Use Case Scenarios – Space Based Receiver Assessment

GPS Adjacent Band Compatibility Assessment Workshop VI

RJ Balanga
30 March 2017
Space Based Receiver Applications

• Space vehicle navigation / Precise Orbit Determination (POD)
 – Position
 – Velocity
 – Time
 – Attitude
 – Associated scientific missions:
 • Ocean and ice altimetry
 • Synthetic Aperture Radar (SAR)
 • Interferometric SAR
 • POD and time transfer for gravity field
• Science measurements:
 – Radio occultation (GNSS-RO)
 • NOAA Operational Weather Forecasting
 • Climate change science
 • Space weather phenomenona
 – Reflectometry (GNSS-R)
 • Weather forecasting
 • Tidal surges
 • Flood plain monitoring
NASA Developed Receivers

• Goddard Space Flight Center (GSFC)
 – Navigator GPS Receiver
• Jet Propulsion Laboratory (JPL)
 – Flight TurboRogue
 – BlackJack GPS Receiver
 • IGOR
 • IGOR+
 – TriG Receiver
Focus on TRIG

• Applications:
 – Navigation/POD/sub-nanosecond time transfer
 – Radio Occultation

• Upcoming Missions:
 – Deep Space Atomic Clock (DSAC)
 – COSMIC-2 Equatorial (6 satellites)
 – COSMIC-2 Polar (6 satellites)
 – GRACE-Follow-On
 – Sentinel-6
 – Surface Water and Ocean Topography (SWOT)
 – NASA-ISRO Synthetic Aperture Radar (NISAR)
 – Other missions in development
On-Orbit Assessment Parameters

- Assessment based on the aggregate received interference from terrestrial interferer network
- Computation Method:
 - MATLAB time simulation
 - 10-day orbit simulation period @ 1-sec time steps
- System on-orbit specifications:
 - Altitude
 - Inclination angle
- Receiver specifications:
 - Antenna type
 - Antenna pointing azimuth
 - Antenna pattern
 - Polarization
 - Interference threshold*
- Propagation Loss
- Cross-polar antenna loss

* Obtained from results of DOT ABC Radiated Chamber Testing (April-2016)
TRIG GNSS-RO Antenna Gain Pattern

12-Element Array Antenna (Main beam pointing toward Earth limb)

[NOTE: A 2nd 12-element array antenna exists on the reverse side of the satellite. The 2nd array antenna has been omitted from this pictorial for graphical simplicity.]
GNSS-RO Antenna Beam Earth Grazing Coverage Area

TRIG RO Antenna -3dB Beamwidth earth grazing coverage

Antenna Downtilt Angle
From Satellite velocity vector : 26.2°

Coverage Area > 200,000 sq km (red contour)

Antenna -3dB Beamwidth Coverage Area Contour
On-Orbit View of US Major Cities
Assessment Challenges

• Unknowns of interferer network deployment
 – User target basis
 • Broadband mobile, IoT, Public Service Utility, etc.
 – Mixture of macro-/micro-cells* in a given environment
 • Urban vs rural
 • City-by-city
 – Maximum EiRP per sector per channel

• Any combination of the unknowns may affect:
 – Antenna orientation
 – Antenna vertical down-tilt/up-tilt angles
 – Density of base-stations (urban vs rural)

* Macro-/micro-cell specifications defined in ITU-R M.2292
Next Steps

• Continuation of collaboration with DOT
 – Ensure succinct assumptions for base-station macro-/micro-cell specifications
• Methodology of analysis
 – Development of generic terrestrial network deployment scenario(s)
• Documentation of assumptions
• Modeling and simulation analysis
• Provide results to DOT within a timeframe correlated with DOT’s other use-case scenario assessments
POC Information

René (RJ) Balanga
Sr. Spectrum Regulatory & Policy Advisor
NASA HQ
rj.balanga@nasa.gov
(o) 202.385.1216
(m) 202.230.8055

Bernard Gamache
Director (Acting), Spectrum Analysis Center
Glenn Research Center
bernard.g.gamache@nasa.gov
(o) 216.433.6162
(m) 216.210.6777

Dr. Larry Young
Group Supervisor, GPS Systems Group
Jet Propulsion Laboratory
lawrence.e.young@jpl.nasa.gov
(o) 818.354.5018