... 20
3.3 Axioms and Proof Rules of the Logic of Proofs for Differential

Dynamic Logic .. 22
4 Converting LPdL Proof Terms into dL Proofs…………………..26

5 Checking Proof Terms Using Truth-Preserving Transformations29

6 Related Work……30

7 Conclusions……..31

6

List of Figures
1 Axioms and proof rules of differential dynamic logic; C is a quan-

tifier symbol, p, q are predicate symbols, and c, f, g are function
symbols. ... 12

2 Differential equation axioms and differential axioms 13
3 A proof of [x := 0 � x := 1]x ≥ 0 in the uniform substitution

calculus of dL. The proof of ∆ is slightly abbreviated for read-
ability; the proof for the x := 1 case is very similar to the proof
of the x := 0 case. .. 16

List of Tables
1 Hybrid Programs ... 10

7

1 Introduction
Cyber-physical systems (CPS) are systems that combine computation with con-
trol of physical processes. Examples of CPS include self-driving cars, train
control systems, and collision avoidance protocols for aircraft. Cyber-physical
systems are an important domain in software verification because CPS are of-
ten safety-critical – a bug in the control software of a self-driving car or a train
control system could lead to loss of human life. Unfortunately, many software
verification techniques developed in the context of discrete dynamical systems
are incapable of handling the infinite state space introduced by the presence of
differential equations.

Hybrid systems are a mathematical model of cyber-physical systems that
combine a model of discrete computation (imperative computation) with con-
tinuous dynamics (ordinary differential equations). Differential dynamic logic
[20,23] is a logic for specifying and verifying properties of hybrid systems. Re-
cent work on theorem proving for cyber-physical systems demonstrates that dy-
namic logics are a powerful formalism for mechanizing proofs about many other
types of dynamical systems. KeYmaera [27] is a theorem prover for differen-
tial dynamic logic that has been used to verify various properties of distributed
adaptive cruise control for self-driving cars [13], the European Train Control
System [28], and multiple collision avoidance protocols for aircraft [26,14,11].
KeYmaera X is a successor to KeYmaera that supports the same verification
tasks, but features tactical theorem proving on top of a small soundness-critical
core [7].

Unlike theorem provers based upon type-theoretic foundations, theorem
provers in the dynamic logic tradition are not based upon logics with a for-
malized notion of explicit proof evidence. Like several other theorem provers,
KeYmaera X ensures soundness by only allowing truth-preserving transforma-
tions on formulas, rather than by production of formally defined and indepen-
dently checkable proof terms. The long list of successful theorem provers that
are based on logics without proof terms demonstrates truth-preserving opera-
tions on formulas are enough to ensure the soundness of a theorem prover.

Although truth-preserving operations are sufficient for ensuring soundness,
proof terms address a number of limitations that have arisen during the develop-
ment and use of the KeYmaera and KeYmaera X theorem provers. KeYmaera
and KeYmaera X do not:

• provide a clean separation between proof checking and proof search

• implement a mechanism for composing, reusing, or parameterizing proofs
(merely mechanisms for composing provability); or

• take advantage of procedures that require interrogating or modifying the
structure of a proof.

One advantage of the approach KeYmaera X takes is that there is never a
need to re-check proofs obtained via proof search because search always proceeds

8

via operations defined in the soundness-critical core of KeYmaera X. However,
ensuring soundness is not the only motivation for separating searching from
checking. KeYmaera X allows for parallel speculative proof search, so persist-
ing the particular execution trace of a proof search procedure requires storing
and merging proof state using extra-logical operations. Introducing an explicit
notion of evidence into differential dynamic logic is a more principled solution
than post-hoc analysis of the execution of a search procedure.

The second challenge is surmountable within a single theorem proving ses-
sion, but is problematic in cases where users collaborate on proofs. Proof terms
provide a natural modularity mechanism and allow users to import proven lem-
mas from other users without re-executing an expensive proof search procedure
or blindly trusting the source of the proof.

The significance of the final challenge extends beyond the specifics of imple-
mentations. Extant dynamic logics do not provide a compelling foundation for
defining proof-preserving transformations; i.e., transformations to system mod-
els that are accompanied by a corresponding transformation on a proof. They
are limited to truth-preserving transformations without preserving correspond-
ing proofs syntactically.

This report presents a Logic of Proofs for Differential Dynamic Logic (LPdL).
LPdL provides an explicit notion of evidence in the form of proof terms – syntac-
tic objects that correspond to deductions in (the uniform substitution calculus
of) differential dynamic logic (dL). Concretely, we assign a syntactic term e
to each derivation of φ in dL such that e : φ – read as “e is a proof of φ” –
is a theorem of LPdL. We provide a semantics and an axiomatization for this
language of proof terms and establish some basic results about the logic and its
relation to dL. Although the primary topic of this report is LPdL itself, potential
applications are worth noting because they motivate the design of the logic.

One application – discussed in Section5– is an ongoing implementation of
a proof term checker – a program that takes a formula of the form e : φ and
checks that e is a proof of φ. Proof checkers are useful because they separate
proof search from proof checking and provide obvious paths toward composition
of proofs.
LPdL is designed to support other applications as well. A major goal for

KeYmaera X is automatic transformation of a liveness proof for a non-deterministic
model into a safety proof for a fully deterministic model. Understanding the
motivation for this operation requires understanding the typical structure of a
model specified in dL. Models of cyber-physical systems are often stated as
non-deterministic programs because a non-deterministic model can capture a
variety of environmental conditions and a variety of control decisions. For ex-
ample, a car’s sensors might sample at non-deterministic points in time, and
its control program might choose between acceleration and deceleration in ways
that are not known a priori (or that are overly laborious to specify during ver-
ification). Synthesizing a most-conservative deterministic controller from these
non-deterministic models plugs a major remaining gap between CPS models and
control software implementations. Essentially, the key insight is that liveness
proofs in dL contain enough information to construct the particular execution

9

i

that witnesses liveness. The logic described in this report directly supports this
goal in a way that truth-preserving operations do not.

Summarily, our primary contributions are:
• We present a semantic model that extends the standard reachability re-

lation semantics of differential dynamic logic with a notion of evidence
(following Fitting [6]).

• We extend a differential dynamic logic with an explicit notion of evidence
– a Logic of Proofs for Differential Dynamic Logic (LPdL).

• We establish the correctness of this logic by proving that all pieces of
evidence in LPdL correspond to a deduction in dL.

• We explain how the results established in this report can be used to con-
struct a proof term checker for LPdL without extending the soundness-
critical core of a theorem prover based on truth-preserving transforma-
tions to theorems, and discuss the details of an ongoing implementation
of an LPdL proof checker as an extension to KeYmaera X.

These contributions constitute a logical foundation for hybrid systems with
an explicit notion of evidence.

2 Background
This section presents necessary background for the remainder of the report,
including an introduction to cyber-physical systems and a discussion of the
uniform substitution calculus of dL.

2.1 Modeling Cyber-Physical Systems Using Hybrid Pro-

grams
Hybrid dynamical systems [2,23] are mathematical models for analyzing the
interaction between discrete and continuous dynamics. This section presents a
semantic model of hybrid dynamical systems called hybrid programs, introduces
the language of differential dynamic logic (dL), and demonstrates how dL can
be used to specify safety and liveness properties of hybrid programs.

Hybrid programs [21,22,23] are a programming language model of hybrid
dynamics. Hybrid programs extend non-deterministic imperative programs (i.e.,
regular programs) with differential equations. A syntax and informal semantics
of hybrid programs is given in Table1.

Differential dynamic logic (dL) is a modal logic for specifying and verifying
reachability properties about hybrid programs. The formulas of dL contain the
formulas of the First-order Logic of Real-Closed Fields (formulas of FOLR), the

familiar logical connectives of propositional logic, and two modalities – [α]φ and
1A continuous evolution along the differential equation system xr	
 	
 	
 = θi for an
arbitrary

duration within the region described by formula F .

10

Table 1: Hybrid Programs

(α)φ. These two modalities express reachability properties about the program
α. The box modality ([α]φ) states that φ is true of all states that are reachable after executing the hybrid program α. The diamond modality ((α)φ) is dual to
the box, and states that φ is true of some state that is reachable after executing
the hybrid program α.

A formal syntax and semantics for dL is given later in Def.1and Def.3.
For now, we provide examples of how dL can be used to model cyber-physical
systems and specify properties of these models.
Example 1. The following dL formula describes a safety property for a car
model.

v ≥ 0 � A > 0 → [
.

(a := A � a := 0) ; {pr = v, vr = a}
.�] v ≥ 0 s

initial
¸
co
¸
ndition

x

s
c
¸
t
¸
rl

x s
pl
¸
a
¸
nt

x
post

s
co
¸
n
¸
di
x
tion

The hybrid program in this formula describes a car that chooses nondetermin-
istically to accelerate with a maximum acceleration A or not accelerate, and then
follows a differential equation. This process may repeat arbitrarily many times,
and because there is no evolution domain constraint on plant, each continuous evolution has an non-negative duration r � R≥0 The formula states that if the
car begins with a non-negative velocity, then it will also have a non-negative
velocity after choosing a new acceleration and moving for a nondeterministic
period of time.

A tutorial with more examples of cyber-physical system models implemented

in dL can be found in [30].

2.2 The Uniform Substitution Calculus of Differential Dy-
namic Logic

There are several formulations of differential dynamic logic. The earliest is
a sequent calculus [20]. KeYmaera [27] is an implementation of the sequent
calculus. In this report, we augment the axiomatic formulation of dL [25] that
is implemented in the KeYmaera X theorem prover.

Typical axiom systems contain a countably infinite number of axioms gen- erated from a finite set of axiom schemata. For example, φ � ψ → φ is an axiom

Program Statement
α; β
α � β
α�

x := θ x := �

{xr = θ1, ..., xr 1 n = θn&F}
?F

Meaning
Sequentially composes α and β.
Executes either α or β.
Repeats α zero or more times.
Evaluates θ and assign result to x.
Assigns an arbitrary real value to x.
Continuous evolution1.
Aborts if F is not true.

11

schema, and x = 1 � x2 > 0 → x = 1 is a concrete instance of the schema. The
axiomatization of dL that we augment does not have axiom schemata; rather, it
has a finite number of axioms, a finite number of proof rules (represented as sets
of formulas), and a proof rule for performing soundness-preserving substitutions
on these axioms.

The difference between axiom schemata and uniform substitutions is sub-
tle, but is significant in the context of mechanized proofs. Moving from axiom
schemata to concrete axioms isolates soundness-critical reasoning about binding
structure into a very small soundness-critical core [7]. The uniform substitu-
tion calculus of dL provides locally sound axioms for differential equations by
exploiting differential forms [25].

This section introduces the syntax, semantics, and axiomatization of dL
and discusses its uniform substitution calculus. This logic is augmented in
subsequent sections with an explicit notion of evidence for axiomatic deductions.
Readers interested in further details about the uniform substitution calculus of
dL are encouraged to read [25].

Deftnition 1 (Terms). Terms are defined by this grammar (with θ, η, θi as
terms, x as variables, xr as differential symbols, and f as function symbols):
θ, η::= x | xr Variables and Differential Symbols

| f (θ1, . . . , θk) Function Application
| θ + η | θ · η Addition and Multiplication
| (θ)r Differentials

The variables x and xr are taken from finite sets of variables V and V r and
real numbers are definable as function symbols without arguments.

Deftnition 2 (Hybrid Programs). Hybrid programs are defined with the follow-
ing grammar (with α, β ranging over hybrid programs, a over program constants,
x over variables, θ over terms possibly containing x, and ψ over formulas of
first-order real arithmetic):

α, β ::= a | x := θ | xr := θ | ?ψ | xr = θ&ψ | α � β | α; β | α�

Hybrid programs of differential-form dL extend the hybrid programs dis-
cussed in Table1with differential assignments (xr := θ) and program constants
a. The former are related to the differential form axiomatization of differential
equations, and the latter are crucial to proofs involving uniform substitution.
Deftnition 3 (Formulas). The formulas of dL are defined as follows (with θ
as terms, p as predicates, C as quantifier symbols, and φ, ψ ranging over dL
formulas):
φ, ψ::= θ ≥ η Comparisons

| p(θ1, . . . , θk) Predicates
| C(φ) Quantifier Symbols
| ¬φ | φ � ψ | �x φ | �x ψ First-order Logic
| [α]φ | (α)φ Modalities

12

→

¢

I

x

¢

¢

I r

(·) (a)p(x̄) ↔ ¬[a]¬p(x̄)

[:=] [x := f]p(x) ↔ p(f)
[?] [?q]p ↔ (q → p)
[�] [a � b]p(x̄) ↔ [a]p(x̄) � [b]p(x̄)
[;] [a; b]p(x̄) ↔ [a][b]p(x̄)
[�] [a�]p(x̄) ↔ p(x̄) � [a][a�]p(x̄)
K [a](p(x̄) → q(x̄)) → ([a]p(x̄) → [a]q(x̄))

I [a�](p(x̄) → [a]p(x̄)) → (p(x̄) → [a�]p(x̄))
V p → [a]p

p(x̄)
G

[a]p(x̄)
p(x)

�
�x p(x)
p q p

MP
q

f (x̄) = g(x̄)
CT

c(f (x̄)) = c(g(x̄))
f (x̄) = g(x̄) CQ

 p(f (x̄)) ↔ p(g(x̄))

CE
 p(x̄) ↔ q(x̄)
C(p(x̄)) ↔ C(q(x̄))
ϕ

US
σ(ϕ)

Figure 1: Axioms and proof rules of differential dynamic logic; C is a quantifier
symbol, p, q are predicate symbols, and c, f, g are function symbols.

2.2.1 Semantics of dL

States are mappings from variables and differential symbols to R. The set S is
the set of all states.

The semantics of dL terms is a mapping ¢· I from terms to R, where the
interpretation I assigns to each n-ary function symbol f a smooth function
I(f) : Rn → R, to each n-ary predicate symbol p a relation I(p) � Rn, and to
each quantifier symbol C a functional I(C) mapping a subsets M � S to subsets
I(C)(M) � S. Differential symbols and differentials are given local meaning by
differential forms [25].

α I � S × S is a reachability relation
on states defined for each interpretation I. The semantics of hybrid programs
inductively define the transition behavior of each hybrid program. For example,

¢ θ¢ v}

where vr is the state identical to v except that x maps to r � R.
The semantics of dL formulas is a mapping ¢·∙ I from formulas ϕ to the set of

for quantifier symbols C.

ψ I C(φ) I
¢

 I

= I(C)(φ I)
¢
¢

The full inductive definition of
¢·¢

given by Platzer in [25].

for terms, programs, and formulas is

2.2.2 Axioms of dL
The axioms and proof rules of dL from [25] are enumerated in Figures1and2.

In typical verification tasks, the axioms in Fig.1are used to symbolically
decompose regular programs and the axioms in Fig.2enable various reasoning

13

DW [xr = f (x) & q(x)]q(x)

DC
.
[xr = f (x) & q(x)]p(x) ↔ [xr = f (x) & q(x) � r(x)]p(x)

.
← [xr = f (x) & q(x)]r(x)

DE [xr = f (x) & q(x)]p(x, xr) ↔ [xr = f (x) & q(x)][xr := f (x)]p(x, xr)

DI [xr = f (x) & q(x)]p(x) ←
.
q(x) → p(x) � [xr = f (x) & q(x)](p(x))r .

DG [xr = f (x) & q(x)]p(x) ↔ �y [xr = f (x), yr = a(x)y + b(x) & q(x)]p(x)

DS [xr = f & q(x)]p(x) ↔ �t≥0
.
(�0≤s≤t q(x + fs)) → [x := x + ft]p(x)

.

[r :=] [xr := f]p(xr) ↔ p(f)
+r (f (x̄) + g(x̄))r = (f (x̄))r + (g(x̄))r

·r (f (x̄) · g(x̄))r = (f (x̄))r · g(x̄) + f (x̄) · (g(x̄))r

◦r [y := g(x)][yr := 1]
.
(f (g(x)))r = (f (y))r · (g(x))r .

Figure 2: Differential equation axioms and differential axioms

techniques for handling ordinary differential equations. For example, the axioms
in Fig.2have been used to implement an Ordinary Differential Equation solver
based on logical deductions and have also been used to implement reasoning
techniques based on differential invariants [7]. The CE proof rule allows for
equational rewriting of equivalent subformulas, whereas CQ and CT allow for
equational rewriting of equal terms.

2.3 Uniform Substitutions
Uniform substitutions are mappings from functions f (·) to terms, predicate
symbols p(·) to formulas, quantifier symbols C() to formulas, and program
constants a to programs where · is a reserved function symbol of arity zero
and a reserved quantifier symbol of arity zero. For example, a ›→ x := 0
substitutes any occurrence of the program variable a with program x := 0. And
p(·) ›→ x ≥ 0 substitutes a predicate p(θ) with a formula θ ≥ 0 for any argument
term θ. Logical deductions in dL may appeal to the truth-preserving nature of
substitutions via the US proof rule (Fig.1).

Example 2 (Admissible and Clashing Substitutions). Restricting the US proof
rule to admissible uniform substitutions is necessary for preserving the sound-
ness of the calculus. Consider the substitution and formula

σ = {a ›→ x := x − 1, p ›→ x ≥ 0}

φ ≡ p → [a]p.

If σ were admissible for φ (it is not!), then the US proof rule would allow a proof of x ≥ 0 → [x := x − 1]x ≥ 0:

 �
 p → [a]p
x ≥ 0 → [x := x − 1]x ≥ 0

14

but this formula is clearly not valid. Conversely, consider the very similar sub-
stitution σr and the formula ϕ:

σr = {a ›→ x := x − 1, p(·) ›→ x ≥ 0}

ϕ ≡ [a]p(x̄)
for x̄ = (x). Because σr is ϕ-admissible, the US proof rule allows the deduction
following

 x ≥ 0
[x := x − 1]x ≥ 0

via a uniform substitution on the G proof rule.

Example2demonstrates that the US rule is not sound for arbitrary substitu-
tions. A sound calculus must restrict uniform substitutions so that substitutions
which introduce unsound deductions are not permitted. For this purpose, dL
defines when a given substitution is admissible for a formula and restricts the
US proof rule so that the rule is only applicable when the substitution σ is φ-
admissible. The two cases in Example2demonstrate why admissibility of a
substitution depends upon the formula to which a substitution is applied – a
substitution may be sound for one formula and unsound for another.

The slight difference between the substitutions σ and σr in Example2demon-
strate the significance of the difference between p, p(x), and p(x̄). These three
predicate symbols have different static semantics. The first symbol (p) has a
nullary predicate symbol The second (p(x)) has a predicate symbol where the
variable x may occur freely, and the third (p(x̄)) has a predicate symbol where
any x � x̄ may occur freely. These free variables of p continue to be permitted
in its replacement. Additional free variables are allowed by the US rule when
admissible.

The definition of admissibility depends upon the static semantics of dL for-
mulas, so this difference in the static semantics of p, p(x), and p(x̄) is crucial
when determining whether a substitution is admissible.

The explication of admissibility for uniform substitutions in dL is critical for
soundness but non-trivial (see [25] for details). Therefore, the results presented
in this report abstract over the particularities by simply assuming the existence
of a mechanism for checking whether a given substitution is admissible for a
given formula and assuming that there is therefore a sound implementation of
the US proof rule. Readers interested in a constructive definition of admissibility

for uniform substitutions in dL may consult Platzer (in particular, Fig. 1) [25].
Uniform substitutions map function, predicate, and quantifier symbols to

terms and formulas, but do not map variables to variables. The KeYmaera X
theorem prover implements both admissible uniform substitutions and uniform
renaming.

2.4 Comparison with Other Approaches
There are many existing techniques for augmenting an existing logic with proof
terms. This section discusses why we chose to design and implement a novel

15

logic rather than some of the most prominent alternatives.
There are many reasons for implementing a new theorem prover – especially

in the cyber-physical systems domain. KeYmaera X is designed as a platform
for research on both automated and interactive theorem proving specifically for
hybrid dynamical systems. Designing and implementing new tactics languages,
proof construction GUIs, and other features is easier in a smaller system with
significantly fewer lines of code, and KeYmaera X was specifically designed
to support certain extensions (e.g., parallel proof search, control engineering-
centric user interfaces) that Coq (for example) was not designed to support.

Proceeding from the premise that hybrid systems theorem proving benefits
from a theorem proving system that is specifically tailored to differential dy-
namic logics, the primary benefit of the approach in this report is that it is
parsimonious with the meta-theory of these logics. Both the syntax and se-
mantics of LPdL are a straightforward extension of the semantics of differential
dynamic logics.

The rationale for developing a custom theorem prover for differential dy-
namic logics apply equally to all of the alternatives discussed in this section.
The following discussions of particular alternatives focus on more specific com-
parisons.

Encoding in a Proof Assistant. One alternative is encoding Fig.1and
Fig.2in a proof assistant such as Coq [16] or Isabelle [17]. The Uniform Substi-
tution algorithm implemented in KeYmaera X is constructive and is probably
implementable in a proof assistant for a higher order logic, so this approach is
certainly possible. If the proof assistant has proof terms, then those proof terms
would serve our goal of adding proof terms to dL. Furthermore, this approach
could be used to generate proof terms for proofs constructed in an indepen-
dently implemented theorem prover such as KeYmaera X (e.g., by isolating a
simulation of the operations in the KeYmaera X core using constructions in a
hypothetical dL library for Coq or Isabelle).

The benefits of encoding dL in a proof assistant do not come for free. To
achieve any benefit from this embedding, we would also need to formalize the
soundness proof for dL within the proof assistant. Soundness proofs for hybrid
systems are difficult, so a formalization of the soundness proof of dL would
be greatly beneficial. However, this is almost certainly not the path of least
resistance toward proof terms for dL because formalizing the soundness proof
for dL would require considerable effort.

Even given a formalization of the soundness proof for dL, the benefit of a
proof constructed in a proof assistant remains questionable because the KeY-
maera X core is small. For example, although the Coq core is more thoroughly
audited than the KeYmaera X core, it is also far larger (the Coq core is approx.
20000 lines of code and the KeYmaera X core is approx. 2000 lines).2

2This argument is less strong for HOL Light [10] and Lean [5], both of which have
imple- mentations whose size and complexity is comparable to KeYmaera X.

16

)

Logical Frameworks. Logical frameworks [9] provide a potential counter-
point to the above observation that formalizing the soundness proof for dL
would require considerable effort. Work toward a mechanization of Standard
ML in Twelf [18] demonstrates that logical frameworks are particularly well-
suited to reasoning about binding [12]; this strength is relevant in the context
of dL because binding structure is at the heart of admissibility constraints on
uniform substitutions. However, initial investigations suggest that the binding
structure of hybrid programs is rich enough that encoding admissible uniform
substitutions would require non-trivial effort. Furthermore, uniform substitu-
tion is only the first (and likely easiest) step of a mechanization of dL in Twelf,
Beluga [19], etc. because obtaining soundness proofs would also require proving
the local soundness of the axioms in Fig.2.

3 The Logic of Proofs for Differential Dynamic
Logic

This section presents the syntax and semantics for LPdL. Syntactically, the logic
is the differential dynamic logic presented in [25], augmented with formulas of
the form e : φ (where φ is a dL formula) whose intended meaning is that e
serves as evidence for φ. Semantically, LPdL extends the semantics of dL with
meanings for formulas of the form e : φ.

[�]

[a
 b]p(x̄) [a]p(x̄) [b]p(x̄)

 � ↔ � US
 [x := 0 � x := 1]x ≥ 0 ↔ [x := 0]x ≥ 0 � [x := 1]x ≥ 0 ∆ MP

[x := 0 � x := 1]x ≥ 0

where ∆ =

[:=]

 [x := t]p(t) ↔ p(x)
R

 0 ≥ 0 US Prop
 [x := 0]x ≥ 0 ↔ 0 ≥ 0 [x := 0]x ≥ 0 ↔ 0 ≥ 0 → [x := 0]x ≥ 0

MP
[:=]

MP, Prop, US [x := t]p(t) ↔ p(x R 1 ≥ 0

Prop [x := 0]x ≥ 0 [x := 1]x ≥ 0
 [x := 0]x ≥ 0 � [x := 1]x ≥ 0 Prop
([x := 0 � x := 1]x ≥ 0 ↔ [x := 0]x ≥ 0 � [x := 1]x ≥ 0) → [x := 0 � x := 1]x ≥ 0

Figure 3: A proof of [x := 0 � x := 1]x ≥ 0 in the uniform substitution calculus of
dL. The proof of ∆ is slightly abbreviated for readability; the proof for the
x := 1 case is very similar to the proof of the x := 0 case.

The choice of proof terms presented in this section is motivated by the typical

structure of proofs in dL. Proofs in dL combine equivalence/equational reasoning
with uniform substitutions and uniform renamings. For example, consider the
proof of [x := 0 � x := 1]x ≥ 0 in Fig.3. Each of the leafs of the proof is either an
axiom of dL or else a tautology of FOLR. These leafs are obtained from
the original problem by performing equivalence rewriting, modus ponens, and

17

identifying uniform substitutions that translate the resulting subgoals into dL
axioms. In this proof, uniform renaming is not necessary; however, renaming would be necessary for the formula [y := 0 � y := 1]y ≥ 0 because the axiom for
symbolically executing a discrete assignment mentions x instead of y.

3.1 Syntax
Deftnition 4 (Formulas). The formulas of LPdL are defined by extending the
inductive definition of dL formulas given in Def.3with formulas of the form
e : φ, where φ is a formula of dL and e ranges over proof terms (defined below).

Our definition of the grammar of LPdL formulas (e.g., the inclusion of dL
formulas) is parsimonious with the Justification Logic tradition rather than the
type theory tradition.

The formulas of LPdL as defined in Def.4augment the formulas of dL with an
additional connective e : φ. 3 This augmentation strictly extends the grammar
of dL. Formulas such as 1 = 1 � 2 = 2 which do not contain proof terms remain
formulas of LPdL. However, grammatical constructions of the form e : er : φ
(and e : er : err : φ, and so on) are not formulas of LPdL; i.e., proof terms provide
evidence only for dL derivations – not for LPdL derivations. Although the au-
thors are interested in extending LPdL to properly treat formulas of these forms,
our immediate motivations for explicitly representing proofs do not require such
a rich language.

Pure LPdL formulas are formulas that do not allow the use of dL connectives
(such as (e : φ) � (d : φ)). Pure LPdL formula either a formula of dL, or a
formula of the form e : φ where e is a proof term and φ is a formula of dL.
Example 3 (LPdL formulas and non-formulas). The following are non-pure
formulas of LPdL (where e, d are proof terms and φ, ψ are dL formulas):

• (e : φ) � (d : ψ)
• (e : φ) → (d : ψ)
• [x := 0](j1=1 : 1 = 1)

whereas e : (φ � ψ) is a pure formula of LPdL:
In most of this report we are concerned only with pure LPdL formulas,

because these are the formulas that correspond to judgements

e is a dL proof of φ

where φ is a formula of dL; i.e., pure LPdL formulas are just proof certificates
for dL derivations. In particular, our axioms and proof rules focus only on the
pure fragment of LPdL. It may be useful to axiomatize non-pure LPdL in the

3It is not misleading to think of : as a binary function mapping proofs terms and dL

formulas to LPdL formulas.

18

future; only application might be allowing the prover core to pass around mul-
tiple proven results directly instead of having to bundle up proven results using
conjunctions. However, we leave these questions as future work and instead
focus on parsimoniously extending dL with certificates for dL proofs.

A complete definition of the objects that may stand in for e occupies the
remainder of this subsection.

Deftnition 5 (Proof Terms). Proof terms are defined by this grammar (with
e, d as proof terms, c ranging over sets of proof constants, σ as a uniform sub-
stitution, B as a uniform renaming, and φ as dL formulas as defined in Def.3).
e, d ::= cφ Proof Constants

| e � d Conjunctions
| e • d Implicative Application
| e •← d | e •→ d Directional Equivalence Application
| σe | Be Uniform Substitutions and Renaming
| CTσe | CQσe | CEσe Equivalence/equational Reasoning

Proof terms are the syntactic objects of LPdL corresponding to deductions
in dL.

Atomic/Axiomatic Terms. Proof constants serve as evidence for dL axioms
and FOLR tautologies. In this report, we consider two sets of proof constants –
iA where A is any dL axiom and jT where T is any tautology of FOLR. We use
cφ whenever we mean to discuss both of these sets of proof constants.

The separation of atomic proof terms indexed by concrete axioms into dis-
joint sets is motivated by practical concerns that arise when implementing a
theorem prover for hybrid systems.

The first benefit of separating atomic proof terms into sets is a clear separa-
tion between axiomatic and real arithmetic reasoning. Although the first-order
theory of real arithmetic is decidable, the problem has extreme complexity. Fur-
thermore, KeYmaera X (as well as other theorem provers) that utilize decision
procedures for real arithmetic are typically sound only modulo the soundness of
an external implementation of the decision procedure being used. Distinguish-
ing computationally trivial appeals to axioms from possibly expensive appeals
to arithmetic decision procedures isolates a natural extension point for incor-
porating certificates of arithmetic facts e.g., by extracting witnesses from an
implementation of a Coq implementation of the Cylindrical Algebraic Decom-
position algorithm [15] or by using approaches such as [29] that are amenable
to certificate generation). Isolating real arithmetic facts from axiomatic facts
also makes it very easy to identify appeals to FOLR tautologies in proofs, which
could be useful for identifying when the reproducibility of a proof is going to
depend upon possibly expensive appeals to a decision procedure.

The second benefit of separating atomic proof terms into disjoint sets is that
it enables code-reuse when implementing conservative extensions of an already
supported logic but also disallows unsound combinations of logics. For example,
dL contains axioms that are unsound for its game-theoretic variant dGL [24] so

19

an implementation of a dGL theorem prover on top of KeYmaera X should
ensure that dGL proofs only make use of dL axioms that are sound in dGL.4

Conjunctions. The � operator allows for the creation of evidence for con-
junctive formulas. If e : φ and d : ψ then (e � d) : φ � ψ. This connective is
also not strictly necessary if dL contains appropriate propositional axioms but
is useful because many dL axioms contain conjunctions. Conjunctions repre- sent
the exact structure of a proof, so LPdL excludes the + operator found in
some Justification Logics ([3, Part II]) because we are interested only in single
conclusion proof systems. From an implementation perspective, the most inter-
esting multi-conclusion extensions are those that could serve as a category of
values for a proof search specification language capable of describing decidable
but non-deterministic forward proof search procedures.

Implications. The • operator allows the use of evidence of an implication,
and corresponds to the modus ponens proof rule. For example, if e : ψ → φ and
d : ψ then e • d : φ. This operator corresponds to the application operator of the
Logic of Proofs and corresponds to application in the Simply Typed Lambda
Calculus.

Equivalence Rewriting. The •← and •→ operators are similar to the im-
plication operator, but are used for equivalences instead of implications. The
subscript on the operator indicates the direction in which the equivalence should
be used. For example, if e : ψ ↔ φ and d : φ then e •← d : ψ. The •← and •→
operators are not strictly necessary because they can be replaced with axioms.
If

i : (φ ↔ ψ) → (φ → ψ),
e : φ ↔ ψ, and
d : φ

then (i• e) • d : ψ. These operators are included because equivalence rewriting is
a fundamental and pervasive operation in axiomatic proofs, so even the constant
multiplier on the length of proof terms is enough to motivate the addition of
operators.

Substitution and Renaming. Uniform substitution and renaming are es-
sential parts of dL proofs and are witnessed by proof terms of the form σe and
Be, where σ and B are uniform substitutions and renamings respectively. Uni-
form substitutions do not map variables to variables, but variable renamings are
necessary whenever a proof contains variables that do not occur in axioms. For example, a proof of [a := 12]a = 12 ↔ 12 = 12 is just a uniform renaming of x
to a in the [:=] axiom. KeYmaera X allows explicit uniform renamings during
proving, and these explicit renamings are captured by the B proof terms.

4This motivation is informed by plans for future work; in this report we present a logic of
proof terms for only dL.

20

{c(·)›→· ,f (·)›→b,g(·)›→a}

¢dL L

¢

• ¢

}

• e • d : φ¢ e I d I

• e •← d : φ¢ e I d I

• e •→ d : φ¢ e I d I

Equivalence and Equational Reasoning. The CTσ , CQσ , and CEσ opera-
tors correspond to uniform substitution instances of the contextual equation and
equivalence proof rules of dL (CT, CQ, and CE). For example, the proof term
CT 2 serves as evidence for the {c(·) ›→ ·2, f (·) ›→ a, g(·) ›→ b}
uniform substitution instance of the CT proof rule:

a = b

a2 = b2

3.2 Semantics
The semantics of LPdL formulas extends the semantics of the uniform substi-
tution calculus given in Section2.2. As in dL, interpretations I in LPdL give
meaning to program constants, function, predicate and quantifier symbols [25].

Deftnition 6 (LPdL Semantics). The semantics of an LPdL formula χ is defined I
χ¢ � S of states in which χ

is true and is defined inductively as follows (where iA, jT ranges over proof constants, e, d range over proof terms, and φ, ψ range over dL formulas):

• ¢ I φ I where ¢·¢d is the denotation of dL given in [25]. The

mean-
χ I ing of connectives �, ¬, �, [·], (·) is also as in dL, e.g., ¢

I
�χ¢ = ¢ I ∩¢ ¢

• iA : A¢ = S for dL axioms A

jT : T ¢ = S for FOLR tautologies T
e I

• ¢
d : ψ I

¢
e : φ¢ ∩
¢

I = {v � S : v � ¢ : φ¢ and

¢ I =
S
ψ ¢ : (ψ →

φ)¢

∩ ¢ : ψ¢

e : (ψ → φ)¢ and v � ¢ I for some ψ}

¢ I =
S
ψ ¢ : (φ ↔

ψ)¢

∩ ¢ : ψ¢

e : (φ ↔ ψ)¢ and v � ¢ I for some ψ}

¢ I =
S
ψ ¢ : (ψ ↔

φ)¢

∩ ¢ : ψ¢

e : ψ ↔ φ¢
I I

and v � ¢ I for some ψ}

• ¢ e :
φ¢

if σ is admissible for φ I

e : φ¢ and σ is admissible for φ}.
• ¢Be : Bφ¢ =
¢

I if B is a uniform renaming of φ I

e : φ¢ and B is a uniform renaming of φ}

21

• ¢ ¢ σ
 ¢ ¢

CTσe : σ(c(f (x̄)) = c(g(x̄))) I = ¢ e : σ(f (x̄) = g(x̄)) I

CQσe : σ(p(f (x̄)) ↔ p(g(x̄))) I =
•

I
¢ σe : σ(f (x̄) = g(x̄))

¢ ¢

22

¢

ψ

ψ

¢

� ¢

CEσe : σ(C(p(x̄)) ↔ C(q(x̄))) I =
•

I
¢

σe : σ(p(x̄) ↔ q(x̄))¢

Undefined cases are empty.5

Note that the meaning of e : φ is always either S or �. Only LPdL formulas
involving proper dL subformulas have state-dependent truth.

We do not prove soundness in this report; instead, we establish a correctness
result that is more useful in our context: whenever e : φ is a theorem of LPdL,
we can construct a dL proof of φ, which implies that φ is valid. (The advantages
of this result are discussed in the introduction and in later sections.) In this
section, we take a similar approach. Instead of establishing a direct connection
between the semantics and axioms and proof rules of LPdL, we instead establish
a projection from the semantics of LPdL to the semantics of dL.

Theorem 1 (Correctness of Proof Term Valuation). Consider any interpreta- I e I φ¢d .
tion I, v � S and dL formula φ. If v � ¢ : φ¢LPdL then v � ¢ L

Note that Theorem1pertains only to pure LPdL formulas; i.e., LPdL formu-
las of the form e : φ where e is a proof term and φ is a formula of dL.

Proof. The proof proceeds by induction on the structure of e, simultaneously
for all φ.

i : φ I . By Def.6, it must be that φ is ¢LPdL

ψ and ψ is an axiom of dL. Therefore, φ is an axiom of dL so by soundness
φ I

of dL, ¢ ¢dL = S. Finally, v � S.
j : φ I . By Def.6, it must be ¢LPdL

that φ is ψ and ψ is a tautology of FOLR. Therefore, φ is a tautology of
φ I

FOLR so by soundness of dL, ¢ ¢dL = S. Finally, v � S.
I

be that

e � d : φ¢LPdL. Inspecting the cases of Def.6, it must

φ = ϕ ∧ ψ

for some ϕ, ψ such that

e : ϕ I (1) ¢LPdL
d : ψ I (2) ¢LPdL

ϕ I and ¢dL
I ϕ I I ¢d and v ¢d from which it follows that

ψ¢dL. Therefore, v � ¢ L ψ L
I ψ I ϕ ∧ ψ I

ϕ¢dL ∩ ¢ ¢dL = ¢ ¢dL

by the definition of the semantics of dL [25].
(I

5E.g., ¢ e � d) : φ¢
cases.

= � whenever φ is not of the appropriate form. Likewise for the other

21

•

e : ψ → φ

I

e d : φ I . By Def.6we know that ¢LPdL
I

¢LPdL
d : ψ I ¢LPdL

for some ψ. Applying the inductive hypothesis to these facts establishes

I
¢dL

ψ I ¢dL

From these facts, a classical propositional encoding of ψ → φ, and ele-
mentary theorems of set theory, we obtain that

I C φ I
ψ¢dL) � ¢ ¢dL

ψ I
(where XC is the set complement S \ X of X) which, because v � ¢

φ I . ¢dL

Case e •← d and e •→ d. Similar to e • d.
I

¢dL,

σe : φ¢LPdL. Then by inspection of the cases of
e : φr I . Applying the inductive hypothesis ¢LPdL φr I

to this fact establishes v � ¢ ¢dL. So because σ is, by Def.6, an admissible I φ¢d .

The remaining cases are similar.

σ(φr)¢dL = ¢ L

3.3 Axioms and Proof Rules of the Logic of Proofs for
Differential Dynamic Logic

Axioms governing the construction of proof terms allow for the derivation of
proof terms that describe proofs by substitution, uniform renaming, uniform
substitution, and appeals to axioms and tautologies. This is sufficient to describe
proofs constructed by the uniform substitution calculus of dL, and by extension
most proofs constructed by the KeYmaera X theorem prover. The KeYmaera X
theorem prover also contains a propositional sequent calculus and skolemization,
so in practice some proofs constructed by KeYmaera X may not have proof
terms in LPdL. However, there exist proof term calculi for propositional sequent
calculi, so this report focuses on the portions of KeYmaera X proofs that do
not yet have an easily adaptable proof term calculus.

After stating the axioms and proof rules of LPdL in Def.7, we describe how
each is used to construct proof terms for typical constructions.

Unlike dL, LPdL does not use uniform substitutions. Therefore, the objects
described in the following definition are axiom schemata and proof rules – not
just formulas or pairs of formulas.

ψ → φ

23

Deftnition 7 (Axioms of LPdL). The following are axioms of LPdL, where ϕ, ψ
range over LPdL formulas, and c, f, g are function symbols and p, q are predicate
symbols, and C a quantifier symbol.

φ (dL Axiom)

iA : A (dL Constants)
jT : T (FOLR Constants)

e : φ d : ψ
(e � d) : (φ � ψ)

e : (φ → ψ) d : φ
e • d : ψ

e : (φ ↔ ψ) d : φ
e •→ d : ψ

e : (φ ↔ ψ) d : ψ
e •← d : φ

e : φ
σe : σ(φ)
e : φ

Be : B(φ)
σe : σ(f (x̄) = g(x̄))

CTσe : σ(c(f (x̄) = c(g(x̄)))
σe : σ(f (x̄) = g(x̄))

CQσe : σ(p(f (x̄) ↔ p(g(x̄)))

(And)

(Application)

(Right Equivalence)

(Left Equivalence)

(US Proof Term)

(Renaming)

(CTσ)

(CQσ)
 σe : σ(p(x̄) ↔ q(x̄))

CEσe : σ(C(p(x̄) ↔ C(q(x̄)))

(CEσ)

and where the rulesUS Proof Term,CT σ,CQ σ, andCE σ are applicable only whenever σ is admissible for the dL formulas to which it is applied, and only
whenever σ has no free variables. The set of free variables of a substitution
is defined in [25]. The formula φ in rule dL Axiomneeds to be a dL formula
provable in dL.

The axioms in Def.7correspond to the intuitive meanings for proof terms
given in Section3.1.

Proof Constant Axioms. The axiomatization of dL is included in LPdL in
the form of including all provable dL formulas (rule dL Axiom). Proof con-
stants iA and jT internalize evidence for dL axioms and FOLR tautologies. For

24

2

example,
i[a;b]p(x̄)↔[a][b]p(x̄) : [a; b]p(x̄) ↔ [a][b]p(x̄), and

jx≥0→x2≥0 : x ≥ 0 → x ≥ 0
are both axioms of LPdL. For brevity, we often use the names of axioms as
subscripts instead of the axioms themselves. For example,

i[�] : [a � b]p(x̄) ↔ [a]p(x̄) � [b](x̄).

Conjunction Proof Rule. TheAndproof rule enables construction of com-
pound proof terms that serve as evidence for conjunctions. Constructing a proof
term that allows for left and right projections of a conjunction is also possible
using dL axioms andApplicationaxiom, so these are not included as primitives.
Unlike dL, proof term axioms and proof rules are schematic, so

d : x = y e : y = z

(d � e) : x = y � y = z

is a derivation in LPdL.

Application Proof Rules. TheApplicationproof rule enables construction
of proof terms that correspond to the use of the Modus Ponens rule in dL; for
example,

d : p(x) → q(x) e : p(x)
e • d : q(x)

is a derivation in LPdL. TheLeft EquivalenceandRight Equivalencerules are
definable in terms of theApplicationrule at the expense of more verbose proof
terms.

Uniform Substitution Proof Rule. TheUS Proof Termaxiom allows the
construction of evidence that appeals to uniform substitutions. Similarly, uni-
form renaming is evidenced byRenaming. A schematic sequent calculus for dL
is definable using uniform substitutions [7] and proof terms can be assigned to
each of these proof rules. For example, the proof terms for the sequent calculus
proof rule

€ [α]ϕ € [β]ϕ
€ [α ∪ β]ϕ

are σi[∪] •→ e : [α]ϕ∧ [β]ϕ where e : [α∪ β]ϕ and σ = {a ›→ α, b ›→ β, p(·∙) ›→ ϕ}.

Equivalence/Equational Proof Rules. TheCT σ ,CQ σ , andCE σ proof
rules combine uniform substitutions with the proof rules CT, CQ, and CE from
dL.

Example4demonstrates how these axioms and proof rules are combined
with the axioms and uniform substitutions of dL to construct witnesses for dL
proofs by constructing a proof term corresponding to the previous example.

25

dL Constants i

 : [a

 b]p(x̄)

 [a]p(x̄)

 [b]p(x̄) ∆

US Proof Term
Left Equivalence

 [�] � ↔ �

σ1i[�]: [x := 0 � x := 1]x ≥ 0 ↔ [x := 0]x ≥ 0 � [x := 1]x ≥ 0
�

e� : [x := 0]x ≥ 0 � [x := 1]x ≥ 0

where ∆� is

σ1i[�] •← ((σ2i[:=] •← j0≥0) � (σ3i[:=] •← j1≥0)): [x := 0 � x := 1]x ≥ 0
v ,, c

e�

i[:=]: [x := t]p(x) ↔ p(t) dL Constants

US Proof Term
i[:=]: [x := t]p(x) ↔ p(t)

FOLR Constants
σ2i[:=]: [x := 0]x ≥ 0 ↔ x ≥ 0 j2 : 0 ≥ 0

σ2ii[:=] •← j2 : [x := 0]x ≥ 0
Left Equivalence

σ3i[:=]: [x := 1]x ≥ 0 ↔ x ≥ 0
σ3i[:=] •← j3 : [x := 1]x ≥ 0

j3 : 1 ≥ 0

And ((σ2i[:=] •← j0≥0) � (σ3i[:=] •← j1≥0)) : [x := 0]x ≥ 0 � [x := 1]x ≥ 0
 c

e�

Example 4 (A Simple Proof Term). A proof of
(σ1i[�] •← ((σ2i[:=] •← j0≥0) � (σ3i[:=] •← j1≥0))) : [x := 0 � x := 1]x ≥ 0

where

σ1 ≡ {a ›→ x := 1, b ›→ x := 1, p(·) ›→ x ≥ 0}
σ2 ≡ {t ›→ 0, p(·) ›→ · ≥ 0}
σ3 ≡ {t ›→ 1, p(·) ›→ · ≥ 0}
i[�] ≡ i[a�b]p(x̄)↔[a]p(x̄)�[b]p(x̄)

i[:=] ≡ i[x:=t]p(x)↔p(t)

is given above. Intuitively, this property states that if x nondeterministically takes on 0 or 1, then x ≥ 0. The proof proceeds by symbolic decomposition of
the hybrid program x := 0 � x := 1 using axioms of dL. Uniform substitution
instances of the relevant symbolic decomposition axioms are necessary in order
to complete the proof. Labels on the left side of the proof of ∆ are elided for
readability, but exactly match the labels on the right side.

26

4 Converting LPdL Proof Terms into dL Proofs
We say that €LPdL φ whenever there is a proof of φ in LPdL, and we say that
€dL φ whenever there is a proof of φ in dL.
Lemma 1 (Inversion). The following are facts about LPdL:

• If €LPdL iφ : ψ then φ is ψ and φ is an axiom of dL.
• If €LPdL jφ : ψ then φ is ψ and φ is a tautology of FOLR.
• If €LPdL e � d : φ then φ is (χ � ψ) where €LPdL e : χ and €LPdL d : ψ.
• If €LPdL e • d : φ then €LPdL e : ψ → φ and €LPdL d : ψ for some ψ.
• If €LPdL e •← d : φ then €LPdL e : φ ↔ ψ and €LPdL d : ψ for some ψ.
• If €LPdL e •→ d : φ then €LPdL e : ψ ↔ φ and €LPdL d : ψ for some ψ.

• If €LPdL CTσe : φ then φ is σ(c(f (x̄)) = c(g(x̄))), €LPdL σe : σ(f (x̄) =
g(x̄)), and σ is admissible on all formulas to which it is applied and
FV (σ) = �.6

• If €LPdL CQσe : φ then φ is σ(p(f (x̄)) ↔ p(g(x̄))), €LPdL σe : σ(f (x̄) =
g(x̄)), and σ is admissible on all formulas to which it is applied and
FV (σ) = �.

• If €LPdL CEσe : φ then φ is σ(C(p(x̄)) ↔ C(q(x̄))), €LPdL σe : σ(p(x̄) ↔
q(x̄)), and σ is admissible on all formulas to which it is applied and
FV (σ) = �.

• If €LPdL σe : φ then €LPdL e : φr and σ(φr) = φ for some φr such that σ is
admissible for φr.

• If €LPdL Be : φ then €LPdL e : φr and B(φr) = φ for some φr.

Proof. The proof involves a straightforward induction involving inspection of
the conclusions of LPdL axioms.
Theorem 2 (Proof terms justify theorems). Let e be a proof term and φ a dL
formula. If €LPdL e : φ then €dL φ.
Proof. The proof involves the construction of a dL proof corresponding to the
proof term e. We proceed by induction on the structure of e.

Case iA. Suppose that €LPdL iA : φ. By Lemma1, φ = A and is an axiom of
dL. Therefore, €dL φ.

Case jT . Suppose that €LPdL iA : φ. By Lemma1, φ = A and is a tautology of
FOLR. Therefore, €dL φ.

6The set, FV (σ), of free variables of a substitution σ is defined in [25]

27

Case e � d. Suppose that e � d : φ. By Lemma1,
φ = χ � ψ

and
€LPdL e : χ (3)

€LPdL d : ψ (4)

Applying the inductive hypothesis to (3) and (4) establishes that

€dL χ (5)

€dL ψ (6)

The schematic proof rule
(�R)

ϕ Ω

ϕ ∧ Ω
where ϕ and Ω are any dL formulas that are derivable in dL using the
propositional tautology ϕ → Ω → ϕ ∧ Ω and MP. From (5) and (6), andR
derives €dL χ ∧ ψ.

Case e • d. Suppose that €LPdL e • d : φ. By Lemma1,

€LPdLe : ψ → φ (7)

€LPdLd : ψ (8)

Applying the inductive hypothesis to (7) and (8) establishes that

€dLψ → φ (9)

€dLψ (10)

from which MP derives €dL φ.

Case e •→ d. Suppose €LPdL e •→ d : φ. By Lemma1,

€LPdLe : ψ ↔ φ (11)

€LPdLd : ψ (12)
are provable in LPdL. Applying the inductive hypothesis to (11) and (12)
establishes

Note that

€dLψ ↔ φ (13)

€dLψ (14)

€dL (ψ ↔ φ) → (ψ → φ)
has a proof in dL. With (13), MP , thus, derives €dL ψ → φ. Applying
MP once more to ψ → φ with (14) establishes that €dL φ.

28

Case e •← d. Suppose €LPdL e •← d : φ. By Lemma1,

€LPdLe : φ ↔ ψ (15)

€LPdLd : ψ (16)
are provable in LPdL. Applying the inductive hypothesis to (15) and (16)
establishes

Note that

€dLφ ↔ ψ (17)

€dLψ (18)

(φ ↔ ψ) → (ψ → φ)
has a proof in dL. From this fact and (17), it follows by the Modus Ponens
proof rule that €dL ψ → φ. Applying Modus Ponens once more to this fact
and (18) establishes that €dL φ.

Case CTσe. Suppose that €LPdL CTσe : φ. By Lemma1,

φ = σ(c(f (x̄)) = c(g(x̄)))

where
€LPdL e : σ(f (x̄) = g(x̄)) (19)

and σ is admissible for f (x̄) = g(x̄). Applying the inductive hypothesis to
(19) establishes

€dL σ(f (x̄) = g(x̄)) (20)

Also by Lemma1, σ is admissible on this formula and FV (σ) = �. There-
fore, [25, Theorem 25] establishes that the σ uniform substitution instance
of CT is sound in dL and so €dL σ(c(f (x̄)) = c(g(x̄))) by the σ uniform
substitution instance of CT.

Case CQσe. Suppose that €LPdL CQσe : φ. By Lemma1,

φ = σ(p(f (x̄)) ↔ p(g(x̄)))

where
€LPdL e : σ(f (x̄) = g(x̄)) (21)

and σ is admissible for f (x̄) = g(x̄). Applying the inductive hypothesis to
(21) establishes

€dL σ(f (x̄) = g(x̄)) (22)

Also by Lemma1, σ is admissible on this formula and FV (σ) = �. There-
fore, [25, Theorem 25] establishes that the σ uniform substitution instance
of CQ is sound in dL and so €dL σ(p(f (x̄)) ↔ p(g(x̄))) by the σ uniform
substitution instance of CQ.

29

¢

Case CEσe. Suppose that €LPdL CEσe : φ. By Lemma1,
φ = σ(C(p(x̄)) ↔ C(q(x̄)))

where
€LPdL e : σ(p(x̄) ↔ q(x̄)) (23)

and σ is admissible for p(x̄) ↔ q(x̄). Applying the inductive hypothesis
to (23) establishes

€dL σ(p(x̄) ↔ q(x̄)) (24)

Also by Lemma1, σ is admissible on this formula and FV (σ) = �. There-
fore, [25, Theorem 25] establishes that the σ uniform substitution instance
of CE is sound in dL and so €dL σ(C(p(x̄)) ↔ C(q(x̄))) by the σ uniform
substitution instance of CE.

Case σe. Suppose that €LPdL σe : φ. By Lemma1, φ = σ(φr) and €LPdL e : φr

for some φr . The induction hypothesis for the smaller proof term e gives
€dL φr . Therefore, €dL σ(φr) (i.e., φ) is provable by US.

Case Be. Similar to the case for σe.
The fact that LPdL is sound with respect to the semantics of dL under proof

term erasure is a corollary of this theorem.

where S is the set of all states.
φ I = S ¢dL

Proof. By Theorem2, €LPdL e : φ implies €dL φ so φ is valid. Note that dL is
I φ I ¢LPd

φ I = S. ¢d
φ¢dL = S. By Def.6, ¢ L = L

5 Checking Proof Terms Using Truth-Preserving
Transformations

KeYmaera X implements the uniform substitution calculus of differential dy-
namic logic. The soundness-critical core of KeYmaera X contains a set of truth-
preserving operations on dL formulas; these operations correspond to the axioms
and proof rules of dL. Provable objects are the closest that KeYmaera X comes
to proof certificates. A Provable is an object with a goal and a sequence of
remaining subgoals, each of which is a sequent. A KeYmaera X proof certificate
for a formula ϕ is a Provable object with no remaining subgoals and € ϕ as
its goal. Provable objects may only be created by the soundness-critical core
of KeYmaera X, so they are guaranteed to be constructed via a sequence of
truth-preserving operations such as proof rules, axioms, or substitutions. How-
ever, a proof certificate does not record the actual sequence of truth-preserving

30

operations through which it is produced. While memory-efficient, this state of
affairs is less than ideal for reasons that were enumerated in the introduction.

Fortunately, adding proof terms to KeYmaera X is relatively simple7 be-
cause LPdL is in every way – syntactically, semantically, and axiomatically –
parsimonious with dL. We are therefore able to augment KeYmaera X with a
proof term checker without making any changes to the soundness-critical core.

The proof of Theorem2was written so that it suggests a procedure for
proof term checking. The proof could have exploited completeness results at
several points. Instead, we opted for explicitly constructing a syntactic dL
proof. For this reason, an LPdL proof term checker can follow the structure of
the proof of Theorem2– for each component of a proof term, the proof term
checker constructs the sequence of truth-preserving operations described in the
proof of Theorem2. These truth-preserving operations are then executed by
the KeYmaera X core. If each operation succeeds (e.g., no clashes occur during
uniform substitutions), then the proof term checker returns true.

There are a few caveats. The inversion lemma relies on the existence of
certain formulas; these formulas must be inferred automatically, or else proof
terms must be augmented with additional annotations. Our current ongoing
implementation opts for the latter. Additionally, in the proof of Theorem2,
there are some points where the truth of a particular theorem is asserting (e.g.,
via soundness). In each of these cases, KeYmaera X has either a tactic or an
extra proof rule that provides exactly the required truth-preserving transforma-
tion. For example, the keymaerax.TacticLibrary.AndR tactic of KeYmaera X
performs the action of the AndR schema referenced in the e � d case. The σ
instances of CT, CQ, and CE (which are guaranteed to be sound by [25, The-
orem 25]) that we appeal to in the CTσe, CQσe, and CEσe cases also have
corresponding tactics in KeYmaera X.

6 Related Work
Logics containing explicit representations of proofs have a storied place in the
history of mathematical logic and computer science The BHK semantics for
intuitionistic logic is one early and prominent example. Type-theoretic theo-
rem provers such as Coq [16] use proof terms as explicit notions of evidence.
Conversely, differential dynamic logic has proved to be an excellent setting for
verifying complex hybrid dynamical systems [30].

The approach taken in this report is motivated primarily by pragmatic
concerns related to the construction of certified software controllers for cyber-
physical systems. We are particularly interested in developing a notion of evi-
dence that is easy to add to existing theorem provers for differential dynamic
logic (or other dynamic logics). For this reason, we take a logic with roots in
the modal logic tradition – the Logic of Proofs [4] – as our point of departure
with existing work.

7The proof term checker is implemented in KeYmaera X 4.0b2 in Scala in
edu.cmu.cs.ls.keymaerax.pt.ProofChecker

31

The syntactic restriction placed on formulas containing proof terms is per-
haps the most a significant difference between LPdL and modal logics with
notions of evidence. In LPdL, it is not possible to construct a term of the form
e : er : φ. For this reason, LPdL is – in a qualitative sense – considerably less
expressive than what one might expect from a full logic of proofs for hybrid
systems. However, our concern in this report is with modeling deductions in
dL, rather than with studying provability in the context of hybrid dynamical
systems.

LPdL contains several mechanisms for performing contextual equivalence
and equational rewriting. There exist many logics and calculi with primitives
for this style of rewriting [31,1]. Effortless rewriting of deeply nested formulas
is a major benefit of Hilbert-style logics, but comes at the cost of less structured
proofs.

7 Conclusions
In this project, we constitute a logical foundation for hybrid systems with an

explicit notion of evidence, which significantly advances the tooling support for
verifying safety of autonomous vehicle and advanced driver assistance systems.

Explicit notions of evidence provide a clean separation between proof check- ing
and proof search and enable analyses that crucially depend upon an interro-

gation of the structure of proofs. The Logic of Proofs for Differential Dynamic
Logic demonstrates that it is possible to construct a calculus of proof terms on
top of an existing theorem prover. Our preliminary work on synthesizing cer-

tified fall-back controllers for safety-critical systems demonstrates that explicit
representations of proofs enable principled solutions to problems that would

otherwise require ad-hoc and soundness-critical analyses.

Future Work Although the proof term checker for KeYmaera X demonstrates
the utility of LPdL, there are several avenues for future work. First, KeYmaera X
does not currently provide a mechanism for generating proof terms from proof
search procedures – users must manually write down proof terms to be checked.
However, we believe it will be easy to argument the KeYmaera X tactic language
interpreter with a mechanism that constructs proof terms in tandem with the
truth-preserving operations it executes on Provables. This extension – which we
leave as future work – would add generation of proof terms to KeYmaera X.
Furthermore, the existence properties stated in the inversion lemma require
inference that is not currently implemented; instead, users of the proof term
checker must annotate implicational and equivalence rewriting.

Acknowledgements. This research was sponsored by the National Science
Foundation under grant number CNS-1054246 and the Department of Trans-
portation under grant number DTRT12GUTC11 and the Future of Life Institute
(futureoflife.org) FLI-RFP-AI1 program, grant #2015-143867. The views and
conclusions contained in this document are those of the author and should not

32

be interpreted as representing the official policies, either expressed or implied,
of any sponsoring institution, the U.S. government or any other entity.

References
[1]R. Alenda, N. Olivetti, and G. L. Pozzato. Nested Sequent Calculi for

Conditional Logics. In L. Fariñas del Cerro, A. Herzig, and J. Mengin,
editors, Logics in Artificial Intelligence, volume 7519 of Lecture Notes in
Computer Science, pages 14–27. Springer-Verlag, 2012.

[2]R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid Au-
tomata: An Algorithmic Approach to the Specification and Verification of
Hybrid Systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel,
editors, Hybrid Systems, volume 736 of Lecture Notes in Computer Science,
pages 209–229. spv, 1992.

[3]S. Artemov and L. Beklemishev. Provability Logic. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, 2nd Edition, vol-
ume 13 of Handbook of Philosophical Logic, pages 189–360. Springer Nether-
lands, 2005.

[4]S. N. Artemov. Operational modal logic. Technical Report MSI 9529,
Cornell University, 1995.

[5]L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer.
The Lean Theorem Prover (System Description). In Automated Deduc-
tion - CADE-25 - 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings, pages 378–388, 2015.

[6]M. Fitting. The logic of proofs, semantically. Annals of Pure and Applied
Logic, 132(1):1 – 25, 2005.

[7]N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer. KeYmaera
X: An axiomatic tactical theorem prover for hybrid systems. In A. P. Felty
and A. Middeldorp, editors, CADE, volume 9195 of LNCS, pages 527–538.
Springer, 2015.

[8]N. Fulton and A. Platzer. A logic of proofs for differential dynamic logic:
Toward independently checkable proof certificates for dynamic logics. In
J. Avigad and A. Chlipala, editors, Proceedings of the 2016 Conference
on Certified Programs and Proofs, CPP 2016, St. Petersburg, FL, USA,
January 18-19, 2016, pages 110–121. ACM, 2016.

[9]R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
J. ACM, 40(1):143–184, Jan. 1993.

[10]J. Harrison. HOL light: A tutorial introduction. In Formal Methods
in Computer-Aided Design, First International Conference, FMCAD ’96,

33

Palo Alto, California, USA, November 6-8, 1996, Proceedings, pages 265–
269, 1996.

[11]J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt, and
E. Z. A. Platzer. A formally verified hybrid system for the next-generation
airborne collision avoidance system. In C. Baier and C. Tinelli, editors,
TACAS, LNCS. Springer, 2015.

[12]D. K. Lee, K. Crary, and R. Harper. Towards a Mechanized Metatheory of
Standard ML. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’07, pages
173–184, New York, NY, USA, 2007. ACM.

[13]S. M. Loos, A. Platzer, and L. Nistor. Adaptive cruise control: Hybrid, dis-
tributed, and now formally verified. In M. Butler and W. Schulte, editors,
FM, volume 6664 of LNCS, pages 42–56. Springer, 2011.

[14]S. M. Loos, D. W. Renshaw, and A. Platzer. Formal verification of dis-
tributed aircraft controllers. In C. Belta and F. Ivancic, editors, HSCC,
pages 125–130. ACM, 2013.

[15]A. Mahboubi. Programming and certifying the cad algorithm inside the
coq system. In Mathematics, Algorithms, Proofs, volume 05021 of Dagstuhl
Seminar Proceedings, Schloss Dagstuhl, 2005.

[16]The Coq development team. The Coq proof assistant reference manual,
2004. Version 8.0.

[17]T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof As-
sistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[18]F. Pfenning and C. Schürmann. System description: Twelf a meta-logical
framework for deductive systems. In Automated Deduction CADE-16,
volume 1632 of Lecture Notes in Computer Science, pages 202–206. Springer
Berlin Heidelberg, 1999.

[19]B. Pientka and J. Dunfield. Beluga: A framework for programming and
reasoning with deductive systems (system description). In Int’l Joint Con-
ference on Automated Reasoning (IJCAR 2010), pages 15–21, July 2010.

[20]A. Platzer. Differential dynamic logic for verifying parametric hybrid sys-
tems. In N. Olivetti, editor, TABLEAUX, volume 4548 of LNCS, pages
216–232. Springer, 2007.

[21]A. Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,
41(2):143–189, 2008.

[22]A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg, 2010.

34

[23]A. Platzer. Logics of dynamical systems. In LICS, pages 13–24. IEEE,
2012.

[24]A. Platzer. Differential game logic. ACM Trans. Comput. Log., 17(1):1:1–
1:51, 2015.

[25]A. Platzer. A uniform substitution calculus for differential dynamic logic.
In A. P. Felty and A. Middeldorp, editors, CADE, volume 9195 of LNCS,
pages 467–481. Springer, 2015.

[26]A. Platzer and E. M. Clarke. Formal verification of curved flight collision
avoidance maneuvers: A case study. In A. Cavalcanti and D. Dams, editors,
FM, volume 5850 of LNCS, pages 547–562. Springer, 2009.

[27]A. Platzer and J.-D. Quesel. KeYmaera: A hybrid theorem prover for
hybrid systems. In A. Armando, P. Baumgartner, and G. Dowek, editors,
IJCAR, volume 5195 of LNCS, pages 171–178. Springer, 2008.

[28]A. Platzer and J.-D. Quesel. European Train Control System: A case study
in formal verification. In K. Breitman and A. Cavalcanti, editors, ICFEM,
volume 5885 of LNCS, pages 246–265. Springer, 2009.

[29]A. Platzer, J.-D. Quesel, and P. Rümmer. Real world verification. In R. A.
Schmidt, editor, CADE, volume 5663 of LNCS, pages 485–501. Springer,
2009.

[30]J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer. How to model
and prove hybrid systems with KeYmaera: A tutorial on safety. 2015.

[31]B. Woltzenlogel Paleo. Contextual natural deduction. In S. Artemov and
A. Nerode, editors, Logical Foundations of Computer Science, volume 7734
of Lecture Notes in Computer Science, pages 372–386. Springer Berlin Hei-
delberg, 2013.

