
1  

 
 

 
 

 
 
 

Proving Autonomous Vehicle 
and Advanced Driver 

Assistance Systems Safety 
	
  
 FINAL RESEARCH REPORT 

 
 
 

Nathan Fulton, Ran Ji, and Andr é Platzer 
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Abstract  

The main objective of this project was to provide technology for an- 
swering crucial safety and correctness questions about verification of au- 
tonomous vehicle and advanced driver assistance systems based on logic. 
In synergistic activities, we have significantly improved tooling for cyber- 
physical systems (CPS) verification, including the development of the 
completely new theorem prover KeYmaera X [7] based on a uniform sub- 
stitution calculus for differential dynamic logic. This project saw a sub- 
stantial advance in the foundation of proof certificates by developing the 
logic of proof for differential dynamic logic (LPdL) [8] as a foundation for 
CPS safety certificates. This report briefly explains the key benefits of 
KeYmaera X over existing systems that are relevant for the goals of this 
project and discusses the advances that LPdL bring in detail. 

LPdL answers the key question of safety evidence for autonomous ve- 
hicles and driver assistance safety technology or other cyber-physical sys- 
tems: 

What counts as undeniable mathematical evidence in support of 
a safety claim for an autonomous vehicle or advanced safety- 
critical driver assistance technology? 

Without any doubt mathematical evidence for safety claims of these sys- 
tems will differ from classical mathematical evidence, because the safety 
argument somehow has to take both the relevant features of the computer 
control into account together with an analysis of its impact on the mo- 
tion of the vehicle. Such safety evidence is inherently about dynamics not 
about static situations. 

LPdL gives first-class access to safety properties and their safety cer- 
tificates as proof terms. It extends both the syntax and semantics of dif- 
ferential dynamic logic (dL), the logic for hybrid system models of cyber- 
physical systems, with proof terms as syntactic representations of logical 
deductions that serve as theoretically well-founded evidence or certificates 
for the truth of the safety claim they prove. To support axiomatic theorem 
proving, the logic allows equivalence rewriting deep within formulas and 
supports both uniform renaming and uniform substitutions. In addition 
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to serving as unambiguous proof certificates, LPdL also advances KeY- 
maera X in there major points: (1) provide a clean separation between 
proof checking and proof search; (2) implement a mechanism for compos- 
ing, reusing, or parameterizing proofs (merely mechanisms for composing 
provability); (3) take advantage of procedures that require interrogating 
or modifying the structure of a proof. 

Models of cyber-physical systems are often stated as non-deterministic 
programs because a non-deterministic model can capture a variety of en- 
vironmental conditions and a variety of control decisions. For example, 
a car’s sensors might sample at non-deterministic points in time, and its 
control program might choose between acceleration and deceleration in 
ways that are not known a priori (or that are overly laborious to spec- 
ify during verification). Synthesizing a most-conservative deterministic 
controller from these non-deterministic models plugs a major remaining 
gap between CPS models and control software implementations. LPdL di- 
rectly prepares for a supports of this goal in a way that truth-preserving 
operations cannot. 
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Executive  Summary 
Autonomous vehicle and advanced driver assistance systems have been exten- 
sively investigated nowadays, not only in academia but also in industry. We will 
see self-driving cars or cars equipped with advanced driver assistance systems   
on road in the near future, and their safety is of utmost importance. Validation  
for such complex systems has been mostly limited to simulation, which can only 
cover a minuscule fraction of the relevant state space. The main objective of this 
project was to answer crucial safety and correctness questions about verification 
of autonomous vehicle and advanced driver assistance systems based on    logic. 

We have significantly improved tooling for cyber-physical systems (CPS) 
verification which is a key success factor for this project. Based on a uniform 
substitution calculus for differential dynamic logic, we are developing the com- 
pletely new theorem prover KeYmaera X [7] to allow for easier extension of CPS 
modeling languages and automated proving tools. As a means for persisting and 
communicating safety certificates for cyber-physical systems with the respective 
stakeholders and authorities, we have developed a logic of proof for differential 
dynamic logic (LPdL)  [8] as a foundation for CPS safety certificates.       The key 
advantages of KeYmaera X [7,25] that are relevant to the goals of this project 
are the following. 

KeYmaera X has a minimal prover kernel (<2000 LOC that, unlike all extant 
CPS analysis software, isolates all soundness-critical axiomatic reasoning. This 
allows for the addition of experimental features (such as architecture or domain- 
specific modeling formalisms and analyses) without introducing opportunities  
for subtle errors to threaten the veracity of system verification results obtained 
using the tool. The resulting increased trust in experimental features opens up 
new possibilities for applying formal verification to more complicated CPS as 
they do occur in the ever-more-complex traffic   domain. 

KeYmaera X features improved tooling for automating proof search. De- 
creasing the number of manual steps necessary for performing a verification   
task or eliminating these steps altogether  is perhaps the most important way   
that formal methods tools for CPS can be improved to scale to large and com- 
plex applications.  Unlike extant CPS analysis systems,  KeYmaera X provides    
a robust programming language and collection of libraries for specifying cus-  
tom proof search procedures that can exploit domain or architecture-specific 
properties  of CPS. 
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certificates as proof terms. It extends both the syntax and semantics of differ- 
ential dynamic logic (dL) with proof terms syntactic representations of logical 
deductions that serve as theoretically well-founded evidence or certificates for  
the truth of the formulas that they prove. To  support axiomatic theorem prov-  
ing, the logic allows equivalence rewriting deep within formulas and supports 
both uniform renaming and uniform substitutions.     In addition to serving as un- 
ambiguous proof certificates, LPdL also advances KeYmaera X in there points: 
(1) provide a clean separation between proof checking and proof search; (2) im- 
plement a mechanism for composing, reusing, or parameterizing proofs (merely 
mechanisms for composing provability); (3) take advantage of procedures that 
require interrogating or modifying the structure of a proof. 

Models of CPS are often stated as non-deterministic programs because a non-
deterministic model can capture a variety  of environmental conditions and   a 
variety of control decisions. For example, a car’s sensors might sample at non-
deterministic points in time, and its control program might choose between 
acceleration and deceleration in ways that are not known a priori (or that are 
overly laborious to specify during verification). Synthesizing a most-conservative 
deterministic controller from these non-deterministic models plugs a major re- 
maining gap between CPS models and control software implementations.     LPdL 
directly prepares for a supports of this goal in a way that truth-preserving op- 
erations cannot. 

 
Main results. In this report, we will focus on the logic of proof for differential 
dynamic logic (LPdL).  Our primary results   are: 

• We present a semantic model that extends the standard reachability re- 
lation semantics of differential dynamic logic with a notion of evidence 
(following Fitting [6]). 

• We extend a differential dynamic logic with an explicit notion of   evidence 
– a Logic of Proofs for Differential Dynamic Logic  (LPdL). 

• We establish the correctness of this logic by proving that all pieces of 
evidence in LPdL correspond to a deduction in    dL. 

• We explain how the results established in this report can be used to con- 
struct a proof term checker for LPdL without extending the    soundness- 
critical core of a theorem prover based on truth-preserving transforma- 
tions to theorems, and discuss the details of an ongoing  implementation 
of an LPdL proof checker    as an extension to KeYmaera X. 

These results constitute a logical foundation for hybrid systems with an 
explicit notion of evidence, which significantly advances the tooling support for 
verifying safety of autonomous vehicle and advanced driver assistance   systems. 

 
Report overview. This report details the development of the logic of proof 
for  differential  dynamic  logic  (LPdL).   Section1gives  an  introduction  to the 
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problem.  Section2provides the background of differential dynamic logic (     dL), 
hybrid program and uniform substitutions.  Section3presents the logic of proof  
for  differential  dynamic  logic  (LPdL).   Section4shows  the relation of LPdL 
proof terms and dL proofs.  Section5reports on the implementation of    LPdL   in 
KeYmaera X. Related works are discussed in Section6and Section7provides   
a summary and future work   discussion. 
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1 Introduction 
Cyber-physical systems (CPS) are systems that combine computation with con- 
trol of physical processes. Examples of CPS include self-driving cars, train 
control systems, and collision avoidance protocols for aircraft. Cyber-physical 
systems are an important domain in software verification because CPS are of-   
ten safety-critical – a bug in the control software of a self-driving car or a train 
control system could lead to loss of human life. Unfortunately, many software 
verification techniques developed in the context of discrete dynamical systems 
are incapable of handling the infinite state space introduced by the presence of 
differential equations. 

Hybrid systems are a mathematical model of cyber-physical systems that 
combine a model of discrete computation (imperative computation) with con- 
tinuous dynamics (ordinary differential equations). Differential dynamic logic 
[20,23] is a logic for specifying and verifying properties of hybrid systems. Re- 
cent work on theorem proving for cyber-physical systems demonstrates that dy- 
namic logics are a powerful formalism for mechanizing proofs about many other 
types of dynamical systems.  KeYmaera [27] is a theorem prover for differen-  
tial dynamic logic that has been used to verify various properties of distributed 
adaptive cruise control for self-driving cars [13], the European Train Control 
System [28], and multiple collision avoidance protocols for aircraft [26,14,11]. 
KeYmaera X is a successor to KeYmaera that supports the same verification 
tasks, but features tactical theorem proving on top of a small soundness-critical 
core [7]. 

Unlike theorem provers based upon type-theoretic foundations, theorem 
provers in the dynamic logic tradition are not based upon logics with a for- 
malized notion of explicit proof evidence. Like several other theorem provers, 
KeYmaera X ensures soundness by only allowing truth-preserving transforma- 
tions on formulas, rather than by production of formally defined and indepen- 
dently checkable proof terms. The long list of successful theorem provers that 
are based on logics without proof terms demonstrates truth-preserving opera- 
tions on formulas are enough to ensure the soundness of a theorem prover. 

Although truth-preserving operations are sufficient for ensuring soundness, 
proof terms address a number of limitations that have arisen during the develop- 
ment and use of the KeYmaera and KeYmaera X theorem provers. KeYmaera 
and KeYmaera X do not: 

• provide a clean separation between proof checking and proof search 

• implement a mechanism for composing, reusing, or parameterizing   proofs 
(merely mechanisms for composing provability);  or 

• take advantage of procedures that require interrogating or modifying the 
structure of a proof. 

One advantage of the approach KeYmaera X takes is that there is never a 
need to re-check proofs obtained via proof search because search always proceeds 
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via operations defined in the soundness-critical core of KeYmaera X. However, 
ensuring soundness is not the only motivation for separating searching from 
checking. KeYmaera X allows for parallel speculative proof search, so persist- 
ing the particular execution trace of a proof search procedure requires storing   
and merging proof state using extra-logical operations. Introducing an explicit 
notion of evidence into differential dynamic logic is a more principled solution 
than post-hoc analysis of the execution of a search procedure. 

The second challenge is surmountable within a single theorem proving ses- 
sion, but is problematic in cases where users collaborate on proofs. Proof terms 
provide a natural modularity mechanism and allow users to import proven lem- 
mas from other users without re-executing an expensive proof search procedure 
or blindly trusting the source of the proof. 

The significance of the final challenge extends beyond the specifics of imple- 
mentations. Extant dynamic logics do not provide a compelling foundation for 
defining proof-preserving transformations; i.e., transformations to system mod- 
els that are accompanied by a corresponding transformation on a proof. They 
are limited to truth-preserving transformations without preserving correspond- 
ing proofs syntactically. 

This report presents a Logic of Proofs for Differential Dynamic Logic (LPdL). 
LPdL provides an explicit notion of evidence in the form of proof terms – syntac- 
tic objects that correspond to deductions in (the uniform substitution calculus    
of) differential dynamic logic (dL).   Concretely,  we  assign a syntactic term e    
to each derivation of φ in dL such that e : φ – read as “e is a proof of φ” –           
is a theorem of LPdL.  We provide a semantics and an axiomatization for this 
language of proof terms and establish some basic results about the logic and its  
relation to dL. Although the primary topic of this report is LPdL itself, potential 
applications are worth noting because they motivate the design of the logic. 

One application – discussed in Section5– is an ongoing implementation of     
a proof term checker – a program that takes a formula of the form e : φ and 
checks that e is a proof of φ. Proof checkers are useful because they separate 
proof search from proof checking and provide obvious paths toward composition 
of proofs. 
LPdL is designed to support other applications as well.  A major goal for 

KeYmaera X is automatic transformation of a liveness proof for a non-deterministic 
model into a safety proof for a fully deterministic model. Understanding the 
motivation for this operation requires understanding the typical structure of  a 
model specified in dL.   Models of cyber-physical systems are often stated as 
non-deterministic programs because a non-deterministic model can capture  a 
variety of environmental conditions and a variety of control decisions. For ex- 
ample,  a car’s sensors might sample at non-deterministic points in time, and      
its control program might choose between acceleration and deceleration in ways 
that are not known a priori (or that are overly laborious to specify during ver- 
ification). Synthesizing a most-conservative deterministic controller from these 
non-deterministic models plugs a major remaining gap between CPS models and 
control software implementations.   Essentially,  the key insight is that     liveness 
proofs in dL contain enough information to construct the particular  execution 
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that witnesses liveness. The logic described in this report directly supports this 
goal in a way that truth-preserving operations do  not. 

Summarily, our primary contributions are: 
• We present a semantic model that extends the standard reachability re- 

lation semantics of differential dynamic logic with a notion of evidence 
(following Fitting [6]). 

• We extend a differential dynamic logic with an explicit notion of   evidence 
– a Logic of Proofs for Differential Dynamic Logic  (LPdL). 

• We establish the correctness of this logic by proving that all pieces of 
evidence in LPdL correspond to a deduction in    dL. 

• We explain how the results established in this report can be used to con- 
struct a proof term checker for LPdL without extending the    soundness- 
critical core of a theorem prover based on truth-preserving   transforma- 
tions to theorems, and discuss the details of an ongoing implementation 
of an LPdL proof checker as an extension to KeYmaera X. 

These contributions constitute a logical foundation for hybrid systems with 
an explicit notion of evidence. 

 

2 Background 
This  section  presents  necessary  background  for  the  remainder  of  the  report, 
including an introduction to cyber-physical systems and a discussion of the 
uniform substitution calculus of   dL. 

 
2.1 Modeling Cyber-Physical Systems Using Hybrid Pro- 

grams 
Hybrid dynamical systems [2,23] are mathematical models for analyzing the 
interaction between discrete and continuous dynamics. This section presents a 
semantic model of hybrid dynamical systems called hybrid programs, introduces 
the language of differential dynamic logic (dL), and demonstrates how dL can 
be used to specify safety and liveness properties of hybrid    programs. 

Hybrid programs [21,22,23] are a programming language model of hybrid 
dynamics. Hybrid programs extend non-deterministic imperative programs (i.e., 
regular programs) with differential equations.  A syntax and informal semantics  
of hybrid programs is given in  Table1. 

Differential dynamic logic (dL) is a modal logic for specifying and verifying 
reachability properties about hybrid programs.      The formulas of dL contain the 
formulas of the First-order Logic of Real-Closed Fields (formulas of FOLR), the 

familiar logical connectives of propositional logic, and two modalities – [α]φ and 
1A  continuous  evolution  along  the  differential  equation  system  xr	
  	
  	
  =  θi  for  an  
arbitrary 

duration within the region described by formula F . 



10  

 
 
 
 

 
 

Table  1:  Hybrid Programs 
 

(α)φ. These two modalities express reachability properties about the program 
α. The box modality ([α]φ) states that φ is true of all states that are reachable after executing the hybrid program α.      The diamond modality ((α)φ) is dual to 
the box, and states that φ is true of some state that is reachable after executing 
the  hybrid  program α. 

A formal  syntax  and  semantics  for  dL  is  given  later  in  Def.1and  Def.3. 
For now, we provide examples of how dL can be used to model cyber-physical 
systems and specify properties of these   models. 
Example 1. The following dL formula describes a safety property for a car 
model. 

 

v ≥ 0 � A > 0 → [
. 

(a := A � a := 0) ;  {pr = v, vr = a} 
.�] v ≥ 0 s

initial 
¸
co
¸
ndition

x
 

s 
c
¸
t
¸
rl 

x s 
pl
¸
a
¸
nt 

x 
post

s
co
¸
n
¸
di
x
tion 

The hybrid program in this formula describes a car that chooses nondetermin- 
istically to accelerate with a maximum acceleration A or not accelerate, and then 
follows a differential equation. This process may repeat arbitrarily many times, 
and because there is no evolution domain constraint on plant, each continuous evolution has an non-negative duration r � R≥0  The formula states that if  the 
car begins with a non-negative velocity, then it will also have a non-negative 
velocity after choosing a new acceleration and moving for a nondeterministic 
period of time. 

 
A tutorial with more examples of cyber-physical system models implemented 

in dL can be found in  [30]. 
 

2.2 The Uniform Substitution Calculus of Differential Dy- 
namic Logic 

There are several formulations of differential dynamic logic.  The earliest is   
a sequent calculus [20].  KeYmaera [27] is an implementation of the   sequent 
calculus.      In this report, we  augment the axiomatic formulation of dL [25] that 
is implemented in the KeYmaera X theorem    prover. 

Typical axiom systems contain a countably infinite number of axioms gen- erated from a finite set of axiom schemata. For example, φ � ψ → φ is an axiom 

Program Statement 
α; β 
α � β 
α� 

x := θ x := � 

{xr = θ1, ..., xr 1 n = θn&F} 
?F 

Meaning 
Sequentially composes α and β. 
Executes either α or  β. 
Repeats α zero or more times. 
Evaluates θ and assign result to x. 
Assigns an arbitrary real value to x. 
Continuous evolution1. 
Aborts if F is not  true. 
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schema, and x = 1 � x2 > 0 → x = 1 is a concrete instance of the schema. The 
axiomatization of dL that we augment does not have axiom schemata; rather, it 
has a finite number of axioms, a finite number of proof rules (represented as sets 
of formulas), and a proof rule for performing soundness-preserving substitutions 
on these axioms. 

The difference between axiom schemata and uniform substitutions is sub-   
tle, but is significant in the context of mechanized proofs. Moving from axiom 
schemata to concrete axioms isolates soundness-critical reasoning about binding 
structure into a very small soundness-critical core [7].         The uniform substitu- 
tion calculus of dL provides locally sound axioms for differential equations by 
exploiting differential forms [25]. 

This section introduces the syntax,  semantics,  and axiomatization of    dL 
and discusses its uniform substitution calculus.   This  logic is augmented    in 
subsequent sections with an explicit notion of evidence for axiomatic deductions. 
Readers interested in further details about the uniform substitution calculus of 
dL are encouraged to read  [25]. 

Deftnition  1  (Terms).  Terms  are  defined  by  this  grammar  (with  θ, η, θi   as 
terms, x as variables, xr as differential symbols, and f as function symbols): 
θ, η::=  x |  xr Variables and Differential Symbols 

| f (θ1, . . . , θk) Function Application 
| θ + η | θ · η Addition  and Multiplication 
| (θ)r Differentials 

The variables x and xr are taken from finite sets of variables V and V r and 
real numbers are definable as function symbols without    arguments. 

Deftnition 2 (Hybrid Programs). Hybrid programs are defined with the follow- 
ing grammar (with α, β ranging over hybrid programs, a over program constants, 
x over variables, θ over terms possibly containing x, and ψ over formulas of 
first-order  real arithmetic): 

α, β ::= a | x := θ | xr := θ | ?ψ | xr = θ&ψ | α � β | α; β | α� 

Hybrid programs of differential-form dL extend the hybrid programs dis- 
cussed in Table1with differential assignments (xr := θ) and program constants 
a. The former are related to the differential form axiomatization of differential 
equations, and the latter are crucial to proofs involving uniform substitution. 
Deftnition 3 (Formulas). The formulas of dL are defined as follows (with θ 
as terms, p as predicates, C as quantifier symbols, and φ, ψ ranging over   dL 
formulas): 
φ, ψ::=  θ ≥ η Comparisons 

| p(θ1, . . . , θk) Predicates 
| C(φ) Quantifier Symbols 
| ¬φ | φ � ψ | �x φ | �x ψ First-order Logic 
| [α]φ | (α)φ Modalities 
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(·)  (a)p(x̄) ↔ ¬[a]¬p(x̄) 

[:=] [x := f ]p(x) ↔ p(f ) 
[?] [?q]p ↔ (q → p) 
[�]   [a � b]p(x̄) ↔ [a]p(x̄) � [b]p(x̄) 
[;]   [a; b]p(x̄) ↔ [a][b]p(x̄) 
[�]   [a�]p(x̄) ↔ p(x̄) � [a][a�]p(x̄) 
K   [a](p(x̄) → q(x̄)) → ([a]p(x̄) → [a]q(x̄)) 

I   [a�](p(x̄) → [a]p(x̄)) → (p(x̄) → [a�]p(x̄)) 
V  p → [a]p 

p(x̄) 
G 

[a]p(x̄) 
p(x) 

�  
�x p(x) 
p q p 

MP 
q 

f (x̄) = g(x̄) 
CT 

c(f (x̄)) = c(g(x̄)) 
f (x̄) = g(x̄) CQ 

 p(f (x̄)) ↔ p(g(x̄)) 

CE   
  p(x̄) ↔ q(x̄)  
C(p(x̄)) ↔ C(q(x̄)) 
ϕ 

US 
σ(ϕ) 

 

Figure 1: Axioms and proof rules of differential dynamic logic; C is a quantifier 
symbol, p, q are predicate symbols, and c, f, g are function symbols. 

 
2.2.1 Semantics of dL  

States are mappings from variables and differential symbols to R. The set S is  
the set of all   states. 

The semantics of dL terms is a mapping ¢· I  from terms to R,    where the 
interpretation I assigns to each n-ary function symbol f a smooth function  
I(f ) : Rn → R, to each n-ary predicate symbol p a relation I(p) � Rn, and to 
each quantifier symbol C a functional I(C) mapping a subsets M � S to subsets 
I(C)(M ) � S. Differential symbols and differentials are given local meaning by 
differential forms [25]. 

α I � S × S is a reachability relation 
on states defined for each interpretation I.  The semantics of hybrid programs 
inductively define the transition behavior of each hybrid program.  For   example, 

 

¢ θ¢ v} 

where vr  is the state identical to v except that x maps to r � R. 
The semantics of dL formulas is a mapping ¢·∙ I from formulas ϕ to the set of 

 
for quantifier symbols C. 

ψ I C(φ) I 
¢ 

 I 

= I(C)( φ I ) 
¢  
¢ 

The full inductive definition of    
¢·¢ 

given by Platzer in  [25]. 

for  terms,  programs,  and  formulas is 

 

2.2.2 Axioms of dL  
The axioms and proof rules of dL from [25] are enumerated in Figures1and2. 

In typical verification tasks, the axioms in Fig.1are used to symbolically 
decompose regular programs and the axioms in Fig.2enable various reasoning 



13  

 
 
 
 

DW [xr = f (x) & q(x)]q(x) 

DC  
.
[xr = f (x) & q(x)]p(x) ↔ [xr = f (x) & q(x) � r(x)]p(x)

. 
← [xr = f (x) & q(x)]r(x) 

DE [xr = f (x) & q(x)]p(x, xr ) ↔ [xr = f (x) & q(x)][xr := f (x)]p(x, xr ) 

DI  [xr = f (x) & q(x)]p(x) ← 
.
q(x) → p(x) � [xr = f (x) & q(x)](p(x))r . 

DG  [xr = f (x) & q(x)]p(x) ↔ �y [xr = f (x), yr = a(x)y + b(x) & q(x)]p(x) 

DS   [xr = f & q(x)]p(x) ↔ �t≥0 
.
(�0≤s≤t q(x + fs)) → [x := x + ft]p(x)

.
 

[r :=]  [xr := f ]p(xr ) ↔ p(f ) 
+r   (f (x̄) + g(x̄))r  =  (f (x̄))r + (g(x̄))r 

·r   (f (x̄) · g(x̄))r  =  (f (x̄))r · g(x̄) + f (x̄) · (g(x̄))r 

◦r  [y := g(x)][yr := 1]
.
(f (g(x)))r = (f (y))r · (g(x))r . 

Figure 2:  Differential equation axioms and differential  axioms 
 

techniques for handling ordinary differential equations. For example, the axioms 
in Fig.2have been used to implement an Ordinary Differential Equation solver 
based on logical deductions and have also been used to implement reasoning 
techniques based on differential invariants [7]. The CE proof rule allows for 
equational rewriting of equivalent subformulas, whereas CQ and CT allow for 
equational rewriting of equal   terms. 

 
2.3 Uniform Substitutions 
Uniform substitutions are mappings from functions f (·) to terms, predicate 
symbols p(·) to formulas, quantifier symbols C( ) to formulas, and program 
constants a to programs where · is a reserved function symbol of arity zero      
and      a  reserved  quantifier  symbol  of  arity  zero.   For  example,  a ›→ x := 0 
substitutes any occurrence of the program variable a with program x := 0. And 
p(·) ›→ x ≥ 0 substitutes a predicate p(θ) with a formula θ ≥ 0 for any argument 
term θ.  Logical deductions in dL may appeal to the truth-preserving nature of 
substitutions via the US proof rule (Fig.1). 

Example 2 (Admissible and Clashing Substitutions). Restricting the US proof 
rule to admissible uniform substitutions is necessary for preserving the sound- 
ness of the calculus. Consider the substitution and formula 

σ = {a ›→ x := x − 1, p ›→ x ≥ 0} 

φ ≡ p → [a]p. 

If σ were admissible for φ (it is not!), then the US proof rule would allow a proof of x ≥ 0 → [x := x − 1]x ≥ 0: 
 

  �  
  p → [a]p  
x ≥ 0 → [x := x − 1]x ≥ 0 
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but this formula is clearly not valid. Conversely, consider the very similar sub- 
stitution σr  and the formula ϕ: 

σr = {a ›→ x := x − 1, p(·) ›→ x ≥ 0} 

ϕ ≡ [a]p(x̄) 
for x̄ = (x).  Because σr  is ϕ-admissible, the US proof rule allows the deduction 
following 

  x ≥ 0  
[x := x − 1]x ≥ 0 

via a uniform substitution on the G proof  rule. 

Example2demonstrates that the US rule is not sound for arbitrary substitu- 
tions. A sound calculus must restrict uniform substitutions so that substitutions 
which introduce unsound deductions are not permitted.  For this purpose,   dL 
defines when a given substitution is admissible for a formula and restricts the 
US proof rule so that the rule is only applicable when the substitution σ is φ-
admissible. The two cases in Example2demonstrate why admissibility of a 
substitution depends upon the formula to which a substitution is applied – a 
substitution may be sound for one formula and unsound for another. 

The slight difference between the substitutions σ and σr in Example2demon- 
strate the significance of the difference between p, p(x), and p(x̄).  These three 
predicate symbols have different static semantics. The first symbol (p) has a 
nullary predicate symbol The second (p(x)) has a predicate symbol where the 
variable x may occur freely, and the third (p(x̄)) has a predicate symbol where 
any x � x̄ may occur freely.  These free variables of p continue to be permitted 
in its replacement.  Additional free variables are allowed by the US rule when 
admissible. 

The definition of admissibility depends upon the static semantics of dL for- 
mulas,  so  this  difference  in  the  static  semantics  of  p,  p(x),  and  p(x̄)  is  crucial 
when determining whether a substitution is    admissible. 

The explication of admissibility for uniform substitutions in dL is critical   for 
soundness but non-trivial (see [25] for details). Therefore, the results presented 
in this report abstract over the particularities by simply assuming the existence 
of a mechanism for checking whether a given substitution is admissible for a 
given formula and assuming that there is therefore a sound implementation of 
the US proof rule. Readers interested in a constructive definition of admissibility 

for uniform substitutions in dL may consult Platzer (in particular, Fig. 1) [25]. 
Uniform substitutions map function, predicate, and quantifier symbols to 

terms and formulas, but do not map variables to variables. The KeYmaera X 
theorem prover implements both admissible uniform substitutions and uniform 
renaming. 

 
2.4 Comparison with Other Approaches 
There are many existing techniques for augmenting an existing logic with proof 
terms.        This section discusses why we  chose to design and implement a novel 
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logic rather than some of the most prominent alternatives. 
There are many reasons for implementing a new theorem prover – especially 

in the cyber-physical systems domain.  KeYmaera X is designed as a platform  
for research on both automated and interactive theorem proving specifically for 
hybrid dynamical systems. Designing and implementing new tactics languages, 
proof construction GUIs, and other features is easier in a smaller system with 
significantly fewer lines of code,  and KeYmaera X was specifically designed     
to support certain extensions (e.g., parallel proof search, control engineering- 
centric user interfaces) that Coq (for example) was not designed to support. 

Proceeding from the premise that hybrid systems theorem proving benefits 
from a theorem proving system that is specifically tailored to differential dy- 
namic logics, the primary benefit of the approach in this report is that it is 
parsimonious  with  the  meta-theory  of  these  logics.   Both  the  syntax  and se- 
mantics of LPdL are a straightforward extension of the semantics of differential 
dynamic logics. 

The rationale for developing a custom theorem prover for differential dy- 
namic logics apply equally to all of the alternatives discussed in this section.    
The following discussions of particular alternatives focus on more specific com- 
parisons. 

 
Encoding in a Proof Assistant. One alternative is encoding Fig.1and 
Fig.2in a proof assistant such as Coq [16] or Isabelle [17]. The Uniform Substi- 
tution algorithm implemented in KeYmaera X is constructive and is probably 
implementable in a proof assistant for a higher order logic, so this approach is 
certainly possible.  If the proof assistant has proof terms, then those proof   terms 
would serve our goal of adding proof terms to dL.  Furthermore, this approach 
could be used to generate proof terms for proofs constructed in an indepen- 
dently implemented theorem prover such as KeYmaera X (e.g., by isolating a 
simulation of the operations in the KeYmaera X core using constructions in a 
hypothetical dL library for Coq or   Isabelle). 

The benefits of encoding dL in a proof assistant do not come for free.  To 
achieve any benefit from this embedding, we would also need to formalize the 
soundness proof for dL within the proof assistant. Soundness proofs for hybrid 
systems  are  difficult,  so  a  formalization of  the  soundness  proof  of  dL would 
be greatly beneficial. However, this is almost certainly not the path of least 
resistance toward proof terms for dL because formalizing the soundness proof   
for dL would require considerable  effort. 

Even given a formalization of the soundness proof for dL, the benefit of a 
proof constructed in a proof assistant remains questionable because the KeY- 
maera X core is small. For example, although the Coq core is more thoroughly 
audited than the KeYmaera X core, it is also far larger (the Coq core is approx. 
20000 lines of code and the KeYmaera X core is approx. 2000 lines).2 

2This argument is less strong for HOL Light [10] and Lean [5], both of which have 
imple- mentations whose size and complexity is comparable to KeYmaera  X. 
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Logical Frameworks. Logical frameworks [9] provide a potential counter- 
point  to  the  above  observation  that  formalizing  the  soundness  proof  for  dL 
would require considerable effort.  Work  toward a mechanization of Standard  
ML in Twelf [18] demonstrates that logical frameworks are particularly well- 
suited to reasoning about binding [12];  this strength is relevant  in the context     
of dL because binding structure is at the heart of admissibility constraints on 
uniform substitutions. However, initial investigations suggest that the binding 
structure of hybrid programs is rich enough that encoding admissible uniform 
substitutions would require non-trivial effort.  Furthermore,  uniform substitu- 
tion is only the first (and likely easiest) step of a mechanization of dL in Twelf, 
Beluga [19], etc. because obtaining soundness proofs would also require proving 
the local soundness of the axioms in   Fig.2. 

 

3 The Logic of Proofs for Differential Dynamic 
Logic 

This section presents the syntax and semantics for LPdL. Syntactically, the logic 
is the differential dynamic logic presented in [25], augmented with formulas of 
the form e : φ (where φ is a dL formula) whose intended meaning is that e  
serves as evidence for φ.     Semantically, LPdL extends the semantics of dL with 
meanings for formulas of the form    e : φ. 

 
[�]   

[a
  b]p(x̄)  [a]p(x̄)  [b]p(x̄) 

  � ↔ �  US 
  [x := 0 � x := 1]x ≥ 0 ↔ [x := 0]x ≥ 0 � [x := 1]x ≥ 0 ∆  MP 

[x := 0 � x := 1]x ≥ 0 

where ∆ = 

 
[:=] 

     [x := t]p(t) ↔ p(x)  
R 

  0 ≥ 0        US Prop 
  [x := 0]x ≥ 0 ↔ 0 ≥ 0 [x := 0]x ≥ 0 ↔ 0 ≥ 0 → [x := 0]x ≥ 0  

MP 
[:=] 

MP, Prop, US   [x := t]p(t) ↔ p(x R  1 ≥ 0  

Prop [x := 0]x ≥ 0 [x := 1]x ≥ 0 
  [x := 0]x ≥ 0 � [x := 1]x ≥ 0  Prop 
([x := 0 � x := 1]x ≥ 0 ↔ [x := 0]x ≥ 0 � [x := 1]x ≥ 0) → [x := 0 � x := 1]x ≥ 0 

 

Figure 3: A proof of [x := 0 � x := 1]x ≥ 0 in the uniform substitution calculus of 
dL.  The proof of ∆ is slightly abbreviated for readability; the proof for the 
x := 1 case is very similar to the proof of the x := 0 case. 

 
The choice of proof terms presented in this section is motivated by the typical 

structure of proofs in dL. Proofs in dL combine equivalence/equational reasoning 
with uniform substitutions and uniform renamings. For example, consider the 
proof of [x := 0 � x := 1]x ≥ 0 in Fig.3. Each of the leafs of the proof is either  an 
axiom of dL or else a tautology of FOLR.   These leafs are obtained from 
the original problem by performing equivalence rewriting, modus ponens, and 
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identifying uniform substitutions that translate the resulting subgoals into   dL 
axioms. In this proof, uniform renaming is not necessary; however, renaming would be necessary for the formula [y := 0 � y := 1]y ≥ 0 because the axiom for 
symbolically executing a discrete assignment mentions x instead of    y. 

 
3.1 Syntax 
Deftnition 4 (Formulas). The formulas of LPdL are defined by extending the 
inductive definition  of  dL formulas given  in Def.3with formulas of  the form   
e : φ, where φ is a formula of dL and e ranges over proof terms (defined below). 

Our definition of the grammar of LPdL formulas (e.g., the inclusion of dL 
formulas) is parsimonious with the Justification Logic tradition rather than the 
type theory tradition. 

The formulas of LPdL as defined in Def.4augment the formulas of  dL with an 
additional connective e : φ.  3 This augmentation strictly extends the grammar   
of dL. Formulas such as 1 = 1 � 2 = 2 which do not contain proof terms remain 
formulas of LPdL. However, grammatical constructions of the form e : er : φ  
(and e : er : err : φ, and so on) are not formulas of LPdL; i.e., proof terms provide 
evidence only for dL derivations – not for LPdL derivations. Although the au- 
thors are interested in extending LPdL to properly treat formulas of these   forms, 
our immediate motivations for explicitly representing proofs do not require such  
a rich language. 

Pure LPdL formulas are formulas that do not allow the use of dL connectives 
(such as (e : φ) � (d : φ)). Pure LPdL formula either a formula of dL, or a 
formula of the form e : φ where e is a proof term and φ is a formula of   dL. 
Example 3 (LPdL formulas and non-formulas). The following are non-pure 
formulas of LPdL (where e, d are proof terms and φ, ψ are dL formulas): 

• (e : φ) � (d : ψ) 
• (e : φ) → (d : ψ) 
• [x := 0](j1=1  : 1 =  1) 

whereas e : (φ � ψ) is a pure formula of LPdL: 
In most of this report we are concerned only with pure LPdL formulas, 

because these are the formulas that correspond to judgements 

e is a dL proof of  φ 

where φ is a formula of dL; i.e., pure LPdL formulas are just proof certificates 
for dL derivations. In particular, our axioms and proof rules focus only on the 
pure fragment of LPdL.  It may be useful to axiomatize non-pure LPdL in   the 

3It is not misleading to think of     :     as a binary function mapping proofs terms and   dL 

formulas to LPdL formulas. 
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future; only application might be allowing the prover core to pass around mul- 
tiple proven results directly instead of having to bundle up proven results using 
conjunctions.   However,  we  leave  these  questions  as  future  work  and instead 
focus on parsimoniously extending dL with certificates for dL   proofs. 

A complete definition of the objects that may stand in for e occupies the 
remainder  of  this subsection. 

Deftnition  5  (Proof  Terms).  Proof  terms are  defined by this grammar (with 
e, d as proof terms, c ranging over sets of proof constants, σ as a uniform sub- 
stitution, B as a uniform renaming, and φ as dL formulas as defined in Def.3). 
e, d ::= cφ Proof Constants 

| e � d Conjunctions 
| e • d Implicative Application 
| e •← d | e •→ d Directional Equivalence Application 
| σe | Be Uniform Substitutions and Renaming 
| CTσe | CQσe | CEσe Equivalence/equational Reasoning 

Proof terms are the syntactic objects of LPdL corresponding to deductions     
in dL. 

Atomic/Axiomatic Terms. Proof constants serve as evidence for dL axioms  
and  FOLR   tautologies.  In  this  report,  we  consider  two  sets  of  proof  constants – 
iA where A is any dL axiom and jT  where T is any tautology of FOLR. We use 
cφ  whenever we    mean to discuss both of these sets of proof constants. 

The separation of atomic proof terms indexed by concrete axioms into dis- 
joint sets is motivated by practical concerns that arise when implementing a 
theorem prover for hybrid  systems. 

The first benefit of separating atomic proof terms into sets is a clear separa- 
tion between axiomatic and real arithmetic reasoning. Although the first-order 
theory of real arithmetic is decidable, the problem has extreme complexity. Fur- 
thermore, KeYmaera X (as well as other theorem provers) that utilize decision 
procedures for real arithmetic are typically sound only modulo the soundness of 
an external implementation of the decision procedure being used. Distinguish- 
ing computationally trivial appeals to axioms from possibly expensive appeals 
to arithmetic decision procedures isolates a natural extension point for incor- 
porating certificates of arithmetic facts e.g., by extracting witnesses from an 
implementation of a Coq implementation of the Cylindrical Algebraic Decom- 
position algorithm [15] or by using approaches such as [29] that are amenable 
to certificate generation). Isolating real arithmetic facts from axiomatic facts 
also makes it very easy to identify appeals to FOLR tautologies in proofs, which 
could be useful for identifying when the reproducibility of a proof is going to 
depend upon possibly expensive appeals to a decision procedure. 

The second benefit of separating atomic proof terms into disjoint sets is that   
it enables code-reuse when implementing conservative extensions of an already 
supported logic but also disallows unsound combinations of logics.  For example, 
dL contains axioms that are unsound for its game-theoretic variant dGL [24] so 
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an implementation of a dGL theorem prover on top of KeYmaera X should 
ensure that dGL proofs only make use of dL axioms that are sound in dGL.4 

 
Conjunctions. The � operator allows for the creation of evidence for con- 
junctive formulas. If e : φ and d : ψ then (e � d) : φ � ψ. This connective is 
also not strictly necessary if dL contains appropriate propositional axioms but     
is useful because many dL axioms contain conjunctions. Conjunctions repre-  sent 
the exact structure of a proof, so LPdL excludes the + operator found in 
some Justification Logics ([3, Part II]) because we are interested only in single 
conclusion proof systems. From an implementation perspective, the most inter- 
esting multi-conclusion extensions are those that could serve as a category of 
values for a proof search specification language capable of describing decidable 
but non-deterministic forward proof search procedures. 

 
Implications. The • operator allows  the  use  of  evidence  of  an  implication, 
and corresponds to the modus ponens proof rule.  For  example, if e : ψ → φ and      
d : ψ then e • d : φ.  This operator corresponds to the application operator of the 
Logic of Proofs and corresponds to application in the Simply Typed Lambda 
Calculus. 

Equivalence Rewriting. The •← and •→ operators are similar to the im- 
plication operator, but are used for equivalences instead of implications. The 
subscript on the operator indicates the direction in which the equivalence   should 
be used.  For  example,  if  e : ψ ↔ φ and  d : φ then  e •← d : ψ.  The  •←  and  •→ 
operators are not strictly necessary because they can be replaced with axioms. 
If 

i : (φ ↔ ψ) → (φ → ψ), 
e : φ ↔ ψ, and 
d : φ 

then (i• e) • d : ψ. These operators are included because equivalence rewriting is 
a fundamental and pervasive operation in axiomatic proofs, so even the constant 
multiplier on the length of proof terms is enough to motivate the addition of 
operators. 

 
Substitution and Renaming. Uniform substitution and renaming are es- 
sential parts of dL proofs and are witnessed by proof terms of the form σe and 
Be, where σ and B are uniform substitutions and renamings respectively. Uni- 
form substitutions do not map variables to variables, but variable renamings are 
necessary whenever a proof contains variables that do not occur in axioms. For example, a proof of [a := 12]a = 12 ↔ 12 = 12 is just a uniform renaming of x 
to a in the [:=] axiom. KeYmaera X allows explicit uniform renamings during 
proving, and these explicit renamings are captured by the B proof terms. 

4This motivation is informed by plans for future work; in this report we present a logic of 
proof terms for only dL. 
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¢ 

• ¢ 

} 

• e • d : φ¢ e I d I 

•  e •← d : φ¢ e I d I 

•  e •→ d : φ¢ e I d I 

 
 
 
 

Equivalence and Equational Reasoning. The CTσ , CQσ , and CEσ opera- 
tors correspond to uniform substitution instances of the contextual equation    and 
equivalence proof rules of dL (CT, CQ, and CE). For  example, the proof term  
CT 2 serves as evidence for the {c(·) ›→ ·2, f (·) ›→ a, g(·) ›→ b} 
uniform substitution instance of the CT proof rule: 

 
a = b 

a2  = b2 

 
3.2 Semantics 
The semantics of LPdL formulas extends the semantics of the uniform substi- 
tution calculus given in Section2.2.  As in  dL,  interpretations I in LPdL  give 
meaning to program constants, function, predicate and quantifier symbols [25]. 

Deftnition 6 (LPdL Semantics). The semantics of an LPdL formula χ is defined I 
χ¢    � S of states in which  χ 

is true and is defined inductively as follows (where iA, jT ranges over proof constants, e, d range over proof terms, and φ, ψ range over dL formulas): 
 

• ¢  I φ I where ¢·¢d  is the denotation of dL given in [25]. The 

mean- 
χ I ing of connectives �, ¬, �, [·], (·) is also as in dL, e.g., ¢ 

I 
�χ¢   = ¢ I ∩¢  ¢ 

• iA : A¢   = S for dL axioms  A 

jT : T ¢ = S for FOLR tautologies T 
e I 

• ¢ 
d : ψ I 

¢ 
e  :  φ¢   ∩ 
¢ 

I  = {v  � S  :  v  � ¢ : φ¢ and 

¢ I = 
S
ψ ¢  : (ψ → 

φ)¢ 

∩ ¢   : ψ¢ 

e : (ψ → φ)¢ and v � ¢ I for some ψ} 

¢ I = 
S
ψ ¢  : (φ ↔ 

ψ)¢ 

∩ ¢   : ψ¢ 

e : (φ ↔ ψ)¢ and v � ¢ I for some ψ} 

¢ I = 
S
ψ ¢  : (ψ ↔ 

φ)¢ 

∩ ¢   : ψ¢ 

e : ψ ↔ φ¢ 
I I 

and v � ¢ I for some ψ} 

• ¢ e : 
φ¢ 

if σ is admissible for φ I 

e : φ¢ and σ is admissible for φ}. 
• ¢Be : Bφ¢   = 
¢ 

I if B is a uniform renaming of φ I 

e : φ¢    and B is a uniform renaming of φ} 
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• ¢ ¢ σ
 ¢ ¢ 

CTσe : σ(c(f (x̄)) = c(g(x̄)))  I  = ¢   e : σ(f (x̄) = g(x̄))  I 

CQσe : σ(p(f (x̄)) ↔ p(g(x̄)))  I  = 
• 

I 
¢ σe : σ(f (x̄) = g(x̄)) 

¢ ¢ 
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ψ 

ψ 

¢ 

� ¢ 

 
 
 
 

CEσe : σ(C(p(x̄)) ↔ C(q(x̄)))  I  = 
• 

I 
¢ 

σe : σ(p(x̄) ↔ q(x̄))¢ 

Undefined cases are empty.5 

Note that the meaning of e : φ is always either S or �. Only LPdL formulas 
involving  proper  dL subformulas  have  state-dependent truth. 

We do not prove soundness in this report; instead, we establish a correctness 
result that is more useful in our context:  whenever e : φ is a theorem of LPdL,  
we can construct a dL proof of φ, which implies that φ is valid.  (The  advantages 
of this result are discussed in the introduction and in later sections.) In this 
section, we  take a similar approach.  Instead of establishing a direct    connection 
between the semantics and axioms and proof rules of LPdL, we instead establish  
a projection from the semantics of LPdL to the semantics of dL. 

Theorem 1 (Correctness of Proof Term Valuation). Consider any interpreta- I e I φ¢d . 
tion I, v � S and dL formula φ. If v � ¢  : φ¢LPdL then v � ¢ L 

Note that Theorem1pertains only to pure LPdL formulas; i.e., LPdL formu-  
las of the form e : φ where e is a proof term and φ is a formula of dL. 

Proof. The proof proceeds by  induction on the structure of e,  simultaneously  
for all φ. 

i  : φ I .  By Def.6, it must be that  φ is ¢LPdL 

ψ and ψ is an axiom of dL.  Therefore, φ is an axiom of dL so by soundness 
φ I 

of dL,  ¢ ¢dL = S. Finally, v � S.  
j : φ I .  By Def.6, it must be ¢LPdL 

that  φ is  ψ  and  ψ  is  a  tautology of  FOLR.  Therefore,  φ is  a  tautology of 
φ I 

FOLR  so by soundness of dL, ¢   ¢dL = S.  Finally, v � S. 
I 

 
be that 

e � d : φ¢LPdL.  Inspecting the cases of Def.6, it    must 

φ = ϕ ∧ ψ 

for some ϕ, ψ such that 
 

e : ϕ I (1) ¢LPdL 
d : ψ I (2) ¢LPdL 

ϕ I  and ¢dL 
I ϕ I I ¢d    and v ¢d    from which it follows  that 

ψ¢dL.  Therefore, v � ¢ L ψ  L 
I ψ I ϕ ∧ ψ I 

ϕ¢dL ∩ ¢   ¢dL = ¢ ¢dL 

by the definition of the semantics of dL  [25]. 
( I 

5E.g., ¢  e � d) : φ¢ 
cases. 

= � whenever φ is not of the appropriate form.      Likewise for the other 
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e : ψ → φ 

I 

 
 
 
 

e   d : φ I .  By Def.6we know that ¢LPdL 
I 

¢LPdL 
d : ψ I ¢LPdL 

for some ψ.  Applying the inductive hypothesis to these facts    establishes 
 

I 
¢dL 

ψ I ¢dL 

From these facts, a classical propositional encoding of ψ → φ, and ele- 
mentary theorems of set theory,  we  obtain   that 

 

I  C φ I 
ψ¢dL)   � ¢  ¢dL 

ψ I 
(where XC  is the set complement S \ X of X) which, because v �  ¢ 

φ I  . ¢dL 

Case e •← d and e •→ d.  Similar to e • d. 
I 

¢dL, 

σe  :  φ¢LPdL.   Then  by  inspection  of  the  cases of 
e : φr I .  Applying  the  inductive hypothesis ¢LPdL φr I 

to this fact establishes v � ¢      ¢dL.     So because σ is, by Def.6, an admissible I φ¢d . 
 

The remaining cases are  similar. 

σ(φr )¢dL = ¢ L 

 

3.3 Axioms and Proof Rules of the Logic of Proofs for 
Differential Dynamic Logic 

Axioms governing the construction of proof terms allow for the derivation of 
proof terms that describe proofs by substitution, uniform renaming, uniform 
substitution, and appeals to axioms and tautologies. This is sufficient to describe 
proofs constructed by the uniform substitution calculus of dL, and by extension 
most proofs constructed by the KeYmaera X theorem prover. The KeYmaera X 
theorem prover also contains a propositional sequent calculus and skolemization, 
so in practice some proofs constructed by KeYmaera X may not have proof 
terms in LPdL.  However, there exist proof term calculi for propositional   sequent 
calculi, so this report focuses on the portions of KeYmaera X proofs that do 
not yet have an easily adaptable proof term calculus. 

After stating the axioms and proof rules of LPdL in Def.7, we describe how 
each is used to construct proof terms for typical constructions. 

Unlike dL, LPdL does not use uniform substitutions. Therefore, the objects 
described in the following definition are axiom schemata and proof rules – not 
just formulas or pairs of  formulas. 

ψ → φ 





23  

 
 
 
 

Deftnition 7 (Axioms of LPdL).  The following are axioms of LPdL, where ϕ, ψ 
range over LPdL formulas, and c, f, g are function symbols and p, q are predicate 
symbols, and C a quantifier symbol. 

 

φ (dL Axiom) 

iA : A (dL Constants) 
jT : T (FOLR Constants) 

e : φ d : ψ 
(e � d) : (φ � ψ) 

e : (φ → ψ) d : φ 
e • d : ψ 

e : (φ ↔ ψ) d : φ 
e •→ d : ψ 

e : (φ ↔ ψ) d : ψ 
e •← d : φ 

e : φ 
σe : σ(φ) 
e : φ 

Be : B(φ) 
σe : σ(f (x̄) = g(x̄)) 

CTσe : σ(c(f (x̄) = c(g(x̄))) 
σe : σ(f (x̄) = g(x̄)) 

CQσe : σ(p(f (x̄) ↔ p(g(x̄))) 

(And) 
 

(Application) 

(Right Equivalence) 

(Left Equivalence) 

(US Proof Term) 

(Renaming) 
 

(CTσ ) 
 

(CQσ ) 
  σe : σ(p(x̄) ↔ q(x̄))  

CEσe : σ(C(p(x̄) ↔ C(q(x̄))) 

 
(CEσ ) 

 
 

and where the rulesUS Proof Term,CT σ,CQ σ, andCE σ are applicable only whenever σ is admissible for the dL formulas to which it is applied, and only 
whenever σ has no free variables.  The set of free variables of a substitution  
is defined in [25]. The formula φ in rule dL Axiomneeds to be a dL formula 
provable in dL. 

The axioms in Def.7correspond to the intuitive meanings for proof terms 
given in Section3.1. 

 
Proof Constant Axioms. The axiomatization of dL is included in LPdL in 
the form of including all provable dL formulas (rule dL Axiom). Proof con- 
stants iA and jT  internalize evidence for dL axioms and FOLR  tautologies. For 
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example,  
i[a;b]p(x̄)↔[a][b]p(x̄)  : [a; b]p(x̄) ↔ [a][b]p(x̄), and 

jx≥0→x2≥0  : x ≥ 0 → x   ≥ 0 
are both axioms of LPdL. For brevity, we often use the names of axioms as 
subscripts instead of the axioms themselves.  For    example, 

i[�]  : [a � b]p(x̄) ↔ [a]p(x̄) � [b](x̄). 

Conjunction Proof Rule. TheAndproof rule enables construction of com- 
pound proof terms that serve as evidence for conjunctions.  Constructing a  proof 
term that allows for left and right projections of a conjunction is also possible 
using dL axioms andApplicationaxiom, so these are not included as   primitives. 
Unlike dL,  proof term axioms and proof rules are schematic,   so 

d : x = y e : y = z 

(d � e) : x = y � y = z 

is a derivation in LPdL. 

 
Application Proof Rules.   TheApplicationproof rule enables construction 
of proof terms that correspond to the use of the Modus Ponens rule in dL; for 
example, 

d : p(x) → q(x) e : p(x) 
e • d : q(x) 

is a derivation in LPdL. TheLeft EquivalenceandRight Equivalencerules are 
definable in terms of theApplicationrule at the expense of more verbose proof 
terms. 

 
Uniform Substitution Proof Rule. TheUS Proof Termaxiom allows the 
construction of evidence that appeals to uniform substitutions.      Similarly,  uni- 
form renaming is evidenced byRenaming.  A schematic sequent calculus for    dL 
is definable using uniform substitutions [7] and proof terms can be assigned to 
each of these proof rules. For example, the proof terms for the sequent calculus 
proof rule 

€ [α]ϕ € [β]ϕ 
€ [α ∪ β]ϕ 

are σi[∪] •→ e : [α]ϕ∧ [β]ϕ where e : [α∪ β]ϕ and σ = {a ›→ α, b ›→ β, p(·∙) ›→ ϕ}. 

Equivalence/Equational Proof Rules. TheCT σ ,CQ σ , andCE σ proof 
rules combine uniform substitutions with the proof rules CT, CQ, and CE from 
dL. 

Example4demonstrates how these axioms and proof rules are combined 
with the axioms and uniform substitutions of dL to construct witnesses for dL 
proofs by constructing a proof term corresponding to the previous example. 
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dL Constants i 
 
 : [a 

 
 b]p(x̄) 

 
 [a]p(x̄) 

 
 [b]p(x̄) ∆ 

US Proof Term 
Left Equivalence 

   [�] � ↔  �  

σ1i[�]: [x := 0 � x := 1]x ≥ 0 ↔ [x := 0]x ≥ 0 � [x := 1]x ≥ 0 
� 

e� : [x := 0]x ≥ 0 � [x := 1]x ≥ 0 

 
 
 

where ∆� is 

σ1i[�] •← ((σ2i[:=] •← j0≥0) � (σ3i[:=] •← j1≥0)): [x := 0 � x := 1]x ≥ 0 
v  ,,  c 

e� 

 

i[:=]: [x := t]p(x) ↔ p(t) dL Constants 

US Proof Term 
i[:=]: [x := t]p(x) ↔ p(t)  

FOLR Constants 
σ2i[:=]: [x := 0]x ≥ 0 ↔ x ≥ 0 j2 : 0 ≥ 0 

σ2ii[:=]  •← j2  : [x := 0]x ≥ 0 
Left Equivalence 

σ3i[:=]: [x := 1]x ≥ 0 ↔ x ≥ 0 
σ3i[:=] •← j3 : [x := 1]x ≥ 0 

j3 : 1 ≥ 0 

And ((σ2i[:=] •← j0≥0) � (σ3i[:=] •← j1≥0)) : [x := 0]x ≥ 0 � [x := 1]x ≥ 0 
  c 

e� 
 

 

 

Example  4  (A Simple Proof Term).  A proof   of 
(σ1i[�] •← ((σ2i[:=] •← j0≥0) � (σ3i[:=] •← j1≥0))) : [x := 0 � x := 1]x ≥ 0 

where 
 

σ1 ≡ {a ›→ x := 1, b ›→ x := 1, p(·) ›→ x ≥ 0} 
σ2 ≡ {t ›→ 0, p(·) ›→ · ≥ 0} 
σ3 ≡ {t ›→ 1, p(·) ›→ · ≥ 0} 
i[�]  ≡ i[a�b]p(x̄)↔[a]p(x̄)�[b]p(x̄) 

i[:=]  ≡ i[x:=t]p(x)↔p(t) 

is given above. Intuitively, this property states that if x nondeterministically takes on 0 or 1, then x ≥ 0. The proof proceeds by symbolic decomposition of 
the hybrid program  x := 0 � x := 1  using axioms of dL.   Uniform    substitution 
instances of the relevant symbolic decomposition axioms are necessary in order 
to complete the proof. Labels on the left side of the proof of ∆ are elided for 
readability, but exactly match the labels on the right side. 
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4 Converting LPdL  Proof Terms into dL    Proofs 
We say that €LPdL φ whenever there is a proof of φ in LPdL, and we say that 
€dL φ whenever there is a proof of φ in   dL. 
Lemma 1 (Inversion).  The following are facts about   LPdL: 

• If €LPdL iφ : ψ then φ is ψ and φ is an axiom of dL. 
• If €LPdL jφ : ψ then φ is ψ and φ is a tautology of FOLR. 
• If €LPdL e � d : φ then φ is (χ � ψ) where €LPdL e : χ and €LPdL d :  ψ. 
• If €LPdL e • d : φ then €LPdL e : ψ → φ and €LPdL d : ψ for some  ψ. 
• If €LPdL e •← d : φ then €LPdL e : φ ↔ ψ and €LPdL d : ψ for some   ψ. 
• If €LPdL e •→ d : φ then €LPdL e : ψ ↔ φ and €LPdL d : ψ for some   ψ. 

• If €LPdL  CTσe : φ then φ is σ(c(f (x̄)) = c(g(x̄))),  €LPdL  σe :   σ(f (x̄) = 
g(x̄)),  and  σ  is  admissible  on  all  formulas  to  which  it  is  applied  and 
FV (σ) = �.6 

• If €LPdL  CQσe : φ then φ is σ(p(f (x̄)) ↔ p(g(x̄))), €LPdL   σe : σ(f (x̄) = 
g(x̄)),  and  σ  is  admissible  on  all  formulas  to  which  it  is  applied  and 
FV (σ) = �. 

• If €LPdL CEσe : φ then φ is σ(C(p(x̄)) ↔ C(q(x̄))), €LPdL   σe : σ(p(x̄) ↔ 
q(x̄)),  and  σ  is  admissible  on  all  formulas  to  which  it  is  applied  and 
FV (σ) = �. 

• If €LPdL σe : φ then €LPdL e : φr and σ(φr ) = φ for some φr such that σ is 
admissible for φr. 

• If €LPdL  Be : φ then €LPdL  e : φr  and B(φr ) = φ for some  φr. 

Proof. The proof involves a straightforward induction involving inspection of 
the conclusions of LPdL axioms. 
Theorem  2  (Proof terms justify theorems).  Let e be  a proof term and φ a   dL 
formula.  If €LPdL  e : φ then €dL  φ. 
Proof. The proof involves the construction of a dL proof corresponding to the 
proof term e.  We  proceed by induction on the structure of    e. 

Case iA.  Suppose that €LPdL iA  : φ.  By Lemma1,  φ = A and is an axiom  of 
dL.  Therefore, €dL  φ. 

Case jT . Suppose that €LPdL iA : φ. By Lemma1, φ = A and is a tautology of 
FOLR. Therefore, €dL φ. 

6The set, FV (σ), of free variables of a substitution σ is defined in [25] 
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Case e � d.  Suppose that e � d : φ.  By Lemma1, 
φ = χ � ψ 

and  
€LPdL e : χ (3) 

€LPdL d : ψ (4) 

Applying the inductive hypothesis to (3) and (4) establishes that 

€dL χ (5) 

€dL ψ (6) 

The schematic proof  rule  
(�R) 

 

ϕ   Ω 

ϕ ∧ Ω 
where ϕ and Ω are any dL formulas that are derivable in dL using the 
propositional tautology ϕ → Ω → ϕ ∧ Ω and MP. From (5) and (6), andR 
derives €dL χ ∧ ψ. 

Case  e • d.  Suppose that €LPdL  e • d : φ.  By Lemma1, 

€LPdLe : ψ → φ (7) 

€LPdLd : ψ (8) 

Applying the inductive hypothesis to (7) and (8) establishes that 

€dLψ → φ (9) 

€dLψ (10) 

from which MP derives €dL  φ. 

Case  e •→ d.  Suppose €LPdL  e •→ d : φ.  By Lemma1, 

€LPdLe : ψ ↔ φ (11) 

€LPdLd : ψ (12) 
are provable in LPdL. Applying the inductive hypothesis to (11) and (12) 
establishes 

 

 
 
 

Note that 

€dLψ ↔ φ (13) 

€dLψ (14) 
 

€dL (ψ ↔ φ) → (ψ → φ) 
has a proof in dL. With (13), MP , thus, derives €dL  ψ → φ.  Applying  
MP once more to ψ → φ with (14) establishes that €dL    φ. 
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Case  e •← d.  Suppose €LPdL  e •← d : φ.  By Lemma1, 

€LPdLe : φ ↔ ψ (15) 

€LPdLd : ψ (16) 
are provable in LPdL. Applying the inductive hypothesis to (15) and (16) 
establishes 

 
 
 

Note that 

€dLφ ↔ ψ (17) 

€dLψ (18) 

(φ ↔ ψ) → (ψ → φ) 
has a proof in dL. From this fact and (17), it follows by the Modus Ponens 
proof rule that €dL  ψ → φ.  Applying Modus Ponens once more to this  fact 
and (18) establishes that €dL     φ. 

Case CTσe.  Suppose that €LPdL CTσe : φ.  By  Lemma1, 

φ = σ(c(f (x̄)) = c(g(x̄))) 

where  
€LPdL e : σ(f (x̄) = g(x̄)) (19) 

and σ is admissible for f (x̄) = g(x̄).  Applying the inductive hypothesis to 
(19) establishes 

€dL σ(f (x̄) = g(x̄)) (20) 

Also by Lemma1, σ is admissible on this formula and FV (σ) = �. There- 
fore, [25, Theorem 25] establishes that the σ uniform substitution instance 
of  CT  is  sound  in  dL and  so  €dL  σ(c(f (x̄)) = c(g(x̄)))  by  the  σ  uniform 
substitution instance of CT. 

Case CQσe.  Suppose that €LPdL CQσe : φ.  By Lemma1, 

φ = σ(p(f (x̄)) ↔ p(g(x̄))) 

where  
€LPdL e : σ(f (x̄) = g(x̄)) (21) 

and σ is admissible for f (x̄) = g(x̄).  Applying the inductive hypothesis to 
(21) establishes 

€dL σ(f (x̄) = g(x̄)) (22) 

Also by Lemma1, σ is admissible on this formula and FV (σ) = �. There- 
fore, [25, Theorem 25] establishes that the σ uniform substitution instance 
of CQ is sound in dL and so €dL  σ(p(f (x̄)) ↔ p(g(x̄))) by the σ uniform 
substitution instance of CQ. 
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Case CEσe.  Suppose that €LPdL CEσe : φ.  By Lemma1, 
φ = σ(C(p(x̄)) ↔ C(q(x̄))) 

 

where  
€LPdL e : σ(p(x̄) ↔ q(x̄)) (23) 

and  σ  is  admissible  for  p(x̄) ↔ q(x̄).  Applying  the  inductive  hypothesis 
to  (23) establishes 

 

€dL σ(p(x̄) ↔ q(x̄)) (24) 

Also by Lemma1, σ is admissible on this formula and FV (σ) = �. There- 
fore, [25, Theorem 25] establishes that the σ uniform substitution instance 
of CE is sound in dL and so €dL σ(C(p(x̄)) ↔ C(q(x̄))) by the σ uniform 
substitution instance of CE. 

Case σe.  Suppose that €LPdL σe : φ.  By Lemma1,  φ = σ(φr ) and €LPdL e : φr 

for some φr .  The induction hypothesis for the smaller proof term e   gives 
€dL φr .  Therefore, €dL σ(φr ) (i.e., φ) is provable by US. 

Case Be.  Similar to the case for σe. 
The fact that LPdL is sound with respect to the semantics of dL under proof 

term erasure is a corollary of this    theorem. 
 
 

where S is the set of all states. 
φ I   = S ¢dL 

 

Proof.  By  Theorem2,  €LPdL  e :  φ implies  €dL  φ so  φ is  valid.   Note  that  dL  is 
I φ I ¢LPd 

φ I  = S.    ¢d 
φ¢dL = S. By Def.6, ¢ L = L 

 

5 Checking Proof Terms Using Truth-Preserving 
Transformations 

KeYmaera X implements the uniform substitution calculus of differential dy- 
namic logic.  The soundness-critical core of KeYmaera X contains a set of  truth- 
preserving operations on dL formulas; these operations correspond to the axioms 
and proof rules of dL.  Provable objects are the closest that KeYmaera X   comes 
to proof certificates. A Provable is an object with a goal and a sequence of 
remaining subgoals, each of which is a sequent. A KeYmaera X proof certificate 
for a formula ϕ is a Provable object with no remaining subgoals and € ϕ as 
its goal.   Provable objects may only be created by  the soundness-critical    core 
of KeYmaera X, so they are guaranteed to be constructed via a sequence of 
truth-preserving operations such as proof rules, axioms, or substitutions. How- 
ever, a proof certificate does not record the actual sequence of truth-preserving 
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operations through which it is produced. While memory-efficient, this state of 
affairs is less than ideal for reasons that were enumerated in the introduction. 

Fortunately, adding proof terms to KeYmaera X is relatively simple7 be-  
cause LPdL is in every way – syntactically, semantically, and axiomatically – 
parsimonious with dL.  We are therefore able to augment KeYmaera X with a 
proof term checker  without making any changes to the soundness-critical    core. 

The proof of Theorem2was written so  that  it  suggests  a  procedure  for 
proof term checking.        The proof could have  exploited completeness results at 
several points.   Instead,  we  opted for explicitly constructing a syntactic    dL 
proof.  For this reason, an LPdL proof term checker can follow the structure of 
the proof of Theorem2– for each component of a proof term, the proof term 
checker constructs the sequence of truth-preserving operations described in the 
proof of Theorem2. These truth-preserving operations are then executed by 
the KeYmaera X core. If each operation succeeds (e.g., no clashes occur during 
uniform substitutions), then the proof term checker returns  true. 

There are a few caveats. The inversion lemma relies on the existence of 
certain formulas; these formulas must be inferred automatically, or else proof 
terms must be augmented with additional annotations. Our current ongoing 
implementation opts for the latter. Additionally,  in  the  proof  of  Theorem2, 
there are some points where the truth of a particular theorem is asserting (e.g.,  
via soundness). In each of these cases, KeYmaera X has either  a tactic or an  
extra proof rule that provides exactly the required truth-preserving transforma- 
tion.  For  example, the keymaerax.TacticLibrary.AndR tactic of KeYmaera   X 
performs  the  action  of  the  AndR  schema  referenced  in  the  e � d  case.   The σ 
instances of CT, CQ, and CE (which are guaranteed to be sound by [25,  The- 
orem 25]) that we appeal to in the CTσe, CQσe, and CEσe cases also have 
corresponding tactics in KeYmaera   X. 

 

6 Related Work 
Logics containing explicit representations of proofs have a storied place in the 
history of mathematical logic and computer science The BHK semantics for 
intuitionistic logic is one early and prominent example. Type-theoretic theo- 
rem provers such as Coq [16] use proof terms as explicit notions of evidence. 
Conversely, differential dynamic logic has proved to be an excellent setting for 
verifying complex hybrid dynamical systems [30]. 

The approach taken in this report is motivated primarily by pragmatic 
concerns related to the construction of certified software controllers for cyber- 
physical systems. We are particularly interested in developing a notion of evi- 
dence that is easy to add to existing theorem provers for differential dynamic 
logic (or other dynamic logics). For this reason, we take a logic with roots in 
the modal logic tradition – the Logic of Proofs [4] – as our point of departure 
with existing work. 

7The proof term checker is implemented in KeYmaera X 4.0b2 in Scala  in 
edu.cmu.cs.ls.keymaerax.pt.ProofChecker 
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The syntactic restriction placed on formulas containing proof terms is per- 
haps the most a significant difference between LPdL and modal logics with 
notions of evidence.  In LPdL,  it is not possible to construct a term of the form    
e : er  : φ.      For  this reason, LPdL is – in a qualitative sense – considerably less 
expressive than what one might expect from a full logic of proofs for hybrid 
systems.  However,  our concern in this report is with modeling deductions    in 
dL,  rather than with studying provability in the context of hybrid    dynamical 
systems. 

LPdL  contains  several  mechanisms  for  performing  contextual equivalence 
and equational rewriting.        There exist many logics and calculi with primitives 
for this style of rewriting [31,1].  Effortless rewriting of deeply nested formulas   
is a major benefit of Hilbert-style logics, but comes at the cost of less structured 
proofs. 

 

7 Conclusions 
In this project, we constitute a logical foundation for hybrid systems with an 

explicit notion of evidence, which significantly advances the tooling support for 
verifying safety of autonomous vehicle and advanced driver assistance systems. 

Explicit notions of evidence provide a clean separation between proof check-  ing 
and proof search and enable analyses that crucially depend upon an interro- 

gation of the structure of proofs. The Logic of Proofs for Differential Dynamic 
Logic demonstrates that it is possible to construct a calculus of proof terms on 
top of an existing theorem prover. Our preliminary work on synthesizing cer- 

tified fall-back controllers for safety-critical systems demonstrates that explicit 
representations  of  proofs  enable  principled  solutions  to  problems  that would 

otherwise  require ad-hoc and soundness-critical  analyses. 
 

Future Work Although the proof term checker for KeYmaera X demonstrates 
the utility of LPdL, there are several avenues for future work. First, KeYmaera X 
does not currently provide a mechanism for generating proof terms from proof 
search procedures – users must manually write down proof terms to be checked. 
However, we believe it will be easy to argument the KeYmaera X tactic language 
interpreter with a mechanism that constructs proof terms in tandem with the 
truth-preserving operations it executes on Provables. This extension – which we 
leave as future work – would add generation of proof terms to KeYmaera X. 
Furthermore, the existence properties stated in the inversion lemma require 
inference that is not currently implemented; instead, users of the proof term 
checker must annotate implicational and equivalence rewriting. 
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