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TECHNICAL SUMMARY

Title
An automatic method for detecting sliding railway wheels and hot bearings using thermal imagery

Introduction

One of the most important safety-related tasks in the rail industry is early detection of defective rolling
stock components. Railway wheels and wheel bearings are two components prone to damage due to
their interactions with brakes and railway track, which makes them a high priority when the rail
industry investigates improvements to current detection processes. One of the specific wheel defects is
a flat wheel, which is often caused by sliding during a heavy braking application. The main
contribution of this research work is development of a computer vision method for automatically
detecting the sliding wheels from images taken by wayside thermal cameras. As a byproduct, the
process will also include a method for detecting hot bearings from the same images. We trained our
algorithm with a set of simulated data and tested it on several thermal images collected in in North
American revenue service by the Union Pacific Railroad (UPRR).

Description of Activities

The process of the railway wheel sliding on the rail heats up the steel wheel, which can be observed
and potentially detected in thermal images. UPRR has been investigating the potential of using a
thermal camera for sliding wheel detection during revenue service. A set of thermal images were
provided by the UPRR to Michigan Tech with an objective to develop an automatic algorithm for
identification purposes. We first developed an automatic detection and segmentation method, which
identifies the wheel and bearing portion of the image. Then, we found a method, using “Histogram of
Oriented Gradients” to extract features of these regions. These feature descriptors are later employed
by “Support Vector Machine” to build a fast classifier with a good detection rate, to detect
abnormalities in the wheel.

We found that the heat pattern generated from a sliding wheel can be automatically detected in the
thermal imagery, making it a noteworthy technology for such applications. In this research we
identified the heat pattern (hot spots) produced by sliding wheels and also found we could detect the
hot bearings, another common defect of wheel assemblies. The basic procedure for our proposed
automatic wheel defect detection method includes the following steps:

e Acquisition of a labeled data set with thermal images of defective and normal train wheels
(preferably collected in revenue service).



e Partitioning of the available data set into a training set for the proposed algorithm, and a test set
to evaluate its operation.

e Segmenting the wheel part of all the images in both training and test set.

e Extracting the wheel features of both training and test set.

e Training the wheel classifier using feature descriptors extracted from the training set.

e Evaluating resulting classifier on the test data set.

The procedure for automatic hot bearing detection method adds the following:
e Segmenting the bearing part of the thermal images.
e Calculating the mean intensity/temperature of the bearings.
e Detecting hot bearings based on a temperature threshold.

Outcomes

To evaluate the accuracy of our sliding wheel detection method, a sufficient sample size of images
with and without defects was required. Due to small sample size of actual wheel images with defects
obtained from the UPRR, we found it necessary to develop additional set of simulated wheel images
for algorithm training purposes and using the UPRR data set for evaluating the algorithm. The results
showed that our method was able to detect 98% of the total number of simulated and real world
defective wheels in addition to identifying all the normal wheels without any false alarms.

In addition to sliding wheel detection, thermal imagery could be used for hot bearing detection with
little additional effort. Since the majority of our hot bearing detection algorithm takes place in
conjunction with the sliding wheel detection procedure, the only additional effort to identify hot
bearings in this approach includes comparison of the calculated mean intensity/temperature with a set
threshold.

Conclusions/Recommendations

The objective of wayside detection systems for rolling stock is to identify potential defects and inform
the operators about the need to remove or repair the parts before they cause damage or an accident. To
achieve this goal, fast and reliable defect detection methods are necessary. This project used data
obtained through thermal imagery and introduced a novel automatic method for detection of sliding
wheels and hot bearings from the data. Our proposed algorithm offers an alternative and reliable
method for detecting sliding wheels based on uneven temperature distributions long the wheel rim and
defective bearings based on the heat stamp in the bearing region.

The goal of this work was to find the optimum algorithm, which is both accurate for detecting patterns
indicative of a sliding wheel and at the same time reasonable in terms of time and memory needed for
computational purposes. This was successfully done in the research. Since the current project
concentrated on sliding wheels, no emphasis was placed on identifying defects outside the wheel/rail
interface. However, our algorithm can detect the flat spots at any other point of the wheel, as long as it
is visible in the thermal image. The next research step will apply the same method for detecting hot
spots located throughout the rim. To remove the potential occlusion by the car bogie components, two
cameras need to be installed in series to ensure that a full wheel rotation is visible.



An important and difficult part of our algorithm is to identify the wheel and bearing parts in the
thermal imagery. Future process improvements for this part include additional steps of image pre-
processing with focus on noise cancellation and deblurring to obtain better wheel and bearing
segmentation accuracy. In addition, we are investigating the potential to fuse thermal imagery with
visible-spectrum imagery, which would provide both additional benefits to detection and also the
ability to specify the location (car, axle) of the defective wheel or bearing. Furthermore, a train wheel
history/profile can be fused with the result of the wheel inspection algorithm for more accurate
conclusions and possible wheel damage prediction.
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Abstract

One of the most important safety-related tasks in the rail industry is an early detection of defective rolling stock
components. Railway wheels and wheel bearings are the two components prone to damages due to their interactions
with brakes and railway track, which makes them a high priority when the rail industry investigates improvements in the
current detection processes. One of the specific wheel defects is a flat wheel, which is often caused by a sliding wheel
during a heavy braking application. The main contribution of this paper is the development of a computer vision method
for automatically detecting the sliding wheels from images taken by wayside thermal cameras. As a byproduct, the
process will also include a method for detecting hot bearings from the same images. We first discuss our automatic
detection and segmentation method, which identifies the wheel and bearing portion of the image. Then, we develop a
method, using histogram of oriented gradients to extract the features of these regions. These feature descriptors are later
employed by support vector machine to build a fast classifier with a good detection rate, which can detect abnormalities in
the wheel. At the end, we train our algorithm using simulated images of sliding wheels and test it on several thermal

images collected in a revenue service by the Union Pacific Railroad in North America.
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Introduction

As the demand for the rail transportation capacity
and speed grows, there is an increasing trend toward
higher productivity and efficiency in the rail industry.
Both railroad track and rolling stock have rigorous
inspection requirements to maintain the safety of
the network. Even then, 84% of all the rolling-
stock-related accidents in 23 countries are confirmed
to be caused by the wheel set or bogie defects.'
According to Liu et al.,” bearing failure and broken
wheels are respectively the third and fourth major
cause of freight train derailments on main tracks in
North America. The authors also note that these
derailment causes are most prevalent at speeds
above 40 km/h (25 mile/h), exposing the rail industry
to extensive damages from each occurrence.

Current inspection methods of the rolling stock
components include both automated and visual
systems, but the industry is increasingly moving
toward detector and performance-based rolling
stock maintenance to improve the efficiency and to
reduce costs and reliance on human interpretation.

Wayside monitoring systems are most commonly
used for automated rolling stock inspection pro-
cesses.’ Inspection equipments are installed at fixed
locations in or next to the track, where the train
passes over the section. As the train rolls through
the inspection station, different inspection sensors col-
lect the information on possible defects like hot bear-
ings, hot wheels, dragging equipment, and high, wide,
or shifted loads. After inspecting a train, modern way-
side detectors will automatically report their findings
by radio or wireless connections.*

Many defects such as flat spots worsen gradually.
Therefore, a fast and early detection of these defects
can prevent further and more serious damage. Flat
spots occur mainly as a result of violent braking,
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causing the wheel to lock up and slide on the rail while
the train is still moving, making detection process
during such braking event ideal. There are also
other less common reasons for a flat spot to occur,
such as poorly adjusted, frozen, or defective brakes
and also contaminations on the rail such as grease,
leaves, snow, and ice.” A flat spot induces great
forces on both the rolling stock and the track and
can lead to fatigue damage and failure of various
vehicle and track components such as wheel sets,
bearings, and rail ties." In some cases, the damage
can even cause later derailment which is a serious
concern for the rail industry. The wheel-track inter-
action has been studied in several papers,®® which
describe the importance of the effect of a defective
wheel on the track. In addition to the safety consid-
erations, this type of defect causes an unpleasant
noise, reducing passenger comfort and disturbing
people in adjacent properties. Thus, an online auto-
matic wheel defect detection system, which monitors
the wheel condition and detects sliding wheels at an
early stage, can help the maintenance to be scheduled
more proactively, improving safety and reducing
operational disruptions. We will discuss some of the
existing methods to detect these types of defects and
then move on to our proposed method.

Hypothesis and research methodology

The process of the railway wheel sliding on the rail
heats up the steel wheel, which can be observed and
potentially detected in the thermal images. We
hypothesize that the heat pattern generated from a
sliding wheel can be automatically detected in the
thermal imagery, making it a noteworthy technology
for sliding wheel detection. In this paper, we will iden-
tify the heat pattern to detect hot spots/sliding wheels
and also to detect the hot bearing, another common
defect of the wheel assembly. The basic procedure for
our proposed automatic wheel defect monitoring
method is as follows:

i.  Acquire a labeled data set with the thermal
images of defective and normal train wheels.

ii. Partition the available data set into a training set

to train the proposed algorithm, and a test set to

evaluate its operation.

Segment the wheel part of all the images in both

the training and test set.

iv. Extract the wheel features of both the training
and test set.

v. Train the wheel classifier using feature descriptors
extracted from the training set.

vi. Evaluate resulting classifier on the test data set.

iii.

Furthermore, the procedure for automatic hot
bearing detection method is as follows:

1.  Segment the bearing part of the thermal images.
ii. Calculate the mean intensity/temperature of the
bearings.
Detect hot bearings based on a temperature
threshold.

iii.

The rest of this paper is organized as follows. We first
briefly review the previous work in this field and then
will go through our proposed algorithm steps in
details (Figure 1). Each phase will be described in
the following sections. We then complete the paper
by demonstrating our proposed automated monitor-
ing method on a collection of simulated images and
real thermal imagery taken on several trains on a
Union Pacific Railroad (UPPR) (a North American
class 1 freight railroad).

Previous work

Previous work that focuses on the automatic wheel
defect detection includes different techniques, such
as acoustic, optical, thermal, and laser-based detec-
tion technologies.'”

One way to detect flat spots and hot bearings is
using the sound-based (acoustic) detection. This
method is based on the fact that defective wheels
and bearings produce vibration.'™'' The work of
Papaclias et al.® is an example of this method, in
which the authors implement an integration of the
acoustic emission and vibration analysis for onboard
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Figure |. Automatic wheel and bearing defect detection block diagram.
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evaluation of the bearings and wheels. The challenge
with this method is that the measured acoustic signal
might contain the surrounding noise, limiting the
method accuracy or increasing implementation cost
to remove the noise.

Another approach uses vision cameras that
are installed as a wayside monitoring system, but
wheel failures are not always visually detectible.
This makes visual images by themselves insufficient
for detecting certain wheel defects. According to
Asplund et al.,'* only half of all wheels with a force
peak over 400kN are visually seen as damaged
wheels; while American Association of Railroads
(AAR) recommends that a wheel with peak impact
force of 222.41-226.89kN due to a single flat,
should be replaced.! Visual cameras can be useful
for detecting other type of defects which are visible
in the images. Li et al.'* employed vision cameras for
the automatic wheel bearing bolt defect detection. In
contrast to the wheel surface which is our study in this
paper, bolts are visible in the vision camera image and
thus the necessary information can be acquired using
the camera.

Measurement of the wheel profile can also be help-
ful for detecting abnormalities. Wheel profile detec-
tors employ digital images to determine the profile
of the tread while in service and then compare it to
the standard profile.'® Examples of a wheel profile
case study using laser scanning are presented by
Asplund et al.'>'* In these papers, the authors study
the wheel profile monitoring system (WPMS) on a
track section in Sweden in order to detect failures
related to the wheel.

An alternative well-studied procedure to detect a
wheel flat is to measure the dynamic force or acceler-
ation of the track under the wheel.'> This method is
known as wild impact load detector (WILD) and can
be used as a predictive and proactive maintenance
system.'®!7 In a related work,! UI Alam Uzzal et al.
have gone even one step further, studying the impact
of multiple wheel flats by measuring the acceleration
of the wheel set.

One of the most common methods to detect hot
bearings is employing hot box detectors.'® The hot
box detectors work based on the principle that an
axle bearing will emit a large amount of heat when
it is close to failing.

While there is no question that the currently avail-
able methods have been successful in identifying slid-
ing wheel/flat spot and bearing defects, the continuing
interest by the industry toward alternative technolo-
gies reveals that there are still opportunities for devel-
opment. For example, one of the challenges with the
acoustic and hot box detectors in identifying sliding
wheels is their incapability to reliably detect uneven
temperature distributions within the wheel. This has
created an interest among industry to investigate
the use of thermal cameras as an alternative solution
for detection.'® Hence, in this paper we explore how

the generated heat pattern from a sliding wheel can be
automatically detected using a thermal camera. We
also demonstrate how the same camera can be used
simultaneously to identify the hot bearings. Our
results show that this method has much promise for
effective detection of these types of defects.

Thermal image segmentation
(pre-processing)

A few samples of the thermal images we are working
with are shown in Figure 2(a). Furthermore, several
examples of the sliding wheels are demonstrated in
Figure 2(b). Comparing the images of the normal
wheels with the defective ones shows that sliding
wheels possess a distinctive heat pattern at the
wheel-track contact point. In the following sections,
we will explain our proposed algorithm for detecting
this heat pattern in the damaged wheels.

Automatic wheel detection and segmentation

The first step of algorithm is to segment the wheel
portion of the image from the suspension hardware
in the thermal image. As can be seen in Figure 2, in
addition to the wheel, the image may contain hard-
ware components of the train as well as the track,
which play no role in our investigation process and
might interfere with the sliding wheel detection algo-
rithm. As shown in these images, the wheel can be
partially to almost fully occluded by suspension hard-
ware. Hence, our algorithm must be flexible and
effective at detecting the wheel portion of the image
automatically. If the thermal image has been captured
while the wheel was sliding, it signifies that the hot
spot is located at the contact point of the wheel and
the track and this part is always visible in the images.
It is also possible that the wheel has rotated after
sliding, and the hot spot is somewhere else along the
wheel. It might even be occluded by the suspension
hardware in the thermal image. Nevertheless, as long
as the hot spot is visible in the image, it can poten-
tially be detected. In order to locate this hot area in
the image, first we need to recognize the wheel in the
thermal image.

The train wheel is originally in the shape of a
circle, but because of the combined effect of the
motion of the train and the rolling shutter of the
imager, there is skewness in the shape of the wheel
and the wheel appears as an ellipse in the image.
To automatically detect the elliptical portion of
the image associated with the wheel, we employ the
Hough transform (HT)."” The HT is a feature extrac-
tion method that is widely used in image processing.
Originally, this method was used to extract lines in
an image, but it can be extended to extract more
complicated and arbitrary shapes, e.g. circles or
ellipses. In this paper, we will use the extended version
of the transform to detect the elliptical wheel in the
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(b)

Figure 2. Examples of the train wheel thermal images taken by wayside thermal imaging system.

thermal imagery. The parametric equation of an
ellipse is

X+ p1xy + pay? + p3x + pay +ps =0 (1)

where py, p», p3, ps, and ps determine the shape and
the location of the ellipse. Since the ellipse is defined
by five parameters according to equation (1), by iden-
tifying five independent points on the ellipse, we can
calculate the parameters. Following the HT method,
first five independent points in the image are selected,
and the ellipse consisting of these points is found. This
process is done for all the points/pixels in the thermal
image. Then, every ellipse receives votes from all the
points located on its perimeter. The summation of the
acquired votes for each ellipse determines how strong
this ellipse is. In other word, the ellipse in the image
that have the most points located on its perimeter will
be chosen. In this approach, we are actually mapping
the xy coordinates to a five-dimensional space, using a
five-dimensional accumulator for the HT. If we
choose to do an exhaustive search, the order of com-
plexity employing this method will be O(®°).
Therefore, finding an ellipse using the HT will be
expensive in terms of memory usage and computation
time. To overcome the complexity problem, we use a
Canny edge detector’ to reduce the number of pixels
investigated, thus reducing the processing cost. We
first apply the Canny edge detector to the wheel ther-
mal image to obtain a binary image consisting of only
edges; then, we use the HT to detect the train wheel in
the image. To speed up the process even more, we use
randomized Hough transform (RHT)?' rather than
the original HT. In the RHT, the HT is applied to a
random subsample of all the image pixels, instead of
all possible pixels. Assuming that there are enough

wheel edge pixels in the binary image, the HT still
should be able to detect the wheel part.

There are several ways to mathematically define an
ellipse. As mentioned before, five independent param-
eters should be determined. In this paper, we define
the ellipse by the following parameters:

e Center of ellipse (x and y coordinates),

e Orientation of ellipse which is defined as its angle
with x-axis,

e Length of major axis of ellipse,

e Length of minor axis of ellipse.

We follow the method introduced by Xie et al.*
to detect the wheel. For each pair of image pixels
(x1, ¥1) and (x,, y»), we assume that these points
are two vertices on the major axis of an ellipse, then
we can calculate the following parameters for the
ellipse

xo = (xi +;)/2 (2a)
yo = (yi+)/2 (2b)
az\/(xf—xf)2+(yf—Y./)2/2 (20)
a = atan[(y; — yi)/(x; — x)] (2d)

In the above equations, (xo, yo) is the center of the
ellipse, a is the half length of the major axis, and « is
the orientation. As illustrated in Figure 3, the minor
axis can be calculated as

b= \/ (@ (sin(¢))*)/(a® — dP(cos($))’) 3)
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where b is the half length of the minor axis,
cos(¢) = (a* + d* — f*)/(2ad) and d is the distance
between the point (x, y) on the ellipse and the center
of ellipse. Accordingly, if we have (x1, y;) and (x5, y»),
we can calculate all the ellipse parameters except for
the minor axis. Therefore, we use the HT to vote on
the half length of the minor axis. This way, a one-
dimensional accumulator is enough to detect the
ellipse and we output the parameters for the best

(xy)

/ d
(xi.¥1) 2 (x.¥1)

f1 (x0,¥0) fz

Figure 3. Ellipse geometry.

ellipse found in the thermal image,> i.e. the ellipse
with the maximum votes. This procedure of finding
the elliptical wheel and subsequent bearing (which will
be explained in the following section) detection and
extraction is illustrated in Figure 4.

Automatic bearing detection and segmentation

In addition to abnormal heat pattern generated by the
sliding wheel, a hot bearing may also cause elevated
heat pattern in the images. To differentiate between
these two causes, it is necessary to separate the bear-
ing portion from the overall image, enabling the
remainder of the image to be used for the sliding
wheel identification. Once the bearing portion has
been identified and separated, its heat pattern can
also be used at an indication of potential faulty
(hot) bearing.

Similar to a wheel, because of the motion effect in
the image, the bearing is also seen as an ellipse in the
image. Therefore, to find the bearing, we apply the
HT to the extracted wheel part and detect the bearing

~

al- |
C)- |
.- |

Figure 4. Image segmentation of the wheel and bearing regions.
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as a separate part. The procedure is analogous to
wheel detection, explained in the previous section.
As a consequence of train movement, there is a
motion blur effect which can be observed primarily
at the edges. Because of this blurriness, for the pur-
pose of wheel heat pattern analysis, the bearing
should be removed from the wheel image with a
safety margin, which is bigger than the detected bear-
ing (see Figure 4). On the other hand, for the hot
bearing detection algorithm, this safety margin is
unnecessary and in fact the bearing should not include
any wheel part. Therefore, in order to detect hot bear-
ing, we have to segment the detected bearing without
any margin.

Automatic sliding wheel detection

Feature extraction using histogram of
oriented gradients

After the wheel and bearing extraction, the corres-
ponding segmented parts of the thermal image are
ready for further analysis. The first step after pre-
processing is to extract image features with which
we can train our algorithm. Image features must be
chosen in a way that a defective wheel can be distin-
guished from a normal wheel. Our image set is a col-
lection of the thermal camera imagery, which does not
contain any distinguishable texture. This means the
only information that can be obtained from the
images is pixels temperature. In the thermal imagery,
the temperature is represented as pixel intensities.
Hence, we need to identify local heat pattern of the
sliding wheels, which in our data set can be observed
at the wheel-track contact point. Figure 2(b) illus-
trates this pattern on the sliding wheel.

We have to employ feature descriptors that can
capture the hot spot pattern. In order to do this
task, we use the histogram of oriented gradients
(HOG) feature. The HOG is a feature descriptor
which is widely used in the computer vision and
image processing to detect object in imagery. HOG
decomposes an image into square cells of a given
size; then it counts occurrences of intensity gradient
orientation in localized portions of the image.> It has
been widely accepted as one of the best features to

capture local shape information about objects in the
imagery.

The essential thought behind the HOG descriptors
is that local pattern within an image can be described
by the distribution of intensity gradients or edge dir-
ections. The implementation of these descriptors can
be achieved by dividing the image into small con-
nected regions, called cells, and for each cell compiling
a histogram of gradient directions or edge orienta-
tions for the pixels within each cell. The HOG descrip-
tor operates on localized cells; therefore it has the
advantage that upholds invariance to geometric and
photometric transformations, except for object orien-
tation which is not an issue in our work. To obtain the
HOG feature descriptor, there are four main steps
which should be taken:

1.  Gradient computation: Calculate the gradient
values.

ii. Orientation binning: Create the cell histograms.

iii. Descriptor blocks: Group the cells together into
larger blocks.

iv. Block normalization: Normalize the gradient
strengths.

The implementation of the HOG is illustrated in
Figure 5. As it can be seen in the figure, by applying
the HOG to an image, we will obtain a histogram of
its intensity gradient orientations.

In this paper, first we segment a window in the
thermal image, which includes the wheel. Since we
detected the wheel portion in pre-processing stage,
we know all the parameters needed to locate
the wheel in the image. Thus, the position of the
window can be chosen in a way that contains the
wheel. The original image size is 240 x 320 pixels
and the area of interest is divided into 8 x 8 pixels
regions subsequently. Each of these pixel regions is
called a cell. The smaller the cell size is, the more
details it captures. We examined different cell sizes
and for the purpose of this research work, 8 x 8
pixels is the appropriate cell size to capture the desired
features. Next, for each cell we calculate a one-dimen-
sional histogram of gradient orientations over pixels
in the cell. These histograms capture the local heat
pattern properties. The gradient at each pixel is
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Figure 5. Histogram of oriented gradients (HOG) algorithm.

Downloaded from pif.sagepub.com at Michigan Technological University on August 24, 2016


http://pif.sagepub.com/

Deilamsalehy et al.

discretized, and then each pixel votes for the orienta-
tion with a weight which depends on the magnitude of
its gradient. Finally, the histogram of each cell is nor-
malized with respect to the gradient energy in a neigh-
borhood around it. The HOG features for three
normal and three sliding wheels are illustrated in
Figure 6(a) and (b) accordingly. The features are
shown on the thermal image and without the image
at the background. It can be visually seen that the
orientation pattern of the HOG descriptors around
the hot spot, which is shown with a circle, is different
from the same part in a normal wheel.

Classification and sliding wheel detection
with support vector machine

The HOG descriptors extracted from the thermal
images provide a feature set by which we can poten-
tially distinguish defective wheels from normal wheels.
After acquiring the feature descriptors, we train a sup-
port vector machine (SVM) classifier to detect the
sliding wheel. The SVM is a supervised learning
method, which can find a decision boundary between
two classes based on their feature data. Assume that
we have a training set D which is defined as

D = {(x,y)lx; € R, y; e (=1, 1}, 4)

where y; is the label of feature vector x; (e.g. y; = +1
indicates a normal wheel and y; = —1 indicates a
defective wheel), p is the number of features in the
vector Xx;, and »n is the number of data points in the
training set. We want to find the optimal hyper plane

which separates the data labeled as y; = +1 from the
ones labeled as y; = —1. The SVM is a method by
which an optimal decision function can be learned
from training data D. This is illustrated in Figure 7.

In our paper, the two classes are normal and sliding
wheels and our data set consists of a set of simulated
thermal images and a set of real images taken by a
wayside thermal camera on the UPRR. The inputs to
the SVM are the HOG feature descriptors. The SVM
uses the feature descriptors in the training data to
learn a detection algorithm that can be applied to
classify incoming wheels as defective or not.

"~
/l .
. ~
Maximum.
¥y /margin
‘\\ \
~
LY -

X4

Figure 7. Support vector machine (SVM) for linearly
separable data points.

Figure 6. Visualization of the HOG feature descriptors of the train wheels. The top rows in (a) and (b) visualize the HOG features
on the wheel thermal images and the bottom rows are the HOG visualizations of the same thermal images without the wheel on the
background. In the bottom row of (b) the areas inside the red circles demonstrate the feature descriptors of the contact point of the

sliding wheels.
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Depending on the wheel damage level, different
approaches should be taken after detecting a sliding
wheel. Hence, it can be helpful if the damage level is
also determined. After detecting the defective wheel, it
can be further categorized into different classes, which
determine the level and severity of the damage. We
call this procedure defect clustering and it is done
based on the size and number of flat spots. In our
previous work,?* we developed and introduced such
algorithm that can be applied to the detected
damaged wheel images to estimate the damage level.

Automatic hot bearing detection

As mentioned before, the bearing region of the image
is automatically detected by applying the HT to the
detected wheel. To calculate the bearing temperature,
we do not use any safety margin while segmenting the
bearing. Instead, we use exactly the bearing pixels
(see Figure 4). Next, we calculate the mean intensity
of the bearing, which has a direct relation with the
bearing mean temperature. By having the mean inten-
sity of the bearing, its mean temperature can be easily
calculated. A threshold, based on the maximum
normal bearing temperature/intensity should be set
and those bearings that have a mean temperature/
intensity above this threshold are labeled as hot
bearings. The intensity distribution of the bearings of
the UPRR data set and a hypothetical threshold for
hot bearing are illustrated in Figure 8. As the actual
temperatures were not provided by the UPRR and the
primary objective of the research was on sliding wheel
identification, we did not test the accuracy of bearing
detection procedure, but rather the intensity values of
the image data set to demonstrate the idea.

Implementation and results

To evaluate our proposed algorithm, we applied it to
a set of simulated and real thermal images. Creation

Hot B'éaring_
... Area

Number of images

4700-4750 4950-5000 5200-5250 S450-5500 5700-5750 5950-6000
Mean intensity

Figure 8. Bearing intensity distribution for the UPRR
data set.

of the simulated images was necessary as our defective
wheel sample data set was not large enough by itself
to train the model. To simulate train wheel thermal
images we used ANSYS,* which employs finite elem-
ent method (FEM) to generate the model. Our model
simulates the wheel and bearing temperatures and
identifies the temperature gradient at the wheel-
track contact point. The simulation parameters are
explained in detail in the next section.

Simulating the wheel temperature profile
using a finite element method

Temperature distribution on the railway wheel can be
obtained through the FEM simulations.?® The advan-
tage of using a numerical model to generate the wheel
temperature profile is the possibility to test the versa-
tility of our proposed technique under different heat
flux scenarios.?’” A two-dimensional, static, steady-
state FEM model of the wheel and rail was developed
using ANSYS FEM software, where a set of heat
sources and sinks are set to mimic the heat fluxes
of the wheel while in motion. For instance, the con-
vection heat transfer coefficient around a wheel
moving at 80km/h (50mile/h) is approximately
h=56W/m?K.*® Using this heat transfer coefficient,
the resulting Biot number becomes Bi=1.14. A Biot
number larger than one indicates that the temperature
gradient inside the wheel is larger than between the
wheel and the air. This is also indicative of a very
small thermal boundary layer.?® To mimic this condi-
tion, the wheel surface is modeled as a constant tem-
perature source term with no convection to the air.
The outside temperature of the wheel is then set at
300°C. This temperature is based on experimental
measurements of a train wheel overheating due to
the contact friction between the rotating wheel and
the rail under normal wheel-rail interaction.”” The
axle bearing is also set at the same temperature.
Once the wheel experiences an abnormal behavior,
inducing the wheel sliding on the rail instead of rotat-
ing, an extra localized heat source will appear between
the wheel and the rail. This overheating due to sliding
is modeled as an area on the wheel with a higher tem-
perature. The temperature of the hot spot is varied
from 550°C to 800°C in our study and its size is
between 15 and 40 pixels. Additionally, ambient air
temperature is modeled at 25 °C and the rail tempera-
ture is modeled at 80 °C (Figure 9). The wheel and the
rail are modeled with the material properties of steel.
The temperature profiles obtained from the FEM
simulations are then imported into Matlab for post-
processing. The post-processing consists of uploading
the FEM simulations files and converting the tem-
perature profiles into an image with similar image
size and properties as those obtained from the thermal
camera. Furthermore, the motion blur effect is simu-
lated using Matlab build in Wiener filter. In order to
have more realistic images, Gaussian noise is added to
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them. This noise resembles the overall noise of the
thermal camera and environment. An example of
the simulated thermal camera images is shown in
Figure 10.

Training and testing the algorithm

We applied our proposed algorithm to a set of simu-
lated data as well as a real data set from the UPRR.
The image size for both data sets is 240 x 320 pixels.
We divided the available simulated images into two
sets of training and test and used the real data set for
the evaluation purpose only. The training data set

Air Temperature: Wheel Outside Surface and
25°C Bearing Temperature: 300 °C

Sliding Overheat

Spot

_ /////”/;l”

Rail Surface Insulated
Temperature: 80 °C Ground

75¢cm
65 cm

Rail Surface
Temperature: 80 °C

Figure 9. Schematic diagram of the thermal FEM wheel-rail
system.

Figure 10. Simulated thermal wheel image using the FEM.

consists of 200 simulated images in which 100 of the
images are the normal train wheels and 100 of them
are the sliding wheels. The test data sets include a set
of simulated images with 50 normal wheels and
50 defective wheels and a set of real images with
400 and 8 normal and sliding wheels, respectively.
We first train our algorithm on the training set.
After the training phase, we apply the trained algo-
rithm to the simulated test data set to evaluate its
performance on the simulated images. Then we
apply it to the test set consisting of real camera
images, in order to evaluate the accuracy of the algo-
rithm for real world data. Table 1 outlines the appli-
cation results of our proposed algorithm to each of
the test data sets separately, as well as the overall
performance. As the results show, the accuracy of
our proposed algorithm for the simulated data set
was 100% which means our algorithm was able to
detect all the sliding wheels without any false
alarms. For the real data set, the algorithm was able
to detect 88% of all the defective wheels and it iden-
tified all the normal wheels correctly. The major
algorithm failure reason was wheel segmentation
inaccuracy that can be mitigated in the future through
improvements in the wheel detection process. Despite
the fact that our algorithm was trained on a simple
simulated model (which was built based on only two
parameters: size and temperature of the hot spot), it
still resulted in good accuracy for the real world data.

Conclusion and future work

The objective of wayside detection systems for rolling
stock is to identify failures and inform the operators
about the need to remove or repair the parts before
they cause more damage or an accident. To achieve
this goal, fast and reliable defect detection methods
are necessary. This paper introduced a novel auto-
matic method for detection of the sliding wheels and
hot bearings from the thermal imagery. Our proposed
algorithm offers an alternative method for detecting
the sliding wheels and hot bearings, one that can reli-
ably identify uneven temperature distributions and
defective bearings.

To evaluate the accuracy of our sliding wheel
detection method, we applied the algorithm to a set
of simulated wheel images as well as the real data
obtained from the UPRR. The results showed that

Table |. Wheel defect results on simulated and Union Pacific data set.

Number of normal

Number of defective

Algorithm precision Algorithm precision

Dataset wheels in the data set wheels in the data set for normal wheels (%) for defective wheels (%)
Training set 100 100 - -

Simulated test set 50 50 100 100

Real test set 400 8 100 88

Total test set 450 58 100 98

Downloaded from pif.sagepub.com at Michigan Technological University on August 24, 2016


http://pif.sagepub.com/

10

Proc IMechE Part F: | Rail and Rapid Transit 0(0)

it was able to detect 98% of the total number of the
simulated and real world defective wheels in addition
to identifying all the normal wheels without any false
alarm.

In addition to the sliding wheel detection, it was
realized that the thermal imagery can be used for hot
bearing detection with little additional effort. Since
the majority of our hot bearing detection algorithm
takes place in conjunction with the sliding wheel
detection procedure, the only additional effort to
identify hot bearings in this approach includes com-
parison of the calculated mean intensity/temperature
with a set threshold.

The objective was to find the optimum algorithm
which is accurate for detecting patterns indicative of a
sliding wheel and at the same time, reasonable in
terms of time and memory needed for computational
purposes. This was successfully done in the research.
Since the current project concentrated on the sliding
wheels, no emphasis was placed on identifying defects
outside the wheel-rail interface. However, our algo-
rithm can detect the flat spots at any other point of
the wheel, as long as it is visible in the thermal image.
The next research step will apply the same method
toward detecting hot spots located throughout the
rim and to remove the potential occlusion by the car
bogie components, two cameras will be installed in
series to secure that a full wheel rotation is visible.
An important and difficult part of our algorithm is
to identify the wheel and bearing parts in the thermal
imagery. Future process improvements for this part
include additional steps of image pre-processing with
focus on noise cancellation and deblurring to obtain
better wheel and bearing segmentation accuracy. In
addition, we are investigating the potential to fuse
the thermal imagery with visible-spectrum imagery,
which will provide both additional benefit to detection
and also the ability to specify the location (car, axle)
of the defective wheel or bearing. Furthermore, a train
wheel former history/profile can be fused with the
result of the wheel inspection algorithm for more
accurate conclusions and possible wheel damage
prediction.
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